lnd.xprv/lntest/node.go
2018-02-06 19:11:11 -08:00

749 lines
21 KiB
Go

package lntest
import (
"bytes"
"encoding/hex"
"flag"
"fmt"
"io"
"io/ioutil"
"net"
"os"
"os/exec"
"path/filepath"
"strconv"
"sync"
"time"
"golang.org/x/net/context"
"google.golang.org/grpc"
"google.golang.org/grpc/credentials"
macaroon "gopkg.in/macaroon.v2"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/macaroons"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/rpcclient"
"github.com/roasbeef/btcd/wire"
)
var (
// numActiveNodes is the number of active nodes within the test network.
numActiveNodes = 0
// defaultNodePort is the initial p2p port which will be used by the
// first created lightning node to listen on for incoming p2p
// connections. Subsequent allocated ports for future Lightning nodes
// instances will be monotonically increasing numbers calculated as
// such: defaultP2pPort + (3 * harness.nodeNum).
defaultNodePort = 19555
// defaultClientPort is the initial rpc port which will be used by the
// first created lightning node to listen on for incoming rpc
// connections. Subsequent allocated ports for future rpc harness
// instances will be monotonically increasing numbers calculated
// as such: defaultP2pPort + (3 * harness.nodeNum).
defaultClientPort = 19556
// defaultRestPort is the initial rest port which will be used by the
// first created lightning node to listen on for incoming rest
// connections. Subsequent allocated ports for future rpc harness
// instances will be monotonically increasing numbers calculated
// as such: defaultP2pPort + (3 * harness.nodeNum).
defaultRestPort = 19557
// logOutput is a flag that can be set to append the output from the
// seed nodes to log files.
logOutput = flag.Bool("logoutput", false,
"log output from node n to file outputn.log")
// trickleDelay is the amount of time in milliseconds between each
// release of announcements by AuthenticatedGossiper to the network.
trickleDelay = 50
)
// generateListeningPorts returns three ints representing ports to listen on
// designated for the current lightning network test. If there haven't been any
// test instances created, the default ports are used. Otherwise, in order to
// support multiple test nodes running at once, the p2p, rpc, and rest ports
// are incremented after each initialization.
func generateListeningPorts() (int, int, int) {
var p2p, rpc, rest int
if numActiveNodes == 0 {
p2p = defaultNodePort
rpc = defaultClientPort
rest = defaultRestPort
} else {
p2p = defaultNodePort + (3 * numActiveNodes)
rpc = defaultClientPort + (3 * numActiveNodes)
rest = defaultRestPort + (3 * numActiveNodes)
}
return p2p, rpc, rest
}
type nodeConfig struct {
RPCConfig *rpcclient.ConnConfig
NetParams *chaincfg.Params
BaseDir string
ExtraArgs []string
DataDir string
LogDir string
TLSCertPath string
TLSKeyPath string
AdminMacPath string
ReadMacPath string
P2PPort int
RPCPort int
RESTPort int
}
func (cfg nodeConfig) P2PAddr() string {
return net.JoinHostPort("127.0.0.1", strconv.Itoa(cfg.P2PPort))
}
func (cfg nodeConfig) RPCAddr() string {
return net.JoinHostPort("127.0.0.1", strconv.Itoa(cfg.RPCPort))
}
func (cfg nodeConfig) RESTAddr() string {
return net.JoinHostPort("127.0.0.1", strconv.Itoa(cfg.RESTPort))
}
func (cfg nodeConfig) DBPath() string {
return filepath.Join(cfg.DataDir, "graph", "simnet/channel.db")
}
// genArgs generates a slice of command line arguments from the lightning node
// config struct.
func (cfg nodeConfig) genArgs() []string {
var args []string
switch cfg.NetParams {
case &chaincfg.TestNet3Params:
args = append(args, "--bitcoin.testnet")
case &chaincfg.SimNetParams:
args = append(args, "--bitcoin.simnet")
case &chaincfg.RegressionNetParams:
args = append(args, "--bitcoin.regtest")
}
encodedCert := hex.EncodeToString(cfg.RPCConfig.Certificates)
args = append(args, "--bitcoin.active")
args = append(args, "--nobootstrap")
args = append(args, "--noencryptwallet")
args = append(args, "--debuglevel=debug")
args = append(args, "--bitcoin.defaultchanconfs=1")
args = append(args, "--bitcoin.defaultremotedelay=4")
args = append(args, fmt.Sprintf("--btcd.rpchost=%v", cfg.RPCConfig.Host))
args = append(args, fmt.Sprintf("--btcd.rpcuser=%v", cfg.RPCConfig.User))
args = append(args, fmt.Sprintf("--btcd.rpcpass=%v", cfg.RPCConfig.Pass))
args = append(args, fmt.Sprintf("--btcd.rawrpccert=%v", encodedCert))
args = append(args, fmt.Sprintf("--rpclisten=%v", cfg.RPCAddr()))
args = append(args, fmt.Sprintf("--restlisten=%v", cfg.RESTAddr()))
args = append(args, fmt.Sprintf("--listen=%v", cfg.P2PAddr()))
args = append(args, fmt.Sprintf("--logdir=%v", cfg.LogDir))
args = append(args, fmt.Sprintf("--datadir=%v", cfg.DataDir))
args = append(args, fmt.Sprintf("--tlscertpath=%v", cfg.TLSCertPath))
args = append(args, fmt.Sprintf("--tlskeypath=%v", cfg.TLSKeyPath))
args = append(args, fmt.Sprintf("--configfile=%v", cfg.DataDir))
args = append(args, fmt.Sprintf("--adminmacaroonpath=%v", cfg.AdminMacPath))
args = append(args, fmt.Sprintf("--readonlymacaroonpath=%v", cfg.ReadMacPath))
args = append(args, fmt.Sprintf("--externalip=%s", cfg.P2PAddr()))
args = append(args, fmt.Sprintf("--trickledelay=%v", trickleDelay))
if cfg.ExtraArgs != nil {
args = append(args, cfg.ExtraArgs...)
}
return args
}
// HarnessNode represents an instance of lnd running within our test network
// harness. Each HarnessNode instance also fully embeds an RPC client in
// order to pragmatically drive the node.
type HarnessNode struct {
cfg *nodeConfig
// NodeID is a unique identifier for the node within a NetworkHarness.
NodeID int
// PubKey is the serialized compressed identity public key of the node.
// This field will only be populated once the node itself has been
// started via the start() method.
PubKey [33]byte
PubKeyStr string
cmd *exec.Cmd
pidFile string
logFile *os.File
// processExit is a channel that's closed once it's detected that the
// process this instance of HarnessNode is bound to has exited.
processExit chan struct{}
chanWatchRequests chan *chanWatchRequest
quit chan struct{}
wg sync.WaitGroup
lnrpc.LightningClient
}
// Assert *HarnessNode implements the lnrpc.LightningClient interface.
var _ lnrpc.LightningClient = (*HarnessNode)(nil)
// newNode creates a new test lightning node instance from the passed config.
func newNode(cfg nodeConfig) (*HarnessNode, error) {
if cfg.BaseDir == "" {
var err error
cfg.BaseDir, err = ioutil.TempDir("", "lndtest-node")
if err != nil {
return nil, err
}
}
cfg.DataDir = filepath.Join(cfg.BaseDir, "data")
cfg.LogDir = filepath.Join(cfg.BaseDir, "log")
cfg.TLSCertPath = filepath.Join(cfg.DataDir, "tls.cert")
cfg.TLSKeyPath = filepath.Join(cfg.DataDir, "tls.key")
cfg.AdminMacPath = filepath.Join(cfg.DataDir, "admin.macaroon")
cfg.ReadMacPath = filepath.Join(cfg.DataDir, "readonly.macaroon")
cfg.P2PPort, cfg.RPCPort, cfg.RESTPort = generateListeningPorts()
nodeNum := numActiveNodes
numActiveNodes++
return &HarnessNode{
cfg: &cfg,
NodeID: nodeNum,
chanWatchRequests: make(chan *chanWatchRequest),
}, nil
}
// DBPath returns the filepath to the channeldb database file for this node.
func (hn *HarnessNode) DBPath() string {
return hn.cfg.DBPath()
}
// Start launches a new process running lnd. Additionally, the PID of the
// launched process is saved in order to possibly kill the process forcibly
// later.
//
// This may not clean up properly if an error is returned, so the caller should
// call shutdown() regardless of the return value.
func (hn *HarnessNode) start(lndError chan<- error) error {
hn.quit = make(chan struct{})
args := hn.cfg.genArgs()
hn.cmd = exec.Command("lnd", args...)
// Redirect stderr output to buffer
var errb bytes.Buffer
hn.cmd.Stderr = &errb
// If the logoutput flag is passed, redirect output from the nodes to
// log files.
if *logOutput {
fileName := fmt.Sprintf("output%d.log", hn.NodeID)
// Create file if not exists, otherwise append.
file, err := os.OpenFile(fileName,
os.O_WRONLY|os.O_APPEND|os.O_CREATE, 0666)
if err != nil {
return err
}
// Pass node's stderr to both errb and the file.
w := io.MultiWriter(&errb, file)
hn.cmd.Stderr = w
// Pass the node's stdout only to the file.
hn.cmd.Stdout = file
// Let the node keep a reference to this file, such
// that we can add to it if necessary.
hn.logFile = file
}
if err := hn.cmd.Start(); err != nil {
return err
}
// Launch a new goroutine which that bubbles up any potential fatal
// process errors to the goroutine running the tests.
hn.processExit = make(chan struct{})
go func() {
err := hn.cmd.Wait()
if err != nil {
lndError <- errors.Errorf("%v\n%v\n", err, errb.String())
}
// Signal any onlookers that this process has exited.
close(hn.processExit)
}()
// Write process ID to a file.
if err := hn.writePidFile(); err != nil {
hn.cmd.Process.Kill()
return err
}
// Since Stop uses the LightningClient to stop the node, if we fail to get a
// connected client, we have to kill the process.
conn, err := hn.connectRPC()
if err != nil {
hn.cmd.Process.Kill()
return err
}
hn.LightningClient = lnrpc.NewLightningClient(conn)
// Obtain the lnid of this node for quick identification purposes.
ctxb := context.Background()
info, err := hn.GetInfo(ctxb, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
hn.PubKeyStr = info.IdentityPubkey
pubkey, err := hex.DecodeString(info.IdentityPubkey)
if err != nil {
return err
}
copy(hn.PubKey[:], pubkey)
// Launch the watcher that will hook into graph related topology change
// from the PoV of this node.
hn.wg.Add(1)
go hn.lightningNetworkWatcher()
return nil
}
// AddToLog adds a line of choice to the node's logfile. This is useful
// to interleave test output with output from the node.
func (hn *HarnessNode) AddToLog(line string) error {
// If this node was not set up with a log file, just return early.
if hn.logFile == nil {
return nil
}
if _, err := hn.logFile.WriteString(line); err != nil {
return err
}
return nil
}
// writePidFile writes the process ID of the running lnd process to a .pid file.
func (hn *HarnessNode) writePidFile() error {
filePath := filepath.Join(hn.cfg.BaseDir, fmt.Sprintf("%v.pid", hn.NodeID))
pid, err := os.Create(filePath)
if err != nil {
return err
}
defer pid.Close()
_, err = fmt.Fprintf(pid, "%v\n", hn.cmd.Process.Pid)
if err != nil {
return err
}
hn.pidFile = filePath
return nil
}
// connectRPC uses the TLS certificate and admin macaroon files written by the
// lnd node to create a gRPC client connection.
func (hn *HarnessNode) connectRPC() (*grpc.ClientConn, error) {
// Wait until TLS certificate and admin macaroon are created before
// using them, up to 20 sec.
tlsTimeout := time.After(30 * time.Second)
for !fileExists(hn.cfg.TLSCertPath) || !fileExists(hn.cfg.AdminMacPath) {
select {
case <-tlsTimeout:
return nil, fmt.Errorf("timeout waiting for TLS cert file " +
"and admin macaroon file to be created after " +
"20 seconds")
case <-time.After(100 * time.Millisecond):
}
}
tlsCreds, err := credentials.NewClientTLSFromFile(hn.cfg.TLSCertPath, "")
if err != nil {
return nil, err
}
macBytes, err := ioutil.ReadFile(hn.cfg.AdminMacPath)
if err != nil {
return nil, err
}
mac := &macaroon.Macaroon{}
if err = mac.UnmarshalBinary(macBytes); err != nil {
return nil, err
}
opts := []grpc.DialOption{
grpc.WithTransportCredentials(tlsCreds),
grpc.WithPerRPCCredentials(macaroons.NewMacaroonCredential(mac)),
grpc.WithBlock(),
grpc.WithTimeout(time.Second * 20),
}
return grpc.Dial(hn.cfg.RPCAddr(), opts...)
}
// cleanup cleans up all the temporary files created by the node's process.
func (hn *HarnessNode) cleanup() error {
return os.RemoveAll(hn.cfg.BaseDir)
}
// Stop attempts to stop the active lnd process.
func (hn *HarnessNode) stop() error {
// Do nothing if the process is not running.
if hn.processExit == nil {
return nil
}
// If start() failed before creating a client, we will just wait for the
// child process to die.
if hn.LightningClient != nil {
// Don't watch for error because sometimes the RPC connection gets
// closed before a response is returned.
req := lnrpc.StopRequest{}
ctx := context.Background()
hn.LightningClient.StopDaemon(ctx, &req)
}
// Wait for lnd process and other goroutines to exit.
<-hn.processExit
close(hn.quit)
hn.wg.Wait()
hn.quit = nil
hn.processExit = nil
hn.LightningClient = nil
return nil
}
// shutdown stops the active lnd process and cleans up any temporary directories
// created along the way.
func (hn *HarnessNode) shutdown() error {
if err := hn.stop(); err != nil {
return err
}
if err := hn.cleanup(); err != nil {
return err
}
return nil
}
// closeChanWatchRequest is a request to the lightningNetworkWatcher to be
// notified once it's detected within the test Lightning Network, that a
// channel has either been added or closed.
type chanWatchRequest struct {
chanPoint wire.OutPoint
chanOpen bool
eventChan chan struct{}
}
// getChanPointFundingTxid returns the given channel point's funding txid in
// raw bytes.
func getChanPointFundingTxid(chanPoint *lnrpc.ChannelPoint) ([]byte, error) {
var txid []byte
// A channel point's funding txid can be get/set as a byte slice or a
// string. In the case it is a string, decode it.
switch chanPoint.GetFundingTxid().(type) {
case *lnrpc.ChannelPoint_FundingTxidBytes:
txid = chanPoint.GetFundingTxidBytes()
case *lnrpc.ChannelPoint_FundingTxidStr:
s := chanPoint.GetFundingTxidStr()
h, err := chainhash.NewHashFromStr(s)
if err != nil {
return nil, err
}
txid = h[:]
}
return txid, nil
}
// lightningNetworkWatcher is a goroutine which is able to dispatch
// notifications once it has been observed that a target channel has been
// closed or opened within the network. In order to dispatch these
// notifications, the GraphTopologySubscription client exposed as part of the
// gRPC interface is used.
func (hn *HarnessNode) lightningNetworkWatcher() {
defer hn.wg.Done()
graphUpdates := make(chan *lnrpc.GraphTopologyUpdate)
hn.wg.Add(1)
go func() {
defer hn.wg.Done()
ctxb := context.Background()
req := &lnrpc.GraphTopologySubscription{}
topologyClient, err := hn.SubscribeChannelGraph(ctxb, req)
if err != nil {
// We panic here in case of an error as failure to
// create the topology client will cause all subsequent
// tests to fail.
panic(fmt.Errorf("unable to create topology "+
"client: %v", err))
}
for {
update, err := topologyClient.Recv()
if err == io.EOF {
return
} else if err != nil {
return
}
select {
case graphUpdates <- update:
case <-hn.quit:
return
}
}
}()
// For each outpoint, we'll track an integer which denotes the number
// of edges seen for that channel within the network. When this number
// reaches 2, then it means that both edge advertisements has
// propagated through the network.
openChans := make(map[wire.OutPoint]int)
openClients := make(map[wire.OutPoint][]chan struct{})
closedChans := make(map[wire.OutPoint]struct{})
closeClients := make(map[wire.OutPoint][]chan struct{})
for {
select {
// A new graph update has just been received, so we'll examine
// the current set of registered clients to see if we can
// dispatch any requests.
case graphUpdate := <-graphUpdates:
// For each new channel, we'll increment the number of
// edges seen by one.
for _, newChan := range graphUpdate.ChannelUpdates {
txidHash, _ := getChanPointFundingTxid(newChan.ChanPoint)
txid, _ := chainhash.NewHash(txidHash)
op := wire.OutPoint{
Hash: *txid,
Index: newChan.ChanPoint.OutputIndex,
}
openChans[op]++
// For this new channel, if the number of edges
// seen is less than two, then the channel
// hasn't been fully announced yet.
if numEdges := openChans[op]; numEdges < 2 {
continue
}
// Otherwise, we'll notify all the registered
// clients and remove the dispatched clients.
for _, eventChan := range openClients[op] {
close(eventChan)
}
delete(openClients, op)
}
// For each channel closed, we'll mark that we've
// detected a channel closure while lnd was pruning the
// channel graph.
for _, closedChan := range graphUpdate.ClosedChans {
txidHash, _ := getChanPointFundingTxid(closedChan.ChanPoint)
txid, _ := chainhash.NewHash(txidHash)
op := wire.OutPoint{
Hash: *txid,
Index: closedChan.ChanPoint.OutputIndex,
}
closedChans[op] = struct{}{}
// As the channel has been closed, we'll notify
// all register clients.
for _, eventChan := range closeClients[op] {
close(eventChan)
}
delete(closeClients, op)
}
// A new watch request, has just arrived. We'll either be able
// to dispatch immediately, or need to add the client for
// processing later.
case watchRequest := <-hn.chanWatchRequests:
targetChan := watchRequest.chanPoint
// TODO(roasbeef): add update type also, checks for
// multiple of 2
if watchRequest.chanOpen {
// If this is a open request, then it can be
// dispatched if the number of edges seen for
// the channel is at least two.
if numEdges := openChans[targetChan]; numEdges >= 2 {
close(watchRequest.eventChan)
continue
}
// Otherwise, we'll add this to the list of
// watch open clients for this out point.
openClients[targetChan] = append(openClients[targetChan],
watchRequest.eventChan)
continue
}
// If this is a close request, then it can be
// immediately dispatched if we've already seen a
// channel closure for this channel.
if _, ok := closedChans[targetChan]; ok {
close(watchRequest.eventChan)
continue
}
// Otherwise, we'll add this to the list of close watch
// clients for this out point.
closeClients[targetChan] = append(closeClients[targetChan],
watchRequest.eventChan)
case <-hn.quit:
return
}
}
}
// WaitForNetworkChannelOpen will block until a channel with the target
// outpoint is seen as being fully advertised within the network. A channel is
// considered "fully advertised" once both of its directional edges has been
// advertised within the test Lightning Network.
func (hn *HarnessNode) WaitForNetworkChannelOpen(ctx context.Context,
op *lnrpc.ChannelPoint) error {
eventChan := make(chan struct{})
txidHash, err := getChanPointFundingTxid(op)
if err != nil {
return err
}
txid, err := chainhash.NewHash(txidHash)
if err != nil {
return err
}
hn.chanWatchRequests <- &chanWatchRequest{
chanPoint: wire.OutPoint{
Hash: *txid,
Index: op.OutputIndex,
},
eventChan: eventChan,
chanOpen: true,
}
select {
case <-eventChan:
return nil
case <-ctx.Done():
return fmt.Errorf("channel not opened before timeout")
}
}
// WaitForNetworkChannelClose will block until a channel with the target
// outpoint is seen as closed within the network. A channel is considered
// closed once a transaction spending the funding outpoint is seen within a
// confirmed block.
func (hn *HarnessNode) WaitForNetworkChannelClose(ctx context.Context,
op *lnrpc.ChannelPoint) error {
eventChan := make(chan struct{})
txidHash, err := getChanPointFundingTxid(op)
if err != nil {
return err
}
txid, err := chainhash.NewHash(txidHash)
if err != nil {
return err
}
hn.chanWatchRequests <- &chanWatchRequest{
chanPoint: wire.OutPoint{
Hash: *txid,
Index: op.OutputIndex,
},
eventChan: eventChan,
chanOpen: false,
}
select {
case <-eventChan:
return nil
case <-ctx.Done():
return fmt.Errorf("channel not closed before timeout")
}
}
// WaitForBlockchainSync will block until the target nodes has fully
// synchronized with the blockchain. If the passed context object has a set
// timeout, then the goroutine will continually poll until the timeout has
// elapsed. In the case that the chain isn't synced before the timeout is up,
// then this function will return an error.
func (hn *HarnessNode) WaitForBlockchainSync(ctx context.Context) error {
errChan := make(chan error, 1)
retryDelay := time.Millisecond * 100
go func() {
for {
select {
case <-ctx.Done():
case <-hn.quit:
return
default:
}
getInfoReq := &lnrpc.GetInfoRequest{}
getInfoResp, err := hn.GetInfo(ctx, getInfoReq)
if err != nil {
errChan <- err
return
}
if getInfoResp.SyncedToChain {
errChan <- nil
return
}
select {
case <-ctx.Done():
return
case <-time.After(retryDelay):
}
}
}()
select {
case <-hn.quit:
return nil
case err := <-errChan:
return err
case <-ctx.Done():
return fmt.Errorf("Timeout while waiting for blockchain sync")
}
}
// fileExists reports whether the named file or directory exists.
// This function is taken from https://github.com/btcsuite/btcd
func fileExists(name string) bool {
if _, err := os.Stat(name); err != nil {
if os.IsNotExist(err) {
return false
}
}
return true
}