lnd.xprv/lnwallet/interface_test.go
Conner Fromknecht 600ab9d149
lnwallet/interface_test: extend publish timeout
This commit extends the amount of time we wait
for transaction to enter the mempool from
10 to 30 seconds. The wallet's interface tests
seem to be particularly slow when run with the
race flag, a problem which is only exacerbated
by the slowness of travis.

With 10s and the race flag, I was able to repro
the issues locally fairly consistently.
2018-03-12 13:52:16 -07:00

2230 lines
68 KiB
Go

package lnwallet_test
import (
"bytes"
"encoding/hex"
"fmt"
"io/ioutil"
"math/rand"
"net"
"os"
"os/exec"
"path/filepath"
"reflect"
"runtime"
"strings"
"testing"
"time"
"github.com/coreos/bbolt"
"github.com/davecgh/go-spew/spew"
"github.com/lightninglabs/neutrino"
"github.com/roasbeef/btcwallet/chain"
"github.com/roasbeef/btcwallet/walletdb"
_ "github.com/roasbeef/btcwallet/walletdb/bdb"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/chainntnfs/btcdnotify"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/btcwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcjson"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/rpcclient"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/integration/rpctest"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
var (
privPass = []byte("private-test")
// For simplicity a single priv key controls all of our test outputs.
testWalletPrivKey = []byte{
0x2b, 0xd8, 0x06, 0xc9, 0x7f, 0x0e, 0x00, 0xaf,
0x1a, 0x1f, 0xc3, 0x32, 0x8f, 0xa7, 0x63, 0xa9,
0x26, 0x97, 0x23, 0xc8, 0xdb, 0x8f, 0xac, 0x4f,
0x93, 0xaf, 0x71, 0xdb, 0x18, 0x6d, 0x6e, 0x90,
}
bobsPrivKey = []byte{
0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
}
// Use a hard-coded HD seed.
testHdSeed = chainhash.Hash{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
aliceHDSeed = chainhash.Hash{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x18, 0xa3, 0xef, 0xb9,
0x64, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
bobHDSeed = chainhash.Hash{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x98, 0xa3, 0xef, 0xb9,
0x69, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
netParams = &chaincfg.RegressionNetParams
chainHash = netParams.GenesisHash
_, alicePub = btcec.PrivKeyFromBytes(btcec.S256(), testHdSeed[:])
_, bobPub = btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)
// The number of confirmations required to consider any created channel
// open.
numReqConfs uint16 = 1
csvDelay uint16 = 4
bobAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9000")
aliceAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.3:9000")
)
// assertProperBalance asserts than the total value of the unspent outputs
// within the wallet are *exactly* amount. If unable to retrieve the current
// balance, or the assertion fails, the test will halt with a fatal error.
func assertProperBalance(t *testing.T, lw *lnwallet.LightningWallet, numConfirms int32, amount int64) {
balance, err := lw.ConfirmedBalance(numConfirms)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
if balance != btcutil.Amount(amount*1e8) {
t.Fatalf("wallet credits not properly loaded, should have 40BTC, "+
"instead have %v", balance)
}
}
func assertChannelOpen(t *testing.T, miner *rpctest.Harness, numConfs uint32,
c <-chan *lnwallet.LightningChannel) *lnwallet.LightningChannel {
// Mine a single block. After this block is mined, the channel should
// be considered fully open.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
select {
case lnc := <-c:
return lnc
case <-time.After(time.Second * 5):
t.Fatalf("channel never opened")
return nil
}
}
func assertReservationDeleted(res *lnwallet.ChannelReservation, t *testing.T) {
if err := res.Cancel(); err == nil {
t.Fatalf("reservation wasn't deleted from wallet")
}
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
// TODO(bvu): Refactor when dynamic fee estimation is added.
func calcStaticFee(numHTLCs int) btcutil.Amount {
const (
commitWeight = btcutil.Amount(724)
htlcWeight = 172
feePerKw = btcutil.Amount(250/4) * 1000
)
return feePerKw * (commitWeight +
btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}
func loadTestCredits(miner *rpctest.Harness, w *lnwallet.LightningWallet,
numOutputs, btcPerOutput int) error {
// For initial neutrino connection, wait a second.
// TODO(aakselrod): Eliminate the need for this.
switch w.BackEnd() {
case "neutrino":
time.Sleep(time.Second)
}
// Using the mining node, spend from a coinbase output numOutputs to
// give us btcPerOutput with each output.
satoshiPerOutput := int64(btcPerOutput * 1e8)
expectedBalance, err := w.ConfirmedBalance(1)
if err != nil {
return err
}
expectedBalance += btcutil.Amount(satoshiPerOutput * int64(numOutputs))
addrs := make([]btcutil.Address, 0, numOutputs)
for i := 0; i < numOutputs; i++ {
// Grab a fresh address from the wallet to house this output.
walletAddr, err := w.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
return err
}
script, err := txscript.PayToAddrScript(walletAddr)
if err != nil {
return err
}
addrs = append(addrs, walletAddr)
output := &wire.TxOut{
Value: satoshiPerOutput,
PkScript: script,
}
if _, err := miner.SendOutputs([]*wire.TxOut{output}, 10); err != nil {
return err
}
}
// TODO(roasbeef): shouldn't hardcode 10, use config param that dictates
// how many confs we wait before opening a channel.
// Generate 10 blocks with the mining node, this should mine all
// numOutputs transactions created above. We generate 10 blocks here
// in order to give all the outputs a "sufficient" number of confirmations.
if _, err := miner.Node.Generate(10); err != nil {
return err
}
// Wait until the wallet has finished syncing up to the main chain.
ticker := time.NewTicker(100 * time.Millisecond)
timeout := time.After(30 * time.Second)
for range ticker.C {
balance, err := w.ConfirmedBalance(1)
if err != nil {
return err
}
if balance == expectedBalance {
break
}
select {
case <-timeout:
synced, _, err := w.IsSynced()
if err != nil {
return err
}
return fmt.Errorf("timed out after 30 seconds "+
"waiting for balance %v, current balance %v, "+
"synced: %t", expectedBalance, balance, synced)
default:
}
}
ticker.Stop()
return nil
}
// createTestWallet creates a test LightningWallet will a total of 20BTC
// available for funding channels.
func createTestWallet(tempTestDir string, miningNode *rpctest.Harness,
netParams *chaincfg.Params, notifier chainntnfs.ChainNotifier,
wc lnwallet.WalletController, keyRing keychain.SecretKeyRing,
signer lnwallet.Signer, bio lnwallet.BlockChainIO) (*lnwallet.LightningWallet, error) {
dbDir := filepath.Join(tempTestDir, "cdb")
cdb, err := channeldb.Open(dbDir)
if err != nil {
return nil, err
}
cfg := lnwallet.Config{
Database: cdb,
Notifier: notifier,
SecretKeyRing: keyRing,
WalletController: wc,
Signer: signer,
ChainIO: bio,
FeeEstimator: lnwallet.StaticFeeEstimator{FeeRate: 10},
DefaultConstraints: channeldb.ChannelConstraints{
DustLimit: 500,
MaxPendingAmount: lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) * 100,
ChanReserve: 100,
MinHTLC: 400,
MaxAcceptedHtlcs: 900,
},
NetParams: *netParams,
}
wallet, err := lnwallet.NewLightningWallet(cfg)
if err != nil {
return nil, err
}
if err := wallet.Startup(); err != nil {
return nil, err
}
// Load our test wallet with 20 outputs each holding 4BTC.
if err := loadTestCredits(miningNode, wallet, 20, 4); err != nil {
return nil, err
}
return wallet, nil
}
func testDualFundingReservationWorkflow(miner *rpctest.Harness,
alice, bob *lnwallet.LightningWallet, t *testing.T) {
const fundingAmount = btcutil.Amount(5 * 1e8)
// In this scenario, we'll test a dual funder reservation, with each
// side putting in 10 BTC.
// Alice initiates a channel funded with 5 BTC for each side, so 10 BTC
// total. She also generates 2 BTC in change.
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
aliceChanReservation, err := alice.InitChannelReservation(
fundingAmount*2, fundingAmount, 0, feePerKw, feeRate,
bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to initialize funding reservation: %v", err)
}
aliceChanReservation.SetNumConfsRequired(numReqConfs)
aliceChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmount), 1, 10)
// The channel reservation should now be populated with a multi-sig key
// from our HD chain, a change output with 3 BTC, and 2 outputs
// selected of 4 BTC each. Additionally, the rest of the items needed
// to fulfill a funding contribution should also have been filled in.
aliceContribution := aliceChanReservation.OurContribution()
if len(aliceContribution.Inputs) != 2 {
t.Fatalf("outputs for funding tx not properly selected, have %v "+
"outputs should have 2", len(aliceContribution.Inputs))
}
assertContributionInitPopulated(t, aliceContribution)
// Bob does the same, generating his own contribution. He then also
// receives' Alice's contribution, and consumes that so we can continue
// the funding process.
bobChanReservation, err := bob.InitChannelReservation(fundingAmount*2,
fundingAmount, 0, feePerKw, feeRate, alicePub, aliceAddr,
chainHash, lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("bob unable to init channel reservation: %v", err)
}
bobChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmount), 1, 10)
bobChanReservation.SetNumConfsRequired(numReqConfs)
assertContributionInitPopulated(t, bobChanReservation.OurContribution())
err = bobChanReservation.ProcessContribution(aliceContribution)
if err != nil {
t.Fatalf("bob unable to process alice's contribution: %v", err)
}
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
bobContribution := bobChanReservation.OurContribution()
// Bob then sends over his contribution, which will be consumed by
// Alice. After this phase, Alice should have all the necessary
// material required to craft the funding transaction and commitment
// transactions.
err = aliceChanReservation.ProcessContribution(bobContribution)
if err != nil {
t.Fatalf("alice unable to process bob's contribution: %v", err)
}
assertContributionInitPopulated(t, aliceChanReservation.TheirContribution())
// At this point, all Alice's signatures should be fully populated.
aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures()
if aliceFundingSigs == nil {
t.Fatalf("alice's funding signatures not populated")
}
if aliceCommitSig == nil {
t.Fatalf("alice's commit signatures not populated")
}
// Additionally, Bob's signatures should also be fully populated.
bobFundingSigs, bobCommitSig := bobChanReservation.OurSignatures()
if bobFundingSigs == nil {
t.Fatalf("bob's funding signatures not populated")
}
if bobCommitSig == nil {
t.Fatalf("bob's commit signatures not populated")
}
// To conclude, we'll consume first Alice's signatures with Bob, and
// then the other way around.
_, err = aliceChanReservation.CompleteReservation(
bobFundingSigs, bobCommitSig,
)
if err != nil {
for _, in := range aliceChanReservation.FinalFundingTx().TxIn {
fmt.Println(in.PreviousOutPoint.String())
}
t.Fatalf("unable to consume alice's sigs: %v", err)
}
_, err = bobChanReservation.CompleteReservation(
aliceFundingSigs, aliceCommitSig,
)
if err != nil {
t.Fatalf("unable to consume bob's sigs: %v", err)
}
// At this point, the funding tx should have been populated.
fundingTx := aliceChanReservation.FinalFundingTx()
if fundingTx == nil {
t.Fatalf("funding transaction never created!")
}
// The resulting active channel state should have been persisted to the
// DB.
fundingSha := fundingTx.TxHash()
aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved")
}
if aliceChannels[0].ChanType != channeldb.DualFunder {
t.Fatalf("channel not detected as dual funder")
}
bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved")
}
if bobChannels[0].ChanType != channeldb.DualFunder {
t.Fatalf("channel not detected as dual funder")
}
// Mine a single block, the funding transaction should be included
// within this block.
err = waitForMempoolTx(miner, &fundingSha)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
blockHashes, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := miner.Node.GetBlock(blockHashes[0])
if err != nil {
t.Fatalf("unable to find block: %v", err)
}
if len(block.Transactions) != 2 {
t.Fatalf("funding transaction wasn't mined: %v", err)
}
blockTx := block.Transactions[1]
if blockTx.TxHash() != fundingSha {
t.Fatalf("incorrect transaction was mined")
}
assertReservationDeleted(aliceChanReservation, t)
assertReservationDeleted(bobChanReservation, t)
// Wait for wallets to catch up to prevent issues in subsequent tests.
err = waitForWalletSync(miner, alice)
if err != nil {
t.Fatalf("unable to sync alice: %v", err)
}
err = waitForWalletSync(miner, bob)
if err != nil {
t.Fatalf("unable to sync bob: %v", err)
}
}
func testFundingTransactionLockedOutputs(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// Create a single channel asking for 16 BTC total.
fundingAmount := btcutil.Amount(8 * 1e8)
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
_, err = alice.InitChannelReservation(fundingAmount,
fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel,
)
if err != nil {
t.Fatalf("unable to initialize funding reservation 1: %v", err)
}
// Now attempt to reserve funds for another channel, this time
// requesting 900 BTC. We only have around 64BTC worth of outpoints
// that aren't locked, so this should fail.
amt := btcutil.Amount(900 * 1e8)
failedReservation, err := alice.InitChannelReservation(amt, amt, 0,
feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err == nil {
t.Fatalf("not error returned, should fail on coin selection")
}
if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok {
t.Fatalf("error not coinselect error: %v", err)
}
if failedReservation != nil {
t.Fatalf("reservation should be nil")
}
}
func testFundingCancellationNotEnoughFunds(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
// Create a reservation for 44 BTC.
fundingAmount := btcutil.Amount(44 * 1e8)
chanReservation, err := alice.InitChannelReservation(fundingAmount,
fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to initialize funding reservation: %v", err)
}
// Attempt to create another channel with 44 BTC, this should fail.
_, err = alice.InitChannelReservation(fundingAmount,
fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel,
)
if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok {
t.Fatalf("coin selection succeeded should have insufficient funds: %v",
err)
}
// Now cancel that old reservation.
if err := chanReservation.Cancel(); err != nil {
t.Fatalf("unable to cancel reservation: %v", err)
}
// Those outpoints should no longer be locked.
lockedOutPoints := alice.LockedOutpoints()
if len(lockedOutPoints) != 0 {
t.Fatalf("outpoints still locked")
}
// Reservation ID should no longer be tracked.
numReservations := alice.ActiveReservations()
if len(alice.ActiveReservations()) != 0 {
t.Fatalf("should have 0 reservations, instead have %v",
numReservations)
}
// TODO(roasbeef): create method like Balance that ignores locked
// outpoints, will let us fail early/fast instead of querying and
// attempting coin selection.
// Request to fund a new channel should now succeed.
_, err = alice.InitChannelReservation(fundingAmount, fundingAmount,
0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to initialize funding reservation: %v", err)
}
}
func testCancelNonExistentReservation(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
// Create our own reservation, give it some ID.
res, err := lnwallet.NewChannelReservation(
10000, 10000, feeRate.FeePerKWeight(), alice,
22, 10, &testHdSeed, lnwire.FFAnnounceChannel,
)
if err != nil {
t.Fatalf("unable to create res: %v", err)
}
// Attempt to cancel this reservation. This should fail, we know
// nothing of it.
if err := res.Cancel(); err == nil {
t.Fatalf("cancelled non-existent reservation")
}
}
func testReservationInitiatorBalanceBelowDustCancel(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// We'll attempt to create a new reservation with an extremely high fee
// rate. This should push our balance into the negative and result in a
// failure to create the reservation.
fundingAmount := btcutil.Amount(4 * 1e8)
feePerVSize := lnwallet.SatPerVByte(btcutil.SatoshiPerBitcoin * 4 / 100)
feePerKw := feePerVSize.FeePerKWeight()
_, err := alice.InitChannelReservation(
fundingAmount, fundingAmount, 0, feePerKw, feePerVSize, bobPub,
bobAddr, chainHash, lnwire.FFAnnounceChannel,
)
switch {
case err == nil:
t.Fatalf("initialization should have failed due to " +
"insufficient local amount")
case !strings.Contains(err.Error(), "Funder balance too small"):
t.Fatalf("incorrect error: %v", err)
}
}
func assertContributionInitPopulated(t *testing.T, c *lnwallet.ChannelContribution) {
_, _, line, _ := runtime.Caller(1)
if c.FirstCommitmentPoint == nil {
t.Fatalf("line #%v: commitment point not fond", line)
}
if c.CsvDelay == 0 {
t.Fatalf("line #%v: csv delay not set", line)
}
if c.MultiSigKey.PubKey == nil {
t.Fatalf("line #%v: multi-sig key not set", line)
}
if c.RevocationBasePoint.PubKey == nil {
t.Fatalf("line #%v: revocation key not set", line)
}
if c.PaymentBasePoint.PubKey == nil {
t.Fatalf("line #%v: payment key not set", line)
}
if c.DelayBasePoint.PubKey == nil {
t.Fatalf("line #%v: delay key not set", line)
}
if c.DustLimit == 0 {
t.Fatalf("line #%v: dust limit not set", line)
}
if c.MaxPendingAmount == 0 {
t.Fatalf("line #%v: max pending amt not set", line)
}
if c.ChanReserve == 0 {
t.Fatalf("line #%v: chan reserve not set", line)
}
if c.MinHTLC == 0 {
t.Fatalf("line #%v: min htlc not set", line)
}
if c.MaxAcceptedHtlcs == 0 {
t.Fatalf("line #%v: max accepted htlc's not set", line)
}
}
func testSingleFunderReservationWorkflow(miner *rpctest.Harness,
alice, bob *lnwallet.LightningWallet, t *testing.T) {
// For this scenario, Alice will be the channel initiator while bob
// will act as the responder to the workflow.
// First, Alice will Initialize a reservation for a channel with 4 BTC
// funded solely by us. We'll also initially push 1 BTC of the channel
// towards Bob's side.
fundingAmt := btcutil.Amount(4 * 1e8)
pushAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
aliceChanReservation, err := alice.InitChannelReservation(fundingAmt,
fundingAmt, pushAmt, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to init channel reservation: %v", err)
}
aliceChanReservation.SetNumConfsRequired(numReqConfs)
aliceChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmt), 1, 10)
// Verify all contribution fields have been set properly.
aliceContribution := aliceChanReservation.OurContribution()
if len(aliceContribution.Inputs) < 1 {
t.Fatalf("outputs for funding tx not properly selected, have %v "+
"outputs should at least 1", len(aliceContribution.Inputs))
}
if len(aliceContribution.ChangeOutputs) != 1 {
t.Fatalf("coin selection failed, should have one change outputs, "+
"instead have: %v", len(aliceContribution.ChangeOutputs))
}
assertContributionInitPopulated(t, aliceContribution)
// Next, Bob receives the initial request, generates a corresponding
// reservation initiation, then consume Alice's contribution.
bobChanReservation, err := bob.InitChannelReservation(fundingAmt, 0,
pushAmt, feePerKw, feeRate, alicePub, aliceAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to create bob reservation: %v", err)
}
bobChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmt), 1, 10)
bobChanReservation.SetNumConfsRequired(numReqConfs)
// We'll ensure that Bob's contribution also gets generated properly.
bobContribution := bobChanReservation.OurContribution()
assertContributionInitPopulated(t, bobContribution)
// With his contribution generated, he can now process Alice's
// contribution.
err = bobChanReservation.ProcessSingleContribution(aliceContribution)
if err != nil {
t.Fatalf("bob unable to process alice's contribution: %v", err)
}
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
// Bob will next send over his contribution to Alice, we simulate this
// by having Alice immediately process his contribution.
err = aliceChanReservation.ProcessContribution(bobContribution)
if err != nil {
t.Fatalf("alice unable to process bob's contribution")
}
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
// At this point, Alice should have generated all the signatures
// required for the funding transaction, as well as Alice's commitment
// signature to bob.
aliceRemoteContribution := aliceChanReservation.TheirContribution()
aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures()
if aliceFundingSigs == nil {
t.Fatalf("funding sigs not found")
}
if aliceCommitSig == nil {
t.Fatalf("commitment sig not found")
}
// Additionally, the funding tx and the funding outpoint should have
// been populated.
if aliceChanReservation.FinalFundingTx() == nil {
t.Fatalf("funding transaction never created!")
}
if aliceChanReservation.FundingOutpoint() == nil {
t.Fatalf("funding outpoint never created!")
}
// Their funds should also be filled in.
if len(aliceRemoteContribution.Inputs) != 0 {
t.Fatalf("bob shouldn't have any inputs, instead has %v",
len(aliceRemoteContribution.Inputs))
}
if len(aliceRemoteContribution.ChangeOutputs) != 0 {
t.Fatalf("bob shouldn't have any change outputs, instead "+
"has %v",
aliceRemoteContribution.ChangeOutputs[0].Value)
}
// Next, Alice will send over her signature for Bob's commitment
// transaction, as well as the funding outpoint.
fundingPoint := aliceChanReservation.FundingOutpoint()
_, err = bobChanReservation.CompleteReservationSingle(
fundingPoint, aliceCommitSig,
)
if err != nil {
t.Fatalf("bob unable to consume single reservation: %v", err)
}
// Finally, we'll conclude the reservation process by sending over
// Bob's commitment signature, which is the final thing Alice needs to
// be able to safely broadcast the funding transaction.
_, bobCommitSig := bobChanReservation.OurSignatures()
if bobCommitSig == nil {
t.Fatalf("bob failed to generate commitment signature: %v", err)
}
_, err = aliceChanReservation.CompleteReservation(
nil, bobCommitSig,
)
if err != nil {
t.Fatalf("alice unable to complete reservation: %v", err)
}
// The resulting active channel state should have been persisted to the
// DB for both Alice and Bob.
fundingTx := aliceChanReservation.FinalFundingTx()
fundingSha := fundingTx.TxHash()
aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if len(aliceChannels) != 1 {
t.Fatalf("alice didn't save channel state: %v", err)
}
if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved: %v vs %v",
hex.EncodeToString(aliceChannels[0].FundingOutpoint.Hash[:]),
hex.EncodeToString(fundingSha[:]))
}
if !aliceChannels[0].IsInitiator {
t.Fatalf("alice not detected as channel initiator")
}
if aliceChannels[0].ChanType != channeldb.SingleFunder {
t.Fatalf("channel type is incorrect, expected %v instead got %v",
channeldb.SingleFunder, aliceChannels[0].ChanType)
}
bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if len(bobChannels) != 1 {
t.Fatalf("bob didn't save channel state: %v", err)
}
if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved: %v vs %v",
hex.EncodeToString(bobChannels[0].FundingOutpoint.Hash[:]),
hex.EncodeToString(fundingSha[:]))
}
if bobChannels[0].IsInitiator {
t.Fatalf("bob not detected as channel responder")
}
if bobChannels[0].ChanType != channeldb.SingleFunder {
t.Fatalf("channel type is incorrect, expected %v instead got %v",
channeldb.SingleFunder, bobChannels[0].ChanType)
}
// Mine a single block, the funding transaction should be included
// within this block.
err = waitForMempoolTx(miner, &fundingSha)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
blockHashes, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := miner.Node.GetBlock(blockHashes[0])
if err != nil {
t.Fatalf("unable to find block: %v", err)
}
if len(block.Transactions) != 2 {
t.Fatalf("funding transaction wasn't mined: %d",
len(block.Transactions))
}
blockTx := block.Transactions[1]
if blockTx.TxHash() != fundingSha {
t.Fatalf("incorrect transaction was mined")
}
assertReservationDeleted(aliceChanReservation, t)
assertReservationDeleted(bobChanReservation, t)
}
func testListTransactionDetails(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// Create 5 new outputs spendable by the wallet.
const numTxns = 5
const outputAmt = btcutil.SatoshiPerBitcoin
txids := make(map[chainhash.Hash]struct{})
for i := 0; i < numTxns; i++ {
addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
t.Fatalf("unable to create new address: %v", err)
}
script, err := txscript.PayToAddrScript(addr)
if err != nil {
t.Fatalf("unable to create output script: %v", err)
}
output := &wire.TxOut{
Value: outputAmt,
PkScript: script,
}
txid, err := miner.SendOutputs([]*wire.TxOut{output}, 10)
if err != nil {
t.Fatalf("unable to send coinbase: %v", err)
}
txids[*txid] = struct{}{}
}
// Generate 10 blocks to mine all the transactions created above.
const numBlocksMined = 10
blocks, err := miner.Node.Generate(numBlocksMined)
if err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// Next, fetch all the current transaction details.
err = waitForWalletSync(miner, alice)
if err != nil {
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
}
txDetails, err := alice.ListTransactionDetails()
if err != nil {
t.Fatalf("unable to fetch tx details: %v", err)
}
// This is a mapping from:
// blockHash -> transactionHash -> transactionOutputs
blockTxOuts := make(map[chainhash.Hash]map[chainhash.Hash][]*wire.TxOut)
// Each of the transactions created above should be found with the
// proper details populated.
for _, txDetail := range txDetails {
if _, ok := txids[txDetail.Hash]; !ok {
continue
}
if txDetail.NumConfirmations != numBlocksMined {
t.Fatalf("num confs incorrect, got %v expected %v",
txDetail.NumConfirmations, numBlocksMined)
}
if txDetail.Value != outputAmt {
t.Fatalf("tx value incorrect, got %v expected %v",
txDetail.Value, outputAmt)
}
if !bytes.Equal(txDetail.BlockHash[:], blocks[0][:]) {
t.Fatalf("block hash mismatch, got %v expected %v",
txDetail.BlockHash, blocks[0])
}
// This fetches the transactions in a block so that we can compare the
// txouts stored in the mined transaction against the ones in the transaction
// details
if _, ok := blockTxOuts[*txDetail.BlockHash]; !ok {
fetchedBlock, err := alice.Cfg.ChainIO.GetBlock(txDetail.BlockHash)
if err != nil {
t.Fatalf("err fetching block: %s", err)
}
transactions :=
make(map[chainhash.Hash][]*wire.TxOut, len(fetchedBlock.Transactions))
for _, tx := range fetchedBlock.Transactions {
transactions[tx.TxHash()] = tx.TxOut
}
blockTxOuts[fetchedBlock.BlockHash()] = transactions
}
if txOuts, ok := blockTxOuts[*txDetail.BlockHash][txDetail.Hash]; !ok {
t.Fatalf("tx (%v) not found in block (%v)",
txDetail.Hash, txDetail.BlockHash)
} else {
var destinationAddresses []btcutil.Address
for _, txOut := range txOuts {
_, addrs, _, err :=
txscript.ExtractPkScriptAddrs(txOut.PkScript, &alice.Cfg.NetParams)
if err != nil {
t.Fatalf("err extract script addresses: %s", err)
}
destinationAddresses = append(destinationAddresses, addrs...)
}
if !reflect.DeepEqual(txDetail.DestAddresses, destinationAddresses) {
t.Fatalf("destination addresses mismatch, got %v expected %v",
txDetail.DestAddresses, destinationAddresses)
}
}
delete(txids, txDetail.Hash)
}
if len(txids) != 0 {
t.Fatalf("all transactions not found in details!")
}
// Next create a transaction paying to an output which isn't under the
// wallet's control.
b := txscript.NewScriptBuilder()
b.AddOp(txscript.OP_0)
outputScript, err := b.Script()
if err != nil {
t.Fatalf("unable to make output script: %v", err)
}
burnOutput := wire.NewTxOut(outputAmt, outputScript)
burnTXID, err := alice.SendOutputs([]*wire.TxOut{burnOutput}, 10)
if err != nil {
t.Fatalf("unable to create burn tx: %v", err)
}
err = waitForMempoolTx(miner, burnTXID)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
burnBlock, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to mine block: %v", err)
}
// Fetch the transaction details again, the new transaction should be
// shown as debiting from the wallet's balance.
err = waitForWalletSync(miner, alice)
if err != nil {
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
}
txDetails, err = alice.ListTransactionDetails()
if err != nil {
t.Fatalf("unable to fetch tx details: %v", err)
}
var burnTxFound bool
for _, txDetail := range txDetails {
if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) {
continue
}
burnTxFound = true
if txDetail.NumConfirmations != 1 {
t.Fatalf("num confs incorrect, got %v expected %v",
txDetail.NumConfirmations, 1)
}
// We assert that the value is greater than the amount we
// attempted to send, as the wallet should have paid some amount
// of network fees.
if txDetail.Value >= -outputAmt {
fmt.Println(spew.Sdump(txDetail))
t.Fatalf("tx value incorrect, got %v expected %v",
int64(txDetail.Value), -int64(outputAmt))
}
if !bytes.Equal(txDetail.BlockHash[:], burnBlock[0][:]) {
t.Fatalf("block hash mismatch, got %v expected %v",
txDetail.BlockHash, burnBlock[0])
}
}
if !burnTxFound {
t.Fatal("tx burning btc not found")
}
}
func testTransactionSubscriptions(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// First, check to see if this wallet meets the TransactionNotifier
// interface, if not then we'll skip this test for this particular
// implementation of the WalletController.
txClient, err := alice.SubscribeTransactions()
if err != nil {
t.Skipf("unable to generate tx subscription: %v", err)
}
defer txClient.Cancel()
const (
outputAmt = btcutil.SatoshiPerBitcoin
numTxns = 3
)
unconfirmedNtfns := make(chan struct{})
switch alice.BackEnd() {
case "neutrino":
// Neutrino doesn't listen for unconfirmed transactions.
default:
go func() {
for i := 0; i < numTxns; i++ {
txDetail := <-txClient.UnconfirmedTransactions()
if txDetail.NumConfirmations != 0 {
t.Fatalf("incorrect number of confs, "+
"expected %v got %v", 0,
txDetail.NumConfirmations)
}
if txDetail.Value != outputAmt {
t.Fatalf("incorrect output amt, "+
"expected %v got %v", outputAmt,
txDetail.Value)
}
if txDetail.BlockHash != nil {
t.Fatalf("block hash should be nil, "+
"is instead %v",
txDetail.BlockHash)
}
}
close(unconfirmedNtfns)
}()
}
// Next, fetch a fresh address from the wallet, create 3 new outputs
// with the pkScript.
for i := 0; i < numTxns; i++ {
addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
t.Fatalf("unable to create new address: %v", err)
}
script, err := txscript.PayToAddrScript(addr)
if err != nil {
t.Fatalf("unable to create output script: %v", err)
}
output := &wire.TxOut{
Value: outputAmt,
PkScript: script,
}
txid, err := miner.SendOutputs([]*wire.TxOut{output}, 10)
if err != nil {
t.Fatalf("unable to send coinbase: %v", err)
}
err = waitForMempoolTx(miner, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
}
switch alice.BackEnd() {
case "neutrino":
// Neutrino doesn't listen for on unconfirmed transactions.
default:
// We should receive a notification for all three transactions
// generated above.
select {
case <-time.After(time.Second * 10):
t.Fatalf("transactions not received after 10 seconds")
case <-unconfirmedNtfns: // Fall through on successs
}
}
confirmedNtfns := make(chan struct{})
go func() {
for i := 0; i < numTxns; i++ {
txDetail := <-txClient.ConfirmedTransactions()
if txDetail.NumConfirmations != 1 {
t.Fatalf("incorrect number of confs for %s, expected %v got %v",
txDetail.Hash, 1, txDetail.NumConfirmations)
}
if txDetail.Value != outputAmt {
t.Fatalf("incorrect output amt, expected %v got %v in txid %s",
outputAmt, txDetail.Value, txDetail.Hash)
}
}
close(confirmedNtfns)
}()
// Next mine a single block, all the transactions generated above
// should be included.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// We should receive a notification for all three transactions
// since they should be mined in the next block.
select {
case <-time.After(time.Second * 5):
t.Fatalf("transactions not received after 5 seconds")
case <-confirmedNtfns: // Fall through on success
}
}
// testPublishTransaction checks that PublishTransaction returns the
// expected error types in case the transaction being published
// conflicts with the current mempool or chain.
func testPublishTransaction(r *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// mineAndAssert mines a block and ensures the passed TX
// is part of that block.
mineAndAssert := func(tx *wire.MsgTx) error {
blockHashes, err := r.Node.Generate(1)
if err != nil {
return fmt.Errorf("unable to generate block: %v", err)
}
block, err := r.Node.GetBlock(blockHashes[0])
if err != nil {
return fmt.Errorf("unable to find block: %v", err)
}
if len(block.Transactions) != 2 {
return fmt.Errorf("expected 2 txs in block, got %d",
len(block.Transactions))
}
blockTx := block.Transactions[1]
if blockTx.TxHash() != tx.TxHash() {
return fmt.Errorf("incorrect transaction was mined")
}
// Sleep for a second before returning, to make sure the
// block has propagated.
time.Sleep(1 * time.Second)
return nil
}
// Generate a pubkey, and pay-to-addr script.
pubKey, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
pubkeyHash := btcutil.Hash160(pubKey.PubKey.SerializeCompressed())
keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash,
&chaincfg.RegressionNetParams)
if err != nil {
t.Fatalf("unable to create addr: %v", err)
}
keyScript, err := txscript.PayToAddrScript(keyAddr)
if err != nil {
t.Fatalf("unable to generate script: %v", err)
}
// txFromOutput takes a tx, and creates a new tx that spends
// the output from this tx, to an address derived from payToPubKey.
// NB: assumes that the output from tx is paid to pubKey.
txFromOutput := func(tx *wire.MsgTx, payToPubKey *btcec.PublicKey,
txFee btcutil.Amount) *wire.MsgTx {
// Create a script to pay to.
payToPubkeyHash := btcutil.Hash160(payToPubKey.SerializeCompressed())
payToKeyAddr, err := btcutil.NewAddressWitnessPubKeyHash(payToPubkeyHash,
&chaincfg.RegressionNetParams)
if err != nil {
t.Fatalf("unable to create addr: %v", err)
}
payToScript, err := txscript.PayToAddrScript(payToKeyAddr)
if err != nil {
t.Fatalf("unable to generate script: %v", err)
}
// We assume the output was paid to the keyScript made earlier.
var outputIndex uint32
if len(tx.TxOut) == 1 || bytes.Equal(tx.TxOut[0].PkScript, keyScript) {
outputIndex = 0
} else {
outputIndex = 1
}
outputValue := tx.TxOut[outputIndex].Value
// With the index located, we can create a transaction spending
// the referenced output.
tx1 := wire.NewMsgTx(2)
tx1.AddTxIn(&wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Hash: tx.TxHash(),
Index: outputIndex,
},
// We don't support RBF, so set sequence to max.
Sequence: wire.MaxTxInSequenceNum,
})
tx1.AddTxOut(&wire.TxOut{
Value: outputValue - int64(txFee),
PkScript: payToScript,
})
// Now we can populate the sign descriptor which we'll use to
// generate the signature.
signDesc := &lnwallet.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
PubKey: pubKey.PubKey,
},
WitnessScript: keyScript,
Output: tx.TxOut[outputIndex],
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(tx1),
InputIndex: 0, // Has only one input.
}
// With the descriptor created, we use it to generate a
// signature, then manually create a valid witness stack we'll
// use for signing.
spendSig, err := alice.Cfg.Signer.SignOutputRaw(tx1, signDesc)
if err != nil {
t.Fatalf("unable to generate signature: %v", err)
}
witness := make([][]byte, 2)
witness[0] = append(spendSig, byte(txscript.SigHashAll))
witness[1] = pubKey.PubKey.SerializeCompressed()
tx1.TxIn[0].Witness = witness
// Finally, attempt to validate the completed transaction. This
// should succeed if the wallet was able to properly generate
// the proper private key.
vm, err := txscript.NewEngine(keyScript,
tx1, 0, txscript.StandardVerifyFlags, nil,
nil, outputValue)
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
if err := vm.Execute(); err != nil {
t.Fatalf("spend is invalid: %v", err)
}
return tx1
}
// newTx sends coins from Alice's wallet, mines this transaction,
// and creates a new, unconfirmed tx that spends this output to
// pubKey.
newTx := func() *wire.MsgTx {
// With the script fully assembled, instruct the wallet to fund
// the output with a newly created transaction.
newOutput := &wire.TxOut{
Value: btcutil.SatoshiPerBitcoin,
PkScript: keyScript,
}
txid, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 10)
if err != nil {
t.Fatalf("unable to create output: %v", err)
}
// Query for the transaction generated above so we can located
// the index of our output.
err = waitForMempoolTx(r, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
tx, err := r.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to query for tx: %v", err)
}
if err := mineAndAssert(tx.MsgTx()); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
txFee := btcutil.Amount(0.1 * btcutil.SatoshiPerBitcoin)
tx1 := txFromOutput(tx.MsgTx(), pubKey.PubKey, txFee)
return tx1
}
// We will first check that publishing a transaction already
// in the mempool does NOT return an error. Create the tx.
tx1 := newTx()
// Publish the transaction.
if err := alice.PublishTransaction(tx1); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid1 := tx1.TxHash()
err = waitForMempoolTx(r, &txid1)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Publish the exact same transaction again. This should
// not return an error, even though the transaction is
// already in the mempool.
if err := alice.PublishTransaction(tx1); err != nil {
t.Fatalf("unable to publish: %v", err)
}
// Mine the transaction.
if _, err := r.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// We'll now test that we don't get an error if we try
// to publish a transaction that is already mined.
//
// Create a new transaction. We must do this to properly
// test the reject messages from our peers. They might
// only send us a reject message for a given tx once,
// so we create a new to make sure it is not just
// immediately rejected.
tx2 := newTx()
// Publish this tx.
if err := alice.PublishTransaction(tx2); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid2 := tx2.TxHash()
err = waitForMempoolTx(r, &txid2)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Mine the transaction.
if err := mineAndAssert(tx2); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
// Publish the transaction again. It is already mined,
// and we don't expect this to return an error.
if err := alice.PublishTransaction(tx2); err != nil {
t.Fatalf("unable to publish: %v", err)
}
// Now we'll try to double spend an output with a different
// transaction. Create a new tx and publish it. This is
// the output we'll try to double spend.
tx3 := newTx()
if err := alice.PublishTransaction(tx3); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid3 := tx3.TxHash()
err = waitForMempoolTx(r, &txid3)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Mine the transaction.
if err := mineAndAssert(tx3); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
// Now we create a transaction that spends the output
// from the tx just mined. This should be accepted
// into the mempool.
txFee := btcutil.Amount(0.05 * btcutil.SatoshiPerBitcoin)
tx4 := txFromOutput(tx3, pubKey.PubKey, txFee)
if err := alice.PublishTransaction(tx4); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid4 := tx4.TxHash()
err = waitForMempoolTx(r, &txid4)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Create a new key we'll pay to, to ensure we create
// a unique transaction.
pubKey2, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
// Create a new transaction that spends the output from
// tx3, and that pays to a different address. We expect
// this to be rejected because it is a double spend.
tx5 := txFromOutput(tx3, pubKey2.PubKey, txFee)
if err := alice.PublishTransaction(tx5); err != lnwallet.ErrDoubleSpend {
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
}
// Create another transaction that spends the same output,
// but has a higher fee. We expect also this tx to be
// rejected, since the sequence number of tx3 is set to Max,
// indicating it is not replacable.
pubKey3, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
tx6 := txFromOutput(tx3, pubKey3.PubKey, 3*txFee)
// Expect rejection.
if err := alice.PublishTransaction(tx6); err != lnwallet.ErrDoubleSpend {
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
}
// At last we try to spend an output already spent by a
// confirmed transaction.
// TODO(halseth): we currently skip this test for neutrino,
// as the backing btcd node will consider the tx being an
// orphan, and will accept it. Should look into if this is
// the behavior also for bitcoind, and update test
// accordingly.
if alice.BackEnd() != "neutrino" {
// Mine the tx spending tx3.
if err := mineAndAssert(tx4); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
// Create another tx spending tx3.
pubKey4, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
tx7 := txFromOutput(tx3, pubKey4.PubKey, txFee)
// Expect rejection.
if err := alice.PublishTransaction(tx7); err != lnwallet.ErrDoubleSpend {
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
}
}
// TODO(halseth): test replaceable transactions when btcd
// gets RBF support.
}
func testSignOutputUsingTweaks(r *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// We'd like to test the ability of the wallet's Signer implementation
// to be able to sign with a private key derived from tweaking the
// specific public key. This scenario exercises the case when the
// wallet needs to sign for a sweep of a revoked output, or just claim
// any output that pays to a tweaked key.
// First, generate a new public key under the control of the wallet,
// then generate a revocation key using it.
pubKey, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
// As we'd like to test both single tweak, and double tweak spends,
// we'll generate a commitment pre-image, then derive a revocation key
// and single tweak from that.
commitPreimage := bytes.Repeat([]byte{2}, 32)
commitSecret, commitPoint := btcec.PrivKeyFromBytes(btcec.S256(),
commitPreimage)
revocationKey := lnwallet.DeriveRevocationPubkey(pubKey.PubKey, commitPoint)
commitTweak := lnwallet.SingleTweakBytes(commitPoint, pubKey.PubKey)
tweakedPub := lnwallet.TweakPubKey(pubKey.PubKey, commitPoint)
// As we'd like to test both single and double tweaks, we'll repeat
// the same set up twice. The first will use a regular single tweak,
// and the second will use a double tweak.
baseKey := pubKey
for i := 0; i < 2; i++ {
var tweakedKey *btcec.PublicKey
if i == 0 {
tweakedKey = tweakedPub
} else {
tweakedKey = revocationKey
}
// Using the given key for the current iteration, we'll
// generate a regular p2wkh from that.
pubkeyHash := btcutil.Hash160(tweakedKey.SerializeCompressed())
keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash,
&chaincfg.RegressionNetParams)
if err != nil {
t.Fatalf("unable to create addr: %v", err)
}
keyScript, err := txscript.PayToAddrScript(keyAddr)
if err != nil {
t.Fatalf("unable to generate script: %v", err)
}
// With the script fully assembled, instruct the wallet to fund
// the output with a newly created transaction.
newOutput := &wire.TxOut{
Value: btcutil.SatoshiPerBitcoin,
PkScript: keyScript,
}
txid, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 10)
if err != nil {
t.Fatalf("unable to create output: %v", err)
}
// Query for the transaction generated above so we can located
// the index of our output.
err = waitForMempoolTx(r, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
tx, err := r.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to query for tx: %v", err)
}
var outputIndex uint32
if bytes.Equal(tx.MsgTx().TxOut[0].PkScript, keyScript) {
outputIndex = 0
} else {
outputIndex = 1
}
// With the index located, we can create a transaction spending
// the referenced output.
sweepTx := wire.NewMsgTx(2)
sweepTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Hash: tx.MsgTx().TxHash(),
Index: outputIndex,
},
})
sweepTx.AddTxOut(&wire.TxOut{
Value: 1000,
PkScript: keyScript,
})
// Now we can populate the sign descriptor which we'll use to
// generate the signature. Within the descriptor we set the
// private tweak value as the key in the script is derived
// based on this tweak value and the key we originally
// generated above.
signDesc := &lnwallet.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
PubKey: baseKey.PubKey,
},
WitnessScript: keyScript,
Output: newOutput,
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(sweepTx),
InputIndex: 0,
}
// If this is the first, loop, we'll use the generated single
// tweak, otherwise, we'll use the double tweak.
if i == 0 {
signDesc.SingleTweak = commitTweak
} else {
signDesc.DoubleTweak = commitSecret
}
// With the descriptor created, we use it to generate a
// signature, then manually create a valid witness stack we'll
// use for signing.
spendSig, err := alice.Cfg.Signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
t.Fatalf("unable to generate signature: %v", err)
}
witness := make([][]byte, 2)
witness[0] = append(spendSig, byte(txscript.SigHashAll))
witness[1] = tweakedKey.SerializeCompressed()
sweepTx.TxIn[0].Witness = witness
// Finally, attempt to validate the completed transaction. This
// should succeed if the wallet was able to properly generate
// the proper private key.
vm, err := txscript.NewEngine(keyScript,
sweepTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(btcutil.SatoshiPerBitcoin))
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
if err := vm.Execute(); err != nil {
t.Fatalf("spend #%v is invalid: %v", i, err)
}
}
}
func testReorgWalletBalance(r *rpctest.Harness, w *lnwallet.LightningWallet,
_ *lnwallet.LightningWallet, t *testing.T) {
// We first mine a few blocks to ensure any transactions still in the
// mempool confirm, and then get the original balance, before a
// reorganization that doesn't invalidate any existing transactions or
// create any new non-coinbase transactions. We'll then check if it's
// the same after the empty reorg.
_, err := r.Node.Generate(5)
if err != nil {
t.Fatalf("unable to generate blocks on passed node: %v", err)
}
// Give wallet time to catch up.
err = waitForWalletSync(r, w)
if err != nil {
t.Fatalf("unable to sync wallet: %v", err)
}
// Send some money from the miner to the wallet
err = loadTestCredits(r, w, 20, 4)
if err != nil {
t.Fatalf("unable to send money to lnwallet: %v", err)
}
// Send some money from the wallet back to the miner.
// Grab a fresh address from the miner to house this output.
minerAddr, err := r.NewAddress()
if err != nil {
t.Fatalf("unable to generate address for miner: %v", err)
}
script, err := txscript.PayToAddrScript(minerAddr)
if err != nil {
t.Fatalf("unable to create pay to addr script: %v", err)
}
output := &wire.TxOut{
Value: 1e8,
PkScript: script,
}
txid, err := w.SendOutputs([]*wire.TxOut{output}, 10)
if err != nil {
t.Fatalf("unable to send outputs: %v", err)
}
err = waitForMempoolTx(r, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
_, err = r.Node.Generate(50)
if err != nil {
t.Fatalf("unable to generate blocks on passed node: %v", err)
}
// Give wallet time to catch up.
err = waitForWalletSync(r, w)
if err != nil {
t.Fatalf("unable to sync wallet: %v", err)
}
// Get the original balance.
origBalance, err := w.ConfirmedBalance(1)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
// Now we cause a reorganization as follows.
// Step 1: create a new miner and start it.
r2, err := rpctest.New(r.ActiveNet, nil, nil)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
err = r2.SetUp(false, 0)
if err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
defer r2.TearDown()
newBalance, err := w.ConfirmedBalance(1)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
if origBalance != newBalance {
t.Fatalf("wallet balance incorrect, should have %v, "+
"instead have %v", origBalance, newBalance)
}
// Step 2: connect the miner to the passed miner and wait for
// synchronization.
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd)
if err != nil {
t.Fatalf("unable to connect mining nodes together: %v", err)
}
err = rpctest.JoinNodes([]*rpctest.Harness{r2, r}, rpctest.Blocks)
if err != nil {
t.Fatalf("unable to synchronize mining nodes: %v", err)
}
// Step 3: Do a set of reorgs by disconecting the two miners, mining
// one block on the passed miner and two on the created miner,
// connecting them, and waiting for them to sync.
for i := 0; i < 5; i++ {
// Wait for disconnection
timeout := time.After(30 * time.Second)
stillConnected := true
var peers []btcjson.GetPeerInfoResult
for stillConnected {
// Allow for timeout
time.Sleep(100 * time.Millisecond)
select {
case <-timeout:
t.Fatalf("timeout waiting for miner disconnect")
default:
}
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANRemove)
if err != nil {
t.Fatalf("unable to disconnect mining nodes: %v",
err)
}
peers, err = r2.Node.GetPeerInfo()
if err != nil {
t.Fatalf("unable to get peer info: %v", err)
}
stillConnected = false
for _, peer := range peers {
if peer.Addr == r.P2PAddress() {
stillConnected = true
break
}
}
}
_, err = r.Node.Generate(2)
if err != nil {
t.Fatalf("unable to generate blocks on passed node: %v",
err)
}
_, err = r2.Node.Generate(3)
if err != nil {
t.Fatalf("unable to generate blocks on created node: %v",
err)
}
// Step 5: Reconnect the miners and wait for them to synchronize.
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd)
if err != nil {
switch err := err.(type) {
case *btcjson.RPCError:
if err.Code != -8 {
t.Fatalf("unable to connect mining "+
"nodes together: %v", err)
}
default:
t.Fatalf("unable to connect mining nodes "+
"together: %v", err)
}
}
err = rpctest.JoinNodes([]*rpctest.Harness{r2, r},
rpctest.Blocks)
if err != nil {
t.Fatalf("unable to synchronize mining nodes: %v", err)
}
// Give wallet time to catch up.
err = waitForWalletSync(r, w)
if err != nil {
t.Fatalf("unable to sync wallet: %v", err)
}
}
// Now we check that the wallet balance stays the same.
newBalance, err = w.ConfirmedBalance(1)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
if origBalance != newBalance {
t.Fatalf("wallet balance incorrect, should have %v, "+
"instead have %v", origBalance, newBalance)
}
}
type walletTestCase struct {
name string
test func(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet,
test *testing.T)
}
var walletTests = []walletTestCase{
{
name: "insane fee reject",
test: testReservationInitiatorBalanceBelowDustCancel,
},
{
name: "single funding workflow",
test: testSingleFunderReservationWorkflow,
},
{
name: "dual funder workflow",
test: testDualFundingReservationWorkflow,
},
{
name: "output locking",
test: testFundingTransactionLockedOutputs,
},
{
name: "reservation insufficient funds",
test: testFundingCancellationNotEnoughFunds,
},
{
name: "transaction subscriptions",
test: testTransactionSubscriptions,
},
{
name: "transaction details",
test: testListTransactionDetails,
},
{
name: "publish transaction",
test: testPublishTransaction,
},
{
name: "signed with tweaked pubkeys",
test: testSignOutputUsingTweaks,
},
{
name: "test cancel non-existent reservation",
test: testCancelNonExistentReservation,
},
{
name: "reorg wallet balance",
test: testReorgWalletBalance,
},
}
func clearWalletStates(a, b *lnwallet.LightningWallet) error {
a.ResetReservations()
b.ResetReservations()
if err := a.Cfg.Database.Wipe(); err != nil {
return err
}
return b.Cfg.Database.Wipe()
}
func waitForMempoolTx(r *rpctest.Harness, txid *chainhash.Hash) error {
var found bool
var tx *btcutil.Tx
var err error
timeout := time.After(30 * time.Second)
for !found {
// Do a short wait
select {
case <-timeout:
return fmt.Errorf("timeout after 10s")
default:
}
time.Sleep(100 * time.Millisecond)
// Check for the harness' knowledge of the txid
tx, err = r.Node.GetRawTransaction(txid)
if err != nil {
switch e := err.(type) {
case *btcjson.RPCError:
if e.Code == btcjson.ErrRPCNoTxInfo {
continue
}
default:
}
return err
}
if tx != nil && tx.MsgTx().TxHash() == *txid {
found = true
}
}
return nil
}
func waitForWalletSync(r *rpctest.Harness, w *lnwallet.LightningWallet) error {
var synced bool
var err error
var bestHash, knownHash *chainhash.Hash
var bestHeight, knownHeight int32
timeout := time.After(10 * time.Second)
for !synced {
// Do a short wait
select {
case <-timeout:
return fmt.Errorf("timeout after 10s")
default:
}
time.Sleep(100 * time.Millisecond)
// Check whether the chain source of the wallet is caught up to
// the harness it's supposed to be catching up to.
bestHash, bestHeight, err = r.Node.GetBestBlock()
if err != nil {
return err
}
knownHash, knownHeight, err = w.Cfg.ChainIO.GetBestBlock()
if err != nil {
return err
}
if knownHeight != bestHeight {
continue
}
if *knownHash != *bestHash {
return fmt.Errorf("hash at height %d doesn't match: "+
"expected %s, got %s", bestHeight, bestHash,
knownHash)
}
// Check for synchronization.
synced, _, err = w.IsSynced()
if err != nil {
return err
}
}
return nil
}
// TestInterfaces tests all registered interfaces with a unified set of tests
// which exercise each of the required methods found within the WalletController
// interface.
//
// NOTE: In the future, when additional implementations of the WalletController
// interface have been implemented, in order to ensure the new concrete
// implementation is automatically tested, two steps must be undertaken. First,
// one needs add a "non-captured" (_) import from the new sub-package. This
// import should trigger an init() method within the package which registers
// the interface. Second, an additional case in the switch within the main loop
// below needs to be added which properly initializes the interface.
//
// TODO(roasbeef): purge bobNode in favor of dual lnwallet's
func TestLightningWallet(t *testing.T) {
t.Parallel()
// Initialize the harness around a btcd node which will serve as our
// dedicated miner to generate blocks, cause re-orgs, etc. We'll set
// up this node with a chain length of 125, so we have plenty of BTC
// to play around with.
miningNode, err := rpctest.New(netParams, nil, nil)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
defer miningNode.TearDown()
if err := miningNode.SetUp(true, 25); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
// Next mine enough blocks in order for segwit and the CSV package
// soft-fork to activate on RegNet.
numBlocks := netParams.MinerConfirmationWindow * 2
if _, err := miningNode.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
rpcConfig := miningNode.RPCConfig()
chainNotifier, err := btcdnotify.New(&rpcConfig)
if err != nil {
t.Fatalf("unable to create notifier: %v", err)
}
if err := chainNotifier.Start(); err != nil {
t.Fatalf("unable to start notifier: %v", err)
}
for _, walletDriver := range lnwallet.RegisteredWallets() {
for _, backEnd := range walletDriver.BackEnds() {
runTests(t, walletDriver, backEnd, miningNode,
rpcConfig, chainNotifier)
}
}
}
// runTests runs all of the tests for a single interface implementation and
// chain back-end combination. This makes it easier to use `defer` as well as
// factoring out the test logic from the loop which cycles through the
// interface implementations.
func runTests(t *testing.T, walletDriver *lnwallet.WalletDriver,
backEnd string, miningNode *rpctest.Harness,
rpcConfig rpcclient.ConnConfig,
chainNotifier *btcdnotify.BtcdNotifier) {
var (
bio lnwallet.BlockChainIO
aliceSigner lnwallet.Signer
bobSigner lnwallet.Signer
aliceKeyRing keychain.SecretKeyRing
bobKeyRing keychain.SecretKeyRing
aliceWalletController lnwallet.WalletController
bobWalletController lnwallet.WalletController
feeEstimator lnwallet.FeeEstimator
)
tempTestDirAlice, err := ioutil.TempDir("", "lnwallet")
if err != nil {
t.Fatalf("unable to create temp directory: %v", err)
}
defer os.RemoveAll(tempTestDirAlice)
tempTestDirBob, err := ioutil.TempDir("", "lnwallet")
if err != nil {
t.Fatalf("unable to create temp directory: %v", err)
}
defer os.RemoveAll(tempTestDirBob)
walletType := walletDriver.WalletType
switch walletType {
case "btcwallet":
var aliceClient, bobClient chain.Interface
switch backEnd {
case "btcd":
feeEstimator, err = lnwallet.NewBtcdFeeEstimator(
rpcConfig, 250)
if err != nil {
t.Fatalf("unable to create btcd fee estimator: %v",
err)
}
aliceClient, err = chain.NewRPCClient(netParams,
rpcConfig.Host, rpcConfig.User, rpcConfig.Pass,
rpcConfig.Certificates, false, 20)
if err != nil {
t.Fatalf("unable to make chain rpc: %v", err)
}
bobClient, err = chain.NewRPCClient(netParams,
rpcConfig.Host, rpcConfig.User, rpcConfig.Pass,
rpcConfig.Certificates, false, 20)
if err != nil {
t.Fatalf("unable to make chain rpc: %v", err)
}
case "neutrino":
feeEstimator = lnwallet.StaticFeeEstimator{FeeRate: 250}
// Set some package-level variable to speed up
// operation for tests.
neutrino.WaitForMoreCFHeaders = time.Millisecond * 100
neutrino.BanDuration = time.Millisecond * 100
neutrino.QueryTimeout = time.Millisecond * 500
neutrino.QueryNumRetries = 2
// Start Alice - open a database, start a neutrino
// instance, and initialize a btcwallet driver for it.
aliceDB, err := walletdb.Create("bdb",
tempTestDirAlice+"/neutrino.db")
if err != nil {
t.Fatalf("unable to create DB: %v", err)
}
defer aliceDB.Close()
aliceChain, err := neutrino.NewChainService(
neutrino.Config{
DataDir: tempTestDirAlice,
Database: aliceDB,
ChainParams: *netParams,
ConnectPeers: []string{
miningNode.P2PAddress(),
},
},
)
if err != nil {
t.Fatalf("unable to make neutrino: %v", err)
}
aliceChain.Start()
defer aliceChain.Stop()
aliceClient = chain.NewNeutrinoClient(aliceChain)
// Start Bob - open a database, start a neutrino
// instance, and initialize a btcwallet driver for it.
bobDB, err := walletdb.Create("bdb",
tempTestDirBob+"/neutrino.db")
if err != nil {
t.Fatalf("unable to create DB: %v", err)
}
defer bobDB.Close()
bobChain, err := neutrino.NewChainService(
neutrino.Config{
DataDir: tempTestDirBob,
Database: bobDB,
ChainParams: *netParams,
ConnectPeers: []string{
miningNode.P2PAddress(),
},
},
)
if err != nil {
t.Fatalf("unable to make neutrino: %v", err)
}
bobChain.Start()
defer bobChain.Stop()
bobClient = chain.NewNeutrinoClient(bobChain)
case "bitcoind":
feeEstimator, err = lnwallet.NewBitcoindFeeEstimator(
rpcConfig, 250)
if err != nil {
t.Fatalf("unable to create bitcoind fee estimator: %v",
err)
}
// Start a bitcoind instance.
tempBitcoindDir, err := ioutil.TempDir("", "bitcoind")
if err != nil {
t.Fatalf("unable to create temp directory: %v", err)
}
zmqPath := "ipc:///" + tempBitcoindDir + "/weks.socket"
defer os.RemoveAll(tempBitcoindDir)
rpcPort := rand.Int()%(65536-1024) + 1024
bitcoind := exec.Command(
"bitcoind",
"-datadir="+tempBitcoindDir,
"-regtest",
"-connect="+miningNode.P2PAddress(),
"-txindex",
"-rpcauth=weks:469e9bb14ab2360f8e226efed5ca6f"+
"d$507c670e800a95284294edb5773b05544b"+
"220110063096c221be9933c82d38e1",
fmt.Sprintf("-rpcport=%d", rpcPort),
"-disablewallet",
"-zmqpubrawblock="+zmqPath,
"-zmqpubrawtx="+zmqPath,
)
err = bitcoind.Start()
if err != nil {
t.Fatalf("couldn't start bitcoind: %v", err)
}
defer bitcoind.Wait()
defer bitcoind.Process.Kill()
// Start an Alice btcwallet bitcoind back end instance.
aliceClient, err = chain.NewBitcoindClient(netParams,
fmt.Sprintf("127.0.0.1:%d", rpcPort), "weks",
"weks", zmqPath, 100*time.Millisecond)
if err != nil {
t.Fatalf("couldn't start alice client: %v", err)
}
// Start a Bob btcwallet bitcoind back end instance.
bobClient, err = chain.NewBitcoindClient(netParams,
fmt.Sprintf("127.0.0.1:%d", rpcPort), "weks",
"weks", zmqPath, 100*time.Millisecond)
if err != nil {
t.Fatalf("couldn't start bob client: %v", err)
}
default:
t.Fatalf("unknown chain driver: %v", backEnd)
}
aliceWalletConfig := &btcwallet.Config{
PrivatePass: []byte("alice-pass"),
HdSeed: aliceHDSeed[:],
DataDir: tempTestDirAlice,
NetParams: netParams,
ChainSource: aliceClient,
FeeEstimator: feeEstimator,
}
aliceWalletController, err = walletDriver.New(aliceWalletConfig)
if err != nil {
t.Fatalf("unable to create btcwallet: %v", err)
}
aliceSigner = aliceWalletController.(*btcwallet.BtcWallet)
aliceKeyRing = keychain.NewBtcWalletKeyRing(
aliceWalletController.(*btcwallet.BtcWallet).InternalWallet(),
)
bobWalletConfig := &btcwallet.Config{
PrivatePass: []byte("bob-pass"),
HdSeed: bobHDSeed[:],
DataDir: tempTestDirBob,
NetParams: netParams,
ChainSource: bobClient,
FeeEstimator: feeEstimator,
}
bobWalletController, err = walletDriver.New(bobWalletConfig)
if err != nil {
t.Fatalf("unable to create btcwallet: %v", err)
}
bobSigner = bobWalletController.(*btcwallet.BtcWallet)
bobKeyRing = keychain.NewBtcWalletKeyRing(
bobWalletController.(*btcwallet.BtcWallet).InternalWallet(),
)
bio = bobWalletController.(*btcwallet.BtcWallet)
default:
t.Fatalf("unknown wallet driver: %v", walletType)
}
// Funding via 20 outputs with 4BTC each.
alice, err := createTestWallet(
tempTestDirAlice, miningNode, netParams,
chainNotifier, aliceWalletController, aliceKeyRing,
aliceSigner, bio,
)
if err != nil {
t.Fatalf("unable to create test ln wallet: %v", err)
}
defer alice.Shutdown()
bob, err := createTestWallet(
tempTestDirBob, miningNode, netParams,
chainNotifier, bobWalletController, bobKeyRing,
bobSigner, bio,
)
if err != nil {
t.Fatalf("unable to create test ln wallet: %v", err)
}
defer bob.Shutdown()
// Both wallets should now have 80BTC available for
// spending.
assertProperBalance(t, alice, 1, 80)
assertProperBalance(t, bob, 1, 80)
// Execute every test, clearing possibly mutated
// wallet state after each step.
for _, walletTest := range walletTests {
testName := fmt.Sprintf("%v/%v:%v", walletType, backEnd,
walletTest.name)
success := t.Run(testName, func(t *testing.T) {
walletTest.test(miningNode, alice, bob, t)
})
if !success {
break
}
// TODO(roasbeef): possible reset mining
// node's chainstate to initial level, cleanly
// wipe buckets
if err := clearWalletStates(alice, bob); err !=
nil && err != bolt.ErrBucketNotFound {
t.Fatalf("unable to wipe wallet state: %v", err)
}
}
}