620 lines
18 KiB
Go
620 lines
18 KiB
Go
package lnwallet
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"sync"
|
|
|
|
"li.lan/labs/plasma/chainntfs"
|
|
"li.lan/labs/plasma/channeldb"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/btcsuite/btcutil/txsort"
|
|
)
|
|
|
|
const (
|
|
// TODO(roasbeef): make not random value
|
|
MaxPendingPayments = 10
|
|
)
|
|
|
|
// PaymentHash presents the hash160 of a random value. This hash is used to
|
|
// uniquely track incoming/outgoing payments within this channel, as well as
|
|
// payments requested by the wallet/daemon.
|
|
type PaymentHash [20]byte
|
|
|
|
// LightningChannel...
|
|
// TODO(roasbeef): future peer struct should embed this struct
|
|
type LightningChannel struct {
|
|
lnwallet *LightningWallet
|
|
channelEvents *chainntnfs.ChainNotifier
|
|
|
|
// TODO(roasbeef): Stores all previous R values + timeouts for each
|
|
// commitment update, plus some other meta-data...Or just use OP_RETURN
|
|
// to help out?
|
|
// currently going for: nSequence/nLockTime overloading
|
|
channelDB *channeldb.DB
|
|
|
|
// stateMtx protects concurrent access to the state struct.
|
|
stateMtx sync.RWMutex
|
|
channelState channeldb.OpenChannel
|
|
|
|
updateTotem chan struct{}
|
|
|
|
// Uncleared HTLC's.
|
|
pendingPayments map[PaymentHash]*PaymentDescriptor
|
|
|
|
// Payment's which we've requested.
|
|
unfufilledPayments map[PaymentHash]*PaymentRequest
|
|
|
|
fundingTxIn *wire.TxIn
|
|
fundingP2SH []byte
|
|
|
|
// TODO(roasbeef): create and embed 'Service' interface w/ below?
|
|
started int32
|
|
shutdown int32
|
|
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
}
|
|
|
|
// newLightningChannel...
|
|
func newLightningChannel(wallet *LightningWallet, events *chainntnfs.ChainNotifier,
|
|
chanDB *channeldb.DB, state channeldb.OpenChannel) (*LightningChannel, error) {
|
|
|
|
lc := &LightningChannel{
|
|
lnwallet: wallet,
|
|
channelEvents: events,
|
|
channelState: state,
|
|
channelDB: chanDB,
|
|
updateTotem: make(chan struct{}, 1),
|
|
pendingPayments: make(map[PaymentHash]*PaymentDescriptor),
|
|
unfufilledPayments: make(map[PaymentHash]*PaymentRequest),
|
|
}
|
|
|
|
// Populate the totem.
|
|
lc.updateTotem <- struct{}{}
|
|
|
|
fundingTxId := state.FundingTx.TxSha()
|
|
fundingPkScript, err := scriptHashPkScript(state.FundingRedeemScript)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
_, multiSigIndex := findScriptOutputIndex(state.FundingTx, fundingPkScript)
|
|
lc.fundingTxIn = wire.NewTxIn(wire.NewOutPoint(&fundingTxId, multiSigIndex), nil)
|
|
lc.fundingP2SH = fundingPkScript
|
|
|
|
return lc, nil
|
|
}
|
|
|
|
// PaymentDescriptor...
|
|
type PaymentDescriptor struct {
|
|
RHash [20]byte
|
|
Timeout uint32
|
|
Value btcutil.Amount
|
|
|
|
OurRevocation [20]byte // TODO(roasbeef): don't need these?
|
|
TheirRevocation [20]byte
|
|
|
|
PayToUs bool
|
|
}
|
|
|
|
// ChannelUpdate...
|
|
type ChannelUpdate struct {
|
|
pendingDesc *PaymentDescriptor
|
|
deletion bool
|
|
|
|
currentUpdateNum uint64
|
|
pendingUpdateNum uint64
|
|
|
|
ourPendingCommitTx *wire.MsgTx
|
|
theirPendingCommitTx *wire.MsgTx
|
|
|
|
pendingRevocation [20]byte
|
|
sigTheirNewCommit []byte
|
|
|
|
// TODO(roasbeef): some enum to track current state in lifetime?
|
|
// state UpdateStag
|
|
|
|
lnChannel *LightningChannel
|
|
}
|
|
|
|
// RevocationHash...
|
|
func (c *ChannelUpdate) RevocationHash() ([]byte, error) {
|
|
c.lnChannel.stateMtx.RLock()
|
|
defer c.lnChannel.stateMtx.RUnlock()
|
|
|
|
shachain := c.lnChannel.channelState.OurShaChain
|
|
nextPreimage, err := shachain.GetHash(c.pendingUpdateNum)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return btcutil.Hash160(nextPreimage[:]), nil
|
|
}
|
|
|
|
// SignCounterPartyCommitment...
|
|
func (c *ChannelUpdate) SignCounterPartyCommitment() ([]byte, error) {
|
|
c.lnChannel.stateMtx.RLock()
|
|
defer c.lnChannel.stateMtx.RUnlock()
|
|
|
|
if c.sigTheirNewCommit != nil {
|
|
return c.sigTheirNewCommit, nil
|
|
}
|
|
|
|
// Sign their version of the commitment transaction.
|
|
sig, err := txscript.RawTxInSignature(c.theirPendingCommitTx, 0,
|
|
c.lnChannel.channelState.FundingRedeemScript, txscript.SigHashAll,
|
|
c.lnChannel.channelState.MultiSigKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
c.sigTheirNewCommit = sig
|
|
|
|
return sig, nil
|
|
}
|
|
|
|
// PreviousRevocationPreImage...
|
|
func (c *ChannelUpdate) PreviousRevocationPreImage() ([]byte, error) {
|
|
c.lnChannel.stateMtx.RLock()
|
|
defer c.lnChannel.stateMtx.RUnlock()
|
|
|
|
// Retrieve the pre-image to the revocation hash our current commitment
|
|
// transaction.
|
|
shachain := c.lnChannel.channelState.OurShaChain
|
|
revokePreImage, err := shachain.GetHash(c.currentUpdateNum)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return revokePreImage[:], nil
|
|
}
|
|
|
|
// VerifyNewCommitmentSigs...
|
|
func (c *ChannelUpdate) VerifyNewCommitmentSigs(ourSig, theirSig []byte) error {
|
|
c.lnChannel.stateMtx.RLock()
|
|
defer c.lnChannel.stateMtx.RUnlock()
|
|
|
|
var err error
|
|
var scriptSig []byte
|
|
channelState := c.lnChannel.channelState
|
|
|
|
// When initially generating the redeemScript, we sorted the serialized
|
|
// public keys in descending order. So we do a quick comparison in order
|
|
// ensure the signatures appear on the Script Virual Machine stack in
|
|
// the correct order.
|
|
// TODO(roasbeef): func
|
|
redeemScript := channelState.FundingRedeemScript
|
|
ourKey := channelState.OurCommitKey.PubKey().SerializeCompressed()
|
|
theirKey := channelState.TheirCommitKey.SerializeCompressed()
|
|
if bytes.Compare(ourKey, theirKey) == -1 {
|
|
scriptSig, err = spendMultiSig(redeemScript, theirSig, ourSig)
|
|
} else {
|
|
scriptSig, err = spendMultiSig(redeemScript, ourSig, theirSig)
|
|
}
|
|
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Attach the scriptSig to our commitment transaction's only input,
|
|
// then validate that the scriptSig executes correctly.
|
|
commitTx := c.ourPendingCommitTx
|
|
commitTx.TxIn[0].SignatureScript = scriptSig
|
|
vm, err := txscript.NewEngine(c.lnChannel.fundingP2SH, commitTx, 0,
|
|
txscript.StandardVerifyFlags, nil)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return vm.Execute()
|
|
}
|
|
|
|
// Commit...
|
|
func (c *ChannelUpdate) Commit(pastRevokePreimage []byte) error {
|
|
c.lnChannel.stateMtx.Lock()
|
|
defer c.lnChannel.stateMtx.Unlock()
|
|
|
|
// First, ensure that the pre-image properly links into the shachain.
|
|
theirShaChain := c.lnChannel.channelState.TheirShaChain
|
|
var preImage [32]byte
|
|
copy(preImage[:], pastRevokePreimage)
|
|
if err := theirShaChain.AddNextHash(preImage); err != nil {
|
|
return err
|
|
}
|
|
|
|
channelState := c.lnChannel.channelState
|
|
|
|
// Finally, verify that that this is indeed the pre-image to the
|
|
// revocation hash we were given earlier.
|
|
if !bytes.Equal(btcutil.Hash160(pastRevokePreimage),
|
|
channelState.TheirCurrentRevocation[:]) {
|
|
return fmt.Errorf("pre-image hash does not match revocation")
|
|
}
|
|
|
|
// Store this current revocation in the channel state so we can
|
|
// verify future channel updates.
|
|
channelState.TheirCurrentRevocation = c.pendingRevocation
|
|
|
|
// The channel update is now complete, roll over to the newest commitment
|
|
// transaction.
|
|
channelState.OurCommitTx = c.ourPendingCommitTx
|
|
channelState.TheirCommitTx = c.theirPendingCommitTx
|
|
channelState.NumUpdates = c.pendingUpdateNum
|
|
|
|
// If this channel update involved deleting an HTLC, remove it from the
|
|
// set of pending payments.
|
|
if c.deletion {
|
|
delete(c.lnChannel.pendingPayments, c.pendingDesc.RHash)
|
|
}
|
|
|
|
// TODO(roasbeef): db writes, checkpoints, and such
|
|
|
|
// Return the updateTotem, allowing another update to be created now
|
|
// that this pending update has been commited, and finalized.
|
|
c.lnChannel.updateTotem <- struct{}{}
|
|
|
|
return nil
|
|
}
|
|
|
|
// AddHTLC...
|
|
// 1. request R_Hash from receiver (only if single hop, would be out of band)
|
|
// 2. propose HTLC
|
|
// * timeout
|
|
// * value
|
|
// * r_hash
|
|
// * next revocation hash
|
|
// 3. they accept
|
|
// * their next revocation hash
|
|
// * their sig for our new commitment tx (verify correctness)
|
|
// Can buld both new commitment txns at this point
|
|
// 4. we give sigs
|
|
// * our sigs for their new commitment tx
|
|
// * the pre-image to our old commitment tx
|
|
// 5. they complete
|
|
// * the pre-image to their old commitment tx (verify is part of their chain, is pre-image)
|
|
func (lc *LightningChannel) AddHTLC(timeout uint32, value btcutil.Amount,
|
|
rHash, revocation PaymentHash, payToUs bool) (*ChannelUpdate, error) {
|
|
|
|
// Grab the updateTotem, this acts as a barrier upholding the invariant
|
|
// that only one channel update transaction should exist at any moment.
|
|
// This aides in ensuring the channel updates are atomic, and consistent.
|
|
<-lc.updateTotem
|
|
|
|
chanUpdate := &ChannelUpdate{
|
|
pendingDesc: &PaymentDescriptor{
|
|
RHash: rHash,
|
|
TheirRevocation: revocation,
|
|
Timeout: timeout,
|
|
Value: value,
|
|
PayToUs: payToUs,
|
|
},
|
|
pendingRevocation: revocation,
|
|
lnChannel: lc,
|
|
}
|
|
|
|
// Get next revocation hash, updating the number of updates in the
|
|
// channel as a result.
|
|
chanUpdate.currentUpdateNum = lc.channelState.NumUpdates
|
|
chanUpdate.pendingUpdateNum = lc.channelState.NumUpdates + 1
|
|
nextPreimage, err := lc.channelState.OurShaChain.GetHash(chanUpdate.pendingUpdateNum)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
copy(chanUpdate.pendingDesc.OurRevocation[:], btcutil.Hash160(nextPreimage[:]))
|
|
|
|
// Re-calculate the amount of cleared funds for each side.
|
|
var amountToUs, amountToThem btcutil.Amount
|
|
if payToUs {
|
|
amountToUs = lc.channelState.OurBalance
|
|
amountToThem = lc.channelState.TheirBalance - value
|
|
} else {
|
|
amountToUs = lc.channelState.OurBalance - value
|
|
amountToThem = lc.channelState.TheirBalance
|
|
}
|
|
|
|
// Re-create copies of the current commitment transactions to be updated.
|
|
ourNewCommitTx, theirNewCommitTx, err := createNewCommitmentTxns(
|
|
lc.fundingTxIn, &lc.channelState, chanUpdate, amountToUs, amountToThem,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// First, re-add all the old HTLCs.
|
|
for _, paymentDesc := range lc.pendingPayments {
|
|
if err := lc.addHTLC(ourNewCommitTx, theirNewCommitTx, paymentDesc); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// Then add this new HTLC.
|
|
if err := lc.addHTLC(ourNewCommitTx, theirNewCommitTx, chanUpdate.pendingDesc); err != nil {
|
|
return nil, err
|
|
}
|
|
lc.pendingPayments[rHash] = chanUpdate.pendingDesc // TODO(roasbeef): check for dups?
|
|
|
|
// Sort both transactions according to the agreed upon cannonical
|
|
// ordering. This lets us skip sending the entire transaction over,
|
|
// instead we'll just send signatures.
|
|
txsort.InPlaceSort(ourNewCommitTx)
|
|
txsort.InPlaceSort(theirNewCommitTx)
|
|
|
|
// TODO(roasbeef): locktimes/sequence set
|
|
|
|
// TODO(roasbeef): write checkpoint here...
|
|
|
|
chanUpdate.ourPendingCommitTx = ourNewCommitTx
|
|
chanUpdate.theirPendingCommitTx = theirNewCommitTx
|
|
|
|
return chanUpdate, nil
|
|
}
|
|
|
|
// addHTLC...
|
|
// NOTE: This MUST be called with stateMtx held.
|
|
func (lc *LightningChannel) addHTLC(ourCommitTx, theirCommitTx *wire.MsgTx,
|
|
paymentDesc *PaymentDescriptor) error {
|
|
|
|
// If the HTLC is going to us, then we're the sender, otherwise they
|
|
// are.
|
|
var senderKey, receiverKey *btcec.PublicKey
|
|
var senderRevocation, receiverRevocation []byte
|
|
if paymentDesc.PayToUs {
|
|
receiverKey = lc.channelState.OurCommitKey.PubKey()
|
|
receiverRevocation = paymentDesc.OurRevocation[:]
|
|
senderKey = lc.channelState.TheirCommitKey
|
|
senderRevocation = paymentDesc.TheirRevocation[:]
|
|
} else {
|
|
senderKey = lc.channelState.OurCommitKey.PubKey()
|
|
senderRevocation = paymentDesc.OurRevocation[:]
|
|
receiverKey = lc.channelState.TheirCommitKey
|
|
receiverRevocation = paymentDesc.TheirRevocation[:]
|
|
}
|
|
|
|
// Generate the proper redeem scripts for the HTLC output for both the
|
|
// sender and the receiver.
|
|
timeout := paymentDesc.Timeout
|
|
rHash := paymentDesc.RHash
|
|
delay := lc.channelState.CsvDelay
|
|
senderPKScript, err := senderHTLCScript(timeout, delay, senderKey,
|
|
receiverKey, senderRevocation[:], rHash[:])
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
receiverPKScript, err := receiverHTLCScript(timeout, delay, senderKey,
|
|
receiverKey, receiverRevocation[:], rHash[:])
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
|
|
// Now that we have the redeem scripts, create the P2SH public key
|
|
// script for each.
|
|
senderP2SH, err := scriptHashPkScript(senderPKScript)
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
receiverP2SH, err := scriptHashPkScript(receiverPKScript)
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
|
|
// Add the new HTLC outputs to the respective commitment transactions.
|
|
amountPending := int64(paymentDesc.Value)
|
|
if paymentDesc.PayToUs {
|
|
ourCommitTx.AddTxOut(wire.NewTxOut(amountPending, receiverP2SH))
|
|
theirCommitTx.AddTxOut(wire.NewTxOut(amountPending, senderP2SH))
|
|
} else {
|
|
ourCommitTx.AddTxOut(wire.NewTxOut(amountPending, senderP2SH))
|
|
theirCommitTx.AddTxOut(wire.NewTxOut(amountPending, receiverP2SH))
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// SettleHTLC...
|
|
// R-VALUE, NEW REVOKE HASH
|
|
// accept, sig
|
|
func (lc *LightningChannel) SettleHTLC(rValue [20]byte, newRevocation [20]byte) (*ChannelUpdate, error) {
|
|
// Grab the updateTotem, this acts as a barrier upholding the invariant
|
|
// that only one channel update transaction should exist at any moment.
|
|
// This aides in ensuring the channel updates are atomic, and consistent.
|
|
<-lc.updateTotem
|
|
|
|
// Find the matching payment descriptor, bailing out early if it
|
|
// doesn't exist.
|
|
var rHash PaymentHash
|
|
copy(rHash[:], btcutil.Hash160(rValue[:]))
|
|
payDesc, ok := lc.pendingPayments[rHash]
|
|
if !ok {
|
|
return nil, fmt.Errorf("r-hash for preimage not found")
|
|
}
|
|
|
|
chanUpdate := &ChannelUpdate{
|
|
pendingDesc: payDesc,
|
|
deletion: true,
|
|
pendingRevocation: newRevocation,
|
|
lnChannel: lc,
|
|
}
|
|
|
|
// TODO(roasbeef): such copy pasta, make into func...
|
|
// Get next revocation hash, updating the number of updates in the
|
|
// channel as a result.
|
|
chanUpdate.currentUpdateNum = lc.channelState.NumUpdates
|
|
chanUpdate.pendingUpdateNum = lc.channelState.NumUpdates + 1
|
|
nextPreimage, err := lc.channelState.OurShaChain.GetHash(chanUpdate.pendingUpdateNum)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
copy(chanUpdate.pendingDesc.OurRevocation[:], btcutil.Hash160(nextPreimage[:]))
|
|
|
|
// Re-calculate the amount of cleared funds for each side.
|
|
var amountToUs, amountToThem btcutil.Amount
|
|
if payDesc.PayToUs {
|
|
amountToUs = lc.channelState.OurBalance + payDesc.Value
|
|
amountToThem = lc.channelState.TheirBalance
|
|
} else {
|
|
amountToUs = lc.channelState.OurBalance
|
|
amountToThem = lc.channelState.TheirBalance + payDesc.Value
|
|
}
|
|
|
|
// Create new commitment transactions that reflect the settlement of
|
|
// this pending HTLC.
|
|
ourNewCommitTx, theirNewCommitTx, err := createNewCommitmentTxns(
|
|
lc.fundingTxIn, &lc.channelState, chanUpdate, amountToUs, amountToThem,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Re-add all the HTLC's skipping over this newly settled payment.
|
|
for paymentHash, paymentDesc := range lc.pendingPayments {
|
|
if bytes.Equal(paymentHash[:], rHash[:]) {
|
|
continue
|
|
}
|
|
if err := lc.addHTLC(ourNewCommitTx, theirNewCommitTx, paymentDesc); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// Sort both transactions according to the agreed upon cannonical
|
|
// ordering. This lets us skip sending the entire transaction over,
|
|
// instead we'll just send signatures.
|
|
txsort.InPlaceSort(ourNewCommitTx)
|
|
txsort.InPlaceSort(theirNewCommitTx)
|
|
|
|
// TODO(roasbeef): locktimes/sequence set
|
|
|
|
// TODO(roasbeef): write checkpoint here...
|
|
|
|
chanUpdate.ourPendingCommitTx = ourNewCommitTx
|
|
chanUpdate.theirPendingCommitTx = theirNewCommitTx
|
|
|
|
return chanUpdate, nil
|
|
}
|
|
|
|
// createNewCommitmentTxns....
|
|
// NOTE: This MUST be called with stateMtx held.
|
|
func createNewCommitmentTxns(fundingTxIn *wire.TxIn, state *channeldb.OpenChannel,
|
|
chanUpdate *ChannelUpdate, amountToUs, amountToThem btcutil.Amount) (*wire.MsgTx, *wire.MsgTx, error) {
|
|
|
|
ourNewCommitTx, err := createCommitTx(fundingTxIn,
|
|
state.OurCommitKey.PubKey(), state.TheirCommitKey,
|
|
chanUpdate.pendingDesc.OurRevocation[:], state.CsvDelay,
|
|
amountToUs, amountToThem)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
theirNewCommitTx, err := createCommitTx(fundingTxIn,
|
|
state.TheirCommitKey, state.OurCommitKey.PubKey(),
|
|
chanUpdate.pendingDesc.TheirRevocation[:], state.CsvDelay,
|
|
amountToThem, amountToUs)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
return ourNewCommitTx, theirNewCommitTx, nil
|
|
}
|
|
|
|
// CancelHTLC...
|
|
func (lc *LightningChannel) CancelHTLC() error {
|
|
return nil
|
|
}
|
|
|
|
// OurBalance...
|
|
func (lc *LightningChannel) OurBalance() btcutil.Amount {
|
|
lc.stateMtx.RLock()
|
|
defer lc.stateMtx.RUnlock()
|
|
return lc.channelState.OurBalance
|
|
}
|
|
|
|
// TheirBalance...
|
|
func (lc *LightningChannel) TheirBalance() btcutil.Amount {
|
|
lc.stateMtx.RLock()
|
|
defer lc.stateMtx.RUnlock()
|
|
return lc.channelState.TheirBalance
|
|
}
|
|
|
|
// ForceClose...
|
|
func (lc *LightningChannel) ForceClose() error {
|
|
return nil
|
|
}
|
|
|
|
// RequestPayment...
|
|
func (lc *LightningChannel) RequestPayment(amount btcutil.Amount) error {
|
|
// Validate amount
|
|
return nil
|
|
}
|
|
|
|
// PaymentRequest...
|
|
// TODO(roasbeef): serialization (bip 70, QR code, etc)
|
|
// * routing handled by upper layer
|
|
type PaymentRequest struct {
|
|
PaymentPreImage [20]byte
|
|
Value btcutil.Amount
|
|
}
|
|
|
|
// createCommitTx...
|
|
// TODO(roasbeef): fix inconsistency of 32 vs 20 byte revocation hashes everywhere...
|
|
func createCommitTx(fundingOutput *wire.TxIn, selfKey, theirKey *btcec.PublicKey,
|
|
revokeHash []byte, csvTimeout uint32, amountToSelf,
|
|
amountToThem btcutil.Amount) (*wire.MsgTx, error) {
|
|
|
|
// First, we create the script for the delayed "pay-to-self" output.
|
|
ourRedeemScript, err := commitScriptToSelf(csvTimeout, selfKey, theirKey,
|
|
revokeHash)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
payToUsScriptHash, err := scriptHashPkScript(ourRedeemScript)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Next, we create the script paying to them. This is just a regular
|
|
// P2PKH-like output, without any added CSV delay. However, we instead
|
|
// use P2SH.
|
|
theirRedeemScript, err := commitScriptUnencumbered(theirKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
payToThemScriptHash, err := scriptHashPkScript(theirRedeemScript)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Now that both output scripts have been created, we can finally create
|
|
// the transaction itself.
|
|
commitTx := wire.NewMsgTx()
|
|
commitTx.AddTxIn(fundingOutput)
|
|
// TODO(roasbeef): we default to blocks, make configurable as part of
|
|
// channel reservation.
|
|
commitTx.TxIn[0].Sequence = lockTimeToSequence(false, csvTimeout)
|
|
commitTx.AddTxOut(wire.NewTxOut(int64(amountToSelf), payToUsScriptHash))
|
|
commitTx.AddTxOut(wire.NewTxOut(int64(amountToThem), payToThemScriptHash))
|
|
|
|
return commitTx, nil
|
|
}
|
|
|
|
// lockTimeToSequence converts the passed relative locktime to a sequence
|
|
// number in accordance to BIP-68.
|
|
// See: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
|
|
// * (Compatibility)
|
|
func lockTimeToSequence(isSeconds bool, locktime uint32) uint32 {
|
|
if !isSeconds {
|
|
// The locktime is to be expressed in confirmations. Apply the
|
|
// mask to restrict the number of confirmations to 65,535 or
|
|
// 1.25 years.
|
|
return SequenceLockTimeMask & locktime
|
|
}
|
|
|
|
// Set the 22nd bit which indicates the lock time is in seconds, then
|
|
// shift the locktime over by 9 since the time granularity is in
|
|
// 512-second intervals (2^9). This results in a max lock-time of
|
|
// 33,554,431 seconds, or 1.06 years.
|
|
return SequenceLockTimeSeconds | (locktime >> 9)
|
|
}
|