lnd.xprv/lnrpc/signrpc/signer_server.go
Conner Fromknecht c1b9b272cd
input/size: assert witness size constants
This commit introduces a new test case that asserts all of the witness
size constants currently in the codebase. We also reintroduce the
AcceptedHtlcSuccessWitnessSize and OfferedHtlcTimeoutWitnessSize
constants that were recently removed for the sake of completeness.

In asserting the witnes sizes, there were three uncovered discrepancies:
 * OfferedHtlcSuccessWitnessSize overestimated by about 30% because it
   included an extra signature in the calculation.

 * ToLocalPenaltyWitnessSize was underestimated by one byte, because it
   was missing the length byte for the OP_TRUE. This has implications
   the watchtower protocol since the client and server are assumed to
   share the same weight estimates used for signing. This commit keeps
   the current behavior, with the intention of rolling out negotiation
   for which weight estimate to use for a given session.

 * AcceptedHtlcScriptSize was underestimated by one byte because it was
   missing a length byte for the value 32 pushed on the stack when
   asserting the preimage's length. This affects all AcceptedHtlc*
   witness sizes.
2020-04-10 15:34:27 -07:00

546 lines
17 KiB
Go

// +build signrpc
package signrpc
import (
"bytes"
"context"
"crypto/sha256"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwire"
"google.golang.org/grpc"
"gopkg.in/macaroon-bakery.v2/bakery"
)
const (
// subServerName is the name of the sub rpc server. We'll use this name
// to register ourselves, and we also require that the main
// SubServerConfigDispatcher instance recognize this as the name of the
// config file that we need.
subServerName = "SignRPC"
)
var (
// macaroonOps are the set of capabilities that our minted macaroon (if
// it doesn't already exist) will have.
macaroonOps = []bakery.Op{
{
Entity: "signer",
Action: "generate",
},
{
Entity: "signer",
Action: "read",
},
}
// macPermissions maps RPC calls to the permissions they require.
macPermissions = map[string][]bakery.Op{
"/signrpc.Signer/SignOutputRaw": {{
Entity: "signer",
Action: "generate",
}},
"/signrpc.Signer/ComputeInputScript": {{
Entity: "signer",
Action: "generate",
}},
"/signrpc.Signer/SignMessage": {{
Entity: "signer",
Action: "generate",
}},
"/signrpc.Signer/VerifyMessage": {{
Entity: "signer",
Action: "read",
}},
"/signrpc.Signer/DeriveSharedKey": {{
Entity: "signer",
Action: "generate",
}},
}
// DefaultSignerMacFilename is the default name of the signer macaroon
// that we expect to find via a file handle within the main
// configuration file in this package.
DefaultSignerMacFilename = "signer.macaroon"
)
// Server is a sub-server of the main RPC server: the signer RPC. This sub RPC
// server allows external callers to access the full signing capabilities of
// lnd. This allows callers to create custom protocols, external to lnd, even
// backed by multiple distinct lnd across independent failure domains.
type Server struct {
cfg *Config
}
// A compile time check to ensure that Server fully implements the SignerServer
// gRPC service.
var _ SignerServer = (*Server)(nil)
// New returns a new instance of the signrpc Signer sub-server. We also return
// the set of permissions for the macaroons that we may create within this
// method. If the macaroons we need aren't found in the filepath, then we'll
// create them on start up. If we're unable to locate, or create the macaroons
// we need, then we'll return with an error.
func New(cfg *Config) (*Server, lnrpc.MacaroonPerms, error) {
// If the path of the signer macaroon wasn't generated, then we'll
// assume that it's found at the default network directory.
if cfg.SignerMacPath == "" {
cfg.SignerMacPath = filepath.Join(
cfg.NetworkDir, DefaultSignerMacFilename,
)
}
// Now that we know the full path of the signer macaroon, we can check
// to see if we need to create it or not.
macFilePath := cfg.SignerMacPath
if cfg.MacService != nil && !lnrpc.FileExists(macFilePath) {
log.Infof("Making macaroons for Signer RPC Server at: %v",
macFilePath)
// At this point, we know that the signer macaroon doesn't yet,
// exist, so we need to create it with the help of the main
// macaroon service.
signerMac, err := cfg.MacService.Oven.NewMacaroon(
context.Background(), bakery.LatestVersion, nil,
macaroonOps...,
)
if err != nil {
return nil, nil, err
}
signerMacBytes, err := signerMac.M().MarshalBinary()
if err != nil {
return nil, nil, err
}
err = ioutil.WriteFile(macFilePath, signerMacBytes, 0644)
if err != nil {
os.Remove(macFilePath)
return nil, nil, err
}
}
signerServer := &Server{
cfg: cfg,
}
return signerServer, macPermissions, nil
}
// Start launches any helper goroutines required for the rpcServer to function.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (s *Server) Start() error {
return nil
}
// Stop signals any active goroutines for a graceful closure.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (s *Server) Stop() error {
return nil
}
// Name returns a unique string representation of the sub-server. This can be
// used to identify the sub-server and also de-duplicate them.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (s *Server) Name() string {
return subServerName
}
// RegisterWithRootServer will be called by the root gRPC server to direct a
// sub RPC server to register itself with the main gRPC root server. Until this
// is called, each sub-server won't be able to have
// requests routed towards it.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (s *Server) RegisterWithRootServer(grpcServer *grpc.Server) error {
// We make sure that we register it with the main gRPC server to ensure
// all our methods are routed properly.
RegisterSignerServer(grpcServer, s)
log.Debugf("Signer RPC server successfully register with root gRPC " +
"server")
return nil
}
// SignOutputRaw generates a signature for the passed transaction according to
// the data within the passed SignReq. If we're unable to find the keys that
// correspond to the KeyLocators in the SignReq then we'll return an error.
// Additionally, if the user doesn't provide the set of required parameters, or
// provides an invalid transaction, then we'll return with an error.
//
// NOTE: The resulting signature should be void of a sighash byte.
func (s *Server) SignOutputRaw(ctx context.Context, in *SignReq) (*SignResp, error) {
switch {
// If the client doesn't specify a transaction, then there's nothing to
// sign, so we'll exit early.
case len(in.RawTxBytes) == 0:
return nil, fmt.Errorf("a transaction to sign MUST be " +
"passed in")
// If the client doesn't tell us *how* to sign the transaction, then we
// can't sign anything, so we'll exit early.
case len(in.SignDescs) == 0:
return nil, fmt.Errorf("at least one SignDescs MUST be " +
"passed in")
}
// Now that we know we have an actual transaction to decode, we'll
// deserialize it into something that we can properly utilize.
var (
txToSign wire.MsgTx
err error
)
txReader := bytes.NewReader(in.RawTxBytes)
if err := txToSign.Deserialize(txReader); err != nil {
return nil, fmt.Errorf("unable to decode tx: %v", err)
}
sigHashCache := txscript.NewTxSigHashes(&txToSign)
log.Debugf("Generating sigs for %v inputs: ", len(in.SignDescs))
// With the transaction deserialized, we'll now convert sign descs so
// we can feed it into the actual signer.
signDescs := make([]*input.SignDescriptor, 0, len(in.SignDescs))
for _, signDesc := range in.SignDescs {
keyDesc := signDesc.KeyDesc
// The caller can either specify the key using the raw pubkey,
// or the description of the key. Below we'll feel out the
// oneof field to decide which one we will attempt to parse.
var (
targetPubKey *btcec.PublicKey
keyLoc keychain.KeyLocator
)
switch {
// If this method doesn't return nil, then we know that user is
// attempting to include a raw serialized pub key.
case keyDesc.GetRawKeyBytes() != nil:
rawKeyBytes := keyDesc.GetRawKeyBytes()
switch {
// If the user provided a raw key, but it's of the
// wrong length, then we'll return with an error.
case len(rawKeyBytes) != 0 && len(rawKeyBytes) != 33:
return nil, fmt.Errorf("pubkey must be " +
"serialized in compressed format if " +
"specified")
// If a proper raw key was provided, then we'll attempt
// to decode and parse it.
case len(rawKeyBytes) != 0 && len(rawKeyBytes) == 33:
targetPubKey, err = btcec.ParsePubKey(
rawKeyBytes, btcec.S256(),
)
if err != nil {
return nil, fmt.Errorf("unable to "+
"parse pubkey: %v", err)
}
}
// Similarly, if they specified a key locator, then we'll use
// that instead.
case keyDesc.GetKeyLoc() != nil:
protoLoc := keyDesc.GetKeyLoc()
keyLoc = keychain.KeyLocator{
Family: keychain.KeyFamily(
protoLoc.KeyFamily,
),
Index: uint32(protoLoc.KeyIndex),
}
}
// If a witness script isn't passed, then we can't proceed, as
// in the p2wsh case, we can't properly generate the sighash.
if len(signDesc.WitnessScript) == 0 {
// TODO(roasbeef): if regualr p2wkh, then at times
// internally we allow script to go by
return nil, fmt.Errorf("witness script MUST be " +
"specified")
}
// If the users provided a double tweak, then we'll need to
// parse that out now to ensure their input is properly signed.
var tweakPrivKey *btcec.PrivateKey
if len(signDesc.DoubleTweak) != 0 {
tweakPrivKey, _ = btcec.PrivKeyFromBytes(
btcec.S256(), signDesc.DoubleTweak,
)
}
// Finally, with verification and parsing complete, we can
// construct the final sign descriptor to generate the proper
// signature for this input.
signDescs = append(signDescs, &input.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
KeyLocator: keyLoc,
PubKey: targetPubKey,
},
SingleTweak: signDesc.SingleTweak,
DoubleTweak: tweakPrivKey,
WitnessScript: signDesc.WitnessScript,
Output: &wire.TxOut{
Value: signDesc.Output.Value,
PkScript: signDesc.Output.PkScript,
},
HashType: txscript.SigHashType(signDesc.Sighash),
SigHashes: sigHashCache,
InputIndex: int(signDesc.InputIndex),
})
}
// Now that we've mapped all the proper sign descriptors, we can
// request signatures for each of them, passing in the transaction to
// be signed.
numSigs := len(in.SignDescs)
resp := &SignResp{
RawSigs: make([][]byte, numSigs),
}
for i, signDesc := range signDescs {
sig, err := s.cfg.Signer.SignOutputRaw(&txToSign, signDesc)
if err != nil {
log.Errorf("unable to generate sig for input "+
"#%v: %v", i, err)
return nil, err
}
resp.RawSigs[i] = sig.Serialize()
}
return resp, nil
}
// ComputeInputScript generates a complete InputIndex for the passed
// transaction with the signature as defined within the passed SignDescriptor.
// This method should be capable of generating the proper input script for both
// regular p2wkh output and p2wkh outputs nested within a regular p2sh output.
//
// Note that when using this method to sign inputs belonging to the wallet, the
// only items of the SignDescriptor that need to be populated are pkScript in
// the TxOut field, the value in that same field, and finally the input index.
func (s *Server) ComputeInputScript(ctx context.Context,
in *SignReq) (*InputScriptResp, error) {
switch {
// If the client doesn't specify a transaction, then there's nothing to
// sign, so we'll exit early.
case len(in.RawTxBytes) == 0:
return nil, fmt.Errorf("a transaction to sign MUST be " +
"passed in")
// If the client doesn't tell us *how* to sign the transaction, then we
// can't sign anything, so we'll exit early.
case len(in.SignDescs) == 0:
return nil, fmt.Errorf("at least one SignDescs MUST be " +
"passed in")
}
// Now that we know we have an actual transaction to decode, we'll
// deserialize it into something that we can properly utilize.
var txToSign wire.MsgTx
txReader := bytes.NewReader(in.RawTxBytes)
if err := txToSign.Deserialize(txReader); err != nil {
return nil, fmt.Errorf("unable to decode tx: %v", err)
}
sigHashCache := txscript.NewTxSigHashes(&txToSign)
signDescs := make([]*input.SignDescriptor, 0, len(in.SignDescs))
for _, signDesc := range in.SignDescs {
// For this method, the only fields that we care about are the
// hash type, and the information concerning the output as we
// only know how to provide full witnesses for outputs that we
// solely control.
signDescs = append(signDescs, &input.SignDescriptor{
Output: &wire.TxOut{
Value: signDesc.Output.Value,
PkScript: signDesc.Output.PkScript,
},
HashType: txscript.SigHashType(signDesc.Sighash),
SigHashes: sigHashCache,
InputIndex: int(signDesc.InputIndex),
})
}
// With all of our signDescs assembled, we can now generate a valid
// input script for each of them, and collate the responses to return
// back to the caller.
numWitnesses := len(in.SignDescs)
resp := &InputScriptResp{
InputScripts: make([]*InputScript, numWitnesses),
}
for i, signDesc := range signDescs {
inputScript, err := s.cfg.Signer.ComputeInputScript(
&txToSign, signDesc,
)
if err != nil {
return nil, err
}
resp.InputScripts[i] = &InputScript{
Witness: inputScript.Witness,
SigScript: inputScript.SigScript,
}
}
return resp, nil
}
// SignMessage signs a message with the key specified in the key locator. The
// returned signature is fixed-size LN wire format encoded.
func (s *Server) SignMessage(ctx context.Context,
in *SignMessageReq) (*SignMessageResp, error) {
if in.Msg == nil {
return nil, fmt.Errorf("a message to sign MUST be passed in")
}
if in.KeyLoc == nil {
return nil, fmt.Errorf("a key locator MUST be passed in")
}
// Derive the private key we'll be using for signing.
keyLocator := keychain.KeyLocator{
Family: keychain.KeyFamily(in.KeyLoc.KeyFamily),
Index: uint32(in.KeyLoc.KeyIndex),
}
privKey, err := s.cfg.KeyRing.DerivePrivKey(keychain.KeyDescriptor{
KeyLocator: keyLocator,
})
if err != nil {
return nil, fmt.Errorf("can't derive private key: %v", err)
}
// The signature is over the sha256 hash of the message.
digest := chainhash.HashB(in.Msg)
// Create the raw ECDSA signature first and convert it to the final wire
// format after.
sig, err := privKey.Sign(digest)
if err != nil {
return nil, fmt.Errorf("can't sign the hash: %v", err)
}
wireSig, err := lnwire.NewSigFromSignature(sig)
if err != nil {
return nil, fmt.Errorf("can't convert to wire format: %v", err)
}
return &SignMessageResp{
Signature: wireSig.ToSignatureBytes(),
}, nil
}
// VerifyMessage verifies a signature over a message using the public key
// provided. The signature must be fixed-size LN wire format encoded.
func (s *Server) VerifyMessage(ctx context.Context,
in *VerifyMessageReq) (*VerifyMessageResp, error) {
if in.Msg == nil {
return nil, fmt.Errorf("a message to verify MUST be passed in")
}
if in.Signature == nil {
return nil, fmt.Errorf("a signature to verify MUST be passed " +
"in")
}
if in.Pubkey == nil {
return nil, fmt.Errorf("a pubkey to verify MUST be passed in")
}
pubkey, err := btcec.ParsePubKey(in.Pubkey, btcec.S256())
if err != nil {
return nil, fmt.Errorf("unable to parse pubkey: %v", err)
}
// The signature must be fixed-size LN wire format encoded.
wireSig, err := lnwire.NewSigFromRawSignature(in.Signature)
if err != nil {
return nil, fmt.Errorf("failed to decode signature: %v", err)
}
sig, err := wireSig.ToSignature()
if err != nil {
return nil, fmt.Errorf("failed to convert from wire format: %v",
err)
}
// The signature is over the sha256 hash of the message.
digest := chainhash.HashB(in.Msg)
valid := sig.Verify(digest, pubkey)
return &VerifyMessageResp{
Valid: valid,
}, nil
}
// DeriveSharedKey returns a shared secret key by performing Diffie-Hellman key
// derivation between the ephemeral public key in the request and the node's
// key specified in the key_loc parameter (or the node's identity private key
// if no key locator is specified):
// P_shared = privKeyNode * ephemeralPubkey
// The resulting shared public key is serialized in the compressed format and
// hashed with sha256, resulting in the final key length of 256bit.
func (s *Server) DeriveSharedKey(_ context.Context, in *SharedKeyRequest) (
*SharedKeyResponse, error) {
if len(in.EphemeralPubkey) != 33 {
return nil, fmt.Errorf("ephemeral pubkey must be " +
"serialized in compressed format")
}
ephemeralPubkey, err := btcec.ParsePubKey(
in.EphemeralPubkey, btcec.S256(),
)
if err != nil {
return nil, fmt.Errorf("unable to parse pubkey: %v", err)
}
// By default, use the node identity private key.
locator := keychain.KeyLocator{
Family: keychain.KeyFamilyNodeKey,
Index: 0,
}
if in.KeyLoc != nil {
locator.Family = keychain.KeyFamily(in.KeyLoc.KeyFamily)
locator.Index = uint32(in.KeyLoc.KeyIndex)
}
// Derive our node's private key from the key ring.
idPrivKey, err := s.cfg.KeyRing.DerivePrivKey(keychain.KeyDescriptor{
KeyLocator: locator,
})
if err != nil {
err := fmt.Errorf("unable to derive node private key: %v", err)
log.Error(err)
return nil, err
}
idPrivKey.Curve = btcec.S256()
// Derive the shared key using ECDH and hashing the serialized
// compressed shared point.
sharedKeyHash := ecdh(ephemeralPubkey, idPrivKey)
return &SharedKeyResponse{SharedKey: sharedKeyHash}, nil
}
// ecdh performs an ECDH operation between pub and priv. The returned value is
// the sha256 of the compressed shared point.
func ecdh(pub *btcec.PublicKey, priv *btcec.PrivateKey) []byte {
s := &btcec.PublicKey{}
x, y := btcec.S256().ScalarMult(pub.X, pub.Y, priv.D.Bytes())
s.X = x
s.Y = y
h := sha256.Sum256(s.SerializeCompressed())
return h[:]
}