lnd.xprv/lnwallet/channel.go
Johan T. Halseth a48c369250
lnwallet: check coop close fee negative balance
Also modify the test to check for this condition.
2020-09-11 11:10:58 +02:00

6969 lines
240 KiB
Go

package lnwallet
import (
"bytes"
"container/list"
"crypto/sha256"
"errors"
"fmt"
"math"
"sort"
"sync"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btclog"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/txsort"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
)
var zeroHash chainhash.Hash
var (
// ErrChanClosing is returned when a caller attempts to close a channel
// that has already been closed or is in the process of being closed.
ErrChanClosing = fmt.Errorf("channel is being closed, operation disallowed")
// ErrNoWindow is returned when revocation window is exhausted.
ErrNoWindow = fmt.Errorf("unable to sign new commitment, the current" +
" revocation window is exhausted")
// ErrMaxWeightCost is returned when the cost/weight (see segwit)
// exceeds the widely used maximum allowed policy weight limit. In this
// case the commitment transaction can't be propagated through the
// network.
ErrMaxWeightCost = fmt.Errorf("commitment transaction exceed max " +
"available cost")
// ErrMaxHTLCNumber is returned when a proposed HTLC would exceed the
// maximum number of allowed HTLC's if committed in a state transition
ErrMaxHTLCNumber = fmt.Errorf("commitment transaction exceed max " +
"htlc number")
// ErrMaxPendingAmount is returned when a proposed HTLC would exceed
// the overall maximum pending value of all HTLCs if committed in a
// state transition.
ErrMaxPendingAmount = fmt.Errorf("commitment transaction exceed max" +
"overall pending htlc value")
// ErrBelowChanReserve is returned when a proposed HTLC would cause
// one of the peer's funds to dip below the channel reserve limit.
ErrBelowChanReserve = fmt.Errorf("commitment transaction dips peer " +
"below chan reserve")
// ErrBelowMinHTLC is returned when a proposed HTLC has a value that
// is below the minimum HTLC value constraint for either us or our
// peer depending on which flags are set.
ErrBelowMinHTLC = fmt.Errorf("proposed HTLC value is below minimum " +
"allowed HTLC value")
// ErrInvalidHTLCAmt signals that a proposed HTLC has a value that is
// not positive.
ErrInvalidHTLCAmt = fmt.Errorf("proposed HTLC value must be positive")
// ErrCannotSyncCommitChains is returned if, upon receiving a ChanSync
// message, the state machine deems that is unable to properly
// synchronize states with the remote peer. In this case we should fail
// the channel, but we won't automatically force close.
ErrCannotSyncCommitChains = fmt.Errorf("unable to sync commit chains")
// ErrInvalidLastCommitSecret is returned in the case that the
// commitment secret sent by the remote party in their
// ChannelReestablish message doesn't match the last secret we sent.
ErrInvalidLastCommitSecret = fmt.Errorf("commit secret is incorrect")
// ErrInvalidLocalUnrevokedCommitPoint is returned in the case that the
// commitment point sent by the remote party in their
// ChannelReestablish message doesn't match the last unrevoked commit
// point they sent us.
ErrInvalidLocalUnrevokedCommitPoint = fmt.Errorf("unrevoked commit " +
"point is invalid")
// ErrCommitSyncRemoteDataLoss is returned in the case that we receive
// a ChannelReestablish message from the remote that advertises a
// NextLocalCommitHeight that is lower than what they have already
// ACKed, or a RemoteCommitTailHeight that is lower than our revoked
// height. In this case we should force close the channel such that
// both parties can retrieve their funds.
ErrCommitSyncRemoteDataLoss = fmt.Errorf("possible remote commitment " +
"state data loss")
)
// ErrCommitSyncLocalDataLoss is returned in the case that we receive a valid
// commit secret within the ChannelReestablish message from the remote node AND
// they advertise a RemoteCommitTailHeight higher than our current known
// height. This means we have lost some critical data, and must fail the
// channel and MUST NOT force close it. Instead we should wait for the remote
// to force close it, such that we can attempt to sweep our funds. The
// commitment point needed to sweep the remote's force close is encapsuled.
type ErrCommitSyncLocalDataLoss struct {
// ChannelPoint is the identifier for the channel that experienced data
// loss.
ChannelPoint wire.OutPoint
// CommitPoint is the last unrevoked commit point, sent to us by the
// remote when we determined we had lost state.
CommitPoint *btcec.PublicKey
}
// Error returns a string representation of the local data loss error.
func (e *ErrCommitSyncLocalDataLoss) Error() string {
return fmt.Sprintf("ChannelPoint(%v) with CommitPoint(%x) had "+
"possible local commitment state data loss", e.ChannelPoint,
e.CommitPoint.SerializeCompressed())
}
// channelState is an enum like type which represents the current state of a
// particular channel.
// TODO(roasbeef): actually update state
type channelState uint8
const (
// channelPending indicates this channel is still going through the
// funding workflow, and isn't yet open.
channelPending channelState = iota // nolint: unused
// channelOpen represents an open, active channel capable of
// sending/receiving HTLCs.
channelOpen
// channelClosing represents a channel which is in the process of being
// closed.
channelClosing
// channelClosed represents a channel which has been fully closed. Note
// that before a channel can be closed, ALL pending HTLCs must be
// settled/removed.
channelClosed
// channelDispute indicates that an un-cooperative closure has been
// detected within the channel.
channelDispute
// channelPendingPayment indicates that there a currently outstanding
// HTLCs within the channel.
channelPendingPayment // nolint:unused
)
// PaymentHash represents the sha256 of a random value. This hash is used to
// uniquely track incoming/outgoing payments within this channel, as well as
// payments requested by the wallet/daemon.
type PaymentHash [32]byte
// updateType is the exact type of an entry within the shared HTLC log.
type updateType uint8
const (
// Add is an update type that adds a new HTLC entry into the log.
// Either side can add a new pending HTLC by adding a new Add entry
// into their update log.
Add updateType = iota
// Fail is an update type which removes a prior HTLC entry from the
// log. Adding a Fail entry to ones log will modify the _remote_
// parties update log once a new commitment view has been evaluated
// which contains the Fail entry.
Fail
// MalformedFail is an update type which removes a prior HTLC entry
// from the log. Adding a MalformedFail entry to ones log will modify
// the _remote_ parties update log once a new commitment view has been
// evaluated which contains the MalformedFail entry. The difference
// from Fail type lie in the different data we have to store.
MalformedFail
// Settle is an update type which settles a prior HTLC crediting the
// balance of the receiving node. Adding a Settle entry to a log will
// result in the settle entry being removed on the log as well as the
// original add entry from the remote party's log after the next state
// transition.
Settle
// FeeUpdate is an update type sent by the channel initiator that
// updates the fee rate used when signing the commitment transaction.
FeeUpdate
)
// String returns a human readable string that uniquely identifies the target
// update type.
func (u updateType) String() string {
switch u {
case Add:
return "Add"
case Fail:
return "Fail"
case MalformedFail:
return "MalformedFail"
case Settle:
return "Settle"
case FeeUpdate:
return "FeeUpdate"
default:
return "<unknown type>"
}
}
// PaymentDescriptor represents a commitment state update which either adds,
// settles, or removes an HTLC. PaymentDescriptors encapsulate all necessary
// metadata w.r.t to an HTLC, and additional data pairing a settle message to
// the original added HTLC.
//
// TODO(roasbeef): LogEntry interface??
// * need to separate attrs for cancel/add/settle/feeupdate
type PaymentDescriptor struct {
// RHash is the payment hash for this HTLC. The HTLC can be settled iff
// the preimage to this hash is presented.
RHash PaymentHash
// RPreimage is the preimage that settles the HTLC pointed to within the
// log by the ParentIndex.
RPreimage PaymentHash
// Timeout is the absolute timeout in blocks, after which this HTLC
// expires.
Timeout uint32
// Amount is the HTLC amount in milli-satoshis.
Amount lnwire.MilliSatoshi
// LogIndex is the log entry number that his HTLC update has within the
// log. Depending on if IsIncoming is true, this is either an entry the
// remote party added, or one that we added locally.
LogIndex uint64
// HtlcIndex is the index within the main update log for this HTLC.
// Entries within the log of type Add will have this field populated,
// as other entries will point to the entry via this counter.
//
// NOTE: This field will only be populate if EntryType is Add.
HtlcIndex uint64
// ParentIndex is the HTLC index of the entry that this update settles or
// times out.
//
// NOTE: This field will only be populate if EntryType is Fail or
// Settle.
ParentIndex uint64
// SourceRef points to an Add update in a forwarding package owned by
// this channel.
//
// NOTE: This field will only be populated if EntryType is Fail or
// Settle.
SourceRef *channeldb.AddRef
// DestRef points to a Fail/Settle update in another link's forwarding
// package.
//
// NOTE: This field will only be populated if EntryType is Fail or
// Settle, and the forwarded Add successfully included in an outgoing
// link's commitment txn.
DestRef *channeldb.SettleFailRef
// OpenCircuitKey references the incoming Chan/HTLC ID of an Add HTLC
// packet delivered by the switch.
//
// NOTE: This field is only populated for payment descriptors in the
// *local* update log, and if the Add packet was delivered by the
// switch.
OpenCircuitKey *channeldb.CircuitKey
// ClosedCircuitKey references the incoming Chan/HTLC ID of the Add HTLC
// that opened the circuit.
//
// NOTE: This field is only populated for payment descriptors in the
// *local* update log, and if settle/fails have a committed circuit in
// the circuit map.
ClosedCircuitKey *channeldb.CircuitKey
// localOutputIndex is the output index of this HTLc output in the
// commitment transaction of the local node.
//
// NOTE: If the output is dust from the PoV of the local commitment
// chain, then this value will be -1.
localOutputIndex int32
// remoteOutputIndex is the output index of this HTLC output in the
// commitment transaction of the remote node.
//
// NOTE: If the output is dust from the PoV of the remote commitment
// chain, then this value will be -1.
remoteOutputIndex int32
// sig is the signature for the second-level HTLC transaction that
// spends the version of this HTLC on the commitment transaction of the
// local node. This signature is generated by the remote node and
// stored by the local node in the case that local node needs to
// broadcast their commitment transaction.
sig *btcec.Signature
// addCommitHeight[Remote|Local] encodes the height of the commitment
// which included this HTLC on either the remote or local commitment
// chain. This value is used to determine when an HTLC is fully
// "locked-in".
addCommitHeightRemote uint64
addCommitHeightLocal uint64
// removeCommitHeight[Remote|Local] encodes the height of the
// commitment which removed the parent pointer of this
// PaymentDescriptor either due to a timeout or a settle. Once both
// these heights are below the tail of both chains, the log entries can
// safely be removed.
removeCommitHeightRemote uint64
removeCommitHeightLocal uint64
// OnionBlob is an opaque blob which is used to complete multi-hop
// routing.
//
// NOTE: Populated only on add payment descriptor entry types.
OnionBlob []byte
// ShaOnionBlob is a sha of the onion blob.
//
// NOTE: Populated only in payment descriptor with MalformedFail type.
ShaOnionBlob [sha256.Size]byte
// FailReason stores the reason why a particular payment was canceled.
//
// NOTE: Populate only in fail payment descriptor entry types.
FailReason []byte
// FailCode stores the code why a particular payment was canceled.
//
// NOTE: Populated only in payment descriptor with MalformedFail type.
FailCode lnwire.FailCode
// [our|their|]PkScript are the raw public key scripts that encodes the
// redemption rules for this particular HTLC. These fields will only be
// populated iff the EntryType of this PaymentDescriptor is Add.
// ourPkScript is the ourPkScript from the context of our local
// commitment chain. theirPkScript is the latest pkScript from the
// context of the remote commitment chain.
//
// NOTE: These values may change within the logs themselves, however,
// they'll stay consistent within the commitment chain entries
// themselves.
ourPkScript []byte
ourWitnessScript []byte
theirPkScript []byte
theirWitnessScript []byte
// EntryType denotes the exact type of the PaymentDescriptor. In the
// case of a Timeout, or Settle type, then the Parent field will point
// into the log to the HTLC being modified.
EntryType updateType
// isForwarded denotes if an incoming HTLC has been forwarded to any
// possible upstream peers in the route.
isForwarded bool
}
// PayDescsFromRemoteLogUpdates converts a slice of LogUpdates received from the
// remote peer into PaymentDescriptors to inform a link's forwarding decisions.
//
// NOTE: The provided `logUpdates` MUST corresponding exactly to either the Adds
// or SettleFails in this channel's forwarding package at `height`.
func PayDescsFromRemoteLogUpdates(chanID lnwire.ShortChannelID, height uint64,
logUpdates []channeldb.LogUpdate) ([]*PaymentDescriptor, error) {
// Allocate enough space to hold all of the payment descriptors we will
// reconstruct, and also the list of pointers that will be returned to
// the caller.
payDescs := make([]PaymentDescriptor, 0, len(logUpdates))
payDescPtrs := make([]*PaymentDescriptor, 0, len(logUpdates))
// Iterate over the log updates we loaded from disk, and reconstruct the
// payment descriptor corresponding to one of the four types of htlcs we
// can receive from the remote peer. We only repopulate the information
// necessary to process the packets and, if necessary, forward them to
// the switch.
//
// For each log update, we include either an AddRef or a SettleFailRef
// so that they can be ACK'd and garbage collected.
for i, logUpdate := range logUpdates {
var pd PaymentDescriptor
switch wireMsg := logUpdate.UpdateMsg.(type) {
case *lnwire.UpdateAddHTLC:
pd = PaymentDescriptor{
RHash: wireMsg.PaymentHash,
Timeout: wireMsg.Expiry,
Amount: wireMsg.Amount,
EntryType: Add,
HtlcIndex: wireMsg.ID,
LogIndex: logUpdate.LogIndex,
SourceRef: &channeldb.AddRef{
Height: height,
Index: uint16(i),
},
}
pd.OnionBlob = make([]byte, len(wireMsg.OnionBlob))
copy(pd.OnionBlob[:], wireMsg.OnionBlob[:])
case *lnwire.UpdateFulfillHTLC:
pd = PaymentDescriptor{
RPreimage: wireMsg.PaymentPreimage,
ParentIndex: wireMsg.ID,
EntryType: Settle,
DestRef: &channeldb.SettleFailRef{
Source: chanID,
Height: height,
Index: uint16(i),
},
}
case *lnwire.UpdateFailHTLC:
pd = PaymentDescriptor{
ParentIndex: wireMsg.ID,
EntryType: Fail,
FailReason: wireMsg.Reason[:],
DestRef: &channeldb.SettleFailRef{
Source: chanID,
Height: height,
Index: uint16(i),
},
}
case *lnwire.UpdateFailMalformedHTLC:
pd = PaymentDescriptor{
ParentIndex: wireMsg.ID,
EntryType: MalformedFail,
FailCode: wireMsg.FailureCode,
ShaOnionBlob: wireMsg.ShaOnionBlob,
DestRef: &channeldb.SettleFailRef{
Source: chanID,
Height: height,
Index: uint16(i),
},
}
// NOTE: UpdateFee is not expected since they are not forwarded.
case *lnwire.UpdateFee:
return nil, fmt.Errorf("unexpected update fee")
}
payDescs = append(payDescs, pd)
payDescPtrs = append(payDescPtrs, &payDescs[i])
}
return payDescPtrs, nil
}
// commitment represents a commitment to a new state within an active channel.
// New commitments can be initiated by either side. Commitments are ordered
// into a commitment chain, with one existing for both parties. Each side can
// independently extend the other side's commitment chain, up to a certain
// "revocation window", which once reached, disallows new commitments until
// the local nodes receives the revocation for the remote node's chain tail.
type commitment struct {
// height represents the commitment height of this commitment, or the
// update number of this commitment.
height uint64
// isOurs indicates whether this is the local or remote node's version
// of the commitment.
isOurs bool
// [our|their]MessageIndex are indexes into the HTLC log, up to which
// this commitment transaction includes. These indexes allow both sides
// to independently, and concurrent send create new commitments. Each
// new commitment sent to the remote party includes an index in the
// shared log which details which of their updates we're including in
// this new commitment.
ourMessageIndex uint64
theirMessageIndex uint64
// [our|their]HtlcIndex are the current running counters for the HTLC's
// offered by either party. This value is incremented each time a party
// offers a new HTLC. The log update methods that consume HTLC's will
// reference these counters, rather than the running cumulative message
// counters.
ourHtlcIndex uint64
theirHtlcIndex uint64
// txn is the commitment transaction generated by including any HTLC
// updates whose index are below the two indexes listed above. If this
// commitment is being added to the remote chain, then this txn is
// their version of the commitment transactions. If the local commit
// chain is being modified, the opposite is true.
txn *wire.MsgTx
// sig is a signature for the above commitment transaction.
sig []byte
// [our|their]Balance represents the settled balances at this point
// within the commitment chain. This balance is computed by properly
// evaluating all the add/remove/settle log entries before the listed
// indexes.
//
// NOTE: This is the balance *after* subtracting any commitment fee,
// AND anchor output values.
ourBalance lnwire.MilliSatoshi
theirBalance lnwire.MilliSatoshi
// fee is the amount that will be paid as fees for this commitment
// transaction. The fee is recorded here so that it can be added back
// and recalculated for each new update to the channel state.
fee btcutil.Amount
// feePerKw is the fee per kw used to calculate this commitment
// transaction's fee.
feePerKw chainfee.SatPerKWeight
// dustLimit is the limit on the commitment transaction such that no
// output values should be below this amount.
dustLimit btcutil.Amount
// outgoingHTLCs is a slice of all the outgoing HTLC's (from our PoV)
// on this commitment transaction.
outgoingHTLCs []PaymentDescriptor
// incomingHTLCs is a slice of all the incoming HTLC's (from our PoV)
// on this commitment transaction.
incomingHTLCs []PaymentDescriptor
// [outgoing|incoming]HTLCIndex is an index that maps an output index
// on the commitment transaction to the payment descriptor that
// represents the HTLC output.
//
// NOTE: that these fields are only populated if this commitment state
// belongs to the local node. These maps are used when validating any
// HTLC signatures which are part of the local commitment state. We use
// this map in order to locate the details needed to validate an HTLC
// signature while iterating of the outputs in the local commitment
// view.
outgoingHTLCIndex map[int32]*PaymentDescriptor
incomingHTLCIndex map[int32]*PaymentDescriptor
}
// locateOutputIndex is a small helper function to locate the output index of a
// particular HTLC within the current commitment transaction. The duplicate map
// massed in is to be retained for each output within the commitment
// transition. This ensures that we don't assign multiple HTLC's to the same
// index within the commitment transaction.
func locateOutputIndex(p *PaymentDescriptor, tx *wire.MsgTx, ourCommit bool,
dups map[PaymentHash][]int32, cltvs []uint32) (int32, error) {
// Checks to see if element (e) exists in slice (s).
contains := func(s []int32, e int32) bool {
for _, a := range s {
if a == e {
return true
}
}
return false
}
// If this their commitment transaction, we'll be trying to locate
// their pkScripts, otherwise we'll be looking for ours. This is
// required as the commitment states are asymmetric in order to ascribe
// blame in the case of a contract breach.
pkScript := p.theirPkScript
if ourCommit {
pkScript = p.ourPkScript
}
for i, txOut := range tx.TxOut {
cltv := cltvs[i]
if bytes.Equal(txOut.PkScript, pkScript) &&
txOut.Value == int64(p.Amount.ToSatoshis()) &&
cltv == p.Timeout {
// If this payment hash and index has already been
// found, then we'll continue in order to avoid any
// duplicate indexes.
if contains(dups[p.RHash], int32(i)) {
continue
}
idx := int32(i)
dups[p.RHash] = append(dups[p.RHash], idx)
return idx, nil
}
}
return 0, fmt.Errorf("unable to find htlc: script=%x, value=%v, "+
"cltv=%v", pkScript, p.Amount, p.Timeout)
}
// populateHtlcIndexes modifies the set of HTLC's locked-into the target view
// to have full indexing information populated. This information is required as
// we need to keep track of the indexes of each HTLC in order to properly write
// the current state to disk, and also to locate the PaymentDescriptor
// corresponding to HTLC outputs in the commitment transaction.
func (c *commitment) populateHtlcIndexes(chanType channeldb.ChannelType,
cltvs []uint32) error {
// First, we'll set up some state to allow us to locate the output
// index of the all the HTLC's within the commitment transaction. We
// must keep this index so we can validate the HTLC signatures sent to
// us.
dups := make(map[PaymentHash][]int32)
c.outgoingHTLCIndex = make(map[int32]*PaymentDescriptor)
c.incomingHTLCIndex = make(map[int32]*PaymentDescriptor)
// populateIndex is a helper function that populates the necessary
// indexes within the commitment view for a particular HTLC.
populateIndex := func(htlc *PaymentDescriptor, incoming bool) error {
isDust := htlcIsDust(
chanType, incoming, c.isOurs, c.feePerKw,
htlc.Amount.ToSatoshis(), c.dustLimit,
)
var err error
switch {
// If this is our commitment transaction, and this is a dust
// output then we mark it as such using a -1 index.
case c.isOurs && isDust:
htlc.localOutputIndex = -1
// If this is the commitment transaction of the remote party,
// and this is a dust output then we mark it as such using a -1
// index.
case !c.isOurs && isDust:
htlc.remoteOutputIndex = -1
// If this is our commitment transaction, then we'll need to
// locate the output and the index so we can verify an HTLC
// signatures.
case c.isOurs:
htlc.localOutputIndex, err = locateOutputIndex(
htlc, c.txn, c.isOurs, dups, cltvs,
)
if err != nil {
return err
}
// As this is our commitment transactions, we need to
// keep track of the locations of each output on the
// transaction so we can verify any HTLC signatures
// sent to us after we construct the HTLC view.
if incoming {
c.incomingHTLCIndex[htlc.localOutputIndex] = htlc
} else {
c.outgoingHTLCIndex[htlc.localOutputIndex] = htlc
}
// Otherwise, this is there remote party's commitment
// transaction and we only need to populate the remote output
// index within the HTLC index.
case !c.isOurs:
htlc.remoteOutputIndex, err = locateOutputIndex(
htlc, c.txn, c.isOurs, dups, cltvs,
)
if err != nil {
return err
}
default:
return fmt.Errorf("invalid commitment configuration")
}
return nil
}
// Finally, we'll need to locate the index within the commitment
// transaction of all the HTLC outputs. This index will be required
// later when we write the commitment state to disk, and also when
// generating signatures for each of the HTLC transactions.
for i := 0; i < len(c.outgoingHTLCs); i++ {
htlc := &c.outgoingHTLCs[i]
if err := populateIndex(htlc, false); err != nil {
return err
}
}
for i := 0; i < len(c.incomingHTLCs); i++ {
htlc := &c.incomingHTLCs[i]
if err := populateIndex(htlc, true); err != nil {
return err
}
}
return nil
}
// toDiskCommit converts the target commitment into a format suitable to be
// written to disk after an accepted state transition.
func (c *commitment) toDiskCommit(ourCommit bool) *channeldb.ChannelCommitment {
numHtlcs := len(c.outgoingHTLCs) + len(c.incomingHTLCs)
commit := &channeldb.ChannelCommitment{
CommitHeight: c.height,
LocalLogIndex: c.ourMessageIndex,
LocalHtlcIndex: c.ourHtlcIndex,
RemoteLogIndex: c.theirMessageIndex,
RemoteHtlcIndex: c.theirHtlcIndex,
LocalBalance: c.ourBalance,
RemoteBalance: c.theirBalance,
CommitFee: c.fee,
FeePerKw: btcutil.Amount(c.feePerKw),
CommitTx: c.txn,
CommitSig: c.sig,
Htlcs: make([]channeldb.HTLC, 0, numHtlcs),
}
for _, htlc := range c.outgoingHTLCs {
outputIndex := htlc.localOutputIndex
if !ourCommit {
outputIndex = htlc.remoteOutputIndex
}
h := channeldb.HTLC{
RHash: htlc.RHash,
Amt: htlc.Amount,
RefundTimeout: htlc.Timeout,
OutputIndex: outputIndex,
HtlcIndex: htlc.HtlcIndex,
LogIndex: htlc.LogIndex,
Incoming: false,
}
h.OnionBlob = make([]byte, len(htlc.OnionBlob))
copy(h.OnionBlob[:], htlc.OnionBlob)
if ourCommit && htlc.sig != nil {
h.Signature = htlc.sig.Serialize()
}
commit.Htlcs = append(commit.Htlcs, h)
}
for _, htlc := range c.incomingHTLCs {
outputIndex := htlc.localOutputIndex
if !ourCommit {
outputIndex = htlc.remoteOutputIndex
}
h := channeldb.HTLC{
RHash: htlc.RHash,
Amt: htlc.Amount,
RefundTimeout: htlc.Timeout,
OutputIndex: outputIndex,
HtlcIndex: htlc.HtlcIndex,
LogIndex: htlc.LogIndex,
Incoming: true,
}
h.OnionBlob = make([]byte, len(htlc.OnionBlob))
copy(h.OnionBlob[:], htlc.OnionBlob)
if ourCommit && htlc.sig != nil {
h.Signature = htlc.sig.Serialize()
}
commit.Htlcs = append(commit.Htlcs, h)
}
return commit
}
// diskHtlcToPayDesc converts an HTLC previously written to disk within a
// commitment state to the form required to manipulate in memory within the
// commitment struct and updateLog. This function is used when we need to
// restore commitment state written do disk back into memory once we need to
// restart a channel session.
func (lc *LightningChannel) diskHtlcToPayDesc(feeRate chainfee.SatPerKWeight,
commitHeight uint64, htlc *channeldb.HTLC, localCommitKeys,
remoteCommitKeys *CommitmentKeyRing, isLocal bool) (PaymentDescriptor,
error) {
// The proper pkScripts for this PaymentDescriptor must be
// generated so we can easily locate them within the commitment
// transaction in the future.
var (
ourP2WSH, theirP2WSH []byte
ourWitnessScript, theirWitnessScript []byte
pd PaymentDescriptor
err error
chanType = lc.channelState.ChanType
)
// If the either outputs is dust from the local or remote node's
// perspective, then we don't need to generate the scripts as we only
// generate them in order to locate the outputs within the commitment
// transaction. As we'll mark dust with a special output index in the
// on-disk state snapshot.
isDustLocal := htlcIsDust(
chanType, htlc.Incoming, true, feeRate,
htlc.Amt.ToSatoshis(), lc.channelState.LocalChanCfg.DustLimit,
)
if !isDustLocal && localCommitKeys != nil {
ourP2WSH, ourWitnessScript, err = genHtlcScript(
chanType, htlc.Incoming, true, htlc.RefundTimeout,
htlc.RHash, localCommitKeys,
)
if err != nil {
return pd, err
}
}
isDustRemote := htlcIsDust(
chanType, htlc.Incoming, false, feeRate,
htlc.Amt.ToSatoshis(), lc.channelState.RemoteChanCfg.DustLimit,
)
if !isDustRemote && remoteCommitKeys != nil {
theirP2WSH, theirWitnessScript, err = genHtlcScript(
chanType, htlc.Incoming, false, htlc.RefundTimeout,
htlc.RHash, remoteCommitKeys,
)
if err != nil {
return pd, err
}
}
// Reconstruct the proper local/remote output indexes from the HTLC's
// persisted output index depending on whose commitment we are
// generating.
var (
localOutputIndex int32
remoteOutputIndex int32
)
if isLocal {
localOutputIndex = htlc.OutputIndex
} else {
remoteOutputIndex = htlc.OutputIndex
}
// With the scripts reconstructed (depending on if this is our commit
// vs theirs or a pending commit for the remote party), we can now
// re-create the original payment descriptor.
pd = PaymentDescriptor{
RHash: htlc.RHash,
Timeout: htlc.RefundTimeout,
Amount: htlc.Amt,
EntryType: Add,
HtlcIndex: htlc.HtlcIndex,
LogIndex: htlc.LogIndex,
OnionBlob: htlc.OnionBlob,
localOutputIndex: localOutputIndex,
remoteOutputIndex: remoteOutputIndex,
ourPkScript: ourP2WSH,
ourWitnessScript: ourWitnessScript,
theirPkScript: theirP2WSH,
theirWitnessScript: theirWitnessScript,
}
return pd, nil
}
// extractPayDescs will convert all HTLC's present within a disk commit state
// to a set of incoming and outgoing payment descriptors. Once reconstructed,
// these payment descriptors can be re-inserted into the in-memory updateLog
// for each side.
func (lc *LightningChannel) extractPayDescs(commitHeight uint64,
feeRate chainfee.SatPerKWeight, htlcs []channeldb.HTLC, localCommitKeys,
remoteCommitKeys *CommitmentKeyRing, isLocal bool) ([]PaymentDescriptor,
[]PaymentDescriptor, error) {
var (
incomingHtlcs []PaymentDescriptor
outgoingHtlcs []PaymentDescriptor
)
// For each included HTLC within this commitment state, we'll convert
// the disk format into our in memory PaymentDescriptor format,
// partitioning based on if we offered or received the HTLC.
for _, htlc := range htlcs {
// TODO(roasbeef): set isForwarded to false for all? need to
// persist state w.r.t to if forwarded or not, or can
// inadvertently trigger replays
payDesc, err := lc.diskHtlcToPayDesc(
feeRate, commitHeight, &htlc,
localCommitKeys, remoteCommitKeys,
isLocal,
)
if err != nil {
return incomingHtlcs, outgoingHtlcs, err
}
if htlc.Incoming {
incomingHtlcs = append(incomingHtlcs, payDesc)
} else {
outgoingHtlcs = append(outgoingHtlcs, payDesc)
}
}
return incomingHtlcs, outgoingHtlcs, nil
}
// diskCommitToMemCommit converts the on-disk commitment format to our
// in-memory commitment format which is needed in order to properly resume
// channel operations after a restart.
func (lc *LightningChannel) diskCommitToMemCommit(isLocal bool,
diskCommit *channeldb.ChannelCommitment, localCommitPoint,
remoteCommitPoint *btcec.PublicKey) (*commitment, error) {
// First, we'll need to re-derive the commitment key ring for each
// party used within this particular state. If this is a pending commit
// (we extended but weren't able to complete the commitment dance
// before shutdown), then the localCommitPoint won't be set as we
// haven't yet received a responding commitment from the remote party.
var localCommitKeys, remoteCommitKeys *CommitmentKeyRing
if localCommitPoint != nil {
localCommitKeys = DeriveCommitmentKeys(
localCommitPoint, true, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
)
}
if remoteCommitPoint != nil {
remoteCommitKeys = DeriveCommitmentKeys(
remoteCommitPoint, false, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
)
}
// With the key rings re-created, we'll now convert all the on-disk
// HTLC"s into PaymentDescriptor's so we can re-insert them into our
// update log.
incomingHtlcs, outgoingHtlcs, err := lc.extractPayDescs(
diskCommit.CommitHeight,
chainfee.SatPerKWeight(diskCommit.FeePerKw),
diskCommit.Htlcs, localCommitKeys, remoteCommitKeys,
isLocal,
)
if err != nil {
return nil, err
}
// With the necessary items generated, we'll now re-construct the
// commitment state as it was originally present in memory.
commit := &commitment{
height: diskCommit.CommitHeight,
isOurs: isLocal,
ourBalance: diskCommit.LocalBalance,
theirBalance: diskCommit.RemoteBalance,
ourMessageIndex: diskCommit.LocalLogIndex,
ourHtlcIndex: diskCommit.LocalHtlcIndex,
theirMessageIndex: diskCommit.RemoteLogIndex,
theirHtlcIndex: diskCommit.RemoteHtlcIndex,
txn: diskCommit.CommitTx,
sig: diskCommit.CommitSig,
fee: diskCommit.CommitFee,
feePerKw: chainfee.SatPerKWeight(diskCommit.FeePerKw),
incomingHTLCs: incomingHtlcs,
outgoingHTLCs: outgoingHtlcs,
}
if isLocal {
commit.dustLimit = lc.channelState.LocalChanCfg.DustLimit
} else {
commit.dustLimit = lc.channelState.RemoteChanCfg.DustLimit
}
return commit, nil
}
// commitmentChain represents a chain of unrevoked commitments. The tail of the
// chain is the latest fully signed, yet unrevoked commitment. Two chains are
// tracked, one for the local node, and another for the remote node. New
// commitments we create locally extend the remote node's chain, and vice
// versa. Commitment chains are allowed to grow to a bounded length, after
// which the tail needs to be "dropped" before new commitments can be received.
// The tail is "dropped" when the owner of the chain sends a revocation for the
// previous tail.
type commitmentChain struct {
// commitments is a linked list of commitments to new states. New
// commitments are added to the end of the chain with increase height.
// Once a commitment transaction is revoked, the tail is incremented,
// freeing up the revocation window for new commitments.
commitments *list.List
}
// newCommitmentChain creates a new commitment chain.
func newCommitmentChain() *commitmentChain {
return &commitmentChain{
commitments: list.New(),
}
}
// addCommitment extends the commitment chain by a single commitment. This
// added commitment represents a state update proposed by either party. Once
// the commitment prior to this commitment is revoked, the commitment becomes
// the new defacto state within the channel.
func (s *commitmentChain) addCommitment(c *commitment) {
s.commitments.PushBack(c)
}
// advanceTail reduces the length of the commitment chain by one. The tail of
// the chain should be advanced once a revocation for the lowest unrevoked
// commitment in the chain is received.
func (s *commitmentChain) advanceTail() {
s.commitments.Remove(s.commitments.Front())
}
// tip returns the latest commitment added to the chain.
func (s *commitmentChain) tip() *commitment {
return s.commitments.Back().Value.(*commitment)
}
// tail returns the lowest unrevoked commitment transaction in the chain.
func (s *commitmentChain) tail() *commitment {
return s.commitments.Front().Value.(*commitment)
}
// hasUnackedCommitment returns true if the commitment chain has more than one
// entry. The tail of the commitment chain has been ACKed by revoking all prior
// commitments, but any subsequent commitments have not yet been ACKed.
func (s *commitmentChain) hasUnackedCommitment() bool {
return s.commitments.Front() != s.commitments.Back()
}
// updateLog is an append-only log that stores updates to a node's commitment
// chain. This structure can be seen as the "mempool" within Lightning where
// changes are stored before they're committed to the chain. Once an entry has
// been committed in both the local and remote commitment chain, then it can be
// removed from this log.
//
// TODO(roasbeef): create lightning package, move commitment and update to
// package?
// * also move state machine, separate from lnwallet package
// * possible embed updateLog within commitmentChain.
type updateLog struct {
// logIndex is a monotonically increasing integer that tracks the total
// number of update entries ever applied to the log. When sending new
// commitment states, we include all updates up to this index.
logIndex uint64
// htlcCounter is a monotonically increasing integer that tracks the
// total number of offered HTLC's by the owner of this update log. We
// use a distinct index for this purpose, as update's that remove
// entries from the log will be indexed using this counter.
htlcCounter uint64
// List is the updatelog itself, we embed this value so updateLog has
// access to all the method of a list.List.
*list.List
// updateIndex is an index that maps a particular entries index to the
// list element within the list.List above.
updateIndex map[uint64]*list.Element
// offerIndex is an index that maps the counter for offered HTLC's to
// their list element within the main list.List.
htlcIndex map[uint64]*list.Element
// modifiedHtlcs is a set that keeps track of all the current modified
// htlcs. A modified HTLC is one that's present in the log, and has as
// a pending fail or settle that's attempting to consume it.
modifiedHtlcs map[uint64]struct{}
}
// newUpdateLog creates a new updateLog instance.
func newUpdateLog(logIndex, htlcCounter uint64) *updateLog {
return &updateLog{
List: list.New(),
updateIndex: make(map[uint64]*list.Element),
htlcIndex: make(map[uint64]*list.Element),
logIndex: logIndex,
htlcCounter: htlcCounter,
modifiedHtlcs: make(map[uint64]struct{}),
}
}
// restoreHtlc will "restore" a prior HTLC to the updateLog. We say restore as
// this method is intended to be used when re-covering a prior commitment
// state. This function differs from appendHtlc in that it won't increment
// either of log's counters. If the HTLC is already present, then it is
// ignored.
func (u *updateLog) restoreHtlc(pd *PaymentDescriptor) {
if _, ok := u.htlcIndex[pd.HtlcIndex]; ok {
return
}
u.htlcIndex[pd.HtlcIndex] = u.PushBack(pd)
}
// appendUpdate appends a new update to the tip of the updateLog. The entry is
// also added to index accordingly.
func (u *updateLog) appendUpdate(pd *PaymentDescriptor) {
u.updateIndex[u.logIndex] = u.PushBack(pd)
u.logIndex++
}
// restoreUpdate appends a new update to the tip of the updateLog. The entry is
// also added to index accordingly. This function differs from appendUpdate in
// that it won't increment the log index counter.
func (u *updateLog) restoreUpdate(pd *PaymentDescriptor) {
u.updateIndex[pd.LogIndex] = u.PushBack(pd)
}
// appendHtlc appends a new HTLC offer to the tip of the update log. The entry
// is also added to the offer index accordingly.
func (u *updateLog) appendHtlc(pd *PaymentDescriptor) {
u.htlcIndex[u.htlcCounter] = u.PushBack(pd)
u.htlcCounter++
u.logIndex++
}
// lookupHtlc attempts to look up an offered HTLC according to its offer
// index. If the entry isn't found, then a nil pointer is returned.
func (u *updateLog) lookupHtlc(i uint64) *PaymentDescriptor {
htlc, ok := u.htlcIndex[i]
if !ok {
return nil
}
return htlc.Value.(*PaymentDescriptor)
}
// remove attempts to remove an entry from the update log. If the entry is
// found, then the entry will be removed from the update log and index.
func (u *updateLog) removeUpdate(i uint64) {
entry := u.updateIndex[i]
u.Remove(entry)
delete(u.updateIndex, i)
}
// removeHtlc attempts to remove an HTLC offer form the update log. If the
// entry is found, then the entry will be removed from both the main log and
// the offer index.
func (u *updateLog) removeHtlc(i uint64) {
entry := u.htlcIndex[i]
u.Remove(entry)
delete(u.htlcIndex, i)
delete(u.modifiedHtlcs, i)
}
// htlcHasModification returns true if the HTLC identified by the passed index
// has a pending modification within the log.
func (u *updateLog) htlcHasModification(i uint64) bool {
_, o := u.modifiedHtlcs[i]
return o
}
// markHtlcModified marks an HTLC as modified based on its HTLC index. After a
// call to this method, htlcHasModification will return true until the HTLC is
// removed.
func (u *updateLog) markHtlcModified(i uint64) {
u.modifiedHtlcs[i] = struct{}{}
}
// compactLogs performs garbage collection within the log removing HTLCs which
// have been removed from the point-of-view of the tail of both chains. The
// entries which timeout/settle HTLCs are also removed.
func compactLogs(ourLog, theirLog *updateLog,
localChainTail, remoteChainTail uint64) {
compactLog := func(logA, logB *updateLog) {
var nextA *list.Element
for e := logA.Front(); e != nil; e = nextA {
// Assign next iteration element at top of loop because
// we may remove the current element from the list,
// which can change the iterated sequence.
nextA = e.Next()
htlc := e.Value.(*PaymentDescriptor)
// We skip Adds, as they will be removed along with the
// fail/settles below.
if htlc.EntryType == Add {
continue
}
// If the HTLC hasn't yet been removed from either
// chain, the skip it.
if htlc.removeCommitHeightRemote == 0 ||
htlc.removeCommitHeightLocal == 0 {
continue
}
// Otherwise if the height of the tail of both chains
// is at least the height in which the HTLC was
// removed, then evict the settle/timeout entry along
// with the original add entry.
if remoteChainTail >= htlc.removeCommitHeightRemote &&
localChainTail >= htlc.removeCommitHeightLocal {
// Fee updates have no parent htlcs, so we only
// remove the update itself.
if htlc.EntryType == FeeUpdate {
logA.removeUpdate(htlc.LogIndex)
continue
}
// The other types (fail/settle) do have a
// parent HTLC, so we'll remove that HTLC from
// the other log.
logA.removeUpdate(htlc.LogIndex)
logB.removeHtlc(htlc.ParentIndex)
}
}
}
compactLog(ourLog, theirLog)
compactLog(theirLog, ourLog)
}
// LightningChannel implements the state machine which corresponds to the
// current commitment protocol wire spec. The state machine implemented allows
// for asynchronous fully desynchronized, batched+pipelined updates to
// commitment transactions allowing for a high degree of non-blocking
// bi-directional payment throughput.
//
// In order to allow updates to be fully non-blocking, either side is able to
// create multiple new commitment states up to a pre-determined window size.
// This window size is encoded within InitialRevocationWindow. Before the start
// of a session, both side should send out revocation messages with nil
// preimages in order to populate their revocation window for the remote party.
//
// The state machine has for main methods:
// * .SignNextCommitment()
// * Called one one wishes to sign the next commitment, either initiating a
// new state update, or responding to a received commitment.
// * .ReceiveNewCommitment()
// * Called upon receipt of a new commitment from the remote party. If the
// new commitment is valid, then a revocation should immediately be
// generated and sent.
// * .RevokeCurrentCommitment()
// * Revokes the current commitment. Should be called directly after
// receiving a new commitment.
// * .ReceiveRevocation()
// * Processes a revocation from the remote party. If successful creates a
// new defacto broadcastable state.
//
// See the individual comments within the above methods for further details.
type LightningChannel struct {
// Signer is the main signer instances that will be responsible for
// signing any HTLC and commitment transaction generated by the state
// machine.
Signer input.Signer
// signDesc is the primary sign descriptor that is capable of signing
// the commitment transaction that spends the multi-sig output.
signDesc *input.SignDescriptor
status channelState
// ChanPoint is the funding outpoint of this channel.
ChanPoint *wire.OutPoint
// sigPool is a pool of workers that are capable of signing and
// validating signatures in parallel. This is utilized as an
// optimization to void serially signing or validating the HTLC
// signatures, of which there may be hundreds.
sigPool *SigPool
// Capacity is the total capacity of this channel.
Capacity btcutil.Amount
// currentHeight is the current height of our local commitment chain.
// This is also the same as the number of updates to the channel we've
// accepted.
currentHeight uint64
// remoteCommitChain is the remote node's commitment chain. Any new
// commitments we initiate are added to the tip of this chain.
remoteCommitChain *commitmentChain
// localCommitChain is our local commitment chain. Any new commitments
// received are added to the tip of this chain. The tail (or lowest
// height) in this chain is our current accepted state, which we are
// able to broadcast safely.
localCommitChain *commitmentChain
channelState *channeldb.OpenChannel
commitBuilder *CommitmentBuilder
// [local|remote]Log is a (mostly) append-only log storing all the HTLC
// updates to this channel. The log is walked backwards as HTLC updates
// are applied in order to re-construct a commitment transaction from a
// commitment. The log is compacted once a revocation is received.
localUpdateLog *updateLog
remoteUpdateLog *updateLog
// LocalFundingKey is the public key under control by the wallet that
// was used for the 2-of-2 funding output which created this channel.
LocalFundingKey *btcec.PublicKey
// RemoteFundingKey is the public key for the remote channel counter
// party which used for the 2-of-2 funding output which created this
// channel.
RemoteFundingKey *btcec.PublicKey
// log is a channel-specific logging instance.
log btclog.Logger
sync.RWMutex
}
// NewLightningChannel creates a new, active payment channel given an
// implementation of the chain notifier, channel database, and the current
// settled channel state. Throughout state transitions, then channel will
// automatically persist pertinent state to the database in an efficient
// manner.
func NewLightningChannel(signer input.Signer,
state *channeldb.OpenChannel,
sigPool *SigPool) (*LightningChannel, error) {
localCommit := state.LocalCommitment
remoteCommit := state.RemoteCommitment
// First, initialize the update logs with their current counter values
// from the local and remote commitments.
localUpdateLog := newUpdateLog(
remoteCommit.LocalLogIndex, remoteCommit.LocalHtlcIndex,
)
remoteUpdateLog := newUpdateLog(
localCommit.RemoteLogIndex, localCommit.RemoteHtlcIndex,
)
logPrefix := fmt.Sprintf("ChannelPoint(%v):", state.FundingOutpoint)
lc := &LightningChannel{
Signer: signer,
sigPool: sigPool,
currentHeight: localCommit.CommitHeight,
remoteCommitChain: newCommitmentChain(),
localCommitChain: newCommitmentChain(),
channelState: state,
commitBuilder: NewCommitmentBuilder(state),
localUpdateLog: localUpdateLog,
remoteUpdateLog: remoteUpdateLog,
ChanPoint: &state.FundingOutpoint,
Capacity: state.Capacity,
LocalFundingKey: state.LocalChanCfg.MultiSigKey.PubKey,
RemoteFundingKey: state.RemoteChanCfg.MultiSigKey.PubKey,
log: build.NewPrefixLog(logPrefix, walletLog),
}
// With the main channel struct reconstructed, we'll now restore the
// commitment state in memory and also the update logs themselves.
err := lc.restoreCommitState(&localCommit, &remoteCommit)
if err != nil {
return nil, err
}
// Create the sign descriptor which we'll be using very frequently to
// request a signature for the 2-of-2 multi-sig from the signer in
// order to complete channel state transitions.
if err := lc.createSignDesc(); err != nil {
return nil, err
}
return lc, nil
}
// createSignDesc derives the SignDescriptor for commitment transactions from
// other fields on the LightningChannel.
func (lc *LightningChannel) createSignDesc() error {
localKey := lc.channelState.LocalChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
remoteKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
multiSigScript, err := input.GenMultiSigScript(localKey, remoteKey)
if err != nil {
return err
}
fundingPkScript, err := input.WitnessScriptHash(multiSigScript)
if err != nil {
return err
}
lc.signDesc = &input.SignDescriptor{
KeyDesc: lc.channelState.LocalChanCfg.MultiSigKey,
WitnessScript: multiSigScript,
Output: &wire.TxOut{
PkScript: fundingPkScript,
Value: int64(lc.channelState.Capacity),
},
HashType: txscript.SigHashAll,
InputIndex: 0,
}
return nil
}
// ResetState resets the state of the channel back to the default state. This
// ensures that any active goroutines which need to act based on on-chain
// events do so properly.
func (lc *LightningChannel) ResetState() {
lc.Lock()
lc.status = channelOpen
lc.Unlock()
}
// logUpdateToPayDesc converts a LogUpdate into a matching PaymentDescriptor
// entry that can be re-inserted into the update log. This method is used when
// we extended a state to the remote party, but the connection was obstructed
// before we could finish the commitment dance. In this case, we need to
// re-insert the original entries back into the update log so we can resume as
// if nothing happened.
func (lc *LightningChannel) logUpdateToPayDesc(logUpdate *channeldb.LogUpdate,
remoteUpdateLog *updateLog, commitHeight uint64,
feeRate chainfee.SatPerKWeight, remoteCommitKeys *CommitmentKeyRing,
remoteDustLimit btcutil.Amount) (*PaymentDescriptor, error) {
// Depending on the type of update message we'll map that to a distinct
// PaymentDescriptor instance.
var pd *PaymentDescriptor
switch wireMsg := logUpdate.UpdateMsg.(type) {
// For offered HTLC's, we'll map that to a PaymentDescriptor with the
// type Add, ensuring we restore the necessary fields. From the PoV of
// the commitment chain, this HTLC was included in the remote chain,
// but not the local chain.
case *lnwire.UpdateAddHTLC:
// First, we'll map all the relevant fields in the
// UpdateAddHTLC message to their corresponding fields in the
// PaymentDescriptor struct. We also set addCommitHeightRemote
// as we've included this HTLC in our local commitment chain
// for the remote party.
pd = &PaymentDescriptor{
RHash: wireMsg.PaymentHash,
Timeout: wireMsg.Expiry,
Amount: wireMsg.Amount,
EntryType: Add,
HtlcIndex: wireMsg.ID,
LogIndex: logUpdate.LogIndex,
addCommitHeightRemote: commitHeight,
}
pd.OnionBlob = make([]byte, len(wireMsg.OnionBlob))
copy(pd.OnionBlob[:], wireMsg.OnionBlob[:])
isDustRemote := htlcIsDust(
lc.channelState.ChanType, false, false, feeRate,
wireMsg.Amount.ToSatoshis(), remoteDustLimit,
)
if !isDustRemote {
theirP2WSH, theirWitnessScript, err := genHtlcScript(
lc.channelState.ChanType, false, false,
wireMsg.Expiry, wireMsg.PaymentHash,
remoteCommitKeys,
)
if err != nil {
return nil, err
}
pd.theirPkScript = theirP2WSH
pd.theirWitnessScript = theirWitnessScript
}
// For HTLC's we're offered we'll fetch the original offered HTLC
// from the remote party's update log so we can retrieve the same
// PaymentDescriptor that SettleHTLC would produce.
case *lnwire.UpdateFulfillHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
pd = &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
RPreimage: wireMsg.PaymentPreimage,
LogIndex: logUpdate.LogIndex,
ParentIndex: ogHTLC.HtlcIndex,
EntryType: Settle,
removeCommitHeightRemote: commitHeight,
}
// If we sent a failure for a prior incoming HTLC, then we'll consult
// the update log of the remote party so we can retrieve the
// information of the original HTLC we're failing. We also set the
// removal height for the remote commitment.
case *lnwire.UpdateFailHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
pd = &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: Fail,
FailReason: wireMsg.Reason[:],
removeCommitHeightRemote: commitHeight,
}
// HTLC fails due to malformed onion blobs are treated the exact same
// way as regular HTLC fails.
case *lnwire.UpdateFailMalformedHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
// TODO(roasbeef): err if nil?
pd = &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: MalformedFail,
FailCode: wireMsg.FailureCode,
ShaOnionBlob: wireMsg.ShaOnionBlob,
removeCommitHeightRemote: commitHeight,
}
// For fee updates we'll create a FeeUpdate type to add to the log. We
// reuse the amount field to hold the fee rate. Since the amount field
// is denominated in msat we won't lose precision when storing the
// sat/kw denominated feerate. Note that we set both the add and remove
// height to the same value, as we consider the fee update locked in by
// adding and removing it at the same height.
case *lnwire.UpdateFee:
pd = &PaymentDescriptor{
LogIndex: logUpdate.LogIndex,
Amount: lnwire.NewMSatFromSatoshis(
btcutil.Amount(wireMsg.FeePerKw),
),
EntryType: FeeUpdate,
addCommitHeightRemote: commitHeight,
removeCommitHeightRemote: commitHeight,
}
}
return pd, nil
}
// localLogUpdateToPayDesc converts a LogUpdate into a matching PaymentDescriptor
// entry that can be re-inserted into the local update log. This method is used
// when we sent an update+sig, receive a revocation, but drop right before the
// counterparty can sign for the update we just sent. In this case, we need to
// re-insert the original entries back into the update log so we'll be expecting
// the peer to sign them. The height of the remote commitment is expected to be
// provided and we restore all log update entries with this height, even though
// the real height may be lower. In the way these fields are used elsewhere, this
// doesn't change anything.
func (lc *LightningChannel) localLogUpdateToPayDesc(logUpdate *channeldb.LogUpdate,
remoteUpdateLog *updateLog, commitHeight uint64) (*PaymentDescriptor,
error) {
// Since Add updates aren't saved to disk under this key, the update will
// never be an Add.
switch wireMsg := logUpdate.UpdateMsg.(type) {
// For HTLCs that we settled, we'll fetch the original offered HTLC from
// the remote update log so we can retrieve the same PaymentDescriptor that
// ReceiveHTLCSettle would produce.
case *lnwire.UpdateFulfillHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
return &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
RPreimage: wireMsg.PaymentPreimage,
LogIndex: logUpdate.LogIndex,
ParentIndex: ogHTLC.HtlcIndex,
EntryType: Settle,
removeCommitHeightRemote: commitHeight,
}, nil
// If we sent a failure for a prior incoming HTLC, then we'll consult the
// remote update log so we can retrieve the information of the original
// HTLC we're failing.
case *lnwire.UpdateFailHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
return &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: Fail,
FailReason: wireMsg.Reason[:],
removeCommitHeightRemote: commitHeight,
}, nil
// HTLC fails due to malformed onion blocks are treated the exact same
// way as regular HTLC fails.
case *lnwire.UpdateFailMalformedHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
return &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: MalformedFail,
FailCode: wireMsg.FailureCode,
ShaOnionBlob: wireMsg.ShaOnionBlob,
removeCommitHeightRemote: commitHeight,
}, nil
case *lnwire.UpdateFee:
return &PaymentDescriptor{
LogIndex: logUpdate.LogIndex,
Amount: lnwire.NewMSatFromSatoshis(
btcutil.Amount(wireMsg.FeePerKw),
),
EntryType: FeeUpdate,
addCommitHeightRemote: commitHeight,
removeCommitHeightRemote: commitHeight,
}, nil
default:
return nil, fmt.Errorf("unknown message type: %T", wireMsg)
}
}
// remoteLogUpdateToPayDesc converts a LogUpdate into a matching
// PaymentDescriptor entry that can be re-inserted into the update log. This
// method is used when we revoked a local commitment, but the connection was
// obstructed before we could sign a remote commitment that contains these
// updates. In this case, we need to re-insert the original entries back into
// the update log so we can resume as if nothing happened. The height of the
// latest local commitment is also expected to be provided. We are restoring all
// log update entries with this height, even though the real commitment height
// may be lower. In the way these fields are used elsewhere, this doesn't change
// anything.
func (lc *LightningChannel) remoteLogUpdateToPayDesc(logUpdate *channeldb.LogUpdate,
localUpdateLog *updateLog, commitHeight uint64) (*PaymentDescriptor,
error) {
switch wireMsg := logUpdate.UpdateMsg.(type) {
case *lnwire.UpdateAddHTLC:
pd := &PaymentDescriptor{
RHash: wireMsg.PaymentHash,
Timeout: wireMsg.Expiry,
Amount: wireMsg.Amount,
EntryType: Add,
HtlcIndex: wireMsg.ID,
LogIndex: logUpdate.LogIndex,
addCommitHeightLocal: commitHeight,
}
pd.OnionBlob = make([]byte, len(wireMsg.OnionBlob))
copy(pd.OnionBlob, wireMsg.OnionBlob[:])
// We don't need to generate an htlc script yet. This will be
// done once we sign our remote commitment.
return pd, nil
// For HTLCs that the remote party settled, we'll fetch the original
// offered HTLC from the local update log so we can retrieve the same
// PaymentDescriptor that ReceiveHTLCSettle would produce.
case *lnwire.UpdateFulfillHTLC:
ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID)
return &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
RPreimage: wireMsg.PaymentPreimage,
LogIndex: logUpdate.LogIndex,
ParentIndex: ogHTLC.HtlcIndex,
EntryType: Settle,
removeCommitHeightLocal: commitHeight,
}, nil
// If we received a failure for a prior outgoing HTLC, then we'll
// consult the local update log so we can retrieve the information of
// the original HTLC we're failing.
case *lnwire.UpdateFailHTLC:
ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID)
return &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: Fail,
FailReason: wireMsg.Reason[:],
removeCommitHeightLocal: commitHeight,
}, nil
// HTLC fails due to malformed onion blobs are treated the exact same
// way as regular HTLC fails.
case *lnwire.UpdateFailMalformedHTLC:
ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID)
return &PaymentDescriptor{
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: MalformedFail,
FailCode: wireMsg.FailureCode,
ShaOnionBlob: wireMsg.ShaOnionBlob,
removeCommitHeightLocal: commitHeight,
}, nil
// For fee updates we'll create a FeeUpdate type to add to the log. We
// reuse the amount field to hold the fee rate. Since the amount field
// is denominated in msat we won't lose precision when storing the
// sat/kw denominated feerate. Note that we set both the add and remove
// height to the same value, as we consider the fee update locked in by
// adding and removing it at the same height.
case *lnwire.UpdateFee:
return &PaymentDescriptor{
LogIndex: logUpdate.LogIndex,
Amount: lnwire.NewMSatFromSatoshis(
btcutil.Amount(wireMsg.FeePerKw),
),
EntryType: FeeUpdate,
addCommitHeightLocal: commitHeight,
removeCommitHeightLocal: commitHeight,
}, nil
default:
return nil, errors.New("unknown message type")
}
}
// restoreCommitState will restore the local commitment chain and updateLog
// state to a consistent in-memory representation of the passed disk commitment.
// This method is to be used upon reconnection to our channel counter party.
// Once the connection has been established, we'll prepare our in memory state
// to re-sync states with the remote party, and also verify/extend new proposed
// commitment states.
func (lc *LightningChannel) restoreCommitState(
localCommitState, remoteCommitState *channeldb.ChannelCommitment) error {
// In order to reconstruct the pkScripts on each of the pending HTLC
// outputs (if any) we'll need to regenerate the current revocation for
// this current un-revoked state as well as retrieve the current
// revocation for the remote party.
ourRevPreImage, err := lc.channelState.RevocationProducer.AtIndex(
lc.currentHeight,
)
if err != nil {
return err
}
localCommitPoint := input.ComputeCommitmentPoint(ourRevPreImage[:])
remoteCommitPoint := lc.channelState.RemoteCurrentRevocation
// With the revocation state reconstructed, we can now convert the disk
// commitment into our in-memory commitment format, inserting it into
// the local commitment chain.
localCommit, err := lc.diskCommitToMemCommit(
true, localCommitState, localCommitPoint,
remoteCommitPoint,
)
if err != nil {
return err
}
lc.localCommitChain.addCommitment(localCommit)
lc.log.Debugf("starting local commitment: %v",
newLogClosure(func() string {
return spew.Sdump(lc.localCommitChain.tail())
}),
)
// We'll also do the same for the remote commitment chain.
remoteCommit, err := lc.diskCommitToMemCommit(
false, remoteCommitState, localCommitPoint,
remoteCommitPoint,
)
if err != nil {
return err
}
lc.remoteCommitChain.addCommitment(remoteCommit)
lc.log.Debugf("starting remote commitment: %v",
newLogClosure(func() string {
return spew.Sdump(lc.remoteCommitChain.tail())
}),
)
var (
pendingRemoteCommit *commitment
pendingRemoteCommitDiff *channeldb.CommitDiff
pendingRemoteKeyChain *CommitmentKeyRing
)
// Next, we'll check to see if we have an un-acked commitment state we
// extended to the remote party but which was never ACK'd.
pendingRemoteCommitDiff, err = lc.channelState.RemoteCommitChainTip()
if err != nil && err != channeldb.ErrNoPendingCommit {
return err
}
if pendingRemoteCommitDiff != nil {
// If we have a pending remote commitment, then we'll also
// reconstruct the original commitment for that state,
// inserting it into the remote party's commitment chain. We
// don't pass our commit point as we don't have the
// corresponding state for the local commitment chain.
pendingCommitPoint := lc.channelState.RemoteNextRevocation
pendingRemoteCommit, err = lc.diskCommitToMemCommit(
false, &pendingRemoteCommitDiff.Commitment,
nil, pendingCommitPoint,
)
if err != nil {
return err
}
lc.remoteCommitChain.addCommitment(pendingRemoteCommit)
lc.log.Debugf("pending remote commitment: %v",
newLogClosure(func() string {
return spew.Sdump(lc.remoteCommitChain.tip())
}),
)
// We'll also re-create the set of commitment keys needed to
// fully re-derive the state.
pendingRemoteKeyChain = DeriveCommitmentKeys(
pendingCommitPoint, false, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg,
)
}
// Fetch remote updates that we have acked but not yet signed for.
unsignedAckedUpdates, err := lc.channelState.UnsignedAckedUpdates()
if err != nil {
return err
}
// Fetch the local updates the peer still needs to sign for.
remoteUnsignedLocalUpdates, err := lc.channelState.RemoteUnsignedLocalUpdates()
if err != nil {
return err
}
// Finally, with the commitment states restored, we'll now restore the
// state logs based on the current local+remote commit, and any pending
// remote commit that exists.
err = lc.restoreStateLogs(
localCommit, remoteCommit, pendingRemoteCommit,
pendingRemoteCommitDiff, pendingRemoteKeyChain,
unsignedAckedUpdates, remoteUnsignedLocalUpdates,
)
if err != nil {
return err
}
return nil
}
// restoreStateLogs runs through the current locked-in HTLCs from the point of
// view of the channel and insert corresponding log entries (both local and
// remote) for each HTLC read from disk. This method is required to sync the
// in-memory state of the state machine with that read from persistent storage.
func (lc *LightningChannel) restoreStateLogs(
localCommitment, remoteCommitment, pendingRemoteCommit *commitment,
pendingRemoteCommitDiff *channeldb.CommitDiff,
pendingRemoteKeys *CommitmentKeyRing,
unsignedAckedUpdates,
remoteUnsignedLocalUpdates []channeldb.LogUpdate) error {
// We make a map of incoming HTLCs to the height of the remote
// commitment they were first added, and outgoing HTLCs to the height
// of the local commit they were first added. This will be used when we
// restore the update logs below.
incomingRemoteAddHeights := make(map[uint64]uint64)
outgoingLocalAddHeights := make(map[uint64]uint64)
// We start by setting the height of the incoming HTLCs on the pending
// remote commitment. We set these heights first since if there are
// duplicates, these will be overwritten by the lower height of the
// remoteCommitment below.
if pendingRemoteCommit != nil {
for _, r := range pendingRemoteCommit.incomingHTLCs {
incomingRemoteAddHeights[r.HtlcIndex] =
pendingRemoteCommit.height
}
}
// Now set the remote commit height of all incoming HTLCs found on the
// remote commitment.
for _, r := range remoteCommitment.incomingHTLCs {
incomingRemoteAddHeights[r.HtlcIndex] = remoteCommitment.height
}
// And finally we can do the same for the outgoing HTLCs.
for _, l := range localCommitment.outgoingHTLCs {
outgoingLocalAddHeights[l.HtlcIndex] = localCommitment.height
}
// If we have any unsigned acked updates to sign for, then the add is no
// longer on our local commitment, but is still on the remote's commitment.
// <---fail---
// <---sig----
// ----rev--->
// To ensure proper channel operation, we restore the add's addCommitHeightLocal
// field to the height of our local commitment.
for _, logUpdate := range unsignedAckedUpdates {
var htlcIdx uint64
switch wireMsg := logUpdate.UpdateMsg.(type) {
case *lnwire.UpdateFulfillHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailMalformedHTLC:
htlcIdx = wireMsg.ID
default:
continue
}
// The htlcIdx is stored in the map with the local commitment
// height so the related add's addCommitHeightLocal field can be
// restored.
outgoingLocalAddHeights[htlcIdx] = localCommitment.height
}
// If there are local updates that the peer needs to sign for, then the
// corresponding add is no longer on the remote commitment, but is still on
// our local commitment.
// ----fail--->
// ----sig---->
// <---rev-----
// To ensure proper channel operation, we restore the add's addCommitHeightRemote
// field to the height of the remote commitment.
for _, logUpdate := range remoteUnsignedLocalUpdates {
var htlcIdx uint64
switch wireMsg := logUpdate.UpdateMsg.(type) {
case *lnwire.UpdateFulfillHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailMalformedHTLC:
htlcIdx = wireMsg.ID
default:
continue
}
// The htlcIdx is stored in the map with the remote commitment
// height so the related add's addCommitHeightRemote field can be
// restored.
incomingRemoteAddHeights[htlcIdx] = remoteCommitment.height
}
// For each incoming HTLC within the local commitment, we add it to the
// remote update log. Since HTLCs are added first to the receiver's
// commitment, we don't have to restore outgoing HTLCs, as they will be
// restored from the remote commitment below.
for i := range localCommitment.incomingHTLCs {
htlc := localCommitment.incomingHTLCs[i]
// We'll need to set the add height of the HTLC. Since it is on
// this local commit, we can use its height as local add
// height. As remote add height we consult the incoming HTLC
// map we created earlier. Note that if this HTLC is not in
// incomingRemoteAddHeights, the remote add height will be set
// to zero, which indicates that it is not added yet.
htlc.addCommitHeightLocal = localCommitment.height
htlc.addCommitHeightRemote = incomingRemoteAddHeights[htlc.HtlcIndex]
// Restore the htlc back to the remote log.
lc.remoteUpdateLog.restoreHtlc(&htlc)
}
// Similarly, we'll do the same for the outgoing HTLCs within the
// remote commitment, adding them to the local update log.
for i := range remoteCommitment.outgoingHTLCs {
htlc := remoteCommitment.outgoingHTLCs[i]
// As for the incoming HTLCs, we'll use the current remote
// commit height as remote add height, and consult the map
// created above for the local add height.
htlc.addCommitHeightRemote = remoteCommitment.height
htlc.addCommitHeightLocal = outgoingLocalAddHeights[htlc.HtlcIndex]
// Restore the htlc back to the local log.
lc.localUpdateLog.restoreHtlc(&htlc)
}
// If we have a dangling (un-acked) commit for the remote party, then we
// restore the updates leading up to this commit.
if pendingRemoteCommit != nil {
err := lc.restorePendingLocalUpdates(
pendingRemoteCommitDiff, pendingRemoteKeys,
)
if err != nil {
return err
}
}
// Restore unsigned acked remote log updates so that we can include them
// in our next signature.
err := lc.restorePendingRemoteUpdates(
unsignedAckedUpdates, localCommitment.height,
pendingRemoteCommit,
)
if err != nil {
return err
}
// Restore unsigned acked local log updates so we expect the peer to
// sign for them.
return lc.restorePeerLocalUpdates(
remoteUnsignedLocalUpdates, remoteCommitment.height,
)
}
// restorePendingRemoteUpdates restores the acked remote log updates that we
// haven't yet signed for.
func (lc *LightningChannel) restorePendingRemoteUpdates(
unsignedAckedUpdates []channeldb.LogUpdate,
localCommitmentHeight uint64,
pendingRemoteCommit *commitment) error {
lc.log.Debugf("Restoring %v dangling remote updates",
len(unsignedAckedUpdates))
for _, logUpdate := range unsignedAckedUpdates {
logUpdate := logUpdate
payDesc, err := lc.remoteLogUpdateToPayDesc(
&logUpdate, lc.localUpdateLog, localCommitmentHeight,
)
if err != nil {
return err
}
logIdx := payDesc.LogIndex
// Sanity check that we are not restoring a remote log update
// that we haven't received a sig for.
if logIdx >= lc.remoteUpdateLog.logIndex {
return fmt.Errorf("attempted to restore an "+
"unsigned remote update: log_index=%v",
logIdx)
}
// We previously restored Adds along with all the other upates,
// but this Add restoration was a no-op as every single one of
// these Adds was already restored since they're all incoming
// htlcs on the local commitment.
if payDesc.EntryType == Add {
continue
}
var (
height uint64
heightSet bool
)
// If we have a pending commitment for them, and this update
// is included in that commit, then we'll use this commitment
// height as this commitment will include these updates for
// their new remote commitment.
if pendingRemoteCommit != nil {
if logIdx < pendingRemoteCommit.theirMessageIndex {
height = pendingRemoteCommit.height
heightSet = true
}
}
// Insert the update into the log. The log update index doesn't
// need to be incremented (hence the restore calls), because its
// final value was properly persisted with the last local
// commitment update.
switch payDesc.EntryType {
case FeeUpdate:
if heightSet {
payDesc.addCommitHeightRemote = height
payDesc.removeCommitHeightRemote = height
}
lc.remoteUpdateLog.restoreUpdate(payDesc)
default:
if heightSet {
payDesc.removeCommitHeightRemote = height
}
lc.remoteUpdateLog.restoreUpdate(payDesc)
lc.localUpdateLog.markHtlcModified(payDesc.ParentIndex)
}
}
return nil
}
// restorePeerLocalUpdates restores the acked local log updates the peer still
// needs to sign for.
func (lc *LightningChannel) restorePeerLocalUpdates(updates []channeldb.LogUpdate,
remoteCommitmentHeight uint64) error {
lc.log.Debugf("Restoring %v local updates that the peer should sign",
len(updates))
for _, logUpdate := range updates {
logUpdate := logUpdate
payDesc, err := lc.localLogUpdateToPayDesc(
&logUpdate, lc.remoteUpdateLog, remoteCommitmentHeight,
)
if err != nil {
return err
}
lc.localUpdateLog.restoreUpdate(payDesc)
// Since Add updates are not stored and FeeUpdates don't have a
// corresponding entry in the remote update log, we only need to
// mark the htlc as modified if the update was Settle, Fail, or
// MalformedFail.
if payDesc.EntryType != FeeUpdate {
lc.remoteUpdateLog.markHtlcModified(payDesc.ParentIndex)
}
}
return nil
}
// restorePendingLocalUpdates restores the local log updates leading up to the
// given pending remote commitment.
func (lc *LightningChannel) restorePendingLocalUpdates(
pendingRemoteCommitDiff *channeldb.CommitDiff,
pendingRemoteKeys *CommitmentKeyRing) error {
pendingCommit := pendingRemoteCommitDiff.Commitment
pendingHeight := pendingCommit.CommitHeight
// If we did have a dangling commit, then we'll examine which updates
// we included in that state and re-insert them into our update log.
for _, logUpdate := range pendingRemoteCommitDiff.LogUpdates {
payDesc, err := lc.logUpdateToPayDesc(
&logUpdate, lc.remoteUpdateLog, pendingHeight,
chainfee.SatPerKWeight(pendingCommit.FeePerKw),
pendingRemoteKeys,
lc.channelState.RemoteChanCfg.DustLimit,
)
if err != nil {
return err
}
// Earlier versions did not write the log index to disk for fee
// updates, so they will be unset. To account for this we set
// them to to current update log index.
if payDesc.EntryType == FeeUpdate && payDesc.LogIndex == 0 &&
lc.localUpdateLog.logIndex > 0 {
payDesc.LogIndex = lc.localUpdateLog.logIndex
lc.log.Debugf("Found FeeUpdate on "+
"pendingRemoteCommitDiff without logIndex, "+
"using %v", payDesc.LogIndex)
}
// At this point the restored update's logIndex must be equal
// to the update log, otherwise somthing is horribly wrong.
if payDesc.LogIndex != lc.localUpdateLog.logIndex {
panic(fmt.Sprintf("log index mismatch: "+
"%v vs %v", payDesc.LogIndex,
lc.localUpdateLog.logIndex))
}
switch payDesc.EntryType {
case Add:
// The HtlcIndex of the added HTLC _must_ be equal to
// the log's htlcCounter at this point. If it is not we
// panic to catch this.
// TODO(halseth): remove when cause of htlc entry bug
// is found.
if payDesc.HtlcIndex != lc.localUpdateLog.htlcCounter {
panic(fmt.Sprintf("htlc index mismatch: "+
"%v vs %v", payDesc.HtlcIndex,
lc.localUpdateLog.htlcCounter))
}
lc.localUpdateLog.appendHtlc(payDesc)
case FeeUpdate:
lc.localUpdateLog.appendUpdate(payDesc)
default:
lc.localUpdateLog.appendUpdate(payDesc)
lc.remoteUpdateLog.markHtlcModified(payDesc.ParentIndex)
}
}
return nil
}
// HtlcRetribution contains all the items necessary to seep a revoked HTLC
// transaction from a revoked commitment transaction broadcast by the remote
// party.
type HtlcRetribution struct {
// SignDesc is a design descriptor capable of generating the necessary
// signatures to satisfy the revocation clause of the HTLC's public key
// script.
SignDesc input.SignDescriptor
// OutPoint is the target outpoint of this HTLC pointing to the
// breached commitment transaction.
OutPoint wire.OutPoint
// SecondLevelWitnessScript is the witness script that will be created
// if the second level HTLC transaction for this output is
// broadcast/confirmed. We provide this as if the remote party attempts
// to go to the second level to claim the HTLC then we'll need to
// update the SignDesc above accordingly to sweep properly.
SecondLevelWitnessScript []byte
// IsIncoming is a boolean flag that indicates whether or not this
// HTLC was accepted from the counterparty. A false value indicates that
// this HTLC was offered by us. This flag is used determine the exact
// witness type should be used to sweep the output.
IsIncoming bool
}
// BreachRetribution contains all the data necessary to bring a channel
// counterparty to justice claiming ALL lingering funds within the channel in
// the scenario that they broadcast a revoked commitment transaction. A
// BreachRetribution is created by the closeObserver if it detects an
// uncooperative close of the channel which uses a revoked commitment
// transaction. The BreachRetribution is then sent over the ContractBreach
// channel in order to allow the subscriber of the channel to dispatch justice.
type BreachRetribution struct {
// BreachTransaction is the transaction which breached the channel
// contract by spending from the funding multi-sig with a revoked
// commitment transaction.
BreachTransaction *wire.MsgTx
// BreachHeight records the block height confirming the breach
// transaction, used as a height hint when registering for
// confirmations.
BreachHeight uint32
// ChainHash is the chain that the contract beach was identified
// within. This is also the resident chain of the contract (the chain
// the contract was created on).
ChainHash chainhash.Hash
// RevokedStateNum is the revoked state number which was broadcast.
RevokedStateNum uint64
// PendingHTLCs is a slice of the HTLCs which were pending at this
// point within the channel's history transcript.
PendingHTLCs []channeldb.HTLC
// LocalOutputSignDesc is a SignDescriptor which is capable of
// generating the signature necessary to sweep the output within the
// BreachTransaction that pays directly us.
//
// NOTE: A nil value indicates that the local output is considered dust
// according to the remote party's dust limit.
LocalOutputSignDesc *input.SignDescriptor
// LocalOutpoint is the outpoint of the output paying to us (the local
// party) within the breach transaction.
LocalOutpoint wire.OutPoint
// LocalDelay is the CSV delay for the to_remote script on the breached
// commitment.
LocalDelay uint32
// RemoteOutputSignDesc is a SignDescriptor which is capable of
// generating the signature required to claim the funds as described
// within the revocation clause of the remote party's commitment
// output.
//
// NOTE: A nil value indicates that the local output is considered dust
// according to the remote party's dust limit.
RemoteOutputSignDesc *input.SignDescriptor
// RemoteOutpoint is the outpoint of the output paying to the remote
// party within the breach transaction.
RemoteOutpoint wire.OutPoint
// RemoteDelay specifies the CSV delay applied to to-local scripts on
// the breaching commitment transaction.
RemoteDelay uint32
// HtlcRetributions is a slice of HTLC retributions for each output
// active HTLC output within the breached commitment transaction.
HtlcRetributions []HtlcRetribution
// KeyRing contains the derived public keys used to construct the
// breaching commitment transaction. This allows downstream clients to
// have access to the public keys used in the scripts.
KeyRing *CommitmentKeyRing
}
// NewBreachRetribution creates a new fully populated BreachRetribution for the
// passed channel, at a particular revoked state number, and one which targets
// the passed commitment transaction.
func NewBreachRetribution(chanState *channeldb.OpenChannel, stateNum uint64,
breachHeight uint32) (*BreachRetribution, error) {
// Query the on-disk revocation log for the snapshot which was recorded
// at this particular state num.
revokedSnapshot, err := chanState.FindPreviousState(stateNum)
if err != nil {
return nil, err
}
commitHash := revokedSnapshot.CommitTx.TxHash()
// With the state number broadcast known, we can now derive/restore the
// proper revocation preimage necessary to sweep the remote party's
// output.
revocationPreimage, err := chanState.RevocationStore.LookUp(stateNum)
if err != nil {
return nil, err
}
commitmentSecret, commitmentPoint := btcec.PrivKeyFromBytes(
btcec.S256(), revocationPreimage[:],
)
// With the commitment point generated, we can now generate the four
// keys we'll need to reconstruct the commitment state,
keyRing := DeriveCommitmentKeys(
commitmentPoint, false, chanState.ChanType,
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
// Next, reconstruct the scripts as they were present at this state
// number so we can have the proper witness script to sign and include
// within the final witness.
theirDelay := uint32(chanState.RemoteChanCfg.CsvDelay)
theirPkScript, err := input.CommitScriptToSelf(
theirDelay, keyRing.ToLocalKey, keyRing.RevocationKey,
)
if err != nil {
return nil, err
}
theirWitnessHash, err := input.WitnessScriptHash(theirPkScript)
if err != nil {
return nil, err
}
// Since it is the remote breach we are reconstructing, the output going
// to us will be a to-remote script with our local params.
ourScript, ourDelay, err := CommitScriptToRemote(
chanState.ChanType, keyRing.ToRemoteKey,
)
if err != nil {
return nil, err
}
// In order to fully populate the breach retribution struct, we'll need
// to find the exact index of the commitment outputs.
ourOutpoint := wire.OutPoint{
Hash: commitHash,
}
theirOutpoint := wire.OutPoint{
Hash: commitHash,
}
for i, txOut := range revokedSnapshot.CommitTx.TxOut {
switch {
case bytes.Equal(txOut.PkScript, ourScript.PkScript):
ourOutpoint.Index = uint32(i)
case bytes.Equal(txOut.PkScript, theirWitnessHash):
theirOutpoint.Index = uint32(i)
}
}
// Conditionally instantiate a sign descriptor for each of the
// commitment outputs. If either is considered dust using the remote
// party's dust limit, the respective sign descriptor will be nil.
var (
ourSignDesc *input.SignDescriptor
theirSignDesc *input.SignDescriptor
)
// Compute the balances in satoshis.
ourAmt := revokedSnapshot.LocalBalance.ToSatoshis()
theirAmt := revokedSnapshot.RemoteBalance.ToSatoshis()
// If our balance exceeds the remote party's dust limit, instantiate
// the sign descriptor for our output.
if ourAmt >= chanState.RemoteChanCfg.DustLimit {
ourSignDesc = &input.SignDescriptor{
SingleTweak: keyRing.LocalCommitKeyTweak,
KeyDesc: chanState.LocalChanCfg.PaymentBasePoint,
WitnessScript: ourScript.WitnessScript,
Output: &wire.TxOut{
PkScript: ourScript.PkScript,
Value: int64(ourAmt),
},
HashType: txscript.SigHashAll,
}
}
// Similarly, if their balance exceeds the remote party's dust limit,
// assemble the sign descriptor for their output, which we can sweep.
if theirAmt >= chanState.RemoteChanCfg.DustLimit {
theirSignDesc = &input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.RevocationBasePoint,
DoubleTweak: commitmentSecret,
WitnessScript: theirPkScript,
Output: &wire.TxOut{
PkScript: theirWitnessHash,
Value: int64(theirAmt),
},
HashType: txscript.SigHashAll,
}
}
// With the commitment outputs located, we'll now generate all the
// retribution structs for each of the HTLC transactions active on the
// remote commitment transaction.
htlcRetributions := make([]HtlcRetribution, 0, len(revokedSnapshot.Htlcs))
for _, htlc := range revokedSnapshot.Htlcs {
// If the HTLC is dust, then we'll skip it as it doesn't have
// an output on the commitment transaction.
if htlcIsDust(
chanState.ChanType, htlc.Incoming, false,
chainfee.SatPerKWeight(revokedSnapshot.FeePerKw),
htlc.Amt.ToSatoshis(), chanState.RemoteChanCfg.DustLimit,
) {
continue
}
// We'll generate the original second level witness script now,
// as we'll need it if we're revoking an HTLC output on the
// remote commitment transaction, and *they* go to the second
// level.
secondLevelWitnessScript, err := input.SecondLevelHtlcScript(
keyRing.RevocationKey, keyRing.ToLocalKey, theirDelay,
)
if err != nil {
return nil, err
}
// If this is an incoming HTLC, then this means that they were
// the sender of the HTLC (relative to us). So we'll
// re-generate the sender HTLC script. Otherwise, is this was
// an outgoing HTLC that we sent, then from the PoV of the
// remote commitment state, they're the receiver of this HTLC.
htlcPkScript, htlcWitnessScript, err := genHtlcScript(
chanState.ChanType, htlc.Incoming, false,
htlc.RefundTimeout, htlc.RHash, keyRing,
)
if err != nil {
return nil, err
}
htlcRetributions = append(htlcRetributions, HtlcRetribution{
SignDesc: input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.RevocationBasePoint,
DoubleTweak: commitmentSecret,
WitnessScript: htlcWitnessScript,
Output: &wire.TxOut{
PkScript: htlcPkScript,
Value: int64(htlc.Amt.ToSatoshis()),
},
HashType: txscript.SigHashAll,
},
OutPoint: wire.OutPoint{
Hash: commitHash,
Index: uint32(htlc.OutputIndex),
},
SecondLevelWitnessScript: secondLevelWitnessScript,
IsIncoming: htlc.Incoming,
})
}
// Finally, with all the necessary data constructed, we can create the
// BreachRetribution struct which houses all the data necessary to
// swiftly bring justice to the cheating remote party.
return &BreachRetribution{
ChainHash: chanState.ChainHash,
BreachTransaction: revokedSnapshot.CommitTx,
BreachHeight: breachHeight,
RevokedStateNum: stateNum,
PendingHTLCs: revokedSnapshot.Htlcs,
LocalOutpoint: ourOutpoint,
LocalOutputSignDesc: ourSignDesc,
LocalDelay: ourDelay,
RemoteOutpoint: theirOutpoint,
RemoteOutputSignDesc: theirSignDesc,
RemoteDelay: theirDelay,
HtlcRetributions: htlcRetributions,
KeyRing: keyRing,
}, nil
}
// htlcIsDust determines if an HTLC output is dust or not depending on two
// bits: if the HTLC is incoming and if the HTLC will be placed on our
// commitment transaction, or theirs. These two pieces of information are
// require as we currently used second-level HTLC transactions as off-chain
// covenants. Depending on the two bits, we'll either be using a timeout or
// success transaction which have different weights.
func htlcIsDust(chanType channeldb.ChannelType,
incoming, ourCommit bool, feePerKw chainfee.SatPerKWeight,
htlcAmt, dustLimit btcutil.Amount) bool {
// First we'll determine the fee required for this HTLC based on if this is
// an incoming HTLC or not, and also on whose commitment transaction it
// will be placed on.
var htlcFee btcutil.Amount
switch {
// If this is an incoming HTLC on our commitment transaction, then the
// second-level transaction will be a success transaction.
case incoming && ourCommit:
htlcFee = HtlcSuccessFee(chanType, feePerKw)
// If this is an incoming HTLC on their commitment transaction, then
// we'll be using a second-level timeout transaction as they've added
// this HTLC.
case incoming && !ourCommit:
htlcFee = HtlcTimeoutFee(chanType, feePerKw)
// If this is an outgoing HTLC on our commitment transaction, then
// we'll be using a timeout transaction as we're the sender of the
// HTLC.
case !incoming && ourCommit:
htlcFee = HtlcTimeoutFee(chanType, feePerKw)
// If this is an outgoing HTLC on their commitment transaction, then
// we'll be using an HTLC success transaction as they're the receiver
// of this HTLC.
case !incoming && !ourCommit:
htlcFee = HtlcSuccessFee(chanType, feePerKw)
}
return (htlcAmt - htlcFee) < dustLimit
}
// htlcView represents the "active" HTLCs at a particular point within the
// history of the HTLC update log.
type htlcView struct {
ourUpdates []*PaymentDescriptor
theirUpdates []*PaymentDescriptor
feePerKw chainfee.SatPerKWeight
}
// fetchHTLCView returns all the candidate HTLC updates which should be
// considered for inclusion within a commitment based on the passed HTLC log
// indexes.
func (lc *LightningChannel) fetchHTLCView(theirLogIndex, ourLogIndex uint64) *htlcView {
var ourHTLCs []*PaymentDescriptor
for e := lc.localUpdateLog.Front(); e != nil; e = e.Next() {
htlc := e.Value.(*PaymentDescriptor)
// This HTLC is active from this point-of-view iff the log
// index of the state update is below the specified index in
// our update log.
if htlc.LogIndex < ourLogIndex {
ourHTLCs = append(ourHTLCs, htlc)
}
}
var theirHTLCs []*PaymentDescriptor
for e := lc.remoteUpdateLog.Front(); e != nil; e = e.Next() {
htlc := e.Value.(*PaymentDescriptor)
// If this is an incoming HTLC, then it is only active from
// this point-of-view if the index of the HTLC addition in
// their log is below the specified view index.
if htlc.LogIndex < theirLogIndex {
theirHTLCs = append(theirHTLCs, htlc)
}
}
return &htlcView{
ourUpdates: ourHTLCs,
theirUpdates: theirHTLCs,
}
}
// fetchCommitmentView returns a populated commitment which expresses the state
// of the channel from the point of view of a local or remote chain, evaluating
// the HTLC log up to the passed indexes. This function is used to construct
// both local and remote commitment transactions in order to sign or verify new
// commitment updates. A fully populated commitment is returned which reflects
// the proper balances for both sides at this point in the commitment chain.
func (lc *LightningChannel) fetchCommitmentView(remoteChain bool,
ourLogIndex, ourHtlcIndex, theirLogIndex, theirHtlcIndex uint64,
keyRing *CommitmentKeyRing) (*commitment, error) {
commitChain := lc.localCommitChain
dustLimit := lc.channelState.LocalChanCfg.DustLimit
if remoteChain {
commitChain = lc.remoteCommitChain
dustLimit = lc.channelState.RemoteChanCfg.DustLimit
}
nextHeight := commitChain.tip().height + 1
// Run through all the HTLCs that will be covered by this transaction
// in order to update their commitment addition height, and to adjust
// the balances on the commitment transaction accordingly. Note that
// these balances will be *before* taking a commitment fee from the
// initiator.
htlcView := lc.fetchHTLCView(theirLogIndex, ourLogIndex)
ourBalance, theirBalance, _, filteredHTLCView, err := lc.computeView(
htlcView, remoteChain, true,
)
if err != nil {
return nil, err
}
feePerKw := filteredHTLCView.feePerKw
// Actually generate unsigned commitment transaction for this view.
commitTx, err := lc.commitBuilder.createUnsignedCommitmentTx(
ourBalance, theirBalance, !remoteChain, feePerKw, nextHeight,
filteredHTLCView, keyRing,
)
if err != nil {
return nil, err
}
// We'll assert that there hasn't been a mistake during fee calculation
// leading to a fee too low.
var totalOut btcutil.Amount
for _, txOut := range commitTx.txn.TxOut {
totalOut += btcutil.Amount(txOut.Value)
}
fee := lc.channelState.Capacity - totalOut
// Since the transaction is not signed yet, we use the witness weight
// used for weight calculation.
uTx := btcutil.NewTx(commitTx.txn)
weight := blockchain.GetTransactionWeight(uTx) +
input.WitnessCommitmentTxWeight
effFeeRate := chainfee.SatPerKWeight(fee) * 1000 /
chainfee.SatPerKWeight(weight)
if effFeeRate < chainfee.AbsoluteFeePerKwFloor {
return nil, fmt.Errorf("height=%v, for ChannelPoint(%v) "+
"attempts to create commitment with feerate %v: %v",
nextHeight, lc.channelState.FundingOutpoint,
effFeeRate, spew.Sdump(commitTx))
}
// With the commitment view created, store the resulting balances and
// transaction with the other parameters for this height.
c := &commitment{
ourBalance: commitTx.ourBalance,
theirBalance: commitTx.theirBalance,
txn: commitTx.txn,
fee: commitTx.fee,
ourMessageIndex: ourLogIndex,
ourHtlcIndex: ourHtlcIndex,
theirMessageIndex: theirLogIndex,
theirHtlcIndex: theirHtlcIndex,
height: nextHeight,
feePerKw: feePerKw,
dustLimit: dustLimit,
isOurs: !remoteChain,
}
// In order to ensure _none_ of the HTLC's associated with this new
// commitment are mutated, we'll manually copy over each HTLC to its
// respective slice.
c.outgoingHTLCs = make([]PaymentDescriptor, len(filteredHTLCView.ourUpdates))
for i, htlc := range filteredHTLCView.ourUpdates {
c.outgoingHTLCs[i] = *htlc
}
c.incomingHTLCs = make([]PaymentDescriptor, len(filteredHTLCView.theirUpdates))
for i, htlc := range filteredHTLCView.theirUpdates {
c.incomingHTLCs[i] = *htlc
}
// Finally, we'll populate all the HTLC indexes so we can track the
// locations of each HTLC in the commitment state. We pass in the sorted
// slice of CLTV deltas in order to properly locate HTLCs that otherwise
// have the same payment hash and amount.
err = c.populateHtlcIndexes(lc.channelState.ChanType, commitTx.cltvs)
if err != nil {
return nil, err
}
return c, nil
}
func fundingTxIn(chanState *channeldb.OpenChannel) wire.TxIn {
return *wire.NewTxIn(&chanState.FundingOutpoint, nil, nil)
}
// evaluateHTLCView processes all update entries in both HTLC update logs,
// producing a final view which is the result of properly applying all adds,
// settles, timeouts and fee updates found in both logs. The resulting view
// returned reflects the current state of HTLCs within the remote or local
// commitment chain, and the current commitment fee rate.
//
// If mutateState is set to true, then the add height of all added HTLCs
// will be set to nextHeight, and the remove height of all removed HTLCs
// will be set to nextHeight. This should therefore only be set to true
// once for each height, and only in concert with signing a new commitment.
// TODO(halseth): return htlcs to mutate instead of mutating inside
// method.
func (lc *LightningChannel) evaluateHTLCView(view *htlcView, ourBalance,
theirBalance *lnwire.MilliSatoshi, nextHeight uint64,
remoteChain, mutateState bool) (*htlcView, error) {
// We initialize the view's fee rate to the fee rate of the unfiltered
// view. If any fee updates are found when evaluating the view, it will
// be updated.
newView := &htlcView{
feePerKw: view.feePerKw,
}
// We use two maps, one for the local log and one for the remote log to
// keep track of which entries we need to skip when creating the final
// htlc view. We skip an entry whenever we find a settle or a timeout
// modifying an entry.
skipUs := make(map[uint64]struct{})
skipThem := make(map[uint64]struct{})
// First we run through non-add entries in both logs, populating the
// skip sets and mutating the current chain state (crediting balances,
// etc) to reflect the settle/timeout entry encountered.
for _, entry := range view.ourUpdates {
switch entry.EntryType {
// Skip adds for now. They will be processed below.
case Add:
continue
// Process fee updates, updating the current feePerKw.
case FeeUpdate:
processFeeUpdate(
entry, nextHeight, remoteChain, mutateState,
newView,
)
continue
}
// If we're settling an inbound HTLC, and it hasn't been
// processed yet, then increment our state tracking the total
// number of satoshis we've received within the channel.
if mutateState && entry.EntryType == Settle && !remoteChain &&
entry.removeCommitHeightLocal == 0 {
lc.channelState.TotalMSatReceived += entry.Amount
}
addEntry, err := lc.fetchParent(entry, remoteChain, true)
if err != nil {
return nil, err
}
skipThem[addEntry.HtlcIndex] = struct{}{}
processRemoveEntry(entry, ourBalance, theirBalance,
nextHeight, remoteChain, true, mutateState)
}
for _, entry := range view.theirUpdates {
switch entry.EntryType {
// Skip adds for now. They will be processed below.
case Add:
continue
// Process fee updates, updating the current feePerKw.
case FeeUpdate:
processFeeUpdate(
entry, nextHeight, remoteChain, mutateState,
newView,
)
continue
}
// If the remote party is settling one of our outbound HTLC's,
// and it hasn't been processed, yet, the increment our state
// tracking the total number of satoshis we've sent within the
// channel.
if mutateState && entry.EntryType == Settle && !remoteChain &&
entry.removeCommitHeightLocal == 0 {
lc.channelState.TotalMSatSent += entry.Amount
}
addEntry, err := lc.fetchParent(entry, remoteChain, false)
if err != nil {
return nil, err
}
skipUs[addEntry.HtlcIndex] = struct{}{}
processRemoveEntry(entry, ourBalance, theirBalance,
nextHeight, remoteChain, false, mutateState)
}
// Next we take a second pass through all the log entries, skipping any
// settled HTLCs, and debiting the chain state balance due to any newly
// added HTLCs.
for _, entry := range view.ourUpdates {
isAdd := entry.EntryType == Add
if _, ok := skipUs[entry.HtlcIndex]; !isAdd || ok {
continue
}
processAddEntry(entry, ourBalance, theirBalance, nextHeight,
remoteChain, false, mutateState)
newView.ourUpdates = append(newView.ourUpdates, entry)
}
for _, entry := range view.theirUpdates {
isAdd := entry.EntryType == Add
if _, ok := skipThem[entry.HtlcIndex]; !isAdd || ok {
continue
}
processAddEntry(entry, ourBalance, theirBalance, nextHeight,
remoteChain, true, mutateState)
newView.theirUpdates = append(newView.theirUpdates, entry)
}
return newView, nil
}
// fetchParent is a helper that looks up update log parent entries in the
// appropriate log.
func (lc *LightningChannel) fetchParent(entry *PaymentDescriptor,
remoteChain, remoteLog bool) (*PaymentDescriptor, error) {
var (
updateLog *updateLog
logName string
)
if remoteLog {
updateLog = lc.remoteUpdateLog
logName = "remote"
} else {
updateLog = lc.localUpdateLog
logName = "local"
}
addEntry := updateLog.lookupHtlc(entry.ParentIndex)
switch {
// We check if the parent entry is not found at this point.
// This could happen for old versions of lnd, and we return an
// error to gracefully shut down the state machine if such an
// entry is still in the logs.
case addEntry == nil:
return nil, fmt.Errorf("unable to find parent entry "+
"%d in %v update log: %v\nUpdatelog: %v",
entry.ParentIndex, logName,
newLogClosure(func() string {
return spew.Sdump(entry)
}), newLogClosure(func() string {
return spew.Sdump(updateLog)
}),
)
// The parent add height should never be zero at this point. If
// that's the case we probably forgot to send a new commitment.
case remoteChain && addEntry.addCommitHeightRemote == 0:
return nil, fmt.Errorf("parent entry %d for update %d "+
"had zero remote add height", entry.ParentIndex,
entry.LogIndex)
case !remoteChain && addEntry.addCommitHeightLocal == 0:
return nil, fmt.Errorf("parent entry %d for update %d "+
"had zero local add height", entry.ParentIndex,
entry.LogIndex)
}
return addEntry, nil
}
// processAddEntry evaluates the effect of an add entry within the HTLC log.
// If the HTLC hasn't yet been committed in either chain, then the height it
// was committed is updated. Keeping track of this inclusion height allows us to
// later compact the log once the change is fully committed in both chains.
func processAddEntry(htlc *PaymentDescriptor, ourBalance, theirBalance *lnwire.MilliSatoshi,
nextHeight uint64, remoteChain bool, isIncoming, mutateState bool) {
// If we're evaluating this entry for the remote chain (to create/view
// a new commitment), then we'll may be updating the height this entry
// was added to the chain. Otherwise, we may be updating the entry's
// height w.r.t the local chain.
var addHeight *uint64
if remoteChain {
addHeight = &htlc.addCommitHeightRemote
} else {
addHeight = &htlc.addCommitHeightLocal
}
if *addHeight != 0 {
return
}
if isIncoming {
// If this is a new incoming (un-committed) HTLC, then we need
// to update their balance accordingly by subtracting the
// amount of the HTLC that are funds pending.
*theirBalance -= htlc.Amount
} else {
// Similarly, we need to debit our balance if this is an out
// going HTLC to reflect the pending balance.
*ourBalance -= htlc.Amount
}
if mutateState {
*addHeight = nextHeight
}
}
// processRemoveEntry processes a log entry which settles or times out a
// previously added HTLC. If the removal entry has already been processed, it
// is skipped.
func processRemoveEntry(htlc *PaymentDescriptor, ourBalance,
theirBalance *lnwire.MilliSatoshi, nextHeight uint64,
remoteChain bool, isIncoming, mutateState bool) {
var removeHeight *uint64
if remoteChain {
removeHeight = &htlc.removeCommitHeightRemote
} else {
removeHeight = &htlc.removeCommitHeightLocal
}
// Ignore any removal entries which have already been processed.
if *removeHeight != 0 {
return
}
switch {
// If an incoming HTLC is being settled, then this means that we've
// received the preimage either from another subsystem, or the
// upstream peer in the route. Therefore, we increase our balance by
// the HTLC amount.
case isIncoming && htlc.EntryType == Settle:
*ourBalance += htlc.Amount
// Otherwise, this HTLC is being failed out, therefore the value of the
// HTLC should return to the remote party.
case isIncoming && (htlc.EntryType == Fail || htlc.EntryType == MalformedFail):
*theirBalance += htlc.Amount
// If an outgoing HTLC is being settled, then this means that the
// downstream party resented the preimage or learned of it via a
// downstream peer. In either case, we credit their settled value with
// the value of the HTLC.
case !isIncoming && htlc.EntryType == Settle:
*theirBalance += htlc.Amount
// Otherwise, one of our outgoing HTLC's has timed out, so the value of
// the HTLC should be returned to our settled balance.
case !isIncoming && (htlc.EntryType == Fail || htlc.EntryType == MalformedFail):
*ourBalance += htlc.Amount
}
if mutateState {
*removeHeight = nextHeight
}
}
// processFeeUpdate processes a log update that updates the current commitment
// fee.
func processFeeUpdate(feeUpdate *PaymentDescriptor, nextHeight uint64,
remoteChain bool, mutateState bool, view *htlcView) {
// Fee updates are applied for all commitments after they are
// sent/received, so we consider them being added and removed at the
// same height.
var addHeight *uint64
var removeHeight *uint64
if remoteChain {
addHeight = &feeUpdate.addCommitHeightRemote
removeHeight = &feeUpdate.removeCommitHeightRemote
} else {
addHeight = &feeUpdate.addCommitHeightLocal
removeHeight = &feeUpdate.removeCommitHeightLocal
}
if *addHeight != 0 {
return
}
// If the update wasn't already locked in, update the current fee rate
// to reflect this update.
view.feePerKw = chainfee.SatPerKWeight(feeUpdate.Amount.ToSatoshis())
if mutateState {
*addHeight = nextHeight
*removeHeight = nextHeight
}
}
// generateRemoteHtlcSigJobs generates a series of HTLC signature jobs for the
// sig pool, along with a channel that if closed, will cancel any jobs after
// they have been submitted to the sigPool. This method is to be used when
// generating a new commitment for the remote party. The jobs generated by the
// signature can be submitted to the sigPool to generate all the signatures
// asynchronously and in parallel.
func genRemoteHtlcSigJobs(keyRing *CommitmentKeyRing,
chanType channeldb.ChannelType,
localChanCfg, remoteChanCfg *channeldb.ChannelConfig,
remoteCommitView *commitment) ([]SignJob, chan struct{}, error) {
txHash := remoteCommitView.txn.TxHash()
dustLimit := remoteChanCfg.DustLimit
feePerKw := remoteCommitView.feePerKw
sigHashType := HtlcSigHashType(chanType)
// With the keys generated, we'll make a slice with enough capacity to
// hold potentially all the HTLCs. The actual slice may be a bit
// smaller (than its total capacity) and some HTLCs may be dust.
numSigs := (len(remoteCommitView.incomingHTLCs) +
len(remoteCommitView.outgoingHTLCs))
sigBatch := make([]SignJob, 0, numSigs)
var err error
cancelChan := make(chan struct{})
// For each outgoing and incoming HTLC, if the HTLC isn't considered a
// dust output after taking into account second-level HTLC fees, then a
// sigJob will be generated and appended to the current batch.
for _, htlc := range remoteCommitView.incomingHTLCs {
if htlcIsDust(
chanType, true, false, feePerKw,
htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
// If the HTLC isn't dust, then we'll create an empty sign job
// to add to the batch momentarily.
sigJob := SignJob{}
sigJob.Cancel = cancelChan
sigJob.Resp = make(chan SignJobResp, 1)
// As this is an incoming HTLC and we're sinning the commitment
// transaction of the remote node, we'll need to generate an
// HTLC timeout transaction for them. The output of the timeout
// transaction needs to account for fees, so we'll compute the
// required fee and output now.
htlcFee := HtlcTimeoutFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
// With the fee calculate, we can properly create the HTLC
// timeout transaction using the HTLC amount minus the fee.
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.remoteOutputIndex),
}
sigJob.Tx, err = createHtlcTimeoutTx(
chanType, op, outputAmt, htlc.Timeout,
uint32(remoteChanCfg.CsvDelay),
keyRing.RevocationKey, keyRing.ToLocalKey,
)
if err != nil {
return nil, nil, err
}
// Finally, we'll generate a sign descriptor to generate a
// signature to give to the remote party for this commitment
// transaction. Note we use the raw HTLC amount.
sigJob.SignDesc = input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlc.theirWitnessScript,
Output: &wire.TxOut{
Value: int64(htlc.Amount.ToSatoshis()),
},
HashType: sigHashType,
SigHashes: txscript.NewTxSigHashes(sigJob.Tx),
InputIndex: 0,
}
sigJob.OutputIndex = htlc.remoteOutputIndex
sigBatch = append(sigBatch, sigJob)
}
for _, htlc := range remoteCommitView.outgoingHTLCs {
if htlcIsDust(
chanType, false, false, feePerKw,
htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
sigJob := SignJob{}
sigJob.Cancel = cancelChan
sigJob.Resp = make(chan SignJobResp, 1)
// As this is an outgoing HTLC and we're signing the commitment
// transaction of the remote node, we'll need to generate an
// HTLC success transaction for them. The output of the timeout
// transaction needs to account for fees, so we'll compute the
// required fee and output now.
htlcFee := HtlcSuccessFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
// With the proper output amount calculated, we can now
// generate the success transaction using the remote party's
// CSV delay.
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.remoteOutputIndex),
}
sigJob.Tx, err = createHtlcSuccessTx(
chanType, op, outputAmt, uint32(remoteChanCfg.CsvDelay),
keyRing.RevocationKey, keyRing.ToLocalKey,
)
if err != nil {
return nil, nil, err
}
// Finally, we'll generate a sign descriptor to generate a
// signature to give to the remote party for this commitment
// transaction. Note we use the raw HTLC amount.
sigJob.SignDesc = input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlc.theirWitnessScript,
Output: &wire.TxOut{
Value: int64(htlc.Amount.ToSatoshis()),
},
HashType: sigHashType,
SigHashes: txscript.NewTxSigHashes(sigJob.Tx),
InputIndex: 0,
}
sigJob.OutputIndex = htlc.remoteOutputIndex
sigBatch = append(sigBatch, sigJob)
}
return sigBatch, cancelChan, nil
}
// createCommitDiff will create a commit diff given a new pending commitment
// for the remote party and the necessary signatures for the remote party to
// validate this new state. This function is called right before sending the
// new commitment to the remote party. The commit diff returned contains all
// information necessary for retransmission.
func (lc *LightningChannel) createCommitDiff(
newCommit *commitment, commitSig lnwire.Sig,
htlcSigs []lnwire.Sig) (*channeldb.CommitDiff, error) {
// First, we need to convert the funding outpoint into the ID that's
// used on the wire to identify this channel. We'll use this shortly
// when recording the exact CommitSig message that we'll be sending
// out.
chanID := lnwire.NewChanIDFromOutPoint(&lc.channelState.FundingOutpoint)
var (
logUpdates []channeldb.LogUpdate
ackAddRefs []channeldb.AddRef
settleFailRefs []channeldb.SettleFailRef
openCircuitKeys []channeldb.CircuitKey
closedCircuitKeys []channeldb.CircuitKey
)
// We'll now run through our local update log to locate the items which
// were only just committed within this pending state. This will be the
// set of items we need to retransmit if we reconnect and find that
// they didn't process this new state fully.
for e := lc.localUpdateLog.Front(); e != nil; e = e.Next() {
pd := e.Value.(*PaymentDescriptor)
// If this entry wasn't committed at the exact height of this
// remote commitment, then we'll skip it as it was already
// lingering in the log.
if pd.addCommitHeightRemote != newCommit.height &&
pd.removeCommitHeightRemote != newCommit.height {
continue
}
// Knowing that this update is a part of this new commitment,
// we'll create a log update and not its index in the log so
// we can later restore it properly if a restart occurs.
logUpdate := channeldb.LogUpdate{
LogIndex: pd.LogIndex,
}
// We'll map the type of the PaymentDescriptor to one of the
// four messages that it corresponds to. With this set of
// messages obtained, we can simply read from disk and re-send
// them in the case of a needed channel sync.
switch pd.EntryType {
case Add:
htlc := &lnwire.UpdateAddHTLC{
ChanID: chanID,
ID: pd.HtlcIndex,
Amount: pd.Amount,
Expiry: pd.Timeout,
PaymentHash: pd.RHash,
}
copy(htlc.OnionBlob[:], pd.OnionBlob)
logUpdate.UpdateMsg = htlc
// Gather any references for circuits opened by this Add
// HTLC.
if pd.OpenCircuitKey != nil {
openCircuitKeys = append(openCircuitKeys,
*pd.OpenCircuitKey)
}
logUpdates = append(logUpdates, logUpdate)
// Short circuit here since an add should not have any
// of the references gathered in the case of settles,
// fails or malformed fails.
continue
case Settle:
logUpdate.UpdateMsg = &lnwire.UpdateFulfillHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
PaymentPreimage: pd.RPreimage,
}
case Fail:
logUpdate.UpdateMsg = &lnwire.UpdateFailHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
Reason: pd.FailReason,
}
case MalformedFail:
logUpdate.UpdateMsg = &lnwire.UpdateFailMalformedHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
ShaOnionBlob: pd.ShaOnionBlob,
FailureCode: pd.FailCode,
}
case FeeUpdate:
// The Amount field holds the feerate denominated in
// msat. Since feerates are only denominated in sat/kw,
// we can convert it without loss of precision.
logUpdate.UpdateMsg = &lnwire.UpdateFee{
ChanID: chanID,
FeePerKw: uint32(pd.Amount.ToSatoshis()),
}
}
// Gather the fwd pkg references from any settle or fail
// packets, if they exist.
if pd.SourceRef != nil {
ackAddRefs = append(ackAddRefs, *pd.SourceRef)
}
if pd.DestRef != nil {
settleFailRefs = append(settleFailRefs, *pd.DestRef)
}
if pd.ClosedCircuitKey != nil {
closedCircuitKeys = append(closedCircuitKeys,
*pd.ClosedCircuitKey)
}
logUpdates = append(logUpdates, logUpdate)
}
// With the set of log updates mapped into wire messages, we'll now
// convert the in-memory commit into a format suitable for writing to
// disk.
diskCommit := newCommit.toDiskCommit(false)
return &channeldb.CommitDiff{
Commitment: *diskCommit,
CommitSig: &lnwire.CommitSig{
ChanID: lnwire.NewChanIDFromOutPoint(
&lc.channelState.FundingOutpoint,
),
CommitSig: commitSig,
HtlcSigs: htlcSigs,
},
LogUpdates: logUpdates,
OpenedCircuitKeys: openCircuitKeys,
ClosedCircuitKeys: closedCircuitKeys,
AddAcks: ackAddRefs,
SettleFailAcks: settleFailRefs,
}, nil
}
// getUnsignedAckedUpdates returns all remote log updates that we haven't
// signed for yet ourselves.
func (lc *LightningChannel) getUnsignedAckedUpdates() []channeldb.LogUpdate {
// First, we need to convert the funding outpoint into the ID that's
// used on the wire to identify this channel.
chanID := lnwire.NewChanIDFromOutPoint(&lc.channelState.FundingOutpoint)
// Fetch the last remote update that we have signed for.
lastRemoteCommitted := lc.remoteCommitChain.tip().theirMessageIndex
// Fetch the last remote update that we have acked.
lastLocalCommitted := lc.localCommitChain.tail().theirMessageIndex
// We'll now run through the remote update log to locate the items that
// we haven't signed for yet. This will be the set of items we need to
// restore if we reconnect in order to produce the signature that the
// remote party expects.
var logUpdates []channeldb.LogUpdate
for e := lc.remoteUpdateLog.Front(); e != nil; e = e.Next() {
pd := e.Value.(*PaymentDescriptor)
// Skip all remote updates that we have already included in our
// commit chain.
if pd.LogIndex < lastRemoteCommitted {
continue
}
// Skip all remote updates that we haven't acked yet. At the
// moment this function is called, there shouldn't be any, but
// we check it anyway to make this function more generally
// usable.
if pd.LogIndex >= lastLocalCommitted {
continue
}
logUpdate := channeldb.LogUpdate{
LogIndex: pd.LogIndex,
}
// We'll map the type of the PaymentDescriptor to one of the
// four messages that it corresponds to.
switch pd.EntryType {
case Add:
htlc := &lnwire.UpdateAddHTLC{
ChanID: chanID,
ID: pd.HtlcIndex,
Amount: pd.Amount,
Expiry: pd.Timeout,
PaymentHash: pd.RHash,
}
copy(htlc.OnionBlob[:], pd.OnionBlob)
logUpdate.UpdateMsg = htlc
case Settle:
logUpdate.UpdateMsg = &lnwire.UpdateFulfillHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
PaymentPreimage: pd.RPreimage,
}
case Fail:
logUpdate.UpdateMsg = &lnwire.UpdateFailHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
Reason: pd.FailReason,
}
case MalformedFail:
logUpdate.UpdateMsg = &lnwire.UpdateFailMalformedHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
ShaOnionBlob: pd.ShaOnionBlob,
FailureCode: pd.FailCode,
}
case FeeUpdate:
// The Amount field holds the feerate denominated in
// msat. Since feerates are only denominated in sat/kw,
// we can convert it without loss of precision.
logUpdate.UpdateMsg = &lnwire.UpdateFee{
ChanID: chanID,
FeePerKw: uint32(pd.Amount.ToSatoshis()),
}
}
logUpdates = append(logUpdates, logUpdate)
}
return logUpdates
}
// validateCommitmentSanity is used to validate the current state of the
// commitment transaction in terms of the ChannelConstraints that we and our
// remote peer agreed upon during the funding workflow. The
// predict[Our|Their]Add should parameters should be set to a valid
// PaymentDescriptor if we are validating in the state when adding a new HTLC,
// or nil otherwise.
func (lc *LightningChannel) validateCommitmentSanity(theirLogCounter,
ourLogCounter uint64, remoteChain bool,
predictOurAdd, predictTheirAdd *PaymentDescriptor) error {
// Fetch all updates not committed.
view := lc.fetchHTLCView(theirLogCounter, ourLogCounter)
// If we are checking if we can add a new HTLC, we add this to the
// appropriate update log, in order to validate the sanity of the
// commitment resulting from _actually adding_ this HTLC to the state.
if predictOurAdd != nil {
view.ourUpdates = append(view.ourUpdates, predictOurAdd)
}
if predictTheirAdd != nil {
view.theirUpdates = append(view.theirUpdates, predictTheirAdd)
}
commitChain := lc.localCommitChain
if remoteChain {
commitChain = lc.remoteCommitChain
}
ourInitialBalance := commitChain.tip().ourBalance
theirInitialBalance := commitChain.tip().theirBalance
ourBalance, theirBalance, commitWeight, filteredView, err := lc.computeView(
view, remoteChain, false,
)
if err != nil {
return err
}
feePerKw := filteredView.feePerKw
// Calculate the commitment fee, and subtract it from the initiator's
// balance.
commitFee := feePerKw.FeeForWeight(commitWeight)
commitFeeMsat := lnwire.NewMSatFromSatoshis(commitFee)
if lc.channelState.IsInitiator {
ourBalance -= commitFeeMsat
} else {
theirBalance -= commitFeeMsat
}
// As a quick sanity check, we'll ensure that if we interpret the
// balances as signed integers, they haven't dipped down below zero. If
// they have, then this indicates that a party doesn't have sufficient
// balance to satisfy the final evaluated HTLC's.
switch {
case int64(ourBalance) < 0:
return ErrBelowChanReserve
case int64(theirBalance) < 0:
return ErrBelowChanReserve
}
// Ensure that the fee being applied is enough to be relayed across the
// network in a reasonable time frame.
if feePerKw < chainfee.FeePerKwFloor {
return fmt.Errorf("commitment fee per kw %v below fee floor %v",
feePerKw, chainfee.FeePerKwFloor)
}
// If the added HTLCs will decrease the balance, make sure they won't
// dip the local and remote balances below the channel reserves.
switch {
case ourBalance < ourInitialBalance &&
ourBalance < lnwire.NewMSatFromSatoshis(
lc.channelState.LocalChanCfg.ChanReserve):
return ErrBelowChanReserve
case theirBalance < theirInitialBalance &&
theirBalance < lnwire.NewMSatFromSatoshis(
lc.channelState.RemoteChanCfg.ChanReserve):
return ErrBelowChanReserve
}
// validateUpdates take a set of updates, and validates them against
// the passed channel constraints.
validateUpdates := func(updates []*PaymentDescriptor,
constraints *channeldb.ChannelConfig) error {
// We keep track of the number of HTLCs in flight for the
// commitment, and the amount in flight.
var numInFlight uint16
var amtInFlight lnwire.MilliSatoshi
// Go through all updates, checking that they don't violate the
// channel constraints.
for _, entry := range updates {
if entry.EntryType == Add {
// An HTLC is being added, this will add to the
// number and amount in flight.
amtInFlight += entry.Amount
numInFlight++
// Check that the HTLC amount is positive.
if entry.Amount == 0 {
return ErrInvalidHTLCAmt
}
// Check that the value of the HTLC they added
// is above our minimum.
if entry.Amount < constraints.MinHTLC {
return ErrBelowMinHTLC
}
}
}
// Now that we know the total value of added HTLCs, we check
// that this satisfy the MaxPendingAmont contraint.
if amtInFlight > constraints.MaxPendingAmount {
return ErrMaxPendingAmount
}
// In this step, we verify that the total number of active
// HTLCs does not exceed the constraint of the maximum number
// of HTLCs in flight.
if numInFlight > constraints.MaxAcceptedHtlcs {
return ErrMaxHTLCNumber
}
return nil
}
// First check that the remote updates won't violate it's channel
// constraints.
err = validateUpdates(
filteredView.theirUpdates, &lc.channelState.RemoteChanCfg,
)
if err != nil {
return err
}
// Secondly check that our updates won't violate our channel
// constraints.
err = validateUpdates(
filteredView.ourUpdates, &lc.channelState.LocalChanCfg,
)
if err != nil {
return err
}
return nil
}
// SignNextCommitment signs a new commitment which includes any previous
// unsettled HTLCs, any new HTLCs, and any modifications to prior HTLCs
// committed in previous commitment updates. Signing a new commitment
// decrements the available revocation window by 1. After a successful method
// call, the remote party's commitment chain is extended by a new commitment
// which includes all updates to the HTLC log prior to this method invocation.
// The first return parameter is the signature for the commitment transaction
// itself, while the second parameter is a slice of all HTLC signatures (if
// any). The HTLC signatures are sorted according to the BIP 69 order of the
// HTLC's on the commitment transaction. Finally, the new set of pending HTLCs
// for the remote party's commitment are also returned.
func (lc *LightningChannel) SignNextCommitment() (lnwire.Sig, []lnwire.Sig, []channeldb.HTLC, error) {
lc.Lock()
defer lc.Unlock()
// Check for empty commit sig. This should never happen, but we don't
// dare to fail hard here. We assume peers can deal with the empty sig
// and continue channel operation. We log an error so that the bug
// causing this can be tracked down.
if !lc.oweCommitment(true) {
lc.log.Errorf("sending empty commit sig")
}
var (
sig lnwire.Sig
htlcSigs []lnwire.Sig
)
// If we're awaiting for an ACK to a commitment signature, or if we
// don't yet have the initial next revocation point of the remote
// party, then we're unable to create new states. Each time we create a
// new state, we consume a prior revocation point.
commitPoint := lc.channelState.RemoteNextRevocation
if lc.remoteCommitChain.hasUnackedCommitment() || commitPoint == nil {
return sig, htlcSigs, nil, ErrNoWindow
}
// Determine the last update on the remote log that has been locked in.
remoteACKedIndex := lc.localCommitChain.tail().theirMessageIndex
remoteHtlcIndex := lc.localCommitChain.tail().theirHtlcIndex
// Before we extend this new commitment to the remote commitment chain,
// ensure that we aren't violating any of the constraints the remote
// party set up when we initially set up the channel. If we are, then
// we'll abort this state transition.
err := lc.validateCommitmentSanity(
remoteACKedIndex, lc.localUpdateLog.logIndex, true, nil, nil,
)
if err != nil {
return sig, htlcSigs, nil, err
}
// Grab the next commitment point for the remote party. This will be
// used within fetchCommitmentView to derive all the keys necessary to
// construct the commitment state.
keyRing := DeriveCommitmentKeys(
commitPoint, false, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg,
)
// Create a new commitment view which will calculate the evaluated
// state of the remote node's new commitment including our latest added
// HTLCs. The view includes the latest balances for both sides on the
// remote node's chain, and also update the addition height of any new
// HTLC log entries. When we creating a new remote view, we include
// _all_ of our changes (pending or committed) but only the remote
// node's changes up to the last change we've ACK'd.
newCommitView, err := lc.fetchCommitmentView(
true, lc.localUpdateLog.logIndex, lc.localUpdateLog.htlcCounter,
remoteACKedIndex, remoteHtlcIndex, keyRing,
)
if err != nil {
return sig, htlcSigs, nil, err
}
lc.log.Tracef("extending remote chain to height %v, "+
"local_log=%v, remote_log=%v",
newCommitView.height,
lc.localUpdateLog.logIndex, remoteACKedIndex)
lc.log.Tracef("remote chain: our_balance=%v, "+
"their_balance=%v, commit_tx: %v",
newCommitView.ourBalance,
newCommitView.theirBalance,
newLogClosure(func() string {
return spew.Sdump(newCommitView.txn)
}),
)
// With the commitment view constructed, if there are any HTLC's, we'll
// need to generate signatures of each of them for the remote party's
// commitment state. We do so in two phases: first we generate and
// submit the set of signature jobs to the worker pool.
sigBatch, cancelChan, err := genRemoteHtlcSigJobs(
keyRing, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg,
newCommitView,
)
if err != nil {
return sig, htlcSigs, nil, err
}
lc.sigPool.SubmitSignBatch(sigBatch)
// While the jobs are being carried out, we'll Sign their version of
// the new commitment transaction while we're waiting for the rest of
// the HTLC signatures to be processed.
lc.signDesc.SigHashes = txscript.NewTxSigHashes(newCommitView.txn)
rawSig, err := lc.Signer.SignOutputRaw(newCommitView.txn, lc.signDesc)
if err != nil {
close(cancelChan)
return sig, htlcSigs, nil, err
}
sig, err = lnwire.NewSigFromSignature(rawSig)
if err != nil {
close(cancelChan)
return sig, htlcSigs, nil, err
}
// We'll need to send over the signatures to the remote party in the
// order as they appear on the commitment transaction after BIP 69
// sorting.
sort.Slice(sigBatch, func(i, j int) bool {
return sigBatch[i].OutputIndex < sigBatch[j].OutputIndex
})
// With the jobs sorted, we'll now iterate through all the responses to
// gather each of the signatures in order.
htlcSigs = make([]lnwire.Sig, 0, len(sigBatch))
for _, htlcSigJob := range sigBatch {
jobResp := <-htlcSigJob.Resp
// If an error occurred, then we'll cancel any other active
// jobs.
if jobResp.Err != nil {
close(cancelChan)
return sig, htlcSigs, nil, jobResp.Err
}
htlcSigs = append(htlcSigs, jobResp.Sig)
}
// As we're about to proposer a new commitment state for the remote
// party, we'll write this pending state to disk before we exit, so we
// can retransmit it if necessary.
commitDiff, err := lc.createCommitDiff(newCommitView, sig, htlcSigs)
if err != nil {
return sig, htlcSigs, nil, err
}
err = lc.channelState.AppendRemoteCommitChain(commitDiff)
if err != nil {
return sig, htlcSigs, nil, err
}
// TODO(roasbeef): check that one eclair bug
// * need to retransmit on first state still?
// * after initial reconnect
// Extend the remote commitment chain by one with the addition of our
// latest commitment update.
lc.remoteCommitChain.addCommitment(newCommitView)
return sig, htlcSigs, commitDiff.Commitment.Htlcs, nil
}
// ProcessChanSyncMsg processes a ChannelReestablish message sent by the remote
// connection upon re establishment of our connection with them. This method
// will return a single message if we are currently out of sync, otherwise a
// nil lnwire.Message will be returned. If it is decided that our level of
// de-synchronization is irreconcilable, then an error indicating the issue
// will be returned. In this case that an error is returned, the channel should
// be force closed, as we cannot continue updates.
//
// One of two message sets will be returned:
//
// * CommitSig+Updates: if we have a pending remote commit which they claim to
// have not received
// * RevokeAndAck: if we sent a revocation message that they claim to have
// not received
//
// If we detect a scenario where we need to send a CommitSig+Updates, this
// method also returns two sets channeldb.CircuitKeys identifying the circuits
// that were opened and closed, respectively, as a result of signing the
// previous commitment txn. This allows the link to clear its mailbox of those
// circuits in case they are still in memory, and ensure the switch's circuit
// map has been updated by deleting the closed circuits.
func (lc *LightningChannel) ProcessChanSyncMsg(
msg *lnwire.ChannelReestablish) ([]lnwire.Message, []channeldb.CircuitKey,
[]channeldb.CircuitKey, error) {
// Now we'll examine the state we have, vs what was contained in the
// chain sync message. If we're de-synchronized, then we'll send a
// batch of messages which when applied will kick start the chain
// resync.
var (
updates []lnwire.Message
openedCircuits []channeldb.CircuitKey
closedCircuits []channeldb.CircuitKey
)
// If the remote party included the optional fields, then we'll verify
// their correctness first, as it will influence our decisions below.
hasRecoveryOptions := msg.LocalUnrevokedCommitPoint != nil
if hasRecoveryOptions && msg.RemoteCommitTailHeight != 0 {
// We'll check that they've really sent a valid commit
// secret from our shachain for our prior height, but only if
// this isn't the first state.
heightSecret, err := lc.channelState.RevocationProducer.AtIndex(
msg.RemoteCommitTailHeight - 1,
)
if err != nil {
return nil, nil, nil, err
}
commitSecretCorrect := bytes.Equal(
heightSecret[:], msg.LastRemoteCommitSecret[:],
)
// If the commit secret they sent is incorrect then we'll fail
// the channel as the remote node has an inconsistent state.
if !commitSecretCorrect {
// In this case, we'll return an error to indicate the
// remote node sent us the wrong values. This will let
// the caller act accordingly.
lc.log.Errorf("sync failed: remote provided invalid " +
"commit secret!")
return nil, nil, nil, ErrInvalidLastCommitSecret
}
}
// If we detect that this is is a restored channel, then we can skip a
// portion of the verification, as we already know that we're unable to
// proceed with any updates.
isRestoredChan := lc.channelState.HasChanStatus(
channeldb.ChanStatusRestored,
)
// Take note of our current commit chain heights before we begin adding
// more to them.
var (
localTailHeight = lc.localCommitChain.tail().height
remoteTailHeight = lc.remoteCommitChain.tail().height
remoteTipHeight = lc.remoteCommitChain.tip().height
)
// We'll now check that their view of our local chain is up-to-date.
// This means checking that what their view of our local chain tail
// height is what they believe. Note that the tail and tip height will
// always be the same for the local chain at this stage, as we won't
// store any received commitment to disk before it is ACKed.
switch {
// If their reported height for our local chain tail is ahead of our
// view, then we're behind!
case msg.RemoteCommitTailHeight > localTailHeight || isRestoredChan:
lc.log.Errorf("sync failed with local data loss: remote "+
"believes our tail height is %v, while we have %v!",
msg.RemoteCommitTailHeight, localTailHeight)
if isRestoredChan {
lc.log.Warnf("detected restored triggering DLP")
}
// We must check that we had recovery options to ensure the
// commitment secret matched up, and the remote is just not
// lying about its height.
if !hasRecoveryOptions {
// At this point we the remote is either lying about
// its height, or we are actually behind but the remote
// doesn't support data loss protection. In either case
// it is not safe for us to keep using the channel, so
// we mark it borked and fail the channel.
lc.log.Errorf("sync failed: local data loss, but no " +
"recovery option.")
return nil, nil, nil, ErrCannotSyncCommitChains
}
// In this case, we've likely lost data and shouldn't proceed
// with channel updates.
return nil, nil, nil, &ErrCommitSyncLocalDataLoss{
ChannelPoint: lc.channelState.FundingOutpoint,
CommitPoint: msg.LocalUnrevokedCommitPoint,
}
// If the height of our commitment chain reported by the remote party
// is behind our view of the chain, then they probably lost some state,
// and we'll force close the channel.
case msg.RemoteCommitTailHeight+1 < localTailHeight:
lc.log.Errorf("sync failed: remote believes our tail height is "+
"%v, while we have %v!",
msg.RemoteCommitTailHeight, localTailHeight)
return nil, nil, nil, ErrCommitSyncRemoteDataLoss
// Their view of our commit chain is consistent with our view.
case msg.RemoteCommitTailHeight == localTailHeight:
// In sync, don't have to do anything.
// We owe them a revocation if the tail of our current commitment chain
// is one greater than what they _think_ our commitment tail is. In
// this case we'll re-send the last revocation message that we sent.
// This will be the revocation message for our prior chain tail.
case msg.RemoteCommitTailHeight+1 == localTailHeight:
lc.log.Debugf("sync: remote believes our tail height is %v, "+
"while we have %v, we owe them a revocation",
msg.RemoteCommitTailHeight, localTailHeight)
revocationMsg, err := lc.generateRevocation(
localTailHeight - 1,
)
if err != nil {
return nil, nil, nil, err
}
updates = append(updates, revocationMsg)
// Next, as a precaution, we'll check a special edge case. If
// they initiated a state transition, we sent the revocation,
// but died before the signature was sent. We re-transmit our
// revocation, but also initiate a state transition to re-sync
// them.
if lc.OweCommitment(true) {
commitSig, htlcSigs, _, err := lc.SignNextCommitment()
switch {
// If we signed this state, then we'll accumulate
// another update to send over.
case err == nil:
updates = append(updates, &lnwire.CommitSig{
ChanID: lnwire.NewChanIDFromOutPoint(
&lc.channelState.FundingOutpoint,
),
CommitSig: commitSig,
HtlcSigs: htlcSigs,
})
// If we get a failure due to not knowing their next
// point, then this is fine as they'll either send
// FundingLocked, or revoke their next state to allow
// us to continue forwards.
case err == ErrNoWindow:
// Otherwise, this is an error and we'll treat it as
// such.
default:
return nil, nil, nil, err
}
}
// There should be no other possible states.
default:
lc.log.Errorf("sync failed: remote believes our tail height is "+
"%v, while we have %v!",
msg.RemoteCommitTailHeight, localTailHeight)
return nil, nil, nil, ErrCannotSyncCommitChains
}
// Now check if our view of the remote chain is consistent with what
// they tell us.
switch {
// The remote's view of what their next commit height is 2+ states
// ahead of us, we most likely lost data, or the remote is trying to
// trick us. Since we have no way of verifying whether they are lying
// or not, we will fail the channel, but should not force close it
// automatically.
case msg.NextLocalCommitHeight > remoteTipHeight+1:
lc.log.Errorf("sync failed: remote's next commit height is %v, "+
"while we believe it is %v!",
msg.NextLocalCommitHeight, remoteTipHeight)
return nil, nil, nil, ErrCannotSyncCommitChains
// They are waiting for a state they have already ACKed.
case msg.NextLocalCommitHeight <= remoteTailHeight:
lc.log.Errorf("sync failed: remote's next commit height is %v, "+
"while we believe it is %v!",
msg.NextLocalCommitHeight, remoteTipHeight)
// They previously ACKed our current tail, and now they are
// waiting for it. They probably lost state.
return nil, nil, nil, ErrCommitSyncRemoteDataLoss
// They have received our latest commitment, life is good.
case msg.NextLocalCommitHeight == remoteTipHeight+1:
// We owe them a commitment if the tip of their chain (from our Pov) is
// equal to what they think their next commit height should be. We'll
// re-send all the updates necessary to recreate this state, along
// with the commit sig.
case msg.NextLocalCommitHeight == remoteTipHeight:
lc.log.Debugf("sync: remote's next commit height is %v, while "+
"we believe it is %v, we owe them a commitment",
msg.NextLocalCommitHeight, remoteTipHeight)
// Grab the current remote chain tip from the database. This
// commit diff contains all the information required to re-sync
// our states.
commitDiff, err := lc.channelState.RemoteCommitChainTip()
if err != nil {
return nil, nil, nil, err
}
// Next, we'll need to send over any updates we sent as part of
// this new proposed commitment state.
for _, logUpdate := range commitDiff.LogUpdates {
updates = append(updates, logUpdate.UpdateMsg)
}
// With the batch of updates accumulated, we'll now re-send the
// original CommitSig message required to re-sync their remote
// commitment chain with our local version of their chain.
updates = append(updates, commitDiff.CommitSig)
openedCircuits = commitDiff.OpenedCircuitKeys
closedCircuits = commitDiff.ClosedCircuitKeys
// There should be no other possible states as long as the commit chain
// can have at most two elements. If that's the case, something is
// wrong.
default:
lc.log.Errorf("sync failed: remote's next commit height is %v, "+
"while we believe it is %v!",
msg.NextLocalCommitHeight, remoteTipHeight)
return nil, nil, nil, ErrCannotSyncCommitChains
}
// If we didn't have recovery options, then the final check cannot be
// performed, and we'll return early.
if !hasRecoveryOptions {
return updates, openedCircuits, closedCircuits, nil
}
// At this point we have determined that either the commit heights are
// in sync, or that we are in a state we can recover from. As a final
// check, we ensure that the commitment point sent to us by the remote
// is valid.
var commitPoint *btcec.PublicKey
switch {
// If their height is one beyond what we know their current height to
// be, then we need to compare their current unrevoked commitment point
// as that's what they should send.
case msg.NextLocalCommitHeight == remoteTailHeight+1:
commitPoint = lc.channelState.RemoteCurrentRevocation
// Alternatively, if their height is two beyond what we know their best
// height to be, then they're holding onto two commitments, and the
// highest unrevoked point is their next revocation.
//
// TODO(roasbeef): verify this in the spec...
case msg.NextLocalCommitHeight == remoteTailHeight+2:
commitPoint = lc.channelState.RemoteNextRevocation
}
// Only if this is a tweakless channel will we attempt to verify the
// commitment point, as otherwise it has no validity requirements.
tweakless := lc.channelState.ChanType.IsTweakless()
if !tweakless && commitPoint != nil &&
!commitPoint.IsEqual(msg.LocalUnrevokedCommitPoint) {
lc.log.Errorf("sync failed: remote sent invalid commit point "+
"for height %v!",
msg.NextLocalCommitHeight)
return nil, nil, nil, ErrInvalidLocalUnrevokedCommitPoint
}
return updates, openedCircuits, closedCircuits, nil
}
// computeView takes the given htlcView, and calculates the balances, filtered
// view (settling unsettled HTLCs), commitment weight and feePerKw, after
// applying the HTLCs to the latest commitment. The returned balances are the
// balances *before* subtracting the commitment fee from the initiator's
// balance.
//
// If the updateState boolean is set true, the add and remove heights of the
// HTLCs will be set to the next commitment height.
func (lc *LightningChannel) computeView(view *htlcView, remoteChain bool,
updateState bool) (lnwire.MilliSatoshi, lnwire.MilliSatoshi, int64,
*htlcView, error) {
commitChain := lc.localCommitChain
dustLimit := lc.channelState.LocalChanCfg.DustLimit
if remoteChain {
commitChain = lc.remoteCommitChain
dustLimit = lc.channelState.RemoteChanCfg.DustLimit
}
// Since the fetched htlc view will include all updates added after the
// last committed state, we start with the balances reflecting that
// state.
ourBalance := commitChain.tip().ourBalance
theirBalance := commitChain.tip().theirBalance
// Add the fee from the previous commitment state back to the
// initiator's balance, so that the fee can be recalculated and
// re-applied in case fee estimation parameters have changed or the
// number of outstanding HTLCs has changed.
if lc.channelState.IsInitiator {
ourBalance += lnwire.NewMSatFromSatoshis(
commitChain.tip().fee)
} else if !lc.channelState.IsInitiator {
theirBalance += lnwire.NewMSatFromSatoshis(
commitChain.tip().fee)
}
nextHeight := commitChain.tip().height + 1
// Initiate feePerKw to the last committed fee for this chain as we'll
// need this to determine which HTLCs are dust, and also the final fee
// rate.
view.feePerKw = commitChain.tip().feePerKw
// We evaluate the view at this stage, meaning settled and failed HTLCs
// will remove their corresponding added HTLCs. The resulting filtered
// view will only have Add entries left, making it easy to compare the
// channel constraints to the final commitment state. If any fee
// updates are found in the logs, the commitment fee rate should be
// changed, so we'll also set the feePerKw to this new value.
filteredHTLCView, err := lc.evaluateHTLCView(view, &ourBalance,
&theirBalance, nextHeight, remoteChain, updateState)
if err != nil {
return 0, 0, 0, nil, err
}
feePerKw := filteredHTLCView.feePerKw
// Now go through all HTLCs at this stage, to calculate the total
// weight, needed to calculate the transaction fee.
var totalHtlcWeight int64
for _, htlc := range filteredHTLCView.ourUpdates {
if htlcIsDust(
lc.channelState.ChanType, remoteChain, !remoteChain,
feePerKw, htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
totalHtlcWeight += input.HTLCWeight
}
for _, htlc := range filteredHTLCView.theirUpdates {
if htlcIsDust(
lc.channelState.ChanType, !remoteChain, !remoteChain,
feePerKw, htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
totalHtlcWeight += input.HTLCWeight
}
totalCommitWeight := CommitWeight(lc.channelState.ChanType) +
totalHtlcWeight
return ourBalance, theirBalance, totalCommitWeight, filteredHTLCView, nil
}
// genHtlcSigValidationJobs generates a series of signatures verification jobs
// meant to verify all the signatures for HTLC's attached to a newly created
// commitment state. The jobs generated are fully populated, and can be sent
// directly into the pool of workers.
func genHtlcSigValidationJobs(localCommitmentView *commitment,
keyRing *CommitmentKeyRing, htlcSigs []lnwire.Sig,
chanType channeldb.ChannelType,
localChanCfg, remoteChanCfg *channeldb.ChannelConfig) ([]VerifyJob, error) {
txHash := localCommitmentView.txn.TxHash()
feePerKw := localCommitmentView.feePerKw
sigHashType := HtlcSigHashType(chanType)
// With the required state generated, we'll create a slice with large
// enough capacity to hold verification jobs for all HTLC's in this
// view. In the case that we have some dust outputs, then the actual
// length will be smaller than the total capacity.
numHtlcs := (len(localCommitmentView.incomingHTLCs) +
len(localCommitmentView.outgoingHTLCs))
verifyJobs := make([]VerifyJob, 0, numHtlcs)
// We'll iterate through each output in the commitment transaction,
// populating the sigHash closure function if it's detected to be an
// HLTC output. Given the sighash, and the signing key, we'll be able
// to validate each signature within the worker pool.
i := 0
for index := range localCommitmentView.txn.TxOut {
var (
htlcIndex uint64
sigHash func() ([]byte, error)
sig *btcec.Signature
err error
)
outputIndex := int32(index)
switch {
// If this output index is found within the incoming HTLC
// index, then this means that we need to generate an HTLC
// success transaction in order to validate the signature.
case localCommitmentView.incomingHTLCIndex[outputIndex] != nil:
htlc := localCommitmentView.incomingHTLCIndex[outputIndex]
htlcIndex = htlc.HtlcIndex
sigHash = func() ([]byte, error) {
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.localOutputIndex),
}
htlcFee := HtlcSuccessFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
successTx, err := createHtlcSuccessTx(
chanType, op, outputAmt,
uint32(localChanCfg.CsvDelay),
keyRing.RevocationKey, keyRing.ToLocalKey,
)
if err != nil {
return nil, err
}
hashCache := txscript.NewTxSigHashes(successTx)
sigHash, err := txscript.CalcWitnessSigHash(
htlc.ourWitnessScript, hashCache,
sigHashType, successTx, 0,
int64(htlc.Amount.ToSatoshis()),
)
if err != nil {
return nil, err
}
return sigHash, nil
}
// Make sure there are more signatures left.
if i >= len(htlcSigs) {
return nil, fmt.Errorf("not enough HTLC " +
"signatures")
}
// With the sighash generated, we'll also store the
// signature so it can be written to disk if this state
// is valid.
sig, err = htlcSigs[i].ToSignature()
if err != nil {
return nil, err
}
htlc.sig = sig
// Otherwise, if this is an outgoing HTLC, then we'll need to
// generate a timeout transaction so we can verify the
// signature presented.
case localCommitmentView.outgoingHTLCIndex[outputIndex] != nil:
htlc := localCommitmentView.outgoingHTLCIndex[outputIndex]
htlcIndex = htlc.HtlcIndex
sigHash = func() ([]byte, error) {
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.localOutputIndex),
}
htlcFee := HtlcTimeoutFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
timeoutTx, err := createHtlcTimeoutTx(
chanType, op, outputAmt, htlc.Timeout,
uint32(localChanCfg.CsvDelay),
keyRing.RevocationKey, keyRing.ToLocalKey,
)
if err != nil {
return nil, err
}
hashCache := txscript.NewTxSigHashes(timeoutTx)
sigHash, err := txscript.CalcWitnessSigHash(
htlc.ourWitnessScript, hashCache,
sigHashType, timeoutTx, 0,
int64(htlc.Amount.ToSatoshis()),
)
if err != nil {
return nil, err
}
return sigHash, nil
}
// Make sure there are more signatures left.
if i >= len(htlcSigs) {
return nil, fmt.Errorf("not enough HTLC " +
"signatures")
}
// With the sighash generated, we'll also store the
// signature so it can be written to disk if this state
// is valid.
sig, err = htlcSigs[i].ToSignature()
if err != nil {
return nil, err
}
htlc.sig = sig
default:
continue
}
verifyJobs = append(verifyJobs, VerifyJob{
HtlcIndex: htlcIndex,
PubKey: keyRing.RemoteHtlcKey,
Sig: sig,
SigHash: sigHash,
})
i++
}
// If we received a number of HTLC signatures that doesn't match our
// commitment, we'll return an error now.
if len(htlcSigs) != i {
return nil, fmt.Errorf("number of htlc sig mismatch. "+
"Expected %v sigs, got %v", i, len(htlcSigs))
}
return verifyJobs, nil
}
// InvalidCommitSigError is a struct that implements the error interface to
// report a failure to validate a commitment signature for a remote peer.
// We'll use the items in this struct to generate a rich error message for the
// remote peer when we receive an invalid signature from it. Doing so can
// greatly aide in debugging cross implementation issues.
type InvalidCommitSigError struct {
commitHeight uint64
commitSig []byte
sigHash []byte
commitTx []byte
}
// Error returns a detailed error string including the exact transaction that
// caused an invalid commitment signature.
func (i *InvalidCommitSigError) Error() string {
return fmt.Sprintf("rejected commitment: commit_height=%v, "+
"invalid_commit_sig=%x, commit_tx=%x, sig_hash=%x", i.commitHeight,
i.commitSig[:], i.commitTx, i.sigHash[:])
}
// A compile time flag to ensure that InvalidCommitSigError implements the
// error interface.
var _ error = (*InvalidCommitSigError)(nil)
// InvalidHtlcSigError is a struct that implements the error interface to
// report a failure to validate an htlc signature from a remote peer. We'll use
// the items in this struct to generate a rich error message for the remote
// peer when we receive an invalid signature from it. Doing so can greatly aide
// in debugging across implementation issues.
type InvalidHtlcSigError struct {
commitHeight uint64
htlcSig []byte
htlcIndex uint64
sigHash []byte
commitTx []byte
}
// Error returns a detailed error string including the exact transaction that
// caused an invalid htlc signature.
func (i *InvalidHtlcSigError) Error() string {
return fmt.Sprintf("rejected commitment: commit_height=%v, "+
"invalid_htlc_sig=%x, commit_tx=%x, sig_hash=%x", i.commitHeight,
i.htlcSig, i.commitTx, i.sigHash[:])
}
// A compile time flag to ensure that InvalidCommitSigError implements the
// error interface.
var _ error = (*InvalidCommitSigError)(nil)
// ReceiveNewCommitment process a signature for a new commitment state sent by
// the remote party. This method should be called in response to the
// remote party initiating a new change, or when the remote party sends a
// signature fully accepting a new state we've initiated. If we are able to
// successfully validate the signature, then the generated commitment is added
// to our local commitment chain. Once we send a revocation for our prior
// state, then this newly added commitment becomes our current accepted channel
// state.
func (lc *LightningChannel) ReceiveNewCommitment(commitSig lnwire.Sig,
htlcSigs []lnwire.Sig) error {
lc.Lock()
defer lc.Unlock()
// Check for empty commit sig. Because of a previously existing bug, it
// is possible that we receive an empty commit sig from nodes running an
// older version. This is a relaxation of the spec, but it is still
// possible to handle it. To not break any channels with those older
// nodes, we just log the event. This check is also not totally
// reliable, because it could be that we've sent out a new sig, but the
// remote hasn't received it yet. We could then falsely assume that they
// should add our updates to their remote commitment tx.
if !lc.oweCommitment(false) {
lc.log.Warnf("empty commit sig message received")
}
// Determine the last update on the local log that has been locked in.
localACKedIndex := lc.remoteCommitChain.tail().ourMessageIndex
localHtlcIndex := lc.remoteCommitChain.tail().ourHtlcIndex
// Ensure that this new local update from the remote node respects all
// the constraints we specified during initial channel setup. If not,
// then we'll abort the channel as they've violated our constraints.
err := lc.validateCommitmentSanity(
lc.remoteUpdateLog.logIndex, localACKedIndex, false, nil, nil,
)
if err != nil {
return err
}
// We're receiving a new commitment which attempts to extend our local
// commitment chain height by one, so fetch the proper commitment point
// as this will be needed to derive the keys required to construct the
// commitment.
nextHeight := lc.currentHeight + 1
commitSecret, err := lc.channelState.RevocationProducer.AtIndex(nextHeight)
if err != nil {
return err
}
commitPoint := input.ComputeCommitmentPoint(commitSecret[:])
keyRing := DeriveCommitmentKeys(
commitPoint, true, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg,
)
// With the current commitment point re-calculated, construct the new
// commitment view which includes all the entries (pending or committed)
// we know of in the remote node's HTLC log, but only our local changes
// up to the last change the remote node has ACK'd.
localCommitmentView, err := lc.fetchCommitmentView(
false, localACKedIndex, localHtlcIndex,
lc.remoteUpdateLog.logIndex, lc.remoteUpdateLog.htlcCounter,
keyRing,
)
if err != nil {
return err
}
lc.log.Tracef("extending local chain to height %v, "+
"local_log=%v, remote_log=%v",
localCommitmentView.height,
localACKedIndex, lc.remoteUpdateLog.logIndex)
lc.log.Tracef("local chain: our_balance=%v, "+
"their_balance=%v, commit_tx: %v",
localCommitmentView.ourBalance, localCommitmentView.theirBalance,
newLogClosure(func() string {
return spew.Sdump(localCommitmentView.txn)
}),
)
// Construct the sighash of the commitment transaction corresponding to
// this newly proposed state update.
localCommitTx := localCommitmentView.txn
multiSigScript := lc.signDesc.WitnessScript
hashCache := txscript.NewTxSigHashes(localCommitTx)
sigHash, err := txscript.CalcWitnessSigHash(
multiSigScript, hashCache, txscript.SigHashAll,
localCommitTx, 0, int64(lc.channelState.Capacity),
)
if err != nil {
// TODO(roasbeef): fetchview has already mutated the HTLCs...
// * need to either roll-back, or make pure
return err
}
// As an optimization, we'll generate a series of jobs for the worker
// pool to verify each of the HTLc signatures presented. Once
// generated, we'll submit these jobs to the worker pool.
verifyJobs, err := genHtlcSigValidationJobs(
localCommitmentView, keyRing, htlcSigs,
lc.channelState.ChanType, &lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
)
if err != nil {
return err
}
cancelChan := make(chan struct{})
verifyResps := lc.sigPool.SubmitVerifyBatch(verifyJobs, cancelChan)
// While the HTLC verification jobs are proceeding asynchronously,
// we'll ensure that the newly constructed commitment state has a valid
// signature.
verifyKey := btcec.PublicKey{
X: lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.X,
Y: lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.Y,
Curve: btcec.S256(),
}
cSig, err := commitSig.ToSignature()
if err != nil {
return err
}
if !cSig.Verify(sigHash, &verifyKey) {
close(cancelChan)
// If we fail to validate their commitment signature, we'll
// generate a special error to send over the protocol. We'll
// include the exact signature and commitment we failed to
// verify against in order to aide debugging.
var txBytes bytes.Buffer
localCommitTx.Serialize(&txBytes)
return &InvalidCommitSigError{
commitHeight: nextHeight,
commitSig: commitSig.ToSignatureBytes(),
sigHash: sigHash,
commitTx: txBytes.Bytes(),
}
}
// With the primary commitment transaction validated, we'll check each
// of the HTLC validation jobs.
for i := 0; i < len(verifyJobs); i++ {
// In the case that a single signature is invalid, we'll exit
// early and cancel all the outstanding verification jobs.
htlcErr := <-verifyResps
if htlcErr != nil {
close(cancelChan)
sig, err := lnwire.NewSigFromSignature(
htlcErr.Sig,
)
if err != nil {
return err
}
sigHash, err := htlcErr.SigHash()
if err != nil {
return err
}
var txBytes bytes.Buffer
localCommitTx.Serialize(&txBytes)
return &InvalidHtlcSigError{
commitHeight: nextHeight,
htlcSig: sig.ToSignatureBytes(),
htlcIndex: htlcErr.HtlcIndex,
sigHash: sigHash,
commitTx: txBytes.Bytes(),
}
}
}
// The signature checks out, so we can now add the new commitment to
// our local commitment chain.
localCommitmentView.sig = commitSig.ToSignatureBytes()
lc.localCommitChain.addCommitment(localCommitmentView)
return nil
}
// OweCommitment returns a boolean value reflecting whether we need to send
// out a commitment signature because there are outstanding local updates and/or
// updates in the local commit tx that aren't reflected in the remote commit tx
// yet.
func (lc *LightningChannel) OweCommitment(local bool) bool {
lc.RLock()
defer lc.RUnlock()
return lc.oweCommitment(local)
}
// oweCommitment is the internal version of OweCommitment. This function expects
// to be executed with a lock held.
func (lc *LightningChannel) oweCommitment(local bool) bool {
var (
remoteUpdatesPending, localUpdatesPending bool
lastLocalCommit = lc.localCommitChain.tip()
lastRemoteCommit = lc.remoteCommitChain.tip()
perspective string
)
if local {
perspective = "local"
// There are local updates pending if our local update log is
// not in sync with our remote commitment tx.
localUpdatesPending = lc.localUpdateLog.logIndex !=
lastRemoteCommit.ourMessageIndex
// There are remote updates pending if their remote commitment
// tx (our local commitment tx) contains updates that we don't
// have added to our remote commitment tx yet.
remoteUpdatesPending = lastLocalCommit.theirMessageIndex !=
lastRemoteCommit.theirMessageIndex
} else {
perspective = "remote"
// There are local updates pending (local updates from the
// perspective of the remote party) if the remote party has
// updates to their remote tx pending for which they haven't
// signed yet.
localUpdatesPending = lc.remoteUpdateLog.logIndex !=
lastLocalCommit.theirMessageIndex
// There are remote updates pending (remote updates from the
// perspective of the remote party) if we have updates on our
// remote commitment tx that they haven't added to theirs yet.
remoteUpdatesPending = lastRemoteCommit.ourMessageIndex !=
lastLocalCommit.ourMessageIndex
}
// If any of the conditions above is true, we owe a commitment
// signature.
oweCommitment := localUpdatesPending || remoteUpdatesPending
lc.log.Tracef("%v owes commit: %v (local updates: %v, "+
"remote updates %v)", perspective, oweCommitment,
localUpdatesPending, remoteUpdatesPending)
return oweCommitment
}
// PendingLocalUpdateCount returns the number of local updates that still need
// to be applied to the remote commitment tx.
func (lc *LightningChannel) PendingLocalUpdateCount() uint64 {
lc.RLock()
defer lc.RUnlock()
lastRemoteCommit := lc.remoteCommitChain.tip()
return lc.localUpdateLog.logIndex - lastRemoteCommit.ourMessageIndex
}
// RevokeCurrentCommitment revokes the next lowest unrevoked commitment
// transaction in the local commitment chain. As a result the edge of our
// revocation window is extended by one, and the tail of our local commitment
// chain is advanced by a single commitment. This now lowest unrevoked
// commitment becomes our currently accepted state within the channel. This
// method also returns the set of HTLC's currently active within the commitment
// transaction. This return value allows callers to act once an HTLC has been
// locked into our commitment transaction.
func (lc *LightningChannel) RevokeCurrentCommitment() (*lnwire.RevokeAndAck, []channeldb.HTLC, error) {
lc.Lock()
defer lc.Unlock()
revocationMsg, err := lc.generateRevocation(lc.currentHeight)
if err != nil {
return nil, nil, err
}
lc.log.Tracef("revoking height=%v, now at height=%v",
lc.localCommitChain.tail().height,
lc.currentHeight+1)
// Advance our tail, as we've revoked our previous state.
lc.localCommitChain.advanceTail()
lc.currentHeight++
// Additionally, generate a channel delta for this state transition for
// persistent storage.
chainTail := lc.localCommitChain.tail()
newCommitment := chainTail.toDiskCommit(true)
// Get the unsigned acked remotes updates that are currently in memory.
// We need them after a restart to sync our remote commitment with what
// is committed locally.
unsignedAckedUpdates := lc.getUnsignedAckedUpdates()
err = lc.channelState.UpdateCommitment(
newCommitment, unsignedAckedUpdates,
)
if err != nil {
return nil, nil, err
}
lc.log.Tracef("state transition accepted: "+
"our_balance=%v, their_balance=%v, unsigned_acked_updates=%v",
chainTail.ourBalance,
chainTail.theirBalance,
len(unsignedAckedUpdates))
revocationMsg.ChanID = lnwire.NewChanIDFromOutPoint(
&lc.channelState.FundingOutpoint,
)
return revocationMsg, newCommitment.Htlcs, nil
}
// ReceiveRevocation processes a revocation sent by the remote party for the
// lowest unrevoked commitment within their commitment chain. We receive a
// revocation either during the initial session negotiation wherein revocation
// windows are extended, or in response to a state update that we initiate. If
// successful, then the remote commitment chain is advanced by a single
// commitment, and a log compaction is attempted.
//
// The returned values correspond to:
// 1. The forwarding package corresponding to the remote commitment height
// that was revoked.
// 2. The PaymentDescriptor of any Add HTLCs that were locked in by this
// revocation.
// 3. The PaymentDescriptor of any Settle/Fail HTLCs that were locked in by
// this revocation.
// 4. The set of HTLCs present on the current valid commitment transaction
// for the remote party.
func (lc *LightningChannel) ReceiveRevocation(revMsg *lnwire.RevokeAndAck) (
*channeldb.FwdPkg, []*PaymentDescriptor, []*PaymentDescriptor,
[]channeldb.HTLC, error) {
lc.Lock()
defer lc.Unlock()
// Ensure that the new pre-image can be placed in preimage store.
store := lc.channelState.RevocationStore
revocation, err := chainhash.NewHash(revMsg.Revocation[:])
if err != nil {
return nil, nil, nil, nil, err
}
if err := store.AddNextEntry(revocation); err != nil {
return nil, nil, nil, nil, err
}
// Verify that if we use the commitment point computed based off of the
// revealed secret to derive a revocation key with our revocation base
// point, then it matches the current revocation of the remote party.
currentCommitPoint := lc.channelState.RemoteCurrentRevocation
derivedCommitPoint := input.ComputeCommitmentPoint(revMsg.Revocation[:])
if !derivedCommitPoint.IsEqual(currentCommitPoint) {
return nil, nil, nil, nil, fmt.Errorf("revocation key mismatch")
}
// Now that we've verified that the prior commitment has been properly
// revoked, we'll advance the revocation state we track for the remote
// party: the new current revocation is what was previously the next
// revocation, and the new next revocation is set to the key included
// in the message.
lc.channelState.RemoteCurrentRevocation = lc.channelState.RemoteNextRevocation
lc.channelState.RemoteNextRevocation = revMsg.NextRevocationKey
lc.log.Tracef("remote party accepted state transition, revoked height "+
"%v, now at %v",
lc.remoteCommitChain.tail().height,
lc.remoteCommitChain.tail().height+1)
// Add one to the remote tail since this will be height *after* we write
// the revocation to disk, the local height will remain unchanged.
remoteChainTail := lc.remoteCommitChain.tail().height + 1
localChainTail := lc.localCommitChain.tail().height
source := lc.ShortChanID()
chanID := lnwire.NewChanIDFromOutPoint(&lc.channelState.FundingOutpoint)
// Determine the set of htlcs that can be forwarded as a result of
// having received the revocation. We will simultaneously construct the
// log updates and payment descriptors, allowing us to persist the log
// updates to disk and optimistically buffer the forwarding package in
// memory.
var (
addsToForward []*PaymentDescriptor
addUpdates []channeldb.LogUpdate
settleFailsToForward []*PaymentDescriptor
settleFailUpdates []channeldb.LogUpdate
)
var addIndex, settleFailIndex uint16
for e := lc.remoteUpdateLog.Front(); e != nil; e = e.Next() {
pd := e.Value.(*PaymentDescriptor)
// Fee updates are local to this particular channel, and should
// never be forwarded.
if pd.EntryType == FeeUpdate {
continue
}
if pd.isForwarded {
continue
}
// For each type of HTLC, we will only consider forwarding it if
// both of the remote and local heights are non-zero. If either
// of these values is zero, it has yet to be committed in both
// the local and remote chains.
committedAdd := pd.addCommitHeightRemote > 0 &&
pd.addCommitHeightLocal > 0
committedRmv := pd.removeCommitHeightRemote > 0 &&
pd.removeCommitHeightLocal > 0
// Using the height of the remote and local commitments,
// preemptively compute whether or not to forward this HTLC for
// the case in which this in an Add HTLC, or if this is a
// Settle, Fail, or MalformedFail.
shouldFwdAdd := remoteChainTail == pd.addCommitHeightRemote &&
localChainTail >= pd.addCommitHeightLocal
shouldFwdRmv := remoteChainTail == pd.removeCommitHeightRemote &&
localChainTail >= pd.removeCommitHeightLocal
// We'll only forward any new HTLC additions iff, it's "freshly
// locked in". Meaning that the HTLC was only *just* considered
// locked-in at this new state. By doing this we ensure that we
// don't re-forward any already processed HTLC's after a
// restart.
switch {
case pd.EntryType == Add && committedAdd && shouldFwdAdd:
// Construct a reference specifying the location that
// this forwarded Add will be written in the forwarding
// package constructed at this remote height.
pd.SourceRef = &channeldb.AddRef{
Height: remoteChainTail,
Index: addIndex,
}
addIndex++
pd.isForwarded = true
addsToForward = append(addsToForward, pd)
case pd.EntryType != Add && committedRmv && shouldFwdRmv:
// Construct a reference specifying the location that
// this forwarded Settle/Fail will be written in the
// forwarding package constructed at this remote height.
pd.DestRef = &channeldb.SettleFailRef{
Source: source,
Height: remoteChainTail,
Index: settleFailIndex,
}
settleFailIndex++
pd.isForwarded = true
settleFailsToForward = append(settleFailsToForward, pd)
default:
continue
}
// If we've reached this point, this HTLC will be added to the
// forwarding package at the height of the remote commitment.
// All types of HTLCs will record their assigned log index.
logUpdate := channeldb.LogUpdate{
LogIndex: pd.LogIndex,
}
// Next, we'll map the type of the PaymentDescriptor to one of
// the four messages that it corresponds to and separate the
// updates into Adds and Settle/Fail/MalformedFail such that
// they can be written in the forwarding package. Adds are
// aggregated separately from the other types of HTLCs.
switch pd.EntryType {
case Add:
htlc := &lnwire.UpdateAddHTLC{
ChanID: chanID,
ID: pd.HtlcIndex,
Amount: pd.Amount,
Expiry: pd.Timeout,
PaymentHash: pd.RHash,
}
copy(htlc.OnionBlob[:], pd.OnionBlob)
logUpdate.UpdateMsg = htlc
addUpdates = append(addUpdates, logUpdate)
case Settle:
logUpdate.UpdateMsg = &lnwire.UpdateFulfillHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
PaymentPreimage: pd.RPreimage,
}
settleFailUpdates = append(settleFailUpdates, logUpdate)
case Fail:
logUpdate.UpdateMsg = &lnwire.UpdateFailHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
Reason: pd.FailReason,
}
settleFailUpdates = append(settleFailUpdates, logUpdate)
case MalformedFail:
logUpdate.UpdateMsg = &lnwire.UpdateFailMalformedHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
ShaOnionBlob: pd.ShaOnionBlob,
FailureCode: pd.FailCode,
}
settleFailUpdates = append(settleFailUpdates, logUpdate)
}
}
// We use the remote commitment chain's tip as it will soon become the tail
// once advanceTail is called.
remoteMessageIndex := lc.remoteCommitChain.tip().ourMessageIndex
localMessageIndex := lc.localCommitChain.tail().ourMessageIndex
localPeerUpdates := lc.unsignedLocalUpdates(
remoteMessageIndex, localMessageIndex, chanID,
)
// Now that we have gathered the set of HTLCs to forward, separated by
// type, construct a forwarding package using the height that the remote
// commitment chain will be extended after persisting the revocation.
fwdPkg := channeldb.NewFwdPkg(
source, remoteChainTail, addUpdates, settleFailUpdates,
)
// At this point, the revocation has been accepted, and we've rotated
// the current revocation key+hash for the remote party. Therefore we
// sync now to ensure the revocation producer state is consistent with
// the current commitment height and also to advance the on-disk
// commitment chain.
err = lc.channelState.AdvanceCommitChainTail(fwdPkg, localPeerUpdates)
if err != nil {
return nil, nil, nil, nil, err
}
// Since they revoked the current lowest height in their commitment
// chain, we can advance their chain by a single commitment.
lc.remoteCommitChain.advanceTail()
// As we've just completed a new state transition, attempt to see if we
// can remove any entries from the update log which have been removed
// from the PoV of both commitment chains.
compactLogs(
lc.localUpdateLog, lc.remoteUpdateLog, localChainTail,
remoteChainTail,
)
remoteHTLCs := lc.channelState.RemoteCommitment.Htlcs
return fwdPkg, addsToForward, settleFailsToForward, remoteHTLCs, nil
}
// LoadFwdPkgs loads any pending log updates from disk and returns the payment
// descriptors to be processed by the link.
func (lc *LightningChannel) LoadFwdPkgs() ([]*channeldb.FwdPkg, error) {
return lc.channelState.LoadFwdPkgs()
}
// AckAddHtlcs sets a bit in the FwdFilter of a forwarding package belonging to
// this channel, that corresponds to the given AddRef. This method also succeeds
// if no forwarding package is found.
func (lc *LightningChannel) AckAddHtlcs(addRef channeldb.AddRef) error {
return lc.channelState.AckAddHtlcs(addRef)
}
// AckSettleFails sets a bit in the SettleFailFilter of a forwarding package
// belonging to this channel, that corresponds to the given SettleFailRef. This
// method also succeeds if no forwarding package is found.
func (lc *LightningChannel) AckSettleFails(
settleFailRefs ...channeldb.SettleFailRef) error {
return lc.channelState.AckSettleFails(settleFailRefs...)
}
// SetFwdFilter writes the forwarding decision for a given remote commitment
// height.
func (lc *LightningChannel) SetFwdFilter(height uint64,
fwdFilter *channeldb.PkgFilter) error {
return lc.channelState.SetFwdFilter(height, fwdFilter)
}
// RemoveFwdPkgs permanently deletes the forwarding package at the given heights.
func (lc *LightningChannel) RemoveFwdPkgs(heights ...uint64) error {
return lc.channelState.RemoveFwdPkgs(heights...)
}
// NextRevocationKey returns the commitment point for the _next_ commitment
// height. The pubkey returned by this function is required by the remote party
// along with their revocation base to extend our commitment chain with a
// new commitment.
func (lc *LightningChannel) NextRevocationKey() (*btcec.PublicKey, error) {
lc.RLock()
defer lc.RUnlock()
nextHeight := lc.currentHeight + 1
revocation, err := lc.channelState.RevocationProducer.AtIndex(nextHeight)
if err != nil {
return nil, err
}
return input.ComputeCommitmentPoint(revocation[:]), nil
}
// InitNextRevocation inserts the passed commitment point as the _next_
// revocation to be used when creating a new commitment state for the remote
// party. This function MUST be called before the channel can accept or propose
// any new states.
func (lc *LightningChannel) InitNextRevocation(revKey *btcec.PublicKey) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.InsertNextRevocation(revKey)
}
// AddHTLC adds an HTLC to the state machine's local update log. This method
// should be called when preparing to send an outgoing HTLC.
//
// The additional openKey argument corresponds to the incoming CircuitKey of the
// committed circuit for this HTLC. This value should never be nil.
//
// Note that AddHTLC doesn't reserve the HTLC fee for future payment (like
// AvailableBalance does), so one could get into the "stuck channel" state by
// sending dust HTLCs.
// TODO(halseth): fix this either by using additional reserve, or better commit
// format. See https://github.com/lightningnetwork/lightning-rfc/issues/728
//
// NOTE: It is okay for sourceRef to be nil when unit testing the wallet.
func (lc *LightningChannel) AddHTLC(htlc *lnwire.UpdateAddHTLC,
openKey *channeldb.CircuitKey) (uint64, error) {
lc.Lock()
defer lc.Unlock()
pd := &PaymentDescriptor{
EntryType: Add,
RHash: PaymentHash(htlc.PaymentHash),
Timeout: htlc.Expiry,
Amount: htlc.Amount,
LogIndex: lc.localUpdateLog.logIndex,
HtlcIndex: lc.localUpdateLog.htlcCounter,
OnionBlob: htlc.OnionBlob[:],
OpenCircuitKey: openKey,
}
// Make sure adding this HTLC won't violate any of the constraints we
// must keep on the commitment transactions.
remoteACKedIndex := lc.localCommitChain.tail().theirMessageIndex
// First we'll check whether this HTLC can be added to the remote
// commitment transaction without violation any of the constraints.
err := lc.validateCommitmentSanity(
remoteACKedIndex, lc.localUpdateLog.logIndex, true, pd, nil,
)
if err != nil {
return 0, err
}
// We must also check whether it can be added to our own commitment
// transaction, or the remote node will refuse to sign. This is not
// totally bullet proof, as the remote might be adding updates
// concurrently, but if we fail this check there is for sure not
// possible for us to add the HTLC.
err = lc.validateCommitmentSanity(
lc.remoteUpdateLog.logIndex, lc.localUpdateLog.logIndex,
false, pd, nil,
)
if err != nil {
return 0, err
}
lc.localUpdateLog.appendHtlc(pd)
return pd.HtlcIndex, nil
}
// ReceiveHTLC adds an HTLC to the state machine's remote update log. This
// method should be called in response to receiving a new HTLC from the remote
// party.
func (lc *LightningChannel) ReceiveHTLC(htlc *lnwire.UpdateAddHTLC) (uint64, error) {
lc.Lock()
defer lc.Unlock()
if htlc.ID != lc.remoteUpdateLog.htlcCounter {
return 0, fmt.Errorf("ID %d on HTLC add does not match expected next "+
"ID %d", htlc.ID, lc.remoteUpdateLog.htlcCounter)
}
pd := &PaymentDescriptor{
EntryType: Add,
RHash: PaymentHash(htlc.PaymentHash),
Timeout: htlc.Expiry,
Amount: htlc.Amount,
LogIndex: lc.remoteUpdateLog.logIndex,
HtlcIndex: lc.remoteUpdateLog.htlcCounter,
OnionBlob: htlc.OnionBlob[:],
}
localACKedIndex := lc.remoteCommitChain.tail().ourMessageIndex
// Clamp down on the number of HTLC's we can receive by checking the
// commitment sanity.
err := lc.validateCommitmentSanity(
lc.remoteUpdateLog.logIndex, localACKedIndex, false, nil, pd,
)
if err != nil {
return 0, err
}
lc.remoteUpdateLog.appendHtlc(pd)
return pd.HtlcIndex, nil
}
// SettleHTLC attempts to settle an existing outstanding received HTLC. The
// remote log index of the HTLC settled is returned in order to facilitate
// creating the corresponding wire message. In the case the supplied preimage
// is invalid, an error is returned.
//
// The additional arguments correspond to:
// * sourceRef: specifies the location of the Add HTLC within a forwarding
// package that this HTLC is settling. Every Settle fails exactly one Add,
// so this should never be empty in practice.
//
// * destRef: specifies the location of the Settle HTLC within another
// channel's forwarding package. This value can be nil if the corresponding
// Add HTLC was never locked into an outgoing commitment txn, or this
// HTLC does not originate as a response from the peer on the outgoing
// link, e.g. on-chain resolutions.
//
// * closeKey: identifies the circuit that should be deleted after this Settle
// HTLC is included in a commitment txn. This value should only be nil if
// the HTLC was settled locally before committing a circuit to the circuit
// map.
//
// NOTE: It is okay for sourceRef, destRef, and closeKey to be nil when unit
// testing the wallet.
func (lc *LightningChannel) SettleHTLC(preimage [32]byte,
htlcIndex uint64, sourceRef *channeldb.AddRef,
destRef *channeldb.SettleFailRef, closeKey *channeldb.CircuitKey) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.remoteUpdateLog.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, before checking to see if the
// preimage matches, we'll ensure that we haven't already attempted to
// modify the HTLC.
if lc.remoteUpdateLog.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadySettled(htlcIndex)
}
if htlc.RHash != sha256.Sum256(preimage[:]) {
return ErrInvalidSettlePreimage{preimage[:], htlc.RHash[:]}
}
pd := &PaymentDescriptor{
Amount: htlc.Amount,
RPreimage: preimage,
LogIndex: lc.localUpdateLog.logIndex,
ParentIndex: htlcIndex,
EntryType: Settle,
SourceRef: sourceRef,
DestRef: destRef,
ClosedCircuitKey: closeKey,
}
lc.localUpdateLog.appendUpdate(pd)
// With the settle added to our local log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate settle.
lc.remoteUpdateLog.markHtlcModified(htlcIndex)
return nil
}
// ReceiveHTLCSettle attempts to settle an existing outgoing HTLC indexed by an
// index into the local log. If the specified index doesn't exist within the
// log, and error is returned. Similarly if the preimage is invalid w.r.t to
// the referenced of then a distinct error is returned.
func (lc *LightningChannel) ReceiveHTLCSettle(preimage [32]byte, htlcIndex uint64) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.localUpdateLog.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, before checking to see if the
// preimage matches, we'll ensure that they haven't already attempted
// to modify the HTLC.
if lc.localUpdateLog.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadySettled(htlcIndex)
}
if htlc.RHash != sha256.Sum256(preimage[:]) {
return ErrInvalidSettlePreimage{preimage[:], htlc.RHash[:]}
}
pd := &PaymentDescriptor{
Amount: htlc.Amount,
RPreimage: preimage,
ParentIndex: htlc.HtlcIndex,
RHash: htlc.RHash,
LogIndex: lc.remoteUpdateLog.logIndex,
EntryType: Settle,
}
lc.remoteUpdateLog.appendUpdate(pd)
// With the settle added to the remote log, we'll now mark the HTLC as
// modified to prevent the remote party from accidentally attempting a
// duplicate settle.
lc.localUpdateLog.markHtlcModified(htlcIndex)
return nil
}
// FailHTLC attempts to fail a targeted HTLC by its payment hash, inserting an
// entry which will remove the target log entry within the next commitment
// update. This method is intended to be called in order to cancel in
// _incoming_ HTLC.
//
// The additional arguments correspond to:
// * sourceRef: specifies the location of the Add HTLC within a forwarding
// package that this HTLC is failing. Every Fail fails exactly one Add, so
// this should never be empty in practice.
//
// * destRef: specifies the location of the Fail HTLC within another channel's
// forwarding package. This value can be nil if the corresponding Add HTLC
// was never locked into an outgoing commitment txn, or this HTLC does not
// originate as a response from the peer on the outgoing link, e.g.
// on-chain resolutions.
//
// * closeKey: identifies the circuit that should be deleted after this Fail
// HTLC is included in a commitment txn. This value should only be nil if
// the HTLC was failed locally before committing a circuit to the circuit
// map.
//
// NOTE: It is okay for sourceRef, destRef, and closeKey to be nil when unit
// testing the wallet.
func (lc *LightningChannel) FailHTLC(htlcIndex uint64, reason []byte,
sourceRef *channeldb.AddRef, destRef *channeldb.SettleFailRef,
closeKey *channeldb.CircuitKey) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.remoteUpdateLog.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, we'll ensure that we haven't
// already attempted to fail the HTLC.
if lc.remoteUpdateLog.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadyFailed(htlcIndex)
}
pd := &PaymentDescriptor{
Amount: htlc.Amount,
RHash: htlc.RHash,
ParentIndex: htlcIndex,
LogIndex: lc.localUpdateLog.logIndex,
EntryType: Fail,
FailReason: reason,
SourceRef: sourceRef,
DestRef: destRef,
ClosedCircuitKey: closeKey,
}
lc.localUpdateLog.appendUpdate(pd)
// With the fail added to the remote log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate fail.
lc.remoteUpdateLog.markHtlcModified(htlcIndex)
return nil
}
// MalformedFailHTLC attempts to fail a targeted HTLC by its payment hash,
// inserting an entry which will remove the target log entry within the next
// commitment update. This method is intended to be called in order to cancel
// in _incoming_ HTLC.
//
// The additional sourceRef specifies the location of the Add HTLC within a
// forwarding package that this HTLC is failing. This value should never be
// empty.
//
// NOTE: It is okay for sourceRef to be nil when unit testing the wallet.
func (lc *LightningChannel) MalformedFailHTLC(htlcIndex uint64,
failCode lnwire.FailCode, shaOnionBlob [sha256.Size]byte,
sourceRef *channeldb.AddRef) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.remoteUpdateLog.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, we'll ensure that we haven't
// already attempted to fail the HTLC.
if lc.remoteUpdateLog.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadyFailed(htlcIndex)
}
pd := &PaymentDescriptor{
Amount: htlc.Amount,
RHash: htlc.RHash,
ParentIndex: htlcIndex,
LogIndex: lc.localUpdateLog.logIndex,
EntryType: MalformedFail,
FailCode: failCode,
ShaOnionBlob: shaOnionBlob,
SourceRef: sourceRef,
}
lc.localUpdateLog.appendUpdate(pd)
// With the fail added to the remote log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate fail.
lc.remoteUpdateLog.markHtlcModified(htlcIndex)
return nil
}
// ReceiveFailHTLC attempts to cancel a targeted HTLC by its log index,
// inserting an entry which will remove the target log entry within the next
// commitment update. This method should be called in response to the upstream
// party cancelling an outgoing HTLC. The value of the failed HTLC is returned
// along with an error indicating success.
func (lc *LightningChannel) ReceiveFailHTLC(htlcIndex uint64, reason []byte,
) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.localUpdateLog.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, we'll ensure that they haven't
// already attempted to fail the HTLC.
if lc.localUpdateLog.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadyFailed(htlcIndex)
}
pd := &PaymentDescriptor{
Amount: htlc.Amount,
RHash: htlc.RHash,
ParentIndex: htlc.HtlcIndex,
LogIndex: lc.remoteUpdateLog.logIndex,
EntryType: Fail,
FailReason: reason,
}
lc.remoteUpdateLog.appendUpdate(pd)
// With the fail added to the remote log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate fail.
lc.localUpdateLog.markHtlcModified(htlcIndex)
return nil
}
// ChannelPoint returns the outpoint of the original funding transaction which
// created this active channel. This outpoint is used throughout various
// subsystems to uniquely identify an open channel.
func (lc *LightningChannel) ChannelPoint() *wire.OutPoint {
return &lc.channelState.FundingOutpoint
}
// ShortChanID returns the short channel ID for the channel. The short channel
// ID encodes the exact location in the main chain that the original
// funding output can be found.
func (lc *LightningChannel) ShortChanID() lnwire.ShortChannelID {
return lc.channelState.ShortChanID()
}
// LocalUpfrontShutdownScript returns the local upfront shutdown script for the
// channel. If it was not set, an empty byte array is returned.
func (lc *LightningChannel) LocalUpfrontShutdownScript() lnwire.DeliveryAddress {
return lc.channelState.LocalShutdownScript
}
// RemoteUpfrontShutdownScript returns the remote upfront shutdown script for the
// channel. If it was not set, an empty byte array is returned.
func (lc *LightningChannel) RemoteUpfrontShutdownScript() lnwire.DeliveryAddress {
return lc.channelState.RemoteShutdownScript
}
// getSignedCommitTx function take the latest commitment transaction and
// populate it with witness data.
func (lc *LightningChannel) getSignedCommitTx() (*wire.MsgTx, error) {
// Fetch the current commitment transaction, along with their signature
// for the transaction.
localCommit := lc.channelState.LocalCommitment
commitTx := localCommit.CommitTx.Copy()
theirSig, err := btcec.ParseDERSignature(
localCommit.CommitSig, btcec.S256(),
)
if err != nil {
return nil, err
}
// With this, we then generate the full witness so the caller can
// broadcast a fully signed transaction.
lc.signDesc.SigHashes = txscript.NewTxSigHashes(commitTx)
ourSig, err := lc.Signer.SignOutputRaw(commitTx, lc.signDesc)
if err != nil {
return nil, err
}
// With the final signature generated, create the witness stack
// required to spend from the multi-sig output.
ourKey := lc.channelState.LocalChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
theirKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
commitTx.TxIn[0].Witness = input.SpendMultiSig(
lc.signDesc.WitnessScript, ourKey,
ourSig, theirKey, theirSig,
)
return commitTx, nil
}
// CommitOutputResolution carries the necessary information required to allow
// us to sweep our commitment output in the case that either party goes to
// chain.
type CommitOutputResolution struct {
// SelfOutPoint is the full outpoint that points to out pay-to-self
// output within the closing commitment transaction.
SelfOutPoint wire.OutPoint
// SelfOutputSignDesc is a fully populated sign descriptor capable of
// generating a valid signature to sweep the output paying to us.
SelfOutputSignDesc input.SignDescriptor
// MaturityDelay is the relative time-lock, in blocks for all outputs
// that pay to the local party within the broadcast commitment
// transaction.
MaturityDelay uint32
}
// UnilateralCloseSummary describes the details of a detected unilateral
// channel closure. This includes the information about with which
// transactions, and block the channel was unilaterally closed, as well as
// summarization details concerning the _state_ of the channel at the point of
// channel closure. Additionally, if we had a commitment output above dust on
// the remote party's commitment transaction, the necessary a SignDescriptor
// with the material necessary to seep the output are returned. Finally, if we
// had any outgoing HTLC's within the commitment transaction, then an
// OutgoingHtlcResolution for each output will included.
type UnilateralCloseSummary struct {
// SpendDetail is a struct that describes how and when the funding
// output was spent.
*chainntnfs.SpendDetail
// ChannelCloseSummary is a struct describing the final state of the
// channel and in which state is was closed.
channeldb.ChannelCloseSummary
// CommitResolution contains all the data required to sweep the output
// to ourselves. If this is our commitment transaction, then we'll need
// to wait a time delay before we can sweep the output.
//
// NOTE: If our commitment delivery output is below the dust limit,
// then this will be nil.
CommitResolution *CommitOutputResolution
// HtlcResolutions contains a fully populated HtlcResolutions struct
// which contains all the data required to sweep any outgoing HTLC's,
// and also any incoming HTLC's that we know the pre-image to.
HtlcResolutions *HtlcResolutions
// RemoteCommit is the exact commitment state that the remote party
// broadcast.
RemoteCommit channeldb.ChannelCommitment
// AnchorResolution contains the data required to sweep our anchor
// output. If the channel type doesn't include anchors, the value of
// this field will be nil.
AnchorResolution *AnchorResolution
}
// NewUnilateralCloseSummary creates a new summary that provides the caller
// with all the information required to claim all funds on chain in the event
// that the remote party broadcasts their commitment. The commitPoint argument
// should be set to the per_commitment_point corresponding to the spending
// commitment.
//
// NOTE: The remoteCommit argument should be set to the stored commitment for
// this particular state. If we don't have the commitment stored (should only
// happen in case we have lost state) it should be set to an empty struct, in
// which case we will attempt to sweep the non-HTLC output using the passed
// commitPoint.
func NewUnilateralCloseSummary(chanState *channeldb.OpenChannel, signer input.Signer,
commitSpend *chainntnfs.SpendDetail,
remoteCommit channeldb.ChannelCommitment,
commitPoint *btcec.PublicKey) (*UnilateralCloseSummary, error) {
// First, we'll generate the commitment point and the revocation point
// so we can re-construct the HTLC state and also our payment key.
keyRing := DeriveCommitmentKeys(
commitPoint, false, chanState.ChanType,
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
// Next, we'll obtain HTLC resolutions for all the outgoing HTLC's we
// had on their commitment transaction.
htlcResolutions, err := extractHtlcResolutions(
chainfee.SatPerKWeight(remoteCommit.FeePerKw), false, signer,
remoteCommit.Htlcs, keyRing, &chanState.LocalChanCfg,
&chanState.RemoteChanCfg, *commitSpend.SpenderTxHash,
chanState.ChanType,
)
if err != nil {
return nil, fmt.Errorf("unable to create htlc "+
"resolutions: %v", err)
}
commitTxBroadcast := commitSpend.SpendingTx
// Before we can generate the proper sign descriptor, we'll need to
// locate the output index of our non-delayed output on the commitment
// transaction.
selfScript, maturityDelay, err := CommitScriptToRemote(
chanState.ChanType, keyRing.ToRemoteKey,
)
if err != nil {
return nil, fmt.Errorf("unable to create self commit "+
"script: %v", err)
}
var (
selfPoint *wire.OutPoint
localBalance int64
)
for outputIndex, txOut := range commitTxBroadcast.TxOut {
if bytes.Equal(txOut.PkScript, selfScript.PkScript) {
selfPoint = &wire.OutPoint{
Hash: *commitSpend.SpenderTxHash,
Index: uint32(outputIndex),
}
localBalance = txOut.Value
break
}
}
// With the HTLC's taken care of, we'll generate the sign descriptor
// necessary to sweep our commitment output, but only if we had a
// non-trimmed balance.
var commitResolution *CommitOutputResolution
if selfPoint != nil {
localPayBase := chanState.LocalChanCfg.PaymentBasePoint
commitResolution = &CommitOutputResolution{
SelfOutPoint: *selfPoint,
SelfOutputSignDesc: input.SignDescriptor{
KeyDesc: localPayBase,
SingleTweak: keyRing.LocalCommitKeyTweak,
WitnessScript: selfScript.WitnessScript,
Output: &wire.TxOut{
Value: localBalance,
PkScript: selfScript.PkScript,
},
HashType: txscript.SigHashAll,
},
MaturityDelay: maturityDelay,
}
}
closeSummary := channeldb.ChannelCloseSummary{
ChanPoint: chanState.FundingOutpoint,
ChainHash: chanState.ChainHash,
ClosingTXID: *commitSpend.SpenderTxHash,
CloseHeight: uint32(commitSpend.SpendingHeight),
RemotePub: chanState.IdentityPub,
Capacity: chanState.Capacity,
SettledBalance: btcutil.Amount(localBalance),
CloseType: channeldb.RemoteForceClose,
IsPending: true,
RemoteCurrentRevocation: chanState.RemoteCurrentRevocation,
RemoteNextRevocation: chanState.RemoteNextRevocation,
ShortChanID: chanState.ShortChanID(),
LocalChanConfig: chanState.LocalChanCfg,
}
// Attempt to add a channel sync message to the close summary.
chanSync, err := chanState.ChanSyncMsg()
if err != nil {
walletLog.Errorf("ChannelPoint(%v): unable to create channel sync "+
"message: %v", chanState.FundingOutpoint, err)
} else {
closeSummary.LastChanSyncMsg = chanSync
}
anchorResolution, err := NewAnchorResolution(
chanState, commitTxBroadcast,
)
if err != nil {
return nil, err
}
return &UnilateralCloseSummary{
SpendDetail: commitSpend,
ChannelCloseSummary: closeSummary,
CommitResolution: commitResolution,
HtlcResolutions: htlcResolutions,
RemoteCommit: remoteCommit,
AnchorResolution: anchorResolution,
}, nil
}
// IncomingHtlcResolution houses the information required to sweep any incoming
// HTLC's that we know the preimage to. We'll need to sweep an HTLC manually
// using this struct if we need to go on-chain for any reason, or if we detect
// that the remote party broadcasts their commitment transaction.
type IncomingHtlcResolution struct {
// Preimage is the preimage that will be used to satisfy the contract of
// the HTLC.
//
// NOTE: This field will only be populated in the incoming contest
// resolver.
Preimage [32]byte
// SignedSuccessTx is the fully signed HTLC success transaction. This
// transaction (if non-nil) can be broadcast immediately. After a csv
// delay (included below), then the output created by this transactions
// can be swept on-chain.
//
// NOTE: If this field is nil, then this indicates that we don't need
// to go to the second level to claim this HTLC. Instead, it can be
// claimed directly from the outpoint listed below.
SignedSuccessTx *wire.MsgTx
// CsvDelay is the relative time lock (expressed in blocks) that must
// pass after the SignedSuccessTx is confirmed in the chain before the
// output can be swept.
//
// NOTE: If SignedTimeoutTx is nil, then this field denotes the CSV
// delay needed to spend from the commitment transaction.
CsvDelay uint32
// ClaimOutpoint is the final outpoint that needs to be spent in order
// to fully sweep the HTLC. The SignDescriptor below should be used to
// spend this outpoint. In the case of a second-level HTLC (non-nil
// SignedTimeoutTx), then we'll be spending a new transaction.
// Otherwise, it'll be an output in the commitment transaction.
ClaimOutpoint wire.OutPoint
// SweepSignDesc is a sign descriptor that has been populated with the
// necessary items required to spend the sole output of the above
// transaction.
SweepSignDesc input.SignDescriptor
}
// OutgoingHtlcResolution houses the information necessary to sweep any
// outgoing HTLC's after their contract has expired. This struct will be needed
// in one of two cases: the local party force closes the commitment transaction
// or the remote party unilaterally closes with their version of the commitment
// transaction.
type OutgoingHtlcResolution struct {
// Expiry the absolute timeout of the HTLC. This value is expressed in
// block height, meaning after this height the HLTC can be swept.
Expiry uint32
// SignedTimeoutTx is the fully signed HTLC timeout transaction. This
// must be broadcast immediately after timeout has passed. Once this
// has been confirmed, the HTLC output will transition into the
// delay+claim state.
//
// NOTE: If this field is nil, then this indicates that we don't need
// to go to the second level to claim this HTLC. Instead, it can be
// claimed directly from the outpoint listed below.
SignedTimeoutTx *wire.MsgTx
// CsvDelay is the relative time lock (expressed in blocks) that must
// pass after the SignedTimeoutTx is confirmed in the chain before the
// output can be swept.
//
// NOTE: If SignedTimeoutTx is nil, then this field denotes the CSV
// delay needed to spend from the commitment transaction.
CsvDelay uint32
// ClaimOutpoint is the final outpoint that needs to be spent in order
// to fully sweep the HTLC. The SignDescriptor below should be used to
// spend this outpoint. In the case of a second-level HTLC (non-nil
// SignedTimeoutTx), then we'll be spending a new transaction.
// Otherwise, it'll be an output in the commitment transaction.
ClaimOutpoint wire.OutPoint
// SweepSignDesc is a sign descriptor that has been populated with the
// necessary items required to spend the sole output of the above
// transaction.
SweepSignDesc input.SignDescriptor
}
// HtlcResolutions contains the items necessary to sweep HTLC's on chain
// directly from a commitment transaction. We'll use this in case either party
// goes broadcasts a commitment transaction with live HTLC's.
type HtlcResolutions struct {
// IncomingHTLCs contains a set of structs that can be used to sweep
// all the incoming HTL'C that we know the preimage to.
IncomingHTLCs []IncomingHtlcResolution
// OutgoingHTLCs contains a set of structs that contains all the info
// needed to sweep an outgoing HTLC we've sent to the remote party
// after an absolute delay has expired.
OutgoingHTLCs []OutgoingHtlcResolution
}
// newOutgoingHtlcResolution generates a new HTLC resolution capable of
// allowing the caller to sweep an outgoing HTLC present on either their, or
// the remote party's commitment transaction.
func newOutgoingHtlcResolution(signer input.Signer,
localChanCfg *channeldb.ChannelConfig, commitHash chainhash.Hash,
htlc *channeldb.HTLC, keyRing *CommitmentKeyRing,
feePerKw chainfee.SatPerKWeight, csvDelay uint32,
localCommit bool, chanType channeldb.ChannelType) (*OutgoingHtlcResolution, error) {
op := wire.OutPoint{
Hash: commitHash,
Index: uint32(htlc.OutputIndex),
}
// First, we'll re-generate the script used to send the HTLC to
// the remote party within their commitment transaction.
htlcScriptHash, htlcScript, err := genHtlcScript(
chanType, false, localCommit, htlc.RefundTimeout, htlc.RHash,
keyRing,
)
if err != nil {
return nil, err
}
// If we're spending this HTLC output from the remote node's
// commitment, then we won't need to go to the second level as our
// outputs don't have a CSV delay.
if !localCommit {
// With the script generated, we can completely populated the
// SignDescriptor needed to sweep the output.
return &OutgoingHtlcResolution{
Expiry: htlc.RefundTimeout,
ClaimOutpoint: op,
SweepSignDesc: input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcScript,
Output: &wire.TxOut{
PkScript: htlcScriptHash,
Value: int64(htlc.Amt.ToSatoshis()),
},
HashType: txscript.SigHashAll,
},
CsvDelay: HtlcSecondLevelInputSequence(chanType),
}, nil
}
// Otherwise, we'll need to craft a second level HTLC transaction, as
// well as a sign desc to sweep after the CSV delay.
// In order to properly reconstruct the HTLC transaction, we'll need to
// re-calculate the fee required at this state, so we can add the
// correct output value amount to the transaction.
htlcFee := HtlcTimeoutFee(chanType, feePerKw)
secondLevelOutputAmt := htlc.Amt.ToSatoshis() - htlcFee
// With the fee calculated, re-construct the second level timeout
// transaction.
timeoutTx, err := createHtlcTimeoutTx(
chanType, op, secondLevelOutputAmt, htlc.RefundTimeout,
csvDelay, keyRing.RevocationKey, keyRing.ToLocalKey,
)
if err != nil {
return nil, err
}
// With the transaction created, we can generate a sign descriptor
// that's capable of generating the signature required to spend the
// HTLC output using the timeout transaction.
timeoutSignDesc := input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcScript,
Output: &wire.TxOut{
Value: int64(htlc.Amt.ToSatoshis()),
},
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(timeoutTx),
InputIndex: 0,
}
htlcSig, err := btcec.ParseDERSignature(htlc.Signature, btcec.S256())
if err != nil {
return nil, err
}
// With the sign desc created, we can now construct the full witness
// for the timeout transaction, and populate it as well.
sigHashType := HtlcSigHashType(chanType)
timeoutWitness, err := input.SenderHtlcSpendTimeout(
htlcSig, sigHashType, signer, &timeoutSignDesc, timeoutTx,
)
if err != nil {
return nil, err
}
timeoutTx.TxIn[0].Witness = timeoutWitness
// Finally, we'll generate the script output that the timeout
// transaction creates so we can generate the signDesc required to
// complete the claim process after a delay period.
htlcSweepScript, err := input.SecondLevelHtlcScript(
keyRing.RevocationKey, keyRing.ToLocalKey, csvDelay,
)
if err != nil {
return nil, err
}
htlcSweepScriptHash, err := input.WitnessScriptHash(htlcSweepScript)
if err != nil {
return nil, err
}
localDelayTweak := input.SingleTweakBytes(
keyRing.CommitPoint, localChanCfg.DelayBasePoint.PubKey,
)
return &OutgoingHtlcResolution{
Expiry: htlc.RefundTimeout,
SignedTimeoutTx: timeoutTx,
CsvDelay: csvDelay,
ClaimOutpoint: wire.OutPoint{
Hash: timeoutTx.TxHash(),
Index: 0,
},
SweepSignDesc: input.SignDescriptor{
KeyDesc: localChanCfg.DelayBasePoint,
SingleTweak: localDelayTweak,
WitnessScript: htlcSweepScript,
Output: &wire.TxOut{
PkScript: htlcSweepScriptHash,
Value: int64(secondLevelOutputAmt),
},
HashType: txscript.SigHashAll,
},
}, nil
}
// newIncomingHtlcResolution creates a new HTLC resolution capable of allowing
// the caller to sweep an incoming HTLC. If the HTLC is on the caller's
// commitment transaction, then they'll need to broadcast a second-level
// transaction before sweeping the output (and incur a CSV delay). Otherwise,
// they can just sweep the output immediately with knowledge of the pre-image.
//
// TODO(roasbeef) consolidate code with above func
func newIncomingHtlcResolution(signer input.Signer,
localChanCfg *channeldb.ChannelConfig, commitHash chainhash.Hash,
htlc *channeldb.HTLC, keyRing *CommitmentKeyRing,
feePerKw chainfee.SatPerKWeight, csvDelay uint32, localCommit bool,
chanType channeldb.ChannelType) (*IncomingHtlcResolution, error) {
op := wire.OutPoint{
Hash: commitHash,
Index: uint32(htlc.OutputIndex),
}
// First, we'll re-generate the script the remote party used to
// send the HTLC to us in their commitment transaction.
htlcScriptHash, htlcScript, err := genHtlcScript(
chanType, true, localCommit, htlc.RefundTimeout, htlc.RHash,
keyRing,
)
if err != nil {
return nil, err
}
// If we're spending this output from the remote node's commitment,
// then we can skip the second layer and spend the output directly.
if !localCommit {
// With the script generated, we can completely populated the
// SignDescriptor needed to sweep the output.
return &IncomingHtlcResolution{
ClaimOutpoint: op,
SweepSignDesc: input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcScript,
Output: &wire.TxOut{
PkScript: htlcScriptHash,
Value: int64(htlc.Amt.ToSatoshis()),
},
HashType: txscript.SigHashAll,
},
CsvDelay: HtlcSecondLevelInputSequence(chanType),
}, nil
}
// Otherwise, we'll need to go to the second level to sweep this HTLC.
// First, we'll reconstruct the original HTLC success transaction,
// taking into account the fee rate used.
htlcFee := HtlcSuccessFee(chanType, feePerKw)
secondLevelOutputAmt := htlc.Amt.ToSatoshis() - htlcFee
successTx, err := createHtlcSuccessTx(
chanType, op, secondLevelOutputAmt, csvDelay,
keyRing.RevocationKey, keyRing.ToLocalKey,
)
if err != nil {
return nil, err
}
// Once we've created the second-level transaction, we'll generate the
// SignDesc needed spend the HTLC output using the success transaction.
successSignDesc := input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcScript,
Output: &wire.TxOut{
Value: int64(htlc.Amt.ToSatoshis()),
},
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(successTx),
InputIndex: 0,
}
htlcSig, err := btcec.ParseDERSignature(htlc.Signature, btcec.S256())
if err != nil {
return nil, err
}
// Next, we'll construct the full witness needed to satisfy the input of
// the success transaction. Don't specify the preimage yet. The preimage
// will be supplied by the contract resolver, either directly or when it
// becomes known.
sigHashType := HtlcSigHashType(chanType)
successWitness, err := input.ReceiverHtlcSpendRedeem(
htlcSig, sigHashType, nil, signer, &successSignDesc, successTx,
)
if err != nil {
return nil, err
}
successTx.TxIn[0].Witness = successWitness
// Finally, we'll generate the script that the second-level transaction
// creates so we can generate the proper signDesc to sweep it after the
// CSV delay has passed.
htlcSweepScript, err := input.SecondLevelHtlcScript(
keyRing.RevocationKey, keyRing.ToLocalKey, csvDelay,
)
if err != nil {
return nil, err
}
htlcSweepScriptHash, err := input.WitnessScriptHash(htlcSweepScript)
if err != nil {
return nil, err
}
localDelayTweak := input.SingleTweakBytes(
keyRing.CommitPoint, localChanCfg.DelayBasePoint.PubKey,
)
return &IncomingHtlcResolution{
SignedSuccessTx: successTx,
CsvDelay: csvDelay,
ClaimOutpoint: wire.OutPoint{
Hash: successTx.TxHash(),
Index: 0,
},
SweepSignDesc: input.SignDescriptor{
KeyDesc: localChanCfg.DelayBasePoint,
SingleTweak: localDelayTweak,
WitnessScript: htlcSweepScript,
Output: &wire.TxOut{
PkScript: htlcSweepScriptHash,
Value: int64(secondLevelOutputAmt),
},
HashType: txscript.SigHashAll,
},
}, nil
}
// HtlcPoint returns the htlc's outpoint on the commitment tx.
func (r *IncomingHtlcResolution) HtlcPoint() wire.OutPoint {
// If we have a success transaction, then the htlc's outpoint
// is the transaction's only input. Otherwise, it's the claim
// point.
if r.SignedSuccessTx != nil {
return r.SignedSuccessTx.TxIn[0].PreviousOutPoint
}
return r.ClaimOutpoint
}
// HtlcPoint returns the htlc's outpoint on the commitment tx.
func (r *OutgoingHtlcResolution) HtlcPoint() wire.OutPoint {
// If we have a timeout transaction, then the htlc's outpoint
// is the transaction's only input. Otherwise, it's the claim
// point.
if r.SignedTimeoutTx != nil {
return r.SignedTimeoutTx.TxIn[0].PreviousOutPoint
}
return r.ClaimOutpoint
}
// extractHtlcResolutions creates a series of outgoing HTLC resolutions, and
// the local key used when generating the HTLC scrips. This function is to be
// used in two cases: force close, or a unilateral close.
func extractHtlcResolutions(feePerKw chainfee.SatPerKWeight, ourCommit bool,
signer input.Signer, htlcs []channeldb.HTLC, keyRing *CommitmentKeyRing,
localChanCfg, remoteChanCfg *channeldb.ChannelConfig,
commitHash chainhash.Hash, chanType channeldb.ChannelType) (
*HtlcResolutions, error) {
// TODO(roasbeef): don't need to swap csv delay?
dustLimit := remoteChanCfg.DustLimit
csvDelay := remoteChanCfg.CsvDelay
if ourCommit {
dustLimit = localChanCfg.DustLimit
csvDelay = localChanCfg.CsvDelay
}
incomingResolutions := make([]IncomingHtlcResolution, 0, len(htlcs))
outgoingResolutions := make([]OutgoingHtlcResolution, 0, len(htlcs))
for _, htlc := range htlcs {
htlc := htlc
// We'll skip any HTLC's which were dust on the commitment
// transaction, as these don't have a corresponding output
// within the commitment transaction.
if htlcIsDust(
chanType, htlc.Incoming, ourCommit, feePerKw,
htlc.Amt.ToSatoshis(), dustLimit,
) {
continue
}
// If the HTLC is incoming, then we'll attempt to see if we
// know the pre-image to the HTLC.
if htlc.Incoming {
// Otherwise, we'll create an incoming HTLC resolution
// as we can satisfy the contract.
ihr, err := newIncomingHtlcResolution(
signer, localChanCfg, commitHash, &htlc,
keyRing, feePerKw, uint32(csvDelay), ourCommit,
chanType,
)
if err != nil {
return nil, err
}
incomingResolutions = append(incomingResolutions, *ihr)
continue
}
ohr, err := newOutgoingHtlcResolution(
signer, localChanCfg, commitHash, &htlc, keyRing,
feePerKw, uint32(csvDelay), ourCommit, chanType,
)
if err != nil {
return nil, err
}
outgoingResolutions = append(outgoingResolutions, *ohr)
}
return &HtlcResolutions{
IncomingHTLCs: incomingResolutions,
OutgoingHTLCs: outgoingResolutions,
}, nil
}
// AnchorResolution holds the information necessary to spend our commitment tx
// anchor.
type AnchorResolution struct {
// AnchorSignDescriptor is the sign descriptor for our anchor.
AnchorSignDescriptor input.SignDescriptor
// CommitAnchor is the anchor outpoint on the commit tx.
CommitAnchor wire.OutPoint
}
// LocalForceCloseSummary describes the final commitment state before the
// channel is locked-down to initiate a force closure by broadcasting the
// latest state on-chain. If we intend to broadcast this this state, the
// channel should not be used after generating this close summary. The summary
// includes all the information required to claim all rightfully owned outputs
// when the commitment gets confirmed.
type LocalForceCloseSummary struct {
// ChanPoint is the outpoint that created the channel which has been
// force closed.
ChanPoint wire.OutPoint
// CloseTx is the transaction which can be used to close the channel
// on-chain. When we initiate a force close, this will be our latest
// commitment state.
CloseTx *wire.MsgTx
// CommitResolution contains all the data required to sweep the output
// to ourselves. Since this is our commitment transaction, we'll need
// to wait a time delay before we can sweep the output.
//
// NOTE: If our commitment delivery output is below the dust limit,
// then this will be nil.
CommitResolution *CommitOutputResolution
// HtlcResolutions contains all the data required to sweep any outgoing
// HTLC's and incoming HTLc's we know the preimage to. For each of these
// HTLC's, we'll need to go to the second level to sweep them fully.
HtlcResolutions *HtlcResolutions
// ChanSnapshot is a snapshot of the final state of the channel at the
// time the summary was created.
ChanSnapshot channeldb.ChannelSnapshot
// AnchorResolution contains the data required to sweep the anchor
// output. If the channel type doesn't include anchors, the value of
// this field will be nil.
AnchorResolution *AnchorResolution
}
// ForceClose executes a unilateral closure of the transaction at the current
// lowest commitment height of the channel. Following a force closure, all
// state transitions, or modifications to the state update logs will be
// rejected. Additionally, this function also returns a LocalForceCloseSummary
// which includes the necessary details required to sweep all the time-locked
// outputs within the commitment transaction.
//
// TODO(roasbeef): all methods need to abort if in dispute state
// TODO(roasbeef): method to generate CloseSummaries for when the remote peer
// does a unilateral close
func (lc *LightningChannel) ForceClose() (*LocalForceCloseSummary, error) {
lc.Lock()
defer lc.Unlock()
// If we've detected local data loss for this channel, then we won't
// allow a force close, as it may be the case that we have a dated
// version of the commitment, or this is actually a channel shell.
if lc.channelState.HasChanStatus(channeldb.ChanStatusLocalDataLoss) {
return nil, fmt.Errorf("cannot force close channel with "+
"state: %v", lc.channelState.ChanStatus())
}
commitTx, err := lc.getSignedCommitTx()
if err != nil {
return nil, err
}
localCommitment := lc.channelState.LocalCommitment
summary, err := NewLocalForceCloseSummary(
lc.channelState, lc.Signer, commitTx,
localCommitment,
)
if err != nil {
return nil, err
}
// Set the channel state to indicate that the channel is now in a
// contested state.
lc.status = channelDispute
return summary, nil
}
// NewLocalForceCloseSummary generates a LocalForceCloseSummary from the given
// channel state. The passed commitTx must be a fully signed commitment
// transaction corresponding to localCommit.
func NewLocalForceCloseSummary(chanState *channeldb.OpenChannel, signer input.Signer,
commitTx *wire.MsgTx, localCommit channeldb.ChannelCommitment) (
*LocalForceCloseSummary, error) {
// Re-derive the original pkScript for to-self output within the
// commitment transaction. We'll need this to find the corresponding
// output in the commitment transaction and potentially for creating
// the sign descriptor.
csvTimeout := uint32(chanState.LocalChanCfg.CsvDelay)
revocation, err := chanState.RevocationProducer.AtIndex(
localCommit.CommitHeight,
)
if err != nil {
return nil, err
}
commitPoint := input.ComputeCommitmentPoint(revocation[:])
keyRing := DeriveCommitmentKeys(
commitPoint, true, chanState.ChanType,
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
selfScript, err := input.CommitScriptToSelf(
csvTimeout, keyRing.ToLocalKey, keyRing.RevocationKey,
)
if err != nil {
return nil, err
}
payToUsScriptHash, err := input.WitnessScriptHash(selfScript)
if err != nil {
return nil, err
}
// Locate the output index of the delayed commitment output back to us.
// We'll return the details of this output to the caller so they can
// sweep it once it's mature.
var (
delayIndex uint32
delayScript []byte
)
for i, txOut := range commitTx.TxOut {
if !bytes.Equal(payToUsScriptHash, txOut.PkScript) {
continue
}
delayIndex = uint32(i)
delayScript = txOut.PkScript
break
}
// With the necessary information gathered above, create a new sign
// descriptor which is capable of generating the signature the caller
// needs to sweep this output. The hash cache, and input index are not
// set as the caller will decide these values once sweeping the output.
// If the output is non-existent (dust), have the sign descriptor be
// nil.
var commitResolution *CommitOutputResolution
if len(delayScript) != 0 {
localBalance := localCommit.LocalBalance
commitResolution = &CommitOutputResolution{
SelfOutPoint: wire.OutPoint{
Hash: commitTx.TxHash(),
Index: delayIndex,
},
SelfOutputSignDesc: input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.DelayBasePoint,
SingleTweak: keyRing.LocalCommitKeyTweak,
WitnessScript: selfScript,
Output: &wire.TxOut{
PkScript: delayScript,
Value: int64(localBalance.ToSatoshis()),
},
HashType: txscript.SigHashAll,
},
MaturityDelay: csvTimeout,
}
}
// Once the delay output has been found (if it exists), then we'll also
// need to create a series of sign descriptors for any lingering
// outgoing HTLC's that we'll need to claim as well.
txHash := commitTx.TxHash()
htlcResolutions, err := extractHtlcResolutions(
chainfee.SatPerKWeight(localCommit.FeePerKw), true, signer,
localCommit.Htlcs, keyRing, &chanState.LocalChanCfg,
&chanState.RemoteChanCfg, txHash, chanState.ChanType,
)
if err != nil {
return nil, err
}
anchorResolution, err := NewAnchorResolution(
chanState, commitTx,
)
if err != nil {
return nil, err
}
return &LocalForceCloseSummary{
ChanPoint: chanState.FundingOutpoint,
CloseTx: commitTx,
CommitResolution: commitResolution,
HtlcResolutions: htlcResolutions,
ChanSnapshot: *chanState.Snapshot(),
AnchorResolution: anchorResolution,
}, nil
}
// CreateCloseProposal is used by both parties in a cooperative channel close
// workflow to generate proposed close transactions and signatures. This method
// should only be executed once all pending HTLCs (if any) on the channel have
// been cleared/removed. Upon completion, the source channel will shift into
// the "closing" state, which indicates that all incoming/outgoing HTLC
// requests should be rejected. A signature for the closing transaction is
// returned.
//
// TODO(roasbeef): caller should initiate signal to reject all incoming HTLCs,
// settle any in flight.
func (lc *LightningChannel) CreateCloseProposal(proposedFee btcutil.Amount,
localDeliveryScript []byte,
remoteDeliveryScript []byte) (input.Signature, *chainhash.Hash,
btcutil.Amount, error) {
lc.Lock()
defer lc.Unlock()
// If we've already closed the channel, then ignore this request.
if lc.status == channelClosed {
// TODO(roasbeef): check to ensure no pending payments
return nil, nil, 0, ErrChanClosing
}
// Get the final balances after subtracting the proposed fee, taking
// care not to persist the adjusted balance, as the feeRate may change
// during the channel closing process.
ourBalance, theirBalance, err := CoopCloseBalance(
lc.channelState.ChanType, lc.channelState.IsInitiator,
proposedFee, lc.channelState.LocalCommitment,
)
if err != nil {
return nil, nil, 0, err
}
closeTx := CreateCooperativeCloseTx(
fundingTxIn(lc.channelState), lc.channelState.LocalChanCfg.DustLimit,
lc.channelState.RemoteChanCfg.DustLimit, ourBalance, theirBalance,
localDeliveryScript, remoteDeliveryScript,
)
// Ensure that the transaction doesn't explicitly violate any
// consensus rules such as being too big, or having any value with a
// negative output.
tx := btcutil.NewTx(closeTx)
if err := blockchain.CheckTransactionSanity(tx); err != nil {
return nil, nil, 0, err
}
// Finally, sign the completed cooperative closure transaction. As the
// initiator we'll simply send our signature over to the remote party,
// using the generated txid to be notified once the closure transaction
// has been confirmed.
lc.signDesc.SigHashes = txscript.NewTxSigHashes(closeTx)
sig, err := lc.Signer.SignOutputRaw(closeTx, lc.signDesc)
if err != nil {
return nil, nil, 0, err
}
// As everything checks out, indicate in the channel status that a
// channel closure has been initiated.
lc.status = channelClosing
closeTXID := closeTx.TxHash()
return sig, &closeTXID, ourBalance, nil
}
// CompleteCooperativeClose completes the cooperative closure of the target
// active lightning channel. A fully signed closure transaction as well as the
// signature itself are returned. Additionally, we also return our final
// settled balance, which reflects any fees we may have paid.
//
// NOTE: The passed local and remote sigs are expected to be fully complete
// signatures including the proper sighash byte.
func (lc *LightningChannel) CompleteCooperativeClose(
localSig, remoteSig input.Signature,
localDeliveryScript, remoteDeliveryScript []byte,
proposedFee btcutil.Amount) (*wire.MsgTx, btcutil.Amount, error) {
lc.Lock()
defer lc.Unlock()
// If the channel is already closed, then ignore this request.
if lc.status == channelClosed {
// TODO(roasbeef): check to ensure no pending payments
return nil, 0, ErrChanClosing
}
// Get the final balances after subtracting the proposed fee.
ourBalance, theirBalance, err := CoopCloseBalance(
lc.channelState.ChanType, lc.channelState.IsInitiator,
proposedFee, lc.channelState.LocalCommitment,
)
if err != nil {
return nil, 0, err
}
// Create the transaction used to return the current settled balance
// on this active channel back to both parties. In this current model,
// the initiator pays full fees for the cooperative close transaction.
closeTx := CreateCooperativeCloseTx(
fundingTxIn(lc.channelState), lc.channelState.LocalChanCfg.DustLimit,
lc.channelState.RemoteChanCfg.DustLimit, ourBalance, theirBalance,
localDeliveryScript, remoteDeliveryScript,
)
// Ensure that the transaction doesn't explicitly validate any
// consensus rules such as being too big, or having any value with a
// negative output.
tx := btcutil.NewTx(closeTx)
if err := blockchain.CheckTransactionSanity(tx); err != nil {
return nil, 0, err
}
hashCache := txscript.NewTxSigHashes(closeTx)
// Finally, construct the witness stack minding the order of the
// pubkeys+sigs on the stack.
ourKey := lc.channelState.LocalChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
theirKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
witness := input.SpendMultiSig(
lc.signDesc.WitnessScript, ourKey, localSig, theirKey,
remoteSig,
)
closeTx.TxIn[0].Witness = witness
// Validate the finalized transaction to ensure the output script is
// properly met, and that the remote peer supplied a valid signature.
prevOut := lc.signDesc.Output
vm, err := txscript.NewEngine(prevOut.PkScript, closeTx, 0,
txscript.StandardVerifyFlags, nil, hashCache, prevOut.Value)
if err != nil {
return nil, 0, err
}
if err := vm.Execute(); err != nil {
return nil, 0, err
}
// As the transaction is sane, and the scripts are valid we'll mark the
// channel now as closed as the closure transaction should get into the
// chain in a timely manner and possibly be re-broadcast by the wallet.
lc.status = channelClosed
return closeTx, ourBalance, nil
}
// NewAnchorResolutions returns the anchor resolutions for all currently valid
// commitment transactions. Because we have no view on the mempool, we can only
// blindly anchor all of these txes down.
func (lc *LightningChannel) NewAnchorResolutions() ([]*AnchorResolution,
error) {
lc.Lock()
defer lc.Unlock()
var resolutions []*AnchorResolution
// Add anchor for local commitment tx, if any.
localRes, err := NewAnchorResolution(
lc.channelState, lc.channelState.LocalCommitment.CommitTx,
)
if err != nil {
return nil, err
}
if localRes != nil {
resolutions = append(resolutions, localRes)
}
// Add anchor for remote commitment tx, if any.
remoteRes, err := NewAnchorResolution(
lc.channelState, lc.channelState.RemoteCommitment.CommitTx,
)
if err != nil {
return nil, err
}
if remoteRes != nil {
resolutions = append(resolutions, remoteRes)
}
// Add anchor for remote pending commitment tx, if any.
remotePendingCommit, err := lc.channelState.RemoteCommitChainTip()
if err != nil && err != channeldb.ErrNoPendingCommit {
return nil, err
}
if remotePendingCommit != nil {
remotePendingRes, err := NewAnchorResolution(
lc.channelState,
remotePendingCommit.Commitment.CommitTx,
)
if err != nil {
return nil, err
}
if remotePendingRes != nil {
resolutions = append(resolutions, remotePendingRes)
}
}
return resolutions, nil
}
// NewAnchorResolution returns the information that is required to sweep the
// local anchor.
func NewAnchorResolution(chanState *channeldb.OpenChannel,
commitTx *wire.MsgTx) (*AnchorResolution, error) {
// Return nil resolution if the channel has no anchors.
if !chanState.ChanType.HasAnchors() {
return nil, nil
}
// Derive our local anchor script.
localAnchor, _, err := CommitScriptAnchors(
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
if err != nil {
return nil, err
}
// Look up the script on the commitment transaction. It may not be
// present if there is no output paying to us.
found, index := input.FindScriptOutputIndex(commitTx, localAnchor.PkScript)
if !found {
return nil, nil
}
outPoint := &wire.OutPoint{
Hash: commitTx.TxHash(),
Index: index,
}
// Instantiate the sign descriptor that allows sweeping of the anchor.
signDesc := &input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.MultiSigKey,
WitnessScript: localAnchor.WitnessScript,
Output: &wire.TxOut{
PkScript: localAnchor.PkScript,
Value: int64(anchorSize),
},
HashType: txscript.SigHashAll,
}
return &AnchorResolution{
CommitAnchor: *outPoint,
AnchorSignDescriptor: *signDesc,
}, nil
}
// AvailableBalance returns the current balance available for sending within
// the channel. By available balance, we mean that if at this very instance a
// new commitment were to be created which evals all the log entries, what
// would our available balance for adding an additional HTLC be. It takes into
// account the fee that must be paid for adding this HTLC (if we're the
// initiator), and that we cannot spend from the channel reserve. This method
// is useful when deciding if a given channel can accept an HTLC in the
// multi-hop forwarding scenario.
func (lc *LightningChannel) AvailableBalance() lnwire.MilliSatoshi {
lc.RLock()
defer lc.RUnlock()
bal, _ := lc.availableBalance()
return bal
}
// availableBalance is the private, non mutexed version of AvailableBalance.
// This method is provided so methods that already hold the lock can access
// this method. Additionally, the total weight of the next to be created
// commitment is returned for accounting purposes.
func (lc *LightningChannel) availableBalance() (lnwire.MilliSatoshi, int64) {
// We'll grab the current set of log updates that the remote has
// ACKed.
remoteACKedIndex := lc.localCommitChain.tip().theirMessageIndex
htlcView := lc.fetchHTLCView(remoteACKedIndex,
lc.localUpdateLog.logIndex)
// Calculate our available balance from our local commitment.
// TODO(halseth): could reuse parts validateCommitmentSanity to do this
// balance calculation, as most of the logic is the same.
//
// NOTE: This is not always accurate, since the remote node can always
// add updates concurrently, causing our balance to go down if we're
// the initiator, but this is a problem on the protocol level.
ourLocalCommitBalance, commitWeight := lc.availableCommitmentBalance(
htlcView, false,
)
// Do the same calculation from the remote commitment point of view.
ourRemoteCommitBalance, _ := lc.availableCommitmentBalance(
htlcView, true,
)
// Return which ever balance is lowest.
if ourRemoteCommitBalance < ourLocalCommitBalance {
return ourRemoteCommitBalance, commitWeight
}
return ourLocalCommitBalance, commitWeight
}
// availableCommitmentBalance attempts to calculate the balance we have
// available for HTLCs on the local/remote commitment given the htlcView. To
// account for sending HTLCs of different sizes, it will report the balance
// available for sending non-dust HTLCs, which will be manifested on the
// commitment, increasing the commitment fee we must pay as an initiator,
// eating into our balance. It will make sure we won't violate the channel
// reserve constraints for this amount.
func (lc *LightningChannel) availableCommitmentBalance(view *htlcView,
remoteChain bool) (lnwire.MilliSatoshi, int64) {
// Compute the current balances for this commitment. This will take
// into account HTLCs to determine the commit weight, which the
// initiator must pay the fee for.
ourBalance, theirBalance, commitWeight, filteredView, err := lc.computeView(
view, remoteChain, false,
)
if err != nil {
lc.log.Errorf("Unable to fetch available balance: %v", err)
return 0, 0
}
// We can never spend from the channel reserve, so we'll subtract it
// from our available balance.
ourReserve := lnwire.NewMSatFromSatoshis(
lc.channelState.LocalChanCfg.ChanReserve,
)
if ourReserve <= ourBalance {
ourBalance -= ourReserve
} else {
ourBalance = 0
}
// Calculate the commitment fee in the case where we would add another
// HTLC to the commitment, as only the balance remaining after this fee
// has been paid is actually available for sending.
feePerKw := filteredView.feePerKw
htlcCommitFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(commitWeight + input.HTLCWeight),
)
// If we are the channel initiator, we must to subtract this commitment
// fee from our available balance in order to ensure we can afford both
// the value of the HTLC and the additional commitment fee from adding
// the HTLC.
if lc.channelState.IsInitiator {
// There is an edge case where our non-zero balance is lower
// than the htlcCommitFee, where we could still be sending dust
// HTLCs, but we return 0 in this case. This is to avoid
// lowering our balance even further, as this takes us into a
// bad state wehere neither we nor our channel counterparty can
// add HTLCs.
if ourBalance < htlcCommitFee {
return 0, commitWeight
}
return ourBalance - htlcCommitFee, commitWeight
}
// If we're not the initiator, we must check whether the remote has
// enough balance to pay for the fee of our HTLC. We'll start by also
// subtracting our counterparty's reserve from their balance.
theirReserve := lnwire.NewMSatFromSatoshis(
lc.channelState.RemoteChanCfg.ChanReserve,
)
if theirReserve <= theirBalance {
theirBalance -= theirReserve
} else {
theirBalance = 0
}
// We'll use the dustlimit and htlcFee to find the largest HTLC value
// that will be considered dust on the commitment.
dustlimit := lnwire.NewMSatFromSatoshis(
lc.channelState.LocalChanCfg.DustLimit,
)
// For an extra HTLC fee to be paid on our commitment, the HTLC must be
// large enough to make a non-dust HTLC timeout transaction.
htlcFee := lnwire.NewMSatFromSatoshis(
HtlcTimeoutFee(lc.channelState.ChanType, feePerKw),
)
// If we are looking at the remote commitment, we must use the remote
// dust limit and the fee for adding an HTLC success transaction.
if remoteChain {
dustlimit = lnwire.NewMSatFromSatoshis(
lc.channelState.RemoteChanCfg.DustLimit,
)
htlcFee = lnwire.NewMSatFromSatoshis(
HtlcSuccessFee(lc.channelState.ChanType, feePerKw),
)
}
// The HTLC output will be manifested on the commitment if it
// is non-dust after paying the HTLC fee.
nonDustHtlcAmt := dustlimit + htlcFee
// If they cannot pay the fee if we add another non-dust HTLC, we'll
// report our available balance just below the non-dust amount, to
// avoid attempting HTLCs larger than this size.
if theirBalance < htlcCommitFee && ourBalance >= nonDustHtlcAmt {
ourBalance = nonDustHtlcAmt - 1
}
return ourBalance, commitWeight
}
// StateSnapshot returns a snapshot of the current fully committed state within
// the channel.
func (lc *LightningChannel) StateSnapshot() *channeldb.ChannelSnapshot {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.Snapshot()
}
// validateFeeRate ensures that if the passed fee is applied to the channel,
// and a new commitment is created (which evaluates this fee), then the
// initiator of the channel does not dip below their reserve.
func (lc *LightningChannel) validateFeeRate(feePerKw chainfee.SatPerKWeight) error {
// We'll ensure that we can accommodate this new fee change, yet still
// be above our reserve balance. Otherwise, we'll reject the fee
// update.
availableBalance, txWeight := lc.availableBalance()
oldFee := lnwire.NewMSatFromSatoshis(lc.localCommitChain.tip().fee)
// Our base balance is the total amount of satoshis we can commit
// towards fees before factoring in the channel reserve.
baseBalance := availableBalance + oldFee
// Using the weight of the commitment transaction if we were to create
// a commitment now, we'll compute our remaining balance if we apply
// this new fee update.
newFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(txWeight),
)
// If the total fee exceeds our available balance (taking into account
// the fee from the last state), then we'll reject this update as it
// would mean we need to trim our entire output.
if newFee > baseBalance {
return fmt.Errorf("cannot apply fee_update=%v sat/kw, new fee "+
"of %v is greater than balance of %v", int64(feePerKw),
newFee, baseBalance)
}
// If this new balance is below our reserve, then we can't accommodate
// the fee change, so we'll reject it.
balanceAfterFee := baseBalance - newFee
if balanceAfterFee.ToSatoshis() < lc.channelState.LocalChanCfg.ChanReserve {
return fmt.Errorf("cannot apply fee_update=%v sat/kw, "+
"new balance=%v would dip below channel reserve=%v",
int64(feePerKw),
balanceAfterFee.ToSatoshis(),
lc.channelState.LocalChanCfg.ChanReserve)
}
// TODO(halseth): should fail if fee update is unreasonable,
// as specified in BOLT#2.
// * COMMENT(roasbeef): can cross-check with our ideal fee rate
return nil
}
// UpdateFee initiates a fee update for this channel. Must only be called by
// the channel initiator, and must be called before sending update_fee to
// the remote.
func (lc *LightningChannel) UpdateFee(feePerKw chainfee.SatPerKWeight) error {
lc.Lock()
defer lc.Unlock()
// Only initiator can send fee update, so trying to send one as
// non-initiator will fail.
if !lc.channelState.IsInitiator {
return fmt.Errorf("local fee update as non-initiator")
}
// Ensure that the passed fee rate meets our current requirements.
if err := lc.validateFeeRate(feePerKw); err != nil {
return err
}
pd := &PaymentDescriptor{
LogIndex: lc.localUpdateLog.logIndex,
Amount: lnwire.NewMSatFromSatoshis(btcutil.Amount(feePerKw)),
EntryType: FeeUpdate,
}
lc.localUpdateLog.appendUpdate(pd)
return nil
}
// ReceiveUpdateFee handles an updated fee sent from remote. This method will
// return an error if called as channel initiator.
func (lc *LightningChannel) ReceiveUpdateFee(feePerKw chainfee.SatPerKWeight) error {
lc.Lock()
defer lc.Unlock()
// Only initiator can send fee update, and we must fail if we receive
// fee update as initiator
if lc.channelState.IsInitiator {
return fmt.Errorf("received fee update as initiator")
}
// TODO(roasbeef): or just modify to use the other balance?
pd := &PaymentDescriptor{
LogIndex: lc.remoteUpdateLog.logIndex,
Amount: lnwire.NewMSatFromSatoshis(btcutil.Amount(feePerKw)),
EntryType: FeeUpdate,
}
lc.remoteUpdateLog.appendUpdate(pd)
return nil
}
// generateRevocation generates the revocation message for a given height.
func (lc *LightningChannel) generateRevocation(height uint64) (*lnwire.RevokeAndAck,
error) {
// Now that we've accept a new state transition, we send the remote
// party the revocation for our current commitment state.
revocationMsg := &lnwire.RevokeAndAck{}
commitSecret, err := lc.channelState.RevocationProducer.AtIndex(height)
if err != nil {
return nil, err
}
copy(revocationMsg.Revocation[:], commitSecret[:])
// Along with this revocation, we'll also send the _next_ commitment
// point that the remote party should use to create our next commitment
// transaction. We use a +2 here as we already gave them a look ahead
// of size one after the FundingLocked message was sent:
//
// 0: current revocation, 1: their "next" revocation, 2: this revocation
//
// We're revoking the current revocation. Once they receive this
// message they'll set the "current" revocation for us to their stored
// "next" revocation, and this revocation will become their new "next"
// revocation.
//
// Put simply in the window slides to the left by one.
nextCommitSecret, err := lc.channelState.RevocationProducer.AtIndex(
height + 2,
)
if err != nil {
return nil, err
}
revocationMsg.NextRevocationKey = input.ComputeCommitmentPoint(nextCommitSecret[:])
revocationMsg.ChanID = lnwire.NewChanIDFromOutPoint(
&lc.channelState.FundingOutpoint)
return revocationMsg, nil
}
// CreateCooperativeCloseTx creates a transaction which if signed by both
// parties, then broadcast cooperatively closes an active channel. The creation
// of the closure transaction is modified by a boolean indicating if the party
// constructing the channel is the initiator of the closure. Currently it is
// expected that the initiator pays the transaction fees for the closing
// transaction in full.
func CreateCooperativeCloseTx(fundingTxIn wire.TxIn,
localDust, remoteDust, ourBalance, theirBalance btcutil.Amount,
ourDeliveryScript, theirDeliveryScript []byte) *wire.MsgTx {
// Construct the transaction to perform a cooperative closure of the
// channel. In the event that one side doesn't have any settled funds
// within the channel then a refund output for that particular side can
// be omitted.
closeTx := wire.NewMsgTx(2)
closeTx.AddTxIn(&fundingTxIn)
// Create both cooperative closure outputs, properly respecting the
// dust limits of both parties.
if ourBalance >= localDust {
closeTx.AddTxOut(&wire.TxOut{
PkScript: ourDeliveryScript,
Value: int64(ourBalance),
})
}
if theirBalance >= remoteDust {
closeTx.AddTxOut(&wire.TxOut{
PkScript: theirDeliveryScript,
Value: int64(theirBalance),
})
}
txsort.InPlaceSort(closeTx)
return closeTx
}
// CalcFee returns the commitment fee to use for the given
// fee rate (fee-per-kw).
func (lc *LightningChannel) CalcFee(feeRate chainfee.SatPerKWeight) btcutil.Amount {
return feeRate.FeeForWeight(CommitWeight(lc.channelState.ChanType))
}
// MaxFeeRate returns the maximum fee rate given an allocation of the channel
// initiator's spendable balance. This can be useful to determine when we should
// stop proposing fee updates that exceed our maximum allocation.
//
// NOTE: This should only be used for channels in which the local commitment is
// the initiator.
func (lc *LightningChannel) MaxFeeRate(maxAllocation float64) chainfee.SatPerKWeight {
lc.RLock()
defer lc.RUnlock()
// The maximum fee depends of the available balance that can be
// committed towards fees.
commit := lc.channelState.LocalCommitment
feeBalance := float64(
commit.LocalBalance.ToSatoshis() + commit.CommitFee,
)
maxFee := feeBalance * maxAllocation
// Ensure the fee rate doesn't dip below the fee floor.
_, weight := lc.availableBalance()
maxFeeRate := maxFee / (float64(weight) / 1000)
return chainfee.SatPerKWeight(
math.Max(maxFeeRate, float64(chainfee.FeePerKwFloor)),
)
}
// RemoteNextRevocation returns the channelState's RemoteNextRevocation.
func (lc *LightningChannel) RemoteNextRevocation() *btcec.PublicKey {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.RemoteNextRevocation
}
// IsInitiator returns true if we were the ones that initiated the funding
// workflow which led to the creation of this channel. Otherwise, it returns
// false.
func (lc *LightningChannel) IsInitiator() bool {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.IsInitiator
}
// CommitFeeRate returns the current fee rate of the commitment transaction in
// units of sat-per-kw.
func (lc *LightningChannel) CommitFeeRate() chainfee.SatPerKWeight {
lc.RLock()
defer lc.RUnlock()
return chainfee.SatPerKWeight(lc.channelState.LocalCommitment.FeePerKw)
}
// IsPending returns true if the channel's funding transaction has been fully
// confirmed, and false otherwise.
func (lc *LightningChannel) IsPending() bool {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.IsPending
}
// State provides access to the channel's internal state.
func (lc *LightningChannel) State() *channeldb.OpenChannel {
return lc.channelState
}
// MarkBorked marks the event when the channel as reached an irreconcilable
// state, such as a channel breach or state desynchronization. Borked channels
// should never be added to the switch.
func (lc *LightningChannel) MarkBorked() error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkBorked()
}
// MarkCommitmentBroadcasted marks the channel as a commitment transaction has
// been broadcast, either our own or the remote, and we should watch the chain
// for it to confirm before taking any further action. It takes a boolean which
// indicates whether we initiated the close.
func (lc *LightningChannel) MarkCommitmentBroadcasted(tx *wire.MsgTx,
locallyInitiated bool) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkCommitmentBroadcasted(tx, locallyInitiated)
}
// MarkCoopBroadcasted marks the channel as a cooperative close transaction has
// been broadcast, and that we should watch the chain for it to confirm before
// taking any further action. It takes a locally initiated bool which is true
// if we initiated the cooperative close.
func (lc *LightningChannel) MarkCoopBroadcasted(tx *wire.MsgTx,
localInitiated bool) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkCoopBroadcasted(tx, localInitiated)
}
// MarkDataLoss marks sets the channel status to LocalDataLoss and stores the
// passed commitPoint for use to retrieve funds in case the remote force closes
// the channel.
func (lc *LightningChannel) MarkDataLoss(commitPoint *btcec.PublicKey) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkDataLoss(commitPoint)
}
// ActiveHtlcs returns a slice of HTLC's which are currently active on *both*
// commitment transactions.
func (lc *LightningChannel) ActiveHtlcs() []channeldb.HTLC {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.ActiveHtlcs()
}
// LocalChanReserve returns our local ChanReserve requirement for the remote party.
func (lc *LightningChannel) LocalChanReserve() btcutil.Amount {
return lc.channelState.LocalChanCfg.ChanReserve
}
// NextLocalHtlcIndex returns the next unallocated local htlc index. To ensure
// this always returns the next index that has been not been allocated, this
// will first try to examine any pending commitments, before falling back to the
// last locked-in local commitment.
func (lc *LightningChannel) NextLocalHtlcIndex() (uint64, error) {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.NextLocalHtlcIndex()
}
// FwdMinHtlc returns the minimum HTLC value required by the remote node, i.e.
// the minimum value HTLC we can forward on this channel.
func (lc *LightningChannel) FwdMinHtlc() lnwire.MilliSatoshi {
return lc.channelState.LocalChanCfg.MinHTLC
}
// unsignedLocalUpdates retrieves the unsigned local updates that we should
// store upon receiving a revocation. This function is called from
// ReceiveRevocation. remoteMessageIndex is the height into the local update
// log that the remote commitment chain tip includes. localMessageIndex
// is the height into the local update log that the local commitment tail
// includes. Our local updates that are unsigned by the remote should
// have height greater than or equal to localMessageIndex (not on our commit),
// and height less than remoteMessageIndex (on the remote commit).
//
// NOTE: remoteMessageIndex is the height on the tip because this is called
// before the tail is advanced to the tip during ReceiveRevocation.
func (lc *LightningChannel) unsignedLocalUpdates(remoteMessageIndex,
localMessageIndex uint64, chanID lnwire.ChannelID) []channeldb.LogUpdate {
var localPeerUpdates []channeldb.LogUpdate
for e := lc.localUpdateLog.Front(); e != nil; e = e.Next() {
pd := e.Value.(*PaymentDescriptor)
// We don't save add updates as they are restored from the
// remote commitment in restoreStateLogs.
if pd.EntryType == Add {
continue
}
// This is a settle/fail that is on the remote commitment, but
// not on the local commitment. We expect this update to be
// covered in the next commitment signature that the remote
// sends.
if pd.LogIndex < remoteMessageIndex && pd.LogIndex >= localMessageIndex {
logUpdate := channeldb.LogUpdate{
LogIndex: pd.LogIndex,
}
switch pd.EntryType {
case FeeUpdate:
logUpdate.UpdateMsg = &lnwire.UpdateFee{
ChanID: chanID,
FeePerKw: uint32(pd.Amount.ToSatoshis()),
}
case Settle:
logUpdate.UpdateMsg = &lnwire.UpdateFulfillHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
PaymentPreimage: pd.RPreimage,
}
case Fail:
logUpdate.UpdateMsg = &lnwire.UpdateFailHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
Reason: pd.FailReason,
}
case MalformedFail:
logUpdate.UpdateMsg = &lnwire.UpdateFailMalformedHTLC{
ChanID: chanID,
ID: pd.ParentIndex,
ShaOnionBlob: pd.ShaOnionBlob,
FailureCode: pd.FailCode,
}
}
localPeerUpdates = append(localPeerUpdates, logUpdate)
}
}
return localPeerUpdates
}