ddd12eff9c
In this commit, we fix a race in the set of TestChannelLinkTrimCircuits* tests. Before this commit, we would trim the circuits in the htlcManager goroutine. However, this was problematic as the scheduling order of goroutines isn't predictable. Instead, we'll now trim the circuits in the Start method. Additionally, we fix a series of off-by-2 bugs in the tests themselves.
3916 lines
125 KiB
Go
3916 lines
125 KiB
Go
package htlcswitch
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/rand"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"reflect"
|
|
"runtime"
|
|
"strings"
|
|
"sync"
|
|
"testing"
|
|
"time"
|
|
|
|
"math"
|
|
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/go-errors/errors"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/contractcourt"
|
|
"github.com/lightningnetwork/lnd/htlcswitch/hodl"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/roasbeef/btcd/btcec"
|
|
"github.com/roasbeef/btcd/chaincfg/chainhash"
|
|
"github.com/roasbeef/btcd/wire"
|
|
"github.com/roasbeef/btcutil"
|
|
)
|
|
|
|
const (
|
|
testStartingHeight = 100
|
|
)
|
|
|
|
// concurrentTester is a thread-safe wrapper around the Fatalf method of a
|
|
// *testing.T instance. With this wrapper multiple goroutines can safely
|
|
// attempt to fail a test concurrently.
|
|
type concurrentTester struct {
|
|
mtx sync.Mutex
|
|
*testing.T
|
|
}
|
|
|
|
func newConcurrentTester(t *testing.T) *concurrentTester {
|
|
return &concurrentTester{
|
|
T: t,
|
|
}
|
|
}
|
|
|
|
func (c *concurrentTester) Fatalf(format string, args ...interface{}) {
|
|
c.mtx.Lock()
|
|
defer c.mtx.Unlock()
|
|
|
|
c.T.Fatalf(format, args)
|
|
}
|
|
|
|
// messageToString is used to produce less spammy log messages in trace mode by
|
|
// setting the 'Curve" parameter to nil. Doing this avoids printing out each of
|
|
// the field elements in the curve parameters for secp256k1.
|
|
func messageToString(msg lnwire.Message) string {
|
|
switch m := msg.(type) {
|
|
case *lnwire.RevokeAndAck:
|
|
m.NextRevocationKey.Curve = nil
|
|
case *lnwire.AcceptChannel:
|
|
m.FundingKey.Curve = nil
|
|
m.RevocationPoint.Curve = nil
|
|
m.PaymentPoint.Curve = nil
|
|
m.DelayedPaymentPoint.Curve = nil
|
|
m.FirstCommitmentPoint.Curve = nil
|
|
case *lnwire.OpenChannel:
|
|
m.FundingKey.Curve = nil
|
|
m.RevocationPoint.Curve = nil
|
|
m.PaymentPoint.Curve = nil
|
|
m.DelayedPaymentPoint.Curve = nil
|
|
m.FirstCommitmentPoint.Curve = nil
|
|
case *lnwire.FundingLocked:
|
|
m.NextPerCommitmentPoint.Curve = nil
|
|
}
|
|
|
|
return spew.Sdump(msg)
|
|
}
|
|
|
|
// expectedMessage struct holds the message which travels from one peer to
|
|
// another, and additional information like, should this message we skipped for
|
|
// handling.
|
|
type expectedMessage struct {
|
|
from string
|
|
to string
|
|
message lnwire.Message
|
|
skip bool
|
|
}
|
|
|
|
// createLogFunc is a helper function which returns the function which will be
|
|
// used for logging message are received from another peer.
|
|
func createLogFunc(name string, channelID lnwire.ChannelID) messageInterceptor {
|
|
return func(m lnwire.Message) (bool, error) {
|
|
chanID, err := getChanID(m)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
if chanID == channelID {
|
|
fmt.Printf("---------------------- \n %v received: "+
|
|
"%v", name, messageToString(m))
|
|
}
|
|
return false, nil
|
|
}
|
|
}
|
|
|
|
// createInterceptorFunc creates the function by the given set of messages
|
|
// which, checks the order of the messages and skip the ones which were
|
|
// indicated to be intercepted.
|
|
func createInterceptorFunc(prefix, receiver string, messages []expectedMessage,
|
|
chanID lnwire.ChannelID, debug bool) messageInterceptor {
|
|
|
|
// Filter message which should be received with given peer name.
|
|
var expectToReceive []expectedMessage
|
|
for _, message := range messages {
|
|
if message.to == receiver {
|
|
expectToReceive = append(expectToReceive, message)
|
|
}
|
|
}
|
|
|
|
// Return function which checks the message order and skip the
|
|
// messages.
|
|
return func(m lnwire.Message) (bool, error) {
|
|
messageChanID, err := getChanID(m)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
if messageChanID == chanID {
|
|
if len(expectToReceive) == 0 {
|
|
return false, errors.Errorf("%v received "+
|
|
"unexpected message out of range: %v",
|
|
receiver, m.MsgType())
|
|
}
|
|
|
|
expectedMessage := expectToReceive[0]
|
|
expectToReceive = expectToReceive[1:]
|
|
|
|
if expectedMessage.message.MsgType() != m.MsgType() {
|
|
return false, errors.Errorf("%v received wrong message: \n"+
|
|
"real: %v\nexpected: %v", receiver, m.MsgType(),
|
|
expectedMessage.message.MsgType())
|
|
}
|
|
|
|
if debug {
|
|
var postfix string
|
|
if revocation, ok := m.(*lnwire.RevokeAndAck); ok {
|
|
var zeroHash chainhash.Hash
|
|
if bytes.Equal(zeroHash[:], revocation.Revocation[:]) {
|
|
postfix = "- empty revocation"
|
|
}
|
|
}
|
|
|
|
if expectedMessage.skip {
|
|
fmt.Printf("skipped: %v: %v %v \n", prefix,
|
|
m.MsgType(), postfix)
|
|
} else {
|
|
fmt.Printf("%v: %v %v \n", prefix, m.MsgType(), postfix)
|
|
}
|
|
}
|
|
|
|
return expectedMessage.skip, nil
|
|
}
|
|
return false, nil
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkSingleHopPayment in this test we checks the interaction
|
|
// between Alice and Bob within scope of one channel.
|
|
func TestChannelLinkSingleHopPayment(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
bobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
|
|
debug := false
|
|
if debug {
|
|
// Log message that alice receives.
|
|
n.aliceServer.intersect(createLogFunc("alice",
|
|
n.aliceChannelLink.ChanID()))
|
|
|
|
// Log message that bob receives.
|
|
n.bobServer.intersect(createLogFunc("bob",
|
|
n.firstBobChannelLink.ChanID()))
|
|
}
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink)
|
|
|
|
// Wait for:
|
|
// * HTLC add request to be sent to bob.
|
|
// * alice<->bob commitment state to be updated.
|
|
// * settle request to be sent back from bob to alice.
|
|
// * alice<->bob commitment state to be updated.
|
|
// * user notification to be sent.
|
|
receiver := n.bobServer
|
|
rhash, err := n.makePayment(n.aliceServer, receiver,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(30 * time.Second)
|
|
if err != nil {
|
|
t.Fatalf("unable to make the payment: %v", err)
|
|
}
|
|
|
|
// Wait for Bob to receive the revocation.
|
|
//
|
|
// TODO(roasbeef); replace with select over returned err chan
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Check that alice invoice was settled and bandwidth of HTLC
|
|
// links was changed.
|
|
invoice, err := receiver.registry.LookupInvoice(rhash)
|
|
if err != nil {
|
|
t.Fatalf("unable to get invoice: %v", err)
|
|
}
|
|
if !invoice.Terms.Settled {
|
|
t.Fatal("alice invoice wasn't settled")
|
|
}
|
|
|
|
if aliceBandwidthBefore-amount != n.aliceChannelLink.Bandwidth() {
|
|
t.Fatal("alice bandwidth should have decrease on payment " +
|
|
"amount")
|
|
}
|
|
|
|
if bobBandwidthBefore+amount != n.firstBobChannelLink.Bandwidth() {
|
|
t.Fatalf("bob bandwidth isn't match: expected %v, got %v",
|
|
bobBandwidthBefore+amount,
|
|
n.firstBobChannelLink.Bandwidth())
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkBidirectionalOneHopPayments tests the ability of channel
|
|
// link to cope with bigger number of payment updates that commitment
|
|
// transaction may consist.
|
|
func TestChannelLinkBidirectionalOneHopPayments(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
bobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
debug := false
|
|
if debug {
|
|
// Log message that alice receives.
|
|
n.aliceServer.intersect(createLogFunc("alice",
|
|
n.aliceChannelLink.ChanID()))
|
|
|
|
// Log message that bob receives.
|
|
n.bobServer.intersect(createLogFunc("bob",
|
|
n.firstBobChannelLink.ChanID()))
|
|
}
|
|
|
|
amt := lnwire.NewMSatFromSatoshis(20000)
|
|
|
|
htlcAmt, totalTimelock, hopsForwards := generateHops(amt,
|
|
testStartingHeight, n.firstBobChannelLink)
|
|
_, _, hopsBackwards := generateHops(amt,
|
|
testStartingHeight, n.aliceChannelLink)
|
|
|
|
type result struct {
|
|
err error
|
|
start time.Time
|
|
number int
|
|
sender string
|
|
}
|
|
|
|
// Send max available payment number in both sides, thereby testing
|
|
// the property of channel link to cope with overflowing.
|
|
count := 2 * lnwallet.MaxHTLCNumber
|
|
resultChan := make(chan *result, count)
|
|
for i := 0; i < count/2; i++ {
|
|
go func(i int) {
|
|
r := &result{
|
|
start: time.Now(),
|
|
number: i,
|
|
sender: "alice",
|
|
}
|
|
|
|
_, r.err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hopsForwards, amt, htlcAmt,
|
|
totalTimelock).Wait(5 * time.Minute)
|
|
resultChan <- r
|
|
}(i)
|
|
}
|
|
|
|
for i := 0; i < count/2; i++ {
|
|
go func(i int) {
|
|
r := &result{
|
|
start: time.Now(),
|
|
number: i,
|
|
sender: "bob",
|
|
}
|
|
|
|
_, r.err = n.makePayment(n.bobServer, n.aliceServer,
|
|
n.aliceServer.PubKey(), hopsBackwards, amt, htlcAmt,
|
|
totalTimelock).Wait(5 * time.Minute)
|
|
resultChan <- r
|
|
}(i)
|
|
}
|
|
|
|
maxDelay := time.Duration(0)
|
|
minDelay := time.Duration(math.MaxInt64)
|
|
averageDelay := time.Duration(0)
|
|
|
|
// Check that alice invoice was settled and bandwidth of HTLC
|
|
// links was changed.
|
|
for i := 0; i < count; i++ {
|
|
select {
|
|
case r := <-resultChan:
|
|
if r.err != nil {
|
|
t.Fatalf("unable to make payment: %v", r.err)
|
|
}
|
|
|
|
delay := time.Since(r.start)
|
|
if delay > maxDelay {
|
|
maxDelay = delay
|
|
}
|
|
|
|
if delay < minDelay {
|
|
minDelay = delay
|
|
}
|
|
averageDelay += delay
|
|
|
|
case <-time.After(5 * time.Minute):
|
|
t.Fatalf("timeout: (%v/%v)", i+1, count)
|
|
}
|
|
}
|
|
|
|
// TODO(roasbeef): should instead consume async notifications from both
|
|
// links
|
|
time.Sleep(time.Second * 2)
|
|
|
|
// At the end Bob and Alice balances should be the same as previous,
|
|
// because they sent the equal amount of money to each other.
|
|
if aliceBandwidthBefore != n.aliceChannelLink.Bandwidth() {
|
|
t.Fatalf("alice bandwidth shouldn't have changed: expected %v, got %x",
|
|
aliceBandwidthBefore, n.aliceChannelLink.Bandwidth())
|
|
}
|
|
|
|
if bobBandwidthBefore != n.firstBobChannelLink.Bandwidth() {
|
|
t.Fatalf("bob bandwidth shouldn't have changed: expected %v, got %v",
|
|
bobBandwidthBefore, n.firstBobChannelLink.Bandwidth())
|
|
}
|
|
|
|
t.Logf("Max waiting: %v", maxDelay)
|
|
t.Logf("Min waiting: %v", minDelay)
|
|
t.Logf("Average waiting: %v", time.Duration(int(averageDelay)/count))
|
|
}
|
|
|
|
// TestChannelLinkMultiHopPayment checks the ability to send payment over two
|
|
// hops. In this test we send the payment from Carol to Alice over Bob peer.
|
|
// (Carol -> Bob -> Alice) and checking that HTLC was settled properly and
|
|
// balances were changed in two channels.
|
|
func TestChannelLinkMultiHopPayment(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
|
|
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
debug := false
|
|
if debug {
|
|
// Log messages that alice receives from bob.
|
|
n.aliceServer.intersect(createLogFunc("[alice]<-bob<-carol: ",
|
|
n.aliceChannelLink.ChanID()))
|
|
|
|
// Log messages that bob receives from alice.
|
|
n.bobServer.intersect(createLogFunc("alice->[bob]->carol: ",
|
|
n.firstBobChannelLink.ChanID()))
|
|
|
|
// Log messages that bob receives from carol.
|
|
n.bobServer.intersect(createLogFunc("alice<-[bob]<-carol: ",
|
|
n.secondBobChannelLink.ChanID()))
|
|
|
|
// Log messages that carol receives from bob.
|
|
n.carolServer.intersect(createLogFunc("alice->bob->[carol]",
|
|
n.carolChannelLink.ChanID()))
|
|
}
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(amount,
|
|
testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
// Wait for:
|
|
// * HTLC add request to be sent from Alice to Bob.
|
|
// * Alice<->Bob commitment states to be updated.
|
|
// * HTLC add request to be propagated to Carol.
|
|
// * Bob<->Carol commitment state to be updated.
|
|
// * settle request to be sent back from Carol to Bob.
|
|
// * Alice<->Bob commitment state to be updated.
|
|
// * settle request to be sent back from Bob to Alice.
|
|
// * Alice<->Bob commitment states to be updated.
|
|
// * user notification to be sent.
|
|
receiver := n.carolServer
|
|
rhash, err := n.makePayment(n.aliceServer, n.carolServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(30 * time.Second)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// Wait for Bob to receive the revocation.
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Check that Carol invoice was settled and bandwidth of HTLC
|
|
// links were changed.
|
|
invoice, err := receiver.registry.LookupInvoice(rhash)
|
|
if err != nil {
|
|
t.Fatalf("unable to get invoice: %v", err)
|
|
}
|
|
if !invoice.Terms.Settled {
|
|
t.Fatal("carol invoice haven't been settled")
|
|
}
|
|
|
|
expectedAliceBandwidth := aliceBandwidthBefore - htlcAmt
|
|
if expectedAliceBandwidth != n.aliceChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedAliceBandwidth, n.aliceChannelLink.Bandwidth())
|
|
}
|
|
|
|
expectedBobBandwidth1 := firstBobBandwidthBefore + htlcAmt
|
|
if expectedBobBandwidth1 != n.firstBobChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedBobBandwidth1, n.firstBobChannelLink.Bandwidth())
|
|
}
|
|
|
|
expectedBobBandwidth2 := secondBobBandwidthBefore - amount
|
|
if expectedBobBandwidth2 != n.secondBobChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedBobBandwidth2, n.secondBobChannelLink.Bandwidth())
|
|
}
|
|
|
|
expectedCarolBandwidth := carolBandwidthBefore + amount
|
|
if expectedCarolBandwidth != n.carolChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedCarolBandwidth, n.carolChannelLink.Bandwidth())
|
|
}
|
|
}
|
|
|
|
// TestExitNodeTimelockPayloadMismatch tests that when an exit node receives an
|
|
// incoming HTLC, if the time lock encoded in the payload of the forwarded HTLC
|
|
// doesn't match the expected payment value, then the HTLC will be rejected
|
|
// with the appropriate error.
|
|
func TestExitNodeTimelockPayloadMismatch(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
const amount = btcutil.SatoshiPerBitcoin
|
|
htlcAmt, htlcExpiry, hops := generateHops(amount,
|
|
testStartingHeight, n.firstBobChannelLink)
|
|
|
|
// In order to exercise this case, we'll now _manually_ modify the
|
|
// per-hop payload for outgoing time lock to be the incorrect value.
|
|
// The proper value of the outgoing CLTV should be the policy set by
|
|
// the receiving node, instead we set it to be a random value.
|
|
hops[0].OutgoingCTLV = 500
|
|
|
|
_, err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
htlcExpiry).Wait(30 * time.Second)
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed but didn't")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got: %T", err)
|
|
}
|
|
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailFinalIncorrectCltvExpiry:
|
|
default:
|
|
t.Fatalf("incorrect error, expected incorrect cltv expiry, "+
|
|
"instead have: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestExitNodeAmountPayloadMismatch tests that when an exit node receives an
|
|
// incoming HTLC, if the amount encoded in the onion payload of the forwarded
|
|
// HTLC doesn't match the expected payment value, then the HTLC will be
|
|
// rejected.
|
|
func TestExitNodeAmountPayloadMismatch(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
const amount = btcutil.SatoshiPerBitcoin
|
|
htlcAmt, htlcExpiry, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink)
|
|
|
|
// In order to exercise this case, we'll now _manually_ modify the
|
|
// per-hop payload for amount to be the incorrect value. The proper
|
|
// value of the amount to forward should be the amount that the
|
|
// receiving node expects to receive.
|
|
hops[0].AmountToForward = 1
|
|
|
|
_, err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
htlcExpiry).Wait(30 * time.Second)
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed but didn't")
|
|
} else if err.Error() != lnwire.CodeIncorrectPaymentAmount.String() {
|
|
// TODO(roasbeef): use proper error after error propagation is
|
|
// in
|
|
t.Fatalf("incorrect error, expected insufficient value, "+
|
|
"instead have: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestLinkForwardTimelockPolicyMismatch tests that if a node is an
|
|
// intermediate node in a multi-hop payment, and receives an HTLC which
|
|
// violates its specified multi-hop policy, then the HTLC is rejected.
|
|
func TestLinkForwardTimelockPolicyMismatch(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
// We'll be sending 1 BTC over a 2-hop (3 vertex) route.
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
|
|
// Generate the route over two hops, ignoring the total time lock that
|
|
// we'll need to use for the first HTLC in order to have a sufficient
|
|
// time-lock value to account for the decrements over the entire route.
|
|
htlcAmt, htlcExpiry, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
htlcExpiry -= 2
|
|
|
|
// Next, we'll make the payment which'll send an HTLC with our
|
|
// specified parameters to the first hop in the route.
|
|
_, err = n.makePayment(n.aliceServer, n.carolServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
htlcExpiry).Wait(30 * time.Second)
|
|
// We should get an error, and that error should indicate that the HTLC
|
|
// should be rejected due to a policy violation.
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed but didn't")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got: %T", err)
|
|
}
|
|
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailIncorrectCltvExpiry:
|
|
default:
|
|
t.Fatalf("incorrect error, expected incorrect cltv expiry, "+
|
|
"instead have: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestLinkForwardTimelockPolicyMismatch tests that if a node is an
|
|
// intermediate node in a multi-hop payment and receives an HTLC that violates
|
|
// its current fee policy, then the HTLC is rejected with the proper error.
|
|
func TestLinkForwardFeePolicyMismatch(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
// We'll be sending 1 BTC over a 2-hop (3 vertex) route. Given the
|
|
// current default fee of 1 SAT, if we just send a single BTC over in
|
|
// an HTLC, it should be rejected.
|
|
amountNoFee := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
|
|
// Generate the route over two hops, ignoring the amount we _should_
|
|
// actually send in order to be able to cover fees.
|
|
_, htlcExpiry, hops := generateHops(amountNoFee, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
// Next, we'll make the payment which'll send an HTLC with our
|
|
// specified parameters to the first hop in the route.
|
|
_, err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hops, amountNoFee, amountNoFee,
|
|
htlcExpiry).Wait(30 * time.Second)
|
|
|
|
// We should get an error, and that error should indicate that the HTLC
|
|
// should be rejected due to a policy violation.
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed but didn't")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got: %T", err)
|
|
}
|
|
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailFeeInsufficient:
|
|
default:
|
|
t.Fatalf("incorrect error, expected fee insufficient, "+
|
|
"instead have: %T", err)
|
|
}
|
|
}
|
|
|
|
// TestLinkForwardFeePolicyMismatch tests that if a node is an intermediate
|
|
// node and receives an HTLC which is _below_ its min HTLC policy, then the
|
|
// HTLC will be rejected.
|
|
func TestLinkForwardMinHTLCPolicyMismatch(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
// The current default global min HTLC policy set in the default config
|
|
// for the three-hop-network is 5 SAT. So in order to trigger this
|
|
// failure mode, we'll create an HTLC with 1 satoshi.
|
|
amountNoFee := lnwire.NewMSatFromSatoshis(1)
|
|
|
|
// With the amount set, we'll generate a route over 2 hops within the
|
|
// network that attempts to pay out our specified amount.
|
|
htlcAmt, htlcExpiry, hops := generateHops(amountNoFee, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
// Next, we'll make the payment which'll send an HTLC with our
|
|
// specified parameters to the first hop in the route.
|
|
_, err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hops, amountNoFee, htlcAmt,
|
|
htlcExpiry).Wait(30 * time.Second)
|
|
|
|
// We should get an error, and that error should indicate that the HTLC
|
|
// should be rejected due to a policy violation (below min HTLC).
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed but didn't")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got: %T", err)
|
|
}
|
|
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailAmountBelowMinimum:
|
|
default:
|
|
t.Fatalf("incorrect error, expected amount below minimum, "+
|
|
"instead have: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestUpdateForwardingPolicy tests that the forwarding policy for a link is
|
|
// able to be updated properly. We'll first create an HTLC that meets the
|
|
// specified policy, assert that it succeeds, update the policy (to invalidate
|
|
// the prior HTLC), and then ensure that the HTLC is rejected.
|
|
func TestUpdateForwardingPolicy(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
|
|
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
amountNoFee := lnwire.NewMSatFromSatoshis(10)
|
|
htlcAmt, htlcExpiry, hops := generateHops(amountNoFee,
|
|
testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
// First, send this 10 mSAT payment over the three hops, the payment
|
|
// should succeed, and all balances should be updated accordingly.
|
|
payResp, err := n.makePayment(n.aliceServer, n.carolServer,
|
|
n.bobServer.PubKey(), hops, amountNoFee, htlcAmt,
|
|
htlcExpiry).Wait(30 * time.Second)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// Carol's invoice should now be shown as settled as the payment
|
|
// succeeded.
|
|
invoice, err := n.carolServer.registry.LookupInvoice(payResp)
|
|
if err != nil {
|
|
t.Fatalf("unable to get invoice: %v", err)
|
|
}
|
|
if !invoice.Terms.Settled {
|
|
t.Fatal("carol invoice haven't been settled")
|
|
}
|
|
|
|
expectedAliceBandwidth := aliceBandwidthBefore - htlcAmt
|
|
if expectedAliceBandwidth != n.aliceChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedAliceBandwidth, n.aliceChannelLink.Bandwidth())
|
|
}
|
|
expectedBobBandwidth1 := firstBobBandwidthBefore + htlcAmt
|
|
if expectedBobBandwidth1 != n.firstBobChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedBobBandwidth1, n.firstBobChannelLink.Bandwidth())
|
|
}
|
|
expectedBobBandwidth2 := secondBobBandwidthBefore - amountNoFee
|
|
if expectedBobBandwidth2 != n.secondBobChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedBobBandwidth2, n.secondBobChannelLink.Bandwidth())
|
|
}
|
|
expectedCarolBandwidth := carolBandwidthBefore + amountNoFee
|
|
if expectedCarolBandwidth != n.carolChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedCarolBandwidth, n.carolChannelLink.Bandwidth())
|
|
}
|
|
|
|
// Now we'll update Bob's policy to jack up his free rate to an extent
|
|
// that'll cause him to reject the same HTLC that we just sent.
|
|
//
|
|
// TODO(roasbeef): should implement grace period within link policy
|
|
// update logic
|
|
newPolicy := n.globalPolicy
|
|
newPolicy.BaseFee = lnwire.NewMSatFromSatoshis(1000)
|
|
n.secondBobChannelLink.UpdateForwardingPolicy(newPolicy)
|
|
|
|
// Next, we'll send the payment again, using the exact same per-hop
|
|
// payload for each node. This payment should fail as it won't factor
|
|
// in Bob's new fee policy.
|
|
_, err = n.makePayment(n.aliceServer, n.carolServer,
|
|
n.bobServer.PubKey(), hops, amountNoFee, htlcAmt,
|
|
htlcExpiry).Wait(30 * time.Second)
|
|
if err == nil {
|
|
t.Fatalf("payment should've been rejected")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got (%T): %v", err, err)
|
|
}
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailFeeInsufficient:
|
|
default:
|
|
t.Fatalf("expected FailFeeInsufficient instead got: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkMultiHopInsufficientPayment checks that we receive error if
|
|
// bob<->alice channel has insufficient BTC capacity/bandwidth. In this test we
|
|
// send the payment from Carol to Alice over Bob peer. (Carol -> Bob -> Alice)
|
|
func TestChannelLinkMultiHopInsufficientPayment(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
|
|
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
// We'll attempt to send 4 BTC although the alice-to-bob channel only
|
|
// has 3 BTC total capacity. As a result, this payment should be
|
|
// rejected.
|
|
amount := lnwire.NewMSatFromSatoshis(4 * btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
// Wait for:
|
|
// * HTLC add request to be sent to from Alice to Bob.
|
|
// * Alice<->Bob commitment states to be updated.
|
|
// * Bob trying to add HTLC add request in Bob<->Carol channel.
|
|
// * Cancel HTLC request to be sent back from Bob to Alice.
|
|
// * user notification to be sent.
|
|
|
|
receiver := n.carolServer
|
|
rhash, err := n.makePayment(n.aliceServer, n.carolServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(30 * time.Second)
|
|
if err == nil {
|
|
t.Fatal("error haven't been received")
|
|
} else if !strings.Contains(err.Error(), "insufficient capacity") {
|
|
t.Fatalf("wrong error has been received: %v", err)
|
|
}
|
|
|
|
// Wait for Alice to receive the revocation.
|
|
//
|
|
// TODO(roasbeef): add in ntfn hook for state transition completion
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Check that alice invoice wasn't settled and bandwidth of htlc
|
|
// links hasn't been changed.
|
|
invoice, err := receiver.registry.LookupInvoice(rhash)
|
|
if err != nil {
|
|
t.Fatalf("unable to get invoice: %v", err)
|
|
}
|
|
if invoice.Terms.Settled {
|
|
t.Fatal("carol invoice have been settled")
|
|
}
|
|
|
|
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
|
|
t.Fatal("the bandwidth of alice channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
|
|
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
|
|
t.Fatal("the bandwidth of carol channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkMultiHopUnknownPaymentHash checks that we receive remote error
|
|
// from Alice if she received not suitable payment hash for htlc.
|
|
func TestChannelLinkMultiHopUnknownPaymentHash(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
|
|
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
blob, err := generateRoute(hops...)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Generate payment: invoice and htlc.
|
|
invoice, htlc, err := generatePayment(amount, htlcAmt, totalTimelock,
|
|
blob)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// We need to have wrong rhash for that reason we should change the
|
|
// preimage. Inverse first byte by xoring with 0xff.
|
|
invoice.Terms.PaymentPreimage[0] ^= byte(255)
|
|
|
|
// Check who is last in the route and add invoice to server registry.
|
|
if err := n.carolServer.registry.AddInvoice(*invoice); err != nil {
|
|
t.Fatalf("unable to add invoice in carol registry: %v", err)
|
|
}
|
|
|
|
// Send payment and expose err channel.
|
|
_, err = n.aliceServer.htlcSwitch.SendHTLC(n.bobServer.PubKey(), htlc,
|
|
newMockDeobfuscator())
|
|
if err.Error() != lnwire.CodeUnknownPaymentHash.String() {
|
|
t.Fatal("error haven't been received")
|
|
}
|
|
|
|
// Wait for Alice to receive the revocation.
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Check that alice invoice wasn't settled and bandwidth of htlc
|
|
// links hasn't been changed.
|
|
if invoice.Terms.Settled {
|
|
t.Fatal("alice invoice was settled")
|
|
}
|
|
|
|
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
|
|
t.Fatal("the bandwidth of alice channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
|
|
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
|
|
t.Fatal("the bandwidth of carol channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkMultiHopUnknownNextHop construct the chain of hops
|
|
// Carol<->Bob<->Alice and checks that we receive remote error from Bob if he
|
|
// has no idea about next hop (hop might goes down and routing info not updated
|
|
// yet).
|
|
func TestChannelLinkMultiHopUnknownNextHop(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
|
|
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
|
|
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
daveServer, err := newMockServer(t, "dave", nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to init dave's server: %v", err)
|
|
}
|
|
davePub := daveServer.PubKey()
|
|
receiver := n.bobServer
|
|
rhash, err := n.makePayment(n.aliceServer, n.bobServer, davePub, hops,
|
|
amount, htlcAmt, totalTimelock).Wait(30 * time.Second)
|
|
if err == nil {
|
|
t.Fatal("error haven't been received")
|
|
} else if err.Error() != lnwire.CodeUnknownNextPeer.String() {
|
|
t.Fatalf("wrong error have been received: %v", err)
|
|
}
|
|
|
|
// Wait for Alice to receive the revocation.
|
|
//
|
|
// TODO(roasbeef): add in ntfn hook for state transition completion
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Check that alice invoice wasn't settled and bandwidth of htlc
|
|
// links hasn't been changed.
|
|
invoice, err := receiver.registry.LookupInvoice(rhash)
|
|
if err != nil {
|
|
t.Fatalf("unable to get invoice: %v", err)
|
|
}
|
|
if invoice.Terms.Settled {
|
|
t.Fatal("carol invoice have been settled")
|
|
}
|
|
|
|
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
|
|
t.Fatal("the bandwidth of alice channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
|
|
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
|
|
t.Fatal("the bandwidth of carol channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkMultiHopDecodeError checks that we send HTLC cancel if
|
|
// decoding of onion blob failed.
|
|
func TestChannelLinkMultiHopDecodeError(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
// Replace decode function with another which throws an error.
|
|
n.carolChannelLink.cfg.ExtractErrorEncrypter = func(
|
|
*btcec.PublicKey) (ErrorEncrypter, lnwire.FailCode) {
|
|
return nil, lnwire.CodeInvalidOnionVersion
|
|
}
|
|
|
|
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
|
|
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
receiver := n.carolServer
|
|
rhash, err := n.makePayment(n.aliceServer, n.carolServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(30 * time.Second)
|
|
if err == nil {
|
|
t.Fatal("error haven't been received")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got: %T", err)
|
|
}
|
|
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailInvalidOnionVersion:
|
|
default:
|
|
t.Fatalf("wrong error have been received: %v", err)
|
|
}
|
|
|
|
// Wait for Bob to receive the revocation.
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Check that alice invoice wasn't settled and bandwidth of htlc
|
|
// links hasn't been changed.
|
|
invoice, err := receiver.registry.LookupInvoice(rhash)
|
|
if err != nil {
|
|
t.Fatalf("unable to get invoice: %v", err)
|
|
}
|
|
if invoice.Terms.Settled {
|
|
t.Fatal("carol invoice have been settled")
|
|
}
|
|
|
|
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
|
|
t.Fatal("the bandwidth of alice channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"alice->bob channel should be the same")
|
|
}
|
|
|
|
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
|
|
t.Fatal("the bandwidth of bob channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
|
|
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
|
|
t.Fatal("the bandwidth of carol channel link which handles " +
|
|
"bob->carol channel should be the same")
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkExpiryTooSoonExitNode tests that if we send an HTLC to a node
|
|
// with an expiry that is already expired, or too close to the current block
|
|
// height, then it will cancel the HTLC.
|
|
func TestChannelLinkExpiryTooSoonExitNode(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// The starting height for this test will be 200. So we'll base all
|
|
// HTLC starting points off of that.
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
const startingHeight = 200
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, startingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
|
|
// We'll craft an HTLC packet, but set the starting height to 10 blocks
|
|
// before the current true height.
|
|
htlcAmt, totalTimelock, hops := generateHops(amount,
|
|
startingHeight-10, n.firstBobChannelLink)
|
|
|
|
// Now we'll send out the payment from Alice to Bob.
|
|
_, err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(30 * time.Second)
|
|
|
|
// The payment should've failed as the time lock value was in the
|
|
// _past_.
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed due to a too early " +
|
|
"time lock value")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got: %T %v",
|
|
err, err)
|
|
}
|
|
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailFinalIncorrectCltvExpiry:
|
|
default:
|
|
t.Fatalf("incorrect error, expected final time lock too "+
|
|
"early, instead have: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkExpiryTooSoonExitNode tests that if we send a multi-hop HTLC,
|
|
// and the time lock is too early for an intermediate node, then they cancel
|
|
// the HTLC back to the sender.
|
|
func TestChannelLinkExpiryTooSoonMidNode(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// The starting height for this test will be 200. So we'll base all
|
|
// HTLC starting points off of that.
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
const startingHeight = 200
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, startingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
|
|
// We'll craft an HTLC packet, but set the starting height to 10 blocks
|
|
// before the current true height. The final route will be three hops,
|
|
// so the middle hop should detect the issue.
|
|
htlcAmt, totalTimelock, hops := generateHops(amount,
|
|
startingHeight-10, n.firstBobChannelLink, n.carolChannelLink)
|
|
|
|
// Now we'll send out the payment from Alice to Bob.
|
|
_, err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(30 * time.Second)
|
|
|
|
// The payment should've failed as the time lock value was in the
|
|
// _past_.
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed due to a too early " +
|
|
"time lock value")
|
|
}
|
|
|
|
ferr, ok := err.(*ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected a ForwardingError, instead got: %T: %v", err, err)
|
|
}
|
|
|
|
switch ferr.FailureMessage.(type) {
|
|
case *lnwire.FailExpiryTooSoon:
|
|
default:
|
|
t.Fatalf("incorrect error, expected final time lock too "+
|
|
"early, instead have: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkSingleHopMessageOrdering test checks ordering of message which
|
|
// flying around between Alice and Bob are correct when Bob sends payments to
|
|
// Alice.
|
|
func TestChannelLinkSingleHopMessageOrdering(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
|
|
chanID := n.aliceChannelLink.ChanID()
|
|
|
|
messages := []expectedMessage{
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
{"alice", "bob", &lnwire.FundingLocked{}, false},
|
|
{"bob", "alice", &lnwire.FundingLocked{}, false},
|
|
|
|
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
|
|
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
}
|
|
|
|
debug := false
|
|
if debug {
|
|
// Log message that alice receives.
|
|
n.aliceServer.intersect(createLogFunc("alice",
|
|
n.aliceChannelLink.ChanID()))
|
|
|
|
// Log message that bob receives.
|
|
n.bobServer.intersect(createLogFunc("bob",
|
|
n.firstBobChannelLink.ChanID()))
|
|
}
|
|
|
|
// Check that alice receives messages in right order.
|
|
n.aliceServer.intersect(createInterceptorFunc("[alice] <-- [bob]",
|
|
"alice", messages, chanID, false))
|
|
|
|
// Check that bob receives messages in right order.
|
|
n.bobServer.intersect(createInterceptorFunc("[alice] --> [bob]",
|
|
"bob", messages, chanID, false))
|
|
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink)
|
|
|
|
// Wait for:
|
|
// * HTLC add request to be sent to bob.
|
|
// * alice<->bob commitment state to be updated.
|
|
// * settle request to be sent back from bob to alice.
|
|
// * alice<->bob commitment state to be updated.
|
|
// * user notification to be sent.
|
|
_, err = n.makePayment(n.aliceServer, n.bobServer,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(30 * time.Second)
|
|
if err != nil {
|
|
t.Fatalf("unable to make the payment: %v", err)
|
|
}
|
|
}
|
|
|
|
type mockPeer struct {
|
|
sync.Mutex
|
|
sentMsgs chan lnwire.Message
|
|
quit chan struct{}
|
|
}
|
|
|
|
func (m *mockPeer) SendMessage(msg lnwire.Message, sync bool) error {
|
|
select {
|
|
case m.sentMsgs <- msg:
|
|
case <-m.quit:
|
|
return fmt.Errorf("mockPeer shutting down")
|
|
}
|
|
return nil
|
|
}
|
|
func (m *mockPeer) WipeChannel(*wire.OutPoint) error {
|
|
return nil
|
|
}
|
|
func (m *mockPeer) PubKey() [33]byte {
|
|
return [33]byte{}
|
|
}
|
|
func (m *mockPeer) Disconnect(reason error) {
|
|
}
|
|
|
|
var _ Peer = (*mockPeer)(nil)
|
|
|
|
func newSingleLinkTestHarness(chanAmt, chanReserve btcutil.Amount) (
|
|
ChannelLink, *lnwallet.LightningChannel, chan time.Time, func(),
|
|
chanRestoreFunc, error) {
|
|
|
|
var chanIDBytes [8]byte
|
|
if _, err := io.ReadFull(rand.Reader, chanIDBytes[:]); err != nil {
|
|
return nil, nil, nil, nil, nil, err
|
|
}
|
|
|
|
chanID := lnwire.NewShortChanIDFromInt(
|
|
binary.BigEndian.Uint64(chanIDBytes[:]))
|
|
|
|
aliceChannel, bobChannel, fCleanUp, restore, err := createTestChannel(
|
|
alicePrivKey, bobPrivKey, chanAmt, chanAmt,
|
|
chanReserve, chanReserve, chanID,
|
|
)
|
|
if err != nil {
|
|
return nil, nil, nil, nil, nil, err
|
|
}
|
|
|
|
var (
|
|
globalEpoch = &chainntnfs.BlockEpochEvent{
|
|
Epochs: make(chan *chainntnfs.BlockEpoch),
|
|
Cancel: func() {
|
|
},
|
|
}
|
|
invoiceRegistry = newMockRegistry()
|
|
decoder = newMockIteratorDecoder()
|
|
obfuscator = NewMockObfuscator()
|
|
alicePeer = &mockPeer{
|
|
sentMsgs: make(chan lnwire.Message, 2000),
|
|
quit: make(chan struct{}),
|
|
}
|
|
globalPolicy = ForwardingPolicy{
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(5),
|
|
BaseFee: lnwire.NewMSatFromSatoshis(1),
|
|
TimeLockDelta: 6,
|
|
}
|
|
)
|
|
|
|
pCache := &mockPreimageCache{
|
|
// hash -> preimage
|
|
preimageMap: make(map[[32]byte][]byte),
|
|
}
|
|
|
|
aliceDb := aliceChannel.State().Db
|
|
|
|
aliceSwitch, err := New(Config{DB: aliceDb})
|
|
if err != nil {
|
|
return nil, nil, nil, nil, nil, err
|
|
}
|
|
|
|
t := make(chan time.Time)
|
|
ticker := &mockTicker{t}
|
|
aliceCfg := ChannelLinkConfig{
|
|
FwrdingPolicy: globalPolicy,
|
|
Peer: alicePeer,
|
|
Switch: aliceSwitch,
|
|
Circuits: aliceSwitch.CircuitModifier(),
|
|
ForwardPackets: aliceSwitch.ForwardPackets,
|
|
DecodeHopIterators: decoder.DecodeHopIterators,
|
|
ExtractErrorEncrypter: func(*btcec.PublicKey) (
|
|
ErrorEncrypter, lnwire.FailCode) {
|
|
return obfuscator, lnwire.CodeNone
|
|
},
|
|
FetchLastChannelUpdate: mockGetChanUpdateMessage,
|
|
PreimageCache: pCache,
|
|
UpdateContractSignals: func(*contractcourt.ContractSignals) error {
|
|
return nil
|
|
},
|
|
Registry: invoiceRegistry,
|
|
ChainEvents: &contractcourt.ChainEventSubscription{},
|
|
BlockEpochs: globalEpoch,
|
|
BatchTicker: ticker,
|
|
FwdPkgGCTicker: NewBatchTicker(time.NewTicker(5 * time.Second)),
|
|
// Make the BatchSize large enough to not
|
|
// trigger commit update automatically during tests.
|
|
BatchSize: 10000,
|
|
}
|
|
|
|
const startingHeight = 100
|
|
aliceLink := NewChannelLink(aliceCfg, aliceChannel, startingHeight)
|
|
if err := aliceSwitch.AddLink(aliceLink); err != nil {
|
|
return nil, nil, nil, nil, nil, err
|
|
}
|
|
go func() {
|
|
for {
|
|
select {
|
|
case <-aliceLink.(*channelLink).htlcUpdates:
|
|
case <-aliceLink.(*channelLink).quit:
|
|
return
|
|
}
|
|
}
|
|
}()
|
|
|
|
cleanUp := func() {
|
|
close(alicePeer.quit)
|
|
defer fCleanUp()
|
|
defer aliceLink.Stop()
|
|
defer bobChannel.Stop()
|
|
}
|
|
|
|
return aliceLink, bobChannel, t, cleanUp, restore, nil
|
|
}
|
|
|
|
func assertLinkBandwidth(t *testing.T, link ChannelLink,
|
|
expected lnwire.MilliSatoshi) {
|
|
|
|
currentBandwidth := link.Bandwidth()
|
|
_, _, line, _ := runtime.Caller(1)
|
|
if currentBandwidth != expected {
|
|
t.Fatalf("line %v: alice's link bandwidth is incorrect: "+
|
|
"expected %v, got %v", line, expected, currentBandwidth)
|
|
}
|
|
}
|
|
|
|
// handleStateUpdate handles the messages sent from the link after
|
|
// the batch ticker has triggered a state update.
|
|
func handleStateUpdate(link *channelLink,
|
|
remoteChannel *lnwallet.LightningChannel) error {
|
|
sentMsgs := link.cfg.Peer.(*mockPeer).sentMsgs
|
|
var msg lnwire.Message
|
|
select {
|
|
case msg = <-sentMsgs:
|
|
case <-time.After(60 * time.Second):
|
|
return fmt.Errorf("did not receive CommitSig from Alice")
|
|
}
|
|
|
|
// The link should be sending a commit sig at this point.
|
|
commitSig, ok := msg.(*lnwire.CommitSig)
|
|
if !ok {
|
|
return fmt.Errorf("expected CommitSig, got %T", msg)
|
|
}
|
|
|
|
// Let the remote channel receive the commit sig, and
|
|
// respond with a revocation + commitsig.
|
|
err := remoteChannel.ReceiveNewCommitment(
|
|
commitSig.CommitSig, commitSig.HtlcSigs)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
remoteRev, _, err := remoteChannel.RevokeCurrentCommitment()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
link.HandleChannelUpdate(remoteRev)
|
|
|
|
remoteSig, remoteHtlcSigs, err := remoteChannel.SignNextCommitment()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
commitSig = &lnwire.CommitSig{
|
|
CommitSig: remoteSig,
|
|
HtlcSigs: remoteHtlcSigs,
|
|
}
|
|
link.HandleChannelUpdate(commitSig)
|
|
|
|
// This should make the link respond with a revocation.
|
|
select {
|
|
case msg = <-sentMsgs:
|
|
case <-time.After(60 * time.Second):
|
|
return fmt.Errorf("did not receive RevokeAndAck from Alice")
|
|
}
|
|
|
|
revoke, ok := msg.(*lnwire.RevokeAndAck)
|
|
if !ok {
|
|
return fmt.Errorf("expected RevokeAndAck got %T", msg)
|
|
}
|
|
_, _, _, err = remoteChannel.ReceiveRevocation(revoke)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to receive "+
|
|
"revocation: %v", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// updateState is used exchange the messages necessary to do a full state
|
|
// transition. If initiateUpdate=true, then this call will make the link
|
|
// trigger an update by sending on the batchTick channel, if not, it will
|
|
// make the remoteChannel initiate the state update.
|
|
func updateState(batchTick chan time.Time, link *channelLink,
|
|
remoteChannel *lnwallet.LightningChannel,
|
|
initiateUpdate bool) error {
|
|
sentMsgs := link.cfg.Peer.(*mockPeer).sentMsgs
|
|
|
|
if initiateUpdate {
|
|
// Trigger update by ticking the batchTicker.
|
|
select {
|
|
case batchTick <- time.Now():
|
|
case <-link.quit:
|
|
return fmt.Errorf("link shutting down")
|
|
}
|
|
return handleStateUpdate(link, remoteChannel)
|
|
}
|
|
|
|
// The remote is triggering the state update, emulate this by
|
|
// signing and sending CommitSig to the link.
|
|
remoteSig, remoteHtlcSigs, err := remoteChannel.SignNextCommitment()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
commitSig := &lnwire.CommitSig{
|
|
CommitSig: remoteSig,
|
|
HtlcSigs: remoteHtlcSigs,
|
|
}
|
|
link.HandleChannelUpdate(commitSig)
|
|
|
|
// The link should respond with a revocation + commit sig.
|
|
var msg lnwire.Message
|
|
select {
|
|
case msg = <-sentMsgs:
|
|
case <-time.After(60 * time.Second):
|
|
return fmt.Errorf("did not receive RevokeAndAck from Alice")
|
|
}
|
|
|
|
revoke, ok := msg.(*lnwire.RevokeAndAck)
|
|
if !ok {
|
|
return fmt.Errorf("expected RevokeAndAck got %T",
|
|
msg)
|
|
}
|
|
_, _, _, err = remoteChannel.ReceiveRevocation(revoke)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to receive "+
|
|
"revocation: %v", err)
|
|
}
|
|
select {
|
|
case msg = <-sentMsgs:
|
|
case <-time.After(60 * time.Second):
|
|
return fmt.Errorf("did not receive CommitSig from Alice")
|
|
}
|
|
|
|
commitSig, ok = msg.(*lnwire.CommitSig)
|
|
if !ok {
|
|
return fmt.Errorf("expected CommitSig, got %T", msg)
|
|
}
|
|
|
|
err = remoteChannel.ReceiveNewCommitment(
|
|
commitSig.CommitSig, commitSig.HtlcSigs)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Lastly, send a revocation back to the link.
|
|
remoteRev, _, err := remoteChannel.RevokeCurrentCommitment()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
link.HandleChannelUpdate(remoteRev)
|
|
|
|
// Sleep to make sure Alice has handled the remote revocation.
|
|
time.Sleep(500 * time.Millisecond)
|
|
|
|
return nil
|
|
}
|
|
|
|
// TestChannelLinkBandwidthConsistency ensures that the reported bandwidth of a
|
|
// given ChannelLink is properly updated in response to downstream messages
|
|
// from the switch, and upstream messages from its channel peer.
|
|
//
|
|
// TODO(roasbeef): add sync hook into packet processing so can eliminate all
|
|
// sleep in this test and the one below
|
|
func TestChannelLinkBandwidthConsistency(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// TODO(roasbeef): replace manual bit twiddling with concept of
|
|
// resource cost for packets?
|
|
// * or also able to consult link
|
|
|
|
// We'll start the test by creating a single instance of
|
|
const chanAmt = btcutil.SatoshiPerBitcoin * 5
|
|
|
|
aliceLink, bobChannel, tmr, cleanUp, _, err :=
|
|
newSingleLinkTestHarness(chanAmt, 0)
|
|
if err != nil {
|
|
t.Fatalf("unable to create link: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
var (
|
|
carolChanID = lnwire.NewShortChanIDFromInt(3)
|
|
mockBlob [lnwire.OnionPacketSize]byte
|
|
coreChan = aliceLink.(*channelLink).channel
|
|
coreLink = aliceLink.(*channelLink)
|
|
defaultCommitFee = coreChan.StateSnapshot().CommitFee
|
|
aliceStartingBandwidth = aliceLink.Bandwidth()
|
|
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
|
|
)
|
|
|
|
// We put Alice into hodl.ExitSettle mode, such that she won't settle
|
|
// incoming HTLCs automatically.
|
|
coreLink.cfg.HodlMask = hodl.MaskFromFlags(hodl.ExitSettle)
|
|
coreLink.cfg.DebugHTLC = true
|
|
|
|
estimator := &lnwallet.StaticFeeEstimator{
|
|
FeeRate: 24,
|
|
}
|
|
feeRate, err := estimator.EstimateFeePerVSize(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
feePerKw := feeRate.FeePerKWeight()
|
|
htlcFee := lnwire.NewMSatFromSatoshis(
|
|
feePerKw.FeeForWeight(lnwallet.HtlcWeight),
|
|
)
|
|
|
|
// The starting bandwidth of the channel should be exactly the amount
|
|
// that we created the channel between her and Bob.
|
|
expectedBandwidth := lnwire.NewMSatFromSatoshis(chanAmt - defaultCommitFee)
|
|
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
|
|
|
|
// Next, we'll create an HTLC worth 1 BTC, and send it into the link as
|
|
// a switch initiated payment. The resulting bandwidth should
|
|
// now be decremented to reflect the new HTLC.
|
|
htlcAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
invoice, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
addPkt := htlcPacket{
|
|
htlc: htlc,
|
|
incomingChanID: sourceHop,
|
|
incomingHTLCID: 0,
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
|
|
circuit := makePaymentCircuit(&htlc.PaymentHash, &addPkt)
|
|
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
|
|
if err != nil {
|
|
t.Fatalf("unable to commit circuit: %v", err)
|
|
}
|
|
|
|
addPkt.circuit = &circuit
|
|
if err := aliceLink.HandleSwitchPacket(&addPkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// The resulting bandwidth should reflect that Alice is paying the
|
|
// htlc amount in addition to the htlc fee.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
|
|
|
|
// Alice should send the HTLC to Bob.
|
|
var msg lnwire.Message
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
case <-time.After(15 * time.Second):
|
|
t.Fatalf("did not receive message")
|
|
}
|
|
|
|
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
|
|
if !ok {
|
|
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
|
|
}
|
|
|
|
bobIndex, err := bobChannel.ReceiveHTLC(addHtlc)
|
|
if err != nil {
|
|
t.Fatalf("bob failed receiving htlc: %v", err)
|
|
}
|
|
|
|
// Lock in the HTLC.
|
|
if err := updateState(tmr, coreLink, bobChannel, true); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
// Locking in the HTLC should not change Alice's bandwidth.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
|
|
|
|
// If we now send in a valid HTLC settle for the prior HTLC we added,
|
|
// then the bandwidth should remain unchanged as the remote party will
|
|
// gain additional channel balance.
|
|
err = bobChannel.SettleHTLC(invoice.Terms.PaymentPreimage, bobIndex, nil, nil, nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to settle htlc: %v", err)
|
|
}
|
|
htlcSettle := &lnwire.UpdateFulfillHTLC{
|
|
ID: 0,
|
|
PaymentPreimage: invoice.Terms.PaymentPreimage,
|
|
}
|
|
aliceLink.HandleChannelUpdate(htlcSettle)
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Since the settle is not locked in yet, Alice's bandwidth should still
|
|
// reflect that she has to pay the fee.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
|
|
|
|
// Lock in the settle.
|
|
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
// Now that it is settled, Alice should have gotten the htlc fee back.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
|
|
|
|
// Next, we'll add another HTLC initiated by the switch (of the same
|
|
// amount as the prior one).
|
|
invoice, htlc, err = generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
addPkt = htlcPacket{
|
|
htlc: htlc,
|
|
incomingChanID: sourceHop,
|
|
incomingHTLCID: 1,
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
|
|
circuit = makePaymentCircuit(&htlc.PaymentHash, &addPkt)
|
|
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
|
|
if err != nil {
|
|
t.Fatalf("unable to commit circuit: %v", err)
|
|
}
|
|
|
|
addPkt.circuit = &circuit
|
|
if err := aliceLink.HandleSwitchPacket(&addPkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Again, Alice's bandwidth decreases by htlcAmt+htlcFee.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-2*htlcAmt-htlcFee)
|
|
|
|
// Alice will send the HTLC to Bob.
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
case <-time.After(15 * time.Second):
|
|
t.Fatalf("did not receive message")
|
|
}
|
|
|
|
addHtlc, ok = msg.(*lnwire.UpdateAddHTLC)
|
|
if !ok {
|
|
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
|
|
}
|
|
|
|
bobIndex, err = bobChannel.ReceiveHTLC(addHtlc)
|
|
if err != nil {
|
|
t.Fatalf("bob failed receiving htlc: %v", err)
|
|
}
|
|
|
|
// Lock in the HTLC, which should not affect the bandwidth.
|
|
if err := updateState(tmr, coreLink, bobChannel, true); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt*2-htlcFee)
|
|
|
|
// With that processed, we'll now generate an HTLC fail (sent by the
|
|
// remote peer) to cancel the HTLC we just added. This should return us
|
|
// back to the bandwidth of the link right before the HTLC was sent.
|
|
err = bobChannel.FailHTLC(bobIndex, []byte("nop"), nil, nil, nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to fail htlc: %v", err)
|
|
}
|
|
failMsg := &lnwire.UpdateFailHTLC{
|
|
ID: 1,
|
|
Reason: lnwire.OpaqueReason([]byte("nop")),
|
|
}
|
|
|
|
aliceLink.HandleChannelUpdate(failMsg)
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Before the Fail gets locked in, the bandwidth should remain unchanged.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt*2-htlcFee)
|
|
|
|
// Lock in the Fail.
|
|
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
// Now the bandwidth should reflect the failed HTLC.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
|
|
|
|
// Moving along, we'll now receive a new HTLC from the remote peer,
|
|
// with an ID of 0 as this is their first HTLC. The bandwidth should
|
|
// remain unchanged (but Alice will need to pay the fee for the extra
|
|
// HTLC).
|
|
htlcAmt, totalTimelock, hops := generateHops(htlcAmt, testStartingHeight,
|
|
coreLink)
|
|
blob, err := generateRoute(hops...)
|
|
if err != nil {
|
|
t.Fatalf("unable to gen route: %v", err)
|
|
}
|
|
invoice, htlc, err = generatePayment(htlcAmt, htlcAmt,
|
|
totalTimelock, blob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
|
|
// We must add the invoice to the registry, such that Alice expects
|
|
// this payment.
|
|
err = coreLink.cfg.Registry.(*mockInvoiceRegistry).AddInvoice(*invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice to registry: %v", err)
|
|
}
|
|
|
|
htlc.ID = 0
|
|
bobIndex, err = bobChannel.AddHTLC(htlc, nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to add htlc: %v", err)
|
|
}
|
|
aliceLink.HandleChannelUpdate(htlc)
|
|
|
|
// Alice's balance remains unchanged until this HTLC is locked in.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
|
|
|
|
// Lock in the HTLC.
|
|
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
// Since Bob is adding this HTLC, Alice only needs to pay the fee.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
addPkt = htlcPacket{
|
|
htlc: htlc,
|
|
incomingChanID: aliceLink.ShortChanID(),
|
|
incomingHTLCID: 0,
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
|
|
circuit = makePaymentCircuit(&htlc.PaymentHash, &addPkt)
|
|
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
|
|
if err != nil {
|
|
t.Fatalf("unable to commit circuit: %v", err)
|
|
}
|
|
|
|
addPkt.outgoingChanID = carolChanID
|
|
addPkt.outgoingHTLCID = 0
|
|
|
|
err = coreLink.cfg.Switch.openCircuits(addPkt.keystone())
|
|
if err != nil {
|
|
t.Fatalf("unable to set keystone: %v", err)
|
|
}
|
|
|
|
// Next, we'll settle the HTLC with our knowledge of the pre-image that
|
|
// we eventually learn (simulating a multi-hop payment). The bandwidth
|
|
// of the channel should now be re-balanced to the starting point.
|
|
settlePkt := htlcPacket{
|
|
incomingChanID: aliceLink.ShortChanID(),
|
|
incomingHTLCID: 0,
|
|
circuit: &circuit,
|
|
outgoingChanID: addPkt.outgoingChanID,
|
|
outgoingHTLCID: addPkt.outgoingHTLCID,
|
|
htlc: &lnwire.UpdateFulfillHTLC{
|
|
ID: 0,
|
|
PaymentPreimage: invoice.Terms.PaymentPreimage,
|
|
},
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
|
|
if err := aliceLink.HandleSwitchPacket(&settlePkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Settling this HTLC gives Alice all her original bandwidth back.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
|
|
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
case <-time.After(15 * time.Second):
|
|
t.Fatalf("did not receive message")
|
|
}
|
|
|
|
settleMsg, ok := msg.(*lnwire.UpdateFulfillHTLC)
|
|
if !ok {
|
|
t.Fatalf("expected UpdateFulfillHTLC, got %T", msg)
|
|
}
|
|
err = bobChannel.ReceiveHTLCSettle(settleMsg.PaymentPreimage, settleMsg.ID)
|
|
if err != nil {
|
|
t.Fatalf("failed receiving fail htlc: %v", err)
|
|
}
|
|
|
|
// After failing an HTLC, the link will automatically trigger
|
|
// a state update.
|
|
if err := handleStateUpdate(coreLink, bobChannel); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
// Finally, we'll test the scenario of failing an HTLC received by the
|
|
// remote node. This should result in no perceived bandwidth changes.
|
|
htlcAmt, totalTimelock, hops = generateHops(htlcAmt, testStartingHeight,
|
|
coreLink)
|
|
blob, err = generateRoute(hops...)
|
|
if err != nil {
|
|
t.Fatalf("unable to gen route: %v", err)
|
|
}
|
|
invoice, htlc, err = generatePayment(htlcAmt, htlcAmt, totalTimelock, blob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
err = coreLink.cfg.Registry.(*mockInvoiceRegistry).AddInvoice(*invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice to registry: %v", err)
|
|
}
|
|
|
|
// Since we are not using the link to handle HTLC IDs for the
|
|
// remote channel, we must set this manually. This is the second
|
|
// HTLC we add, hence it should have an ID of 1 (Alice's channel
|
|
// link will set this automatically for her side).
|
|
htlc.ID = 1
|
|
bobIndex, err = bobChannel.AddHTLC(htlc, nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to add htlc: %v", err)
|
|
}
|
|
aliceLink.HandleChannelUpdate(htlc)
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// No changes before the HTLC is locked in.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
|
|
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
// After lock-in, Alice will have to pay the htlc fee.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcFee)
|
|
|
|
addPkt = htlcPacket{
|
|
htlc: htlc,
|
|
incomingChanID: aliceLink.ShortChanID(),
|
|
incomingHTLCID: 1,
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
|
|
circuit = makePaymentCircuit(&htlc.PaymentHash, &addPkt)
|
|
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
|
|
if err != nil {
|
|
t.Fatalf("unable to commit circuit: %v", err)
|
|
}
|
|
|
|
addPkt.outgoingChanID = carolChanID
|
|
addPkt.outgoingHTLCID = 1
|
|
|
|
err = coreLink.cfg.Switch.openCircuits(addPkt.keystone())
|
|
if err != nil {
|
|
t.Fatalf("unable to set keystone: %v", err)
|
|
}
|
|
|
|
failPkt := htlcPacket{
|
|
incomingChanID: aliceLink.ShortChanID(),
|
|
incomingHTLCID: 1,
|
|
circuit: &circuit,
|
|
outgoingChanID: addPkt.outgoingChanID,
|
|
outgoingHTLCID: addPkt.outgoingHTLCID,
|
|
htlc: &lnwire.UpdateFailHTLC{
|
|
ID: 1,
|
|
},
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
|
|
if err := aliceLink.HandleSwitchPacket(&failPkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Alice should get all her bandwidth back.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
|
|
|
|
// Message should be sent to Bob.
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
case <-time.After(15 * time.Second):
|
|
t.Fatalf("did not receive message")
|
|
}
|
|
failMsg, ok = msg.(*lnwire.UpdateFailHTLC)
|
|
if !ok {
|
|
t.Fatalf("expected UpdateFailHTLC, got %T", msg)
|
|
}
|
|
err = bobChannel.ReceiveFailHTLC(failMsg.ID, []byte("fail"))
|
|
if err != nil {
|
|
t.Fatalf("failed receiving fail htlc: %v", err)
|
|
}
|
|
|
|
// After failing an HTLC, the link will automatically trigger
|
|
// a state update.
|
|
if err := handleStateUpdate(coreLink, bobChannel); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
|
|
}
|
|
|
|
// TestChannelLinkBandwidthConsistencyOverflow tests that in the case of a
|
|
// commitment overflow (no more space for new HTLC's), the bandwidth is updated
|
|
// properly as items are being added and removed from the overflow queue.
|
|
func TestChannelLinkBandwidthConsistencyOverflow(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
var mockBlob [lnwire.OnionPacketSize]byte
|
|
|
|
const chanAmt = btcutil.SatoshiPerBitcoin * 5
|
|
aliceLink, bobChannel, batchTick, cleanUp, _, err :=
|
|
newSingleLinkTestHarness(chanAmt, 0)
|
|
if err != nil {
|
|
t.Fatalf("unable to create link: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
var (
|
|
coreLink = aliceLink.(*channelLink)
|
|
defaultCommitFee = coreLink.channel.StateSnapshot().CommitFee
|
|
aliceStartingBandwidth = aliceLink.Bandwidth()
|
|
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
|
|
)
|
|
|
|
estimator := &lnwallet.StaticFeeEstimator{
|
|
FeeRate: 24,
|
|
}
|
|
feeRate, err := estimator.EstimateFeePerVSize(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
feePerKw := feeRate.FeePerKWeight()
|
|
|
|
var htlcID uint64
|
|
addLinkHTLC := func(id uint64, amt lnwire.MilliSatoshi) [32]byte {
|
|
invoice, htlc, err := generatePayment(amt, amt, 5, mockBlob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
|
|
addPkt := &htlcPacket{
|
|
htlc: htlc,
|
|
incomingHTLCID: id,
|
|
amount: amt,
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
circuit := makePaymentCircuit(&htlc.PaymentHash, addPkt)
|
|
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
|
|
if err != nil {
|
|
t.Fatalf("unable to commit circuit: %v", err)
|
|
}
|
|
|
|
addPkt.circuit = &circuit
|
|
aliceLink.HandleSwitchPacket(addPkt)
|
|
return invoice.Terms.PaymentPreimage
|
|
}
|
|
|
|
// We'll first start by adding enough HTLC's to overflow the commitment
|
|
// transaction, checking the reported link bandwidth for proper
|
|
// consistency along the way
|
|
htlcAmt := lnwire.NewMSatFromSatoshis(100000)
|
|
totalHtlcAmt := lnwire.MilliSatoshi(0)
|
|
const numHTLCs = lnwallet.MaxHTLCNumber / 2
|
|
var preImages [][32]byte
|
|
for i := 0; i < numHTLCs; i++ {
|
|
preImage := addLinkHTLC(htlcID, htlcAmt)
|
|
preImages = append(preImages, preImage)
|
|
|
|
totalHtlcAmt += htlcAmt
|
|
htlcID++
|
|
}
|
|
|
|
// The HTLCs should all be sent to the remote.
|
|
var msg lnwire.Message
|
|
for i := 0; i < numHTLCs; i++ {
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
case <-time.After(15 * time.Second):
|
|
t.Fatalf("did not receive message %d", i)
|
|
}
|
|
|
|
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
|
|
if !ok {
|
|
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
|
|
}
|
|
|
|
_, err := bobChannel.ReceiveHTLC(addHtlc)
|
|
if err != nil {
|
|
t.Fatalf("bob failed receiving htlc: %v", err)
|
|
}
|
|
}
|
|
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
t.Fatalf("unexpected message: %T", msg)
|
|
case <-time.After(20 * time.Millisecond):
|
|
}
|
|
|
|
// TODO(roasbeef): increase sleep
|
|
time.Sleep(time.Second * 1)
|
|
commitWeight := lnwallet.CommitWeight + lnwallet.HtlcWeight*numHTLCs
|
|
htlcFee := lnwire.NewMSatFromSatoshis(
|
|
feePerKw.FeeForWeight(commitWeight),
|
|
)
|
|
expectedBandwidth := aliceStartingBandwidth - totalHtlcAmt - htlcFee
|
|
expectedBandwidth += lnwire.NewMSatFromSatoshis(defaultCommitFee)
|
|
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
|
|
|
|
// The overflow queue should be empty at this point, as the commitment
|
|
// transaction should be full, but not yet overflown.
|
|
if coreLink.overflowQueue.Length() != 0 {
|
|
t.Fatalf("wrong overflow queue length: expected %v, got %v", 0,
|
|
coreLink.overflowQueue.Length())
|
|
}
|
|
|
|
// At this point, the commitment transaction should now be fully
|
|
// saturated. We'll continue adding HTLC's, and asserting that the
|
|
// bandwidth accounting is done properly.
|
|
const numOverFlowHTLCs = 20
|
|
for i := 0; i < numOverFlowHTLCs; i++ {
|
|
preImage := addLinkHTLC(htlcID, htlcAmt)
|
|
preImages = append(preImages, preImage)
|
|
|
|
totalHtlcAmt += htlcAmt
|
|
htlcID++
|
|
}
|
|
|
|
// No messages should be sent to the remote at this point.
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
t.Fatalf("unexpected message: %T", msg)
|
|
case <-time.After(20 * time.Millisecond):
|
|
}
|
|
|
|
time.Sleep(time.Second * 2)
|
|
expectedBandwidth -= (numOverFlowHTLCs * htlcAmt)
|
|
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
|
|
|
|
// With the extra HTLC's added, the overflow queue should now be
|
|
// populated with our 20 additional HTLC's.
|
|
if coreLink.overflowQueue.Length() != numOverFlowHTLCs {
|
|
t.Fatalf("wrong overflow queue length: expected %v, got %v",
|
|
numOverFlowHTLCs,
|
|
coreLink.overflowQueue.Length())
|
|
}
|
|
|
|
// We trigger a state update to lock in the HTLCs. This should
|
|
// not change Alice's bandwidth.
|
|
if err := updateState(batchTick, coreLink, bobChannel, true); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
time.Sleep(time.Millisecond * 500)
|
|
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
|
|
|
|
// At this point, we'll now settle enough HTLCs to empty the overflow
|
|
// queue. The resulting bandwidth change should be non-existent as this
|
|
// will simply transfer over funds to the remote party. However, the
|
|
// size of the overflow queue should be decreasing
|
|
for i := 0; i < numOverFlowHTLCs; i++ {
|
|
err = bobChannel.SettleHTLC(preImages[i], uint64(i), nil, nil, nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to settle htlc: %v", err)
|
|
}
|
|
|
|
htlcSettle := &lnwire.UpdateFulfillHTLC{
|
|
ID: uint64(i),
|
|
PaymentPreimage: preImages[i],
|
|
}
|
|
|
|
aliceLink.HandleChannelUpdate(htlcSettle)
|
|
time.Sleep(time.Millisecond * 50)
|
|
}
|
|
time.Sleep(time.Millisecond * 500)
|
|
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
|
|
|
|
// We trigger a state update to lock in the Settles.
|
|
if err := updateState(batchTick, coreLink, bobChannel, false); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
// After the state update is done, Alice should start sending
|
|
// HTLCs from the overflow queue.
|
|
for i := 0; i < numOverFlowHTLCs; i++ {
|
|
var msg lnwire.Message
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
case <-time.After(15 * time.Second):
|
|
t.Fatalf("did not receive message")
|
|
}
|
|
|
|
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
|
|
if !ok {
|
|
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
|
|
}
|
|
|
|
_, err := bobChannel.ReceiveHTLC(addHtlc)
|
|
if err != nil {
|
|
t.Fatalf("bob failed receiving htlc: %v", err)
|
|
}
|
|
}
|
|
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
t.Fatalf("unexpected message: %T", msg)
|
|
case <-time.After(20 * time.Millisecond):
|
|
}
|
|
|
|
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
|
|
|
|
// Finally, at this point, the queue itself should be fully empty. As
|
|
// enough slots have been drained from the commitment transaction to
|
|
// allocate the queue items to.
|
|
time.Sleep(time.Millisecond * 500)
|
|
if coreLink.overflowQueue.Length() != 0 {
|
|
t.Fatalf("wrong overflow queue length: expected %v, got %v", 0,
|
|
coreLink.overflowQueue.Length())
|
|
}
|
|
}
|
|
|
|
// genAddsAndCircuits creates `numHtlcs` sequential ADD packets and there
|
|
// corresponding circuits. The provided `htlc` is used in all test packets.
|
|
func genAddsAndCircuits(numHtlcs int, htlc *lnwire.UpdateAddHTLC) (
|
|
[]*htlcPacket, []*PaymentCircuit) {
|
|
|
|
addPkts := make([]*htlcPacket, 0, numHtlcs)
|
|
circuits := make([]*PaymentCircuit, 0, numHtlcs)
|
|
for i := 0; i < numHtlcs; i++ {
|
|
addPkt := htlcPacket{
|
|
htlc: htlc,
|
|
incomingChanID: sourceHop,
|
|
incomingHTLCID: uint64(i),
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
|
|
circuit := makePaymentCircuit(&htlc.PaymentHash, &addPkt)
|
|
addPkt.circuit = &circuit
|
|
|
|
addPkts = append(addPkts, &addPkt)
|
|
circuits = append(circuits, &circuit)
|
|
}
|
|
|
|
return addPkts, circuits
|
|
}
|
|
|
|
// TestChannelLinkTrimCircuitsPending checks that the switch and link properly
|
|
// trim circuits if there are open circuits corresponding to ADDs on a pending
|
|
// commmitment transaction.
|
|
func TestChannelLinkTrimCircuitsPending(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const (
|
|
chanAmt = btcutil.SatoshiPerBitcoin * 5
|
|
numHtlcs = 4
|
|
halfHtlcs = numHtlcs / 2
|
|
)
|
|
|
|
// We'll start by creating a new link with our chanAmt (5 BTC). We will
|
|
// only be testing Alice's behavior, so the reference to Bob's channel
|
|
// state is unnecessary.
|
|
aliceLink, _, batchTicker, cleanUp, restore, err :=
|
|
newSingleLinkTestHarness(chanAmt, 0)
|
|
if err != nil {
|
|
t.Fatalf("unable to create link: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
alice := newPersistentLinkHarness(t, aliceLink, batchTicker, restore)
|
|
|
|
// Compute the static fees that will be used to determine the
|
|
// correctness of Alice's bandwidth when forwarding HTLCs.
|
|
estimator := &lnwallet.StaticFeeEstimator{
|
|
FeeRate: 24,
|
|
}
|
|
feeRate, err := estimator.EstimateFeePerVSize(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
|
|
defaultCommitFee := alice.channel.StateSnapshot().CommitFee
|
|
htlcFee := lnwire.NewMSatFromSatoshis(
|
|
feeRate.FeePerKWeight().FeeForWeight(lnwallet.HtlcWeight),
|
|
)
|
|
|
|
// The starting bandwidth of the channel should be exactly the amount
|
|
// that we created the channel between her and Bob, minus the commitment
|
|
// fee.
|
|
expectedBandwidth := lnwire.NewMSatFromSatoshis(chanAmt - defaultCommitFee)
|
|
assertLinkBandwidth(t, alice.link, expectedBandwidth)
|
|
|
|
// Capture Alice's starting bandwidth to perform later, relative
|
|
// bandwidth assertions.
|
|
aliceStartingBandwidth := alice.link.Bandwidth()
|
|
|
|
// Next, we'll create an HTLC worth 1 BTC that will be used as a dummy
|
|
// message for the test.
|
|
var mockBlob [lnwire.OnionPacketSize]byte
|
|
htlcAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
_, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
|
|
// Create `numHtlc` htlcPackets and payment circuits that will be used
|
|
// to drive the test. All of the packets will use the same dummy HTLC.
|
|
addPkts, circuits := genAddsAndCircuits(numHtlcs, htlc)
|
|
|
|
// To begin the test, start by committing the circuits belong to our
|
|
// first two HTLCs.
|
|
fwdActions := alice.commitCircuits(circuits[:halfHtlcs])
|
|
|
|
// Both of these circuits should have successfully added, as this is the
|
|
// first attempt to send them.
|
|
if len(fwdActions.Adds) != halfHtlcs {
|
|
t.Fatalf("expected %d circuits to be added", halfHtlcs)
|
|
}
|
|
alice.assertNumPendingNumOpenCircuits(2, 0)
|
|
|
|
// Since both were committed successfully, we will now deliver them to
|
|
// Alice's link.
|
|
for _, addPkt := range addPkts[:halfHtlcs] {
|
|
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
}
|
|
|
|
// Wait until Alice's link has sent both HTLCs via the peer.
|
|
alice.checkSent(addPkts[:halfHtlcs])
|
|
|
|
// The resulting bandwidth should reflect that Alice is paying both
|
|
// htlc amounts, in addition to both htlc fees.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
// Now, initiate a state transition by Alice so that the pending HTLCs
|
|
// are locked in. This will *not* involve any participation by Bob,
|
|
// which ensures the commitment will remain in a pending state.
|
|
alice.trySignNextCommitment()
|
|
alice.assertNumPendingNumOpenCircuits(2, 2)
|
|
|
|
// Restart Alice's link, which simulates a disconnection with the remote
|
|
// peer.
|
|
cleanUp = alice.restart(false)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(2, 2)
|
|
|
|
// Make a second attempt to commit the first two circuits. This can
|
|
// happen if the incoming link flaps, but also allows us to verify that
|
|
// the circuits were trimmed properly.
|
|
fwdActions = alice.commitCircuits(circuits[:halfHtlcs])
|
|
|
|
// Since Alice has a pending commitment with the first two HTLCs, the
|
|
// restart should not have trimmed them from the circuit map.
|
|
// Therefore, we expect both of these circuits to be dropped by the
|
|
// switch, as keystones should still be set.
|
|
if len(fwdActions.Drops) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
|
|
}
|
|
|
|
// The resulting bandwidth should remain unchanged from before,
|
|
// reflecting that Alice is paying both htlc amounts, in addition to
|
|
// both htlc fees.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
// Now, restart Alice's link *and* the entire switch. This will ensure
|
|
// that entire circuit map is reloaded from disk, and we can now test
|
|
// against the behavioral differences of committing circuits that
|
|
// conflict with duplicate circuits after a restart.
|
|
cleanUp = alice.restart(true)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(2, 2)
|
|
|
|
// Alice should not send out any messages. Even though Alice has a
|
|
// pending commitment transaction, channel reestablishment is not
|
|
// enabled in this test.
|
|
select {
|
|
case <-alice.msgs:
|
|
t.Fatalf("message should not have been sent by Alice")
|
|
case <-time.After(time.Second):
|
|
}
|
|
|
|
// We will now try to commit the circuits for all of our HTLCs. The
|
|
// first two are already on the pending commitment transaction, the
|
|
// latter two are new HTLCs.
|
|
fwdActions = alice.commitCircuits(circuits)
|
|
|
|
// The first two circuits should have been dropped, as they are still on
|
|
// the pending commitment transaction, and the restart should not have
|
|
// trimmed the circuits for these valid HTLCs.
|
|
if len(fwdActions.Drops) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
|
|
}
|
|
// The latter two circuits are unknown the circuit map, and should
|
|
// report being added.
|
|
if len(fwdActions.Adds) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be added", halfHtlcs)
|
|
}
|
|
|
|
// Deliver the latter two HTLCs to Alice's links so that they can be
|
|
// processed and added to the in-memory commitment state.
|
|
for _, addPkt := range addPkts[halfHtlcs:] {
|
|
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
}
|
|
|
|
// Wait for Alice to send the two latter HTLCs via the peer.
|
|
alice.checkSent(addPkts[halfHtlcs:])
|
|
|
|
// With two HTLCs on the pending commit, and two added to the in-memory
|
|
// commitment state, the resulting bandwidth should reflect that Alice
|
|
// is paying the all htlc amounts in addition to all htlc fees.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-numHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
// We will try to initiate a state transition for Alice, which will
|
|
// ensure the circuits for the two in-memory HTLCs are opened. However,
|
|
// since we have a pending commitment, these HTLCs will not actually be
|
|
// included in a commitment.
|
|
alice.trySignNextCommitment()
|
|
alice.assertNumPendingNumOpenCircuits(4, 4)
|
|
|
|
// Restart Alice's link to simulate a disconnect. Since the switch
|
|
// remains up throughout, the two latter HTLCs will remain in the link's
|
|
// mailbox, and will reprocessed upon being reattached to the link.
|
|
cleanUp = alice.restart(false)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(4, 2)
|
|
|
|
// Again, try to recommit all of our circuits.
|
|
fwdActions = alice.commitCircuits(circuits)
|
|
|
|
// It is expected that all of these will get dropped by the switch.
|
|
// The first two circuits are still open as a result of being on the
|
|
// commitment transaction. The latter two should have had their open
|
|
// circuits trimmed, *but* since the HTLCs are still in Alice's mailbox,
|
|
// the switch knows not to fail them as a result of the latter two
|
|
// circuits never having been loaded from disk.
|
|
if len(fwdActions.Drops) != numHtlcs {
|
|
t.Fatalf("expected %d packets to be dropped", numHtlcs)
|
|
}
|
|
|
|
// Wait for the latter two htlcs to be pulled from the mailbox, added to
|
|
// the in-memory channel state, and sent out via the peer.
|
|
alice.checkSent(addPkts[halfHtlcs:])
|
|
|
|
// This should result in reconstructing the same bandwidth as our last
|
|
// assertion. There are two HTLCs on the pending commit, and two added
|
|
// to the in-memory commitment state, the resulting bandwidth should
|
|
// reflect that Alice is paying the all htlc amounts in addition to all
|
|
// htlc fees.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-numHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
// Again, we will try to initiate a state transition for Alice, which
|
|
// will ensure the circuits for the two in-memory HTLCs are opened.
|
|
// As before, these HTLCs will not actually be included in a commitment
|
|
// since we have a pending commitment.
|
|
alice.trySignNextCommitment()
|
|
alice.assertNumPendingNumOpenCircuits(4, 4)
|
|
|
|
// As a final persistence check, we will restart the link and switch,
|
|
// wiping the latter two HTLCs from memory, and forcing their circuits
|
|
// to be reloaded from disk.
|
|
cleanUp = alice.restart(true)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(4, 2)
|
|
|
|
// Alice's mailbox will be empty after the restart, and no channel
|
|
// reestablishment is configured, so no messages will be sent upon
|
|
// restart.
|
|
select {
|
|
case <-alice.msgs:
|
|
t.Fatalf("message should not have been sent by Alice")
|
|
case <-time.After(time.Second):
|
|
}
|
|
|
|
// Finally, make one last attempt to commit all circuits.
|
|
fwdActions = alice.commitCircuits(circuits)
|
|
|
|
// The first two HTLCs should still be dropped by the htlcswitch. Their
|
|
// existence on the pending commitment transaction should prevent their
|
|
// open circuits from being trimmed.
|
|
if len(fwdActions.Drops) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
|
|
}
|
|
// The latter two HTLCs should now be failed by the switch. These will
|
|
// have been trimmed by the link or switch restarting, and since the
|
|
// HTLCs are known to be lost from memory (since their circuits were
|
|
// loaded from disk), it is safe fail them back as they won't ever be
|
|
// delivered to the outgoing link.
|
|
if len(fwdActions.Fails) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
|
|
}
|
|
|
|
// Since the latter two HTLCs have been completely dropped from memory,
|
|
// only the first two HTLCs we added should still be reflected in the
|
|
// channel bandwidth.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
}
|
|
|
|
// TestChannelLinkTrimCircuitsNoCommit checks that the switch and link properly trim
|
|
// circuits if the ADDs corresponding to open circuits are never committed.
|
|
func TestChannelLinkTrimCircuitsNoCommit(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const (
|
|
chanAmt = btcutil.SatoshiPerBitcoin * 5
|
|
numHtlcs = 4
|
|
halfHtlcs = numHtlcs / 2
|
|
)
|
|
|
|
// We'll start by creating a new link with our chanAmt (5 BTC). We will
|
|
// only be testing Alice's behavior, so the reference to Bob's channel
|
|
// state is unnecessary.
|
|
aliceLink, _, batchTicker, cleanUp, restore, err :=
|
|
newSingleLinkTestHarness(chanAmt, 0)
|
|
if err != nil {
|
|
t.Fatalf("unable to create link: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
alice := newPersistentLinkHarness(t, aliceLink, batchTicker, restore)
|
|
|
|
// We'll put Alice into hodl.Commit mode, such that the circuits for any
|
|
// outgoing ADDs are opened, but the changes are not committed in the
|
|
// channel state.
|
|
alice.coreLink.cfg.HodlMask = hodl.Commit.Mask()
|
|
alice.coreLink.cfg.DebugHTLC = true
|
|
|
|
// Compute the static fees that will be used to determine the
|
|
// correctness of Alice's bandwidth when forwarding HTLCs.
|
|
estimator := &lnwallet.StaticFeeEstimator{
|
|
FeeRate: 24,
|
|
}
|
|
feeRate, err := estimator.EstimateFeePerVSize(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
|
|
defaultCommitFee := alice.channel.StateSnapshot().CommitFee
|
|
htlcFee := lnwire.NewMSatFromSatoshis(
|
|
feeRate.FeePerKWeight().FeeForWeight(lnwallet.HtlcWeight),
|
|
)
|
|
|
|
// The starting bandwidth of the channel should be exactly the amount
|
|
// that we created the channel between her and Bob, minus the commitment
|
|
// fee.
|
|
expectedBandwidth := lnwire.NewMSatFromSatoshis(chanAmt - defaultCommitFee)
|
|
assertLinkBandwidth(t, alice.link, expectedBandwidth)
|
|
|
|
// Capture Alice's starting bandwidth to perform later, relative
|
|
// bandwidth assertions.
|
|
aliceStartingBandwidth := alice.link.Bandwidth()
|
|
|
|
// Next, we'll create an HTLC worth 1 BTC that will be used as a dummy
|
|
// message for the test.
|
|
var mockBlob [lnwire.OnionPacketSize]byte
|
|
htlcAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
_, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
|
|
// Create `numHtlc` htlcPackets and payment circuits that will be used
|
|
// to drive the test. All of the packets will use the same dummy HTLC.
|
|
addPkts, circuits := genAddsAndCircuits(numHtlcs, htlc)
|
|
|
|
// To begin the test, start by committing the circuits belong to our
|
|
// first two HTLCs.
|
|
fwdActions := alice.commitCircuits(circuits[:halfHtlcs])
|
|
|
|
// Both of these circuits should have successfully added, as this is the
|
|
// first attempt to send them.
|
|
if len(fwdActions.Adds) != halfHtlcs {
|
|
t.Fatalf("expected %d circuits to be added", halfHtlcs)
|
|
}
|
|
|
|
// Since both were committed successfully, we will now deliver them to
|
|
// Alice's link.
|
|
for _, addPkt := range addPkts[:halfHtlcs] {
|
|
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
}
|
|
|
|
// Wait until Alice's link has sent both HTLCs via the peer.
|
|
alice.checkSent(addPkts[:halfHtlcs])
|
|
|
|
// The resulting bandwidth should reflect that Alice is paying both
|
|
// htlc amounts, in addition to both htlc fees.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
alice.assertNumPendingNumOpenCircuits(2, 0)
|
|
|
|
// Now, init a state transition by Alice to try and commit the HTLCs.
|
|
// Since she is in hodl.Commit mode, this will fail, but the circuits
|
|
// will be opened persistently.
|
|
alice.trySignNextCommitment()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(2, 2)
|
|
|
|
// Restart Alice's link, which simulates a disconnection with the remote
|
|
// peer. Alice's link and switch should trim the circuits that were
|
|
// opened but not committed.
|
|
cleanUp = alice.restart(false, hodl.Commit)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(2, 0)
|
|
|
|
// The first two HTLCs should have been reset in Alice's mailbox since
|
|
// the switch was not shutdown. Knowing this the switch should drop the
|
|
// two circuits, even if the circuits were trimmed.
|
|
fwdActions = alice.commitCircuits(circuits[:halfHtlcs])
|
|
if len(fwdActions.Drops) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be dropped since "+
|
|
"the switch has not been restarted", halfHtlcs)
|
|
}
|
|
|
|
// Wait for alice to process the first two HTLCs resend them via the
|
|
// peer.
|
|
alice.checkSent(addPkts[:halfHtlcs])
|
|
|
|
// The resulting bandwidth should reflect that Alice is paying both htlc
|
|
// amounts, in addition to both htlc fees.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
// Again, initiate another state transition by Alice to try and commit
|
|
// the HTLCs. Since she is in hodl.Commit mode, this will fail, but the
|
|
// circuits will be opened persistently.
|
|
alice.trySignNextCommitment()
|
|
alice.assertNumPendingNumOpenCircuits(2, 2)
|
|
|
|
// Now, we we will do a full restart of the link and switch, configuring
|
|
// Alice again in hodl.Commit mode. Since none of the HTLCs were
|
|
// actually committed, the previously opened circuits should be trimmed
|
|
// by both the link and switch.
|
|
cleanUp = alice.restart(true, hodl.Commit)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(2, 0)
|
|
|
|
// Attempt another commit of our first two circuits. Both should fail,
|
|
// as the opened circuits should have been trimmed, and circuit map
|
|
// recognizes that these HTLCs were lost during the restart.
|
|
fwdActions = alice.commitCircuits(circuits[:halfHtlcs])
|
|
if len(fwdActions.Fails) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be failed", halfHtlcs)
|
|
}
|
|
|
|
// Bob should not receive any HTLCs from Alice, since Alice's mailbox is
|
|
// empty and there is no pending commitment.
|
|
select {
|
|
case <-alice.msgs:
|
|
t.Fatalf("received unexpected message from Alice")
|
|
case <-time.After(time.Second):
|
|
}
|
|
|
|
// Alice's bandwidth should have reverted back to her starting value.
|
|
assertLinkBandwidth(t, alice.link, aliceStartingBandwidth)
|
|
|
|
// Now, try to commit the last two payment circuits, which are unused
|
|
// thus far. These should succeed without hestiation.
|
|
fwdActions = alice.commitCircuits(circuits[halfHtlcs:])
|
|
if len(fwdActions.Adds) != halfHtlcs {
|
|
t.Fatalf("expected %d packets to be added", halfHtlcs)
|
|
}
|
|
|
|
// Deliver the last two HTLCs to the link via Alice's mailbox.
|
|
for _, addPkt := range addPkts[halfHtlcs:] {
|
|
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
|
|
t.Fatalf("unable to handle switch packet: %v", err)
|
|
}
|
|
}
|
|
|
|
// Verify that Alice processed and sent out the ADD packets via the
|
|
// peer.
|
|
alice.checkSent(addPkts[halfHtlcs:])
|
|
|
|
// The resulting bandwidth should reflect that Alice is paying both htlc
|
|
// amounts, in addition to both htlc fees.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
// Now, initiate a state transition for Alice. Since we are hodl.Commit
|
|
// mode, this will only open the circuits that were added to the
|
|
// in-memory channel state.
|
|
alice.trySignNextCommitment()
|
|
alice.assertNumPendingNumOpenCircuits(4, 2)
|
|
|
|
// Restart Alice's link, and place her back in hodl.Commit mode. On
|
|
// restart, all previously opened circuits should be trimmed by both the
|
|
// link and the switch.
|
|
cleanUp = alice.restart(false, hodl.Commit)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(4, 0)
|
|
|
|
// Now, try to commit all of known circuits.
|
|
fwdActions = alice.commitCircuits(circuits)
|
|
|
|
// The first two HTLCs will fail to commit for the same reason as
|
|
// before, the circuits have been trimmed.
|
|
if len(fwdActions.Fails) != halfHtlcs {
|
|
t.Fatalf("expected %d packet to be failed", halfHtlcs)
|
|
}
|
|
|
|
// The last two HTLCs will be dropped, as thought the circuits are
|
|
// trimmed, the switch is aware that the HTLCs are still in Alice's
|
|
// mailbox.
|
|
if len(fwdActions.Drops) != halfHtlcs {
|
|
t.Fatalf("expected %d packet to be dropped", halfHtlcs)
|
|
}
|
|
|
|
// Wait until Alice reprocesses the last two HTLCs and sends them via
|
|
// the peer.
|
|
alice.checkSent(addPkts[halfHtlcs:])
|
|
|
|
// Her bandwidth should now reflect having sent only those two HTLCs.
|
|
assertLinkBandwidth(t, alice.link,
|
|
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
|
|
)
|
|
|
|
// Now, initiate a state transition for Alice. Since we are hodl.Commit
|
|
// mode, this will only open the circuits that were added to the
|
|
// in-memory channel state.
|
|
alice.trySignNextCommitment()
|
|
alice.assertNumPendingNumOpenCircuits(4, 2)
|
|
|
|
// Finally, do one last restart of both the link and switch. This will
|
|
// flush the HTLCs from the mailbox. The circuits should now be trimmed
|
|
// for all of the HTLCs.
|
|
cleanUp = alice.restart(true, hodl.Commit)
|
|
defer cleanUp()
|
|
|
|
alice.assertNumPendingNumOpenCircuits(4, 0)
|
|
|
|
// Bob should not receive any HTLCs from Alice, as none of the HTLCs are
|
|
// in Alice's mailbox, and channel reestablishment is disabled.
|
|
select {
|
|
case <-alice.msgs:
|
|
t.Fatalf("received unexpected message from Alice")
|
|
case <-time.After(time.Second):
|
|
}
|
|
|
|
// Attempt to commit the last two circuits, both should now fail since
|
|
// though they were opened before shutting down, the circuits have been
|
|
// properly trimmed.
|
|
fwdActions = alice.commitCircuits(circuits[halfHtlcs:])
|
|
if len(fwdActions.Fails) != halfHtlcs {
|
|
t.Fatalf("expected %d packet to be failed", halfHtlcs)
|
|
}
|
|
|
|
// Alice balance should not have changed since the start.
|
|
assertLinkBandwidth(t, alice.link, aliceStartingBandwidth)
|
|
}
|
|
|
|
// TestChannelLinkBandwidthChanReserve checks that the bandwidth available
|
|
// on the channel link reflects the channel reserve that must be kept
|
|
// at all times.
|
|
func TestChannelLinkBandwidthChanReserve(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// First start a link that has a balance greater than it's
|
|
// channel reserve.
|
|
const chanAmt = btcutil.SatoshiPerBitcoin * 5
|
|
const chanReserve = btcutil.SatoshiPerBitcoin * 1
|
|
aliceLink, bobChannel, batchTimer, cleanUp, _, err :=
|
|
newSingleLinkTestHarness(chanAmt, chanReserve)
|
|
if err != nil {
|
|
t.Fatalf("unable to create link: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
var (
|
|
mockBlob [lnwire.OnionPacketSize]byte
|
|
coreLink = aliceLink.(*channelLink)
|
|
coreChan = coreLink.channel
|
|
defaultCommitFee = coreChan.StateSnapshot().CommitFee
|
|
aliceStartingBandwidth = aliceLink.Bandwidth()
|
|
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
|
|
)
|
|
|
|
estimator := &lnwallet.StaticFeeEstimator{
|
|
FeeRate: 24,
|
|
}
|
|
feeRate, err := estimator.EstimateFeePerVSize(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
feePerKw := feeRate.FeePerKWeight()
|
|
htlcFee := lnwire.NewMSatFromSatoshis(
|
|
feePerKw.FeeForWeight(lnwallet.HtlcWeight),
|
|
)
|
|
|
|
// The starting bandwidth of the channel should be exactly the amount
|
|
// that we created the channel between her and Bob, minus the channel
|
|
// reserve.
|
|
expectedBandwidth := lnwire.NewMSatFromSatoshis(
|
|
chanAmt - defaultCommitFee - chanReserve)
|
|
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
|
|
|
|
// Next, we'll create an HTLC worth 3 BTC, and send it into the link as
|
|
// a switch initiated payment. The resulting bandwidth should
|
|
// now be decremented to reflect the new HTLC.
|
|
htlcAmt := lnwire.NewMSatFromSatoshis(3 * btcutil.SatoshiPerBitcoin)
|
|
invoice, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment: %v", err)
|
|
}
|
|
|
|
addPkt := &htlcPacket{
|
|
htlc: htlc,
|
|
obfuscator: NewMockObfuscator(),
|
|
}
|
|
circuit := makePaymentCircuit(&htlc.PaymentHash, addPkt)
|
|
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
|
|
if err != nil {
|
|
t.Fatalf("unable to commit circuit: %v", err)
|
|
}
|
|
|
|
aliceLink.HandleSwitchPacket(addPkt)
|
|
time.Sleep(time.Millisecond * 100)
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
|
|
|
|
// Alice should send the HTLC to Bob.
|
|
var msg lnwire.Message
|
|
select {
|
|
case msg = <-aliceMsgs:
|
|
case <-time.After(15 * time.Second):
|
|
t.Fatalf("did not receive message")
|
|
}
|
|
|
|
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
|
|
if !ok {
|
|
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
|
|
}
|
|
|
|
bobIndex, err := bobChannel.ReceiveHTLC(addHtlc)
|
|
if err != nil {
|
|
t.Fatalf("bob failed receiving htlc: %v", err)
|
|
}
|
|
|
|
// Lock in the HTLC.
|
|
if err := updateState(batchTimer, coreLink, bobChannel, true); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
|
|
|
|
// If we now send in a valid HTLC settle for the prior HTLC we added,
|
|
// then the bandwidth should remain unchanged as the remote party will
|
|
// gain additional channel balance.
|
|
err = bobChannel.SettleHTLC(invoice.Terms.PaymentPreimage, bobIndex, nil, nil, nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to settle htlc: %v", err)
|
|
}
|
|
htlcSettle := &lnwire.UpdateFulfillHTLC{
|
|
ID: bobIndex,
|
|
PaymentPreimage: invoice.Terms.PaymentPreimage,
|
|
}
|
|
aliceLink.HandleChannelUpdate(htlcSettle)
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Since the settle is not locked in yet, Alice's bandwidth should still
|
|
// reflect that she has to pay the fee.
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
|
|
|
|
// Lock in the settle.
|
|
if err := updateState(batchTimer, coreLink, bobChannel, false); err != nil {
|
|
t.Fatalf("unable to update state: %v", err)
|
|
}
|
|
|
|
time.Sleep(time.Millisecond * 100)
|
|
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
|
|
|
|
// Now we create a channel that has a channel reserve that is
|
|
// greater than it's balance. In these case only payments can
|
|
// be received on this channel, not sent. The available bandwidth
|
|
// should therefore be 0.
|
|
const bobChanAmt = btcutil.SatoshiPerBitcoin * 1
|
|
const bobChanReserve = btcutil.SatoshiPerBitcoin * 1.5
|
|
bobLink, _, _, bobCleanUp, _, err :=
|
|
newSingleLinkTestHarness(bobChanAmt, bobChanReserve)
|
|
if err != nil {
|
|
t.Fatalf("unable to create link: %v", err)
|
|
}
|
|
defer bobCleanUp()
|
|
|
|
// Make sure bandwidth is reported as 0.
|
|
assertLinkBandwidth(t, bobLink, 0)
|
|
}
|
|
|
|
// TestChannelRetransmission tests the ability of the channel links to
|
|
// synchronize theirs states after abrupt disconnect.
|
|
func TestChannelRetransmission(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
retransmissionTests := []struct {
|
|
name string
|
|
messages []expectedMessage
|
|
}{
|
|
{
|
|
// Tests the ability of the channel links states to be
|
|
// synchronized after remote node haven't receive
|
|
// revoke and ack message.
|
|
name: "intercept last alice revoke_and_ack",
|
|
messages: []expectedMessage{
|
|
// First initialization of the channel.
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
{"alice", "bob", &lnwire.FundingLocked{}, false},
|
|
{"bob", "alice", &lnwire.FundingLocked{}, false},
|
|
|
|
// Send payment from Alice to Bob and intercept
|
|
// the last revocation message, in this case
|
|
// Bob should not proceed the payment farther.
|
|
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, true},
|
|
|
|
// Reestablish messages exchange on nodes restart.
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
// Alice should resend the revoke_and_ack
|
|
// message to Bob because Bob claimed it in the
|
|
// re-establish message.
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
|
|
// Proceed the payment farther by sending the
|
|
// fulfilment message and trigger the state
|
|
// update.
|
|
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
},
|
|
},
|
|
{
|
|
// Tests the ability of the channel links states to be
|
|
// synchronized after remote node haven't receive
|
|
// revoke and ack message.
|
|
name: "intercept bob revoke_and_ack commit_sig messages",
|
|
messages: []expectedMessage{
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
{"alice", "bob", &lnwire.FundingLocked{}, false},
|
|
{"bob", "alice", &lnwire.FundingLocked{}, false},
|
|
|
|
// Send payment from Alice to Bob and intercept
|
|
// the last revocation message, in this case
|
|
// Bob should not proceed the payment farther.
|
|
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
|
|
// Intercept bob commit sig and revoke and ack
|
|
// messages.
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, true},
|
|
{"bob", "alice", &lnwire.CommitSig{}, true},
|
|
|
|
// Reestablish messages exchange on nodes restart.
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
// Bob should resend previously intercepted messages.
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
|
|
// Proceed the payment farther by sending the
|
|
// fulfilment message and trigger the state
|
|
// update.
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
},
|
|
},
|
|
{
|
|
// Tests the ability of the channel links states to be
|
|
// synchronized after remote node haven't receive
|
|
// update and commit sig messages.
|
|
name: "intercept update add htlc and commit sig messages",
|
|
messages: []expectedMessage{
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
{"alice", "bob", &lnwire.FundingLocked{}, false},
|
|
{"bob", "alice", &lnwire.FundingLocked{}, false},
|
|
|
|
// Attempt make a payment from Alice to Bob,
|
|
// which is intercepted, emulating the Bob
|
|
// server abrupt stop.
|
|
{"alice", "bob", &lnwire.UpdateAddHTLC{}, true},
|
|
{"alice", "bob", &lnwire.CommitSig{}, true},
|
|
|
|
// Restart of the nodes, and after that nodes
|
|
// should exchange the reestablish messages.
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
{"alice", "bob", &lnwire.FundingLocked{}, false},
|
|
{"bob", "alice", &lnwire.FundingLocked{}, false},
|
|
|
|
// After Bob has notified Alice that he didn't
|
|
// receive updates Alice should re-send them.
|
|
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
|
|
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
},
|
|
},
|
|
}
|
|
paymentWithRestart := func(t *testing.T, messages []expectedMessage) {
|
|
channels, cleanUp, restoreChannelsFromDb, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*5,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
chanID := lnwire.NewChanIDFromOutPoint(channels.aliceToBob.ChannelPoint())
|
|
serverErr := make(chan error, 4)
|
|
|
|
aliceInterceptor := createInterceptorFunc("[alice] <-- [bob]",
|
|
"alice", messages, chanID, false)
|
|
bobInterceptor := createInterceptorFunc("[alice] --> [bob]",
|
|
"bob", messages, chanID, false)
|
|
|
|
ct := newConcurrentTester(t)
|
|
|
|
// Add interceptor to check the order of Bob and Alice
|
|
// messages.
|
|
n := newThreeHopNetwork(ct,
|
|
channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob,
|
|
testStartingHeight,
|
|
)
|
|
n.aliceServer.intersect(aliceInterceptor)
|
|
n.bobServer.intersect(bobInterceptor)
|
|
if err := n.start(); err != nil {
|
|
ct.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
bobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink)
|
|
|
|
// Send payment which should fail because we intercept the
|
|
// update and commit messages.
|
|
//
|
|
// TODO(roasbeef); increase timeout?
|
|
receiver := n.bobServer
|
|
rhash, err := n.makePayment(n.aliceServer, receiver,
|
|
n.bobServer.PubKey(), hops, amount, htlcAmt,
|
|
totalTimelock).Wait(time.Second * 5)
|
|
if err == nil {
|
|
ct.Fatalf("payment shouldn't haven been finished")
|
|
}
|
|
|
|
// Stop network cluster and create new one, with the old
|
|
// channels states. Also do the *hack* - save the payment
|
|
// receiver to pass it in new channel link, otherwise payment
|
|
// will be failed because of the unknown payment hash. Hack
|
|
// will be removed with sphinx payment.
|
|
bobRegistry := n.bobServer.registry
|
|
n.stop()
|
|
|
|
channels, err = restoreChannelsFromDb()
|
|
if err != nil {
|
|
ct.Fatalf("unable to restore channels from database: %v", err)
|
|
}
|
|
|
|
n = newThreeHopNetwork(ct, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
n.firstBobChannelLink.cfg.Registry = bobRegistry
|
|
n.aliceServer.intersect(aliceInterceptor)
|
|
n.bobServer.intersect(bobInterceptor)
|
|
|
|
if err := n.start(); err != nil {
|
|
ct.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
// Wait for reestablishment to be proceeded and invoice to be settled.
|
|
// TODO(andrew.shvv) Will be removed if we move the notification center
|
|
// to the channel link itself.
|
|
|
|
var invoice channeldb.Invoice
|
|
for i := 0; i < 20; i++ {
|
|
select {
|
|
case <-time.After(time.Millisecond * 200):
|
|
case serverErr := <-serverErr:
|
|
ct.Fatalf("server error: %v", serverErr)
|
|
}
|
|
|
|
// Check that alice invoice wasn't settled and
|
|
// bandwidth of htlc links hasn't been changed.
|
|
invoice, err = receiver.registry.LookupInvoice(rhash)
|
|
if err != nil {
|
|
err = errors.Errorf("unable to get invoice: %v", err)
|
|
continue
|
|
}
|
|
if !invoice.Terms.Settled {
|
|
err = errors.Errorf("alice invoice haven't been settled")
|
|
continue
|
|
}
|
|
|
|
aliceExpectedBandwidth := aliceBandwidthBefore - htlcAmt
|
|
if aliceExpectedBandwidth != n.aliceChannelLink.Bandwidth() {
|
|
err = errors.Errorf("expected alice to have %v, instead has %v",
|
|
aliceExpectedBandwidth, n.aliceChannelLink.Bandwidth())
|
|
continue
|
|
}
|
|
|
|
bobExpectedBandwidth := bobBandwidthBefore + htlcAmt
|
|
if bobExpectedBandwidth != n.firstBobChannelLink.Bandwidth() {
|
|
err = errors.Errorf("expected bob to have %v, instead has %v",
|
|
bobExpectedBandwidth, n.firstBobChannelLink.Bandwidth())
|
|
continue
|
|
}
|
|
|
|
break
|
|
}
|
|
|
|
if err != nil {
|
|
ct.Fatal(err)
|
|
}
|
|
}
|
|
|
|
for _, test := range retransmissionTests {
|
|
passed := t.Run(test.name, func(t *testing.T) {
|
|
paymentWithRestart(t, test.messages)
|
|
})
|
|
|
|
if !passed {
|
|
break
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// TestShouldAdjustCommitFee tests the shouldAdjustCommitFee pivot function to
|
|
// ensure that ie behaves properly. We should only update the fee if it
|
|
// deviates from our current fee by more 10% or more.
|
|
func TestShouldAdjustCommitFee(t *testing.T) {
|
|
tests := []struct {
|
|
netFee lnwallet.SatPerKWeight
|
|
chanFee lnwallet.SatPerKWeight
|
|
shouldAdjust bool
|
|
}{
|
|
|
|
// The network fee is 3x lower than the current commitment
|
|
// transaction. As a result, we should adjust our fee to match
|
|
// it.
|
|
{
|
|
netFee: 100,
|
|
chanFee: 3000,
|
|
shouldAdjust: true,
|
|
},
|
|
|
|
// The network fee is lower than the current commitment fee,
|
|
// but only slightly so, so we won't update the commitment fee.
|
|
{
|
|
netFee: 2999,
|
|
chanFee: 3000,
|
|
shouldAdjust: false,
|
|
},
|
|
|
|
// The network fee is lower than the commitment fee, but only
|
|
// right before it crosses our current threshold.
|
|
{
|
|
netFee: 1000,
|
|
chanFee: 1099,
|
|
shouldAdjust: false,
|
|
},
|
|
|
|
// The network fee is lower than the commitment fee, and within
|
|
// our range of adjustment, so we should adjust.
|
|
{
|
|
netFee: 1000,
|
|
chanFee: 1100,
|
|
shouldAdjust: true,
|
|
},
|
|
|
|
// The network fee is 2x higher than our commitment fee, so we
|
|
// should adjust upwards.
|
|
{
|
|
netFee: 2000,
|
|
chanFee: 1000,
|
|
shouldAdjust: true,
|
|
},
|
|
|
|
// The network fee is higher than our commitment fee, but only
|
|
// slightly so, so we won't update.
|
|
{
|
|
netFee: 1001,
|
|
chanFee: 1000,
|
|
shouldAdjust: false,
|
|
},
|
|
|
|
// The network fee is higher than our commitment fee, but
|
|
// hasn't yet crossed our activation threshold.
|
|
{
|
|
netFee: 1100,
|
|
chanFee: 1099,
|
|
shouldAdjust: false,
|
|
},
|
|
|
|
// The network fee is higher than our commitment fee, and
|
|
// within our activation threshold, so we should update our
|
|
// fee.
|
|
{
|
|
netFee: 1100,
|
|
chanFee: 1000,
|
|
shouldAdjust: true,
|
|
},
|
|
|
|
// Our fees match exactly, so we shouldn't update it at all.
|
|
{
|
|
netFee: 1000,
|
|
chanFee: 1000,
|
|
shouldAdjust: false,
|
|
},
|
|
}
|
|
|
|
for i, test := range tests {
|
|
adjustedFee := shouldAdjustCommitFee(
|
|
test.netFee, test.chanFee,
|
|
)
|
|
|
|
if adjustedFee && !test.shouldAdjust {
|
|
t.Fatalf("test #%v failed: net_fee=%v, "+
|
|
"chan_fee=%v, adjust_expect=%v, adjust_returned=%v",
|
|
i, test.netFee, test.chanFee, test.shouldAdjust,
|
|
adjustedFee)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkUpdateCommitFee tests that when a new block comes in, the
|
|
// channel link properly checks to see if it should update the commitment fee.
|
|
func TestChannelLinkUpdateCommitFee(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// First, we'll create our traditional three hop network. We'll only be
|
|
// interacting with and asserting the state of two of the end points
|
|
// for this test.
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
|
|
// First, we'll set up some message interceptors to ensure that the
|
|
// proper messages are sent when updating fees.
|
|
chanID := n.aliceChannelLink.ChanID()
|
|
messages := []expectedMessage{
|
|
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
|
|
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
|
|
|
|
{"alice", "bob", &lnwire.FundingLocked{}, false},
|
|
{"bob", "alice", &lnwire.FundingLocked{}, false},
|
|
|
|
{"alice", "bob", &lnwire.UpdateFee{}, false},
|
|
|
|
{"alice", "bob", &lnwire.CommitSig{}, false},
|
|
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
|
|
{"bob", "alice", &lnwire.CommitSig{}, false},
|
|
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
|
|
}
|
|
n.aliceServer.intersect(createInterceptorFunc("[alice] <-- [bob]",
|
|
"alice", messages, chanID, false))
|
|
n.bobServer.intersect(createInterceptorFunc("[alice] --> [bob]",
|
|
"bob", messages, chanID, false))
|
|
|
|
if err := n.start(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer n.stop()
|
|
defer n.feeEstimator.Stop()
|
|
|
|
// First, we'll start off all channels at "height" 9000 by sending a
|
|
// new epoch to all the clients.
|
|
select {
|
|
case n.aliceBlockEpoch <- &chainntnfs.BlockEpoch{
|
|
Height: 9000,
|
|
}:
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("link didn't read block epoch")
|
|
}
|
|
select {
|
|
case n.bobFirstBlockEpoch <- &chainntnfs.BlockEpoch{
|
|
Height: 9000,
|
|
}:
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("link didn't read block epoch")
|
|
}
|
|
|
|
startingFeeRate := channels.aliceToBob.CommitFeeRate()
|
|
|
|
// Convert starting fee rate to sat/vbyte. This is usually a
|
|
// lossy conversion, but since the startingFeeRate is
|
|
// 6000 sat/kw in this case, we won't lose precision.
|
|
startingFeeRateSatPerVByte := lnwallet.SatPerVByte(
|
|
startingFeeRate * 4 / 1000)
|
|
|
|
// Next, we'll send the first fee rate response to Alice.
|
|
select {
|
|
case n.feeEstimator.byteFeeIn <- startingFeeRateSatPerVByte:
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("alice didn't query for the new " +
|
|
"network fee")
|
|
}
|
|
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// The fee rate on the alice <-> bob channel should still be the same
|
|
// on both sides.
|
|
aliceFeeRate := channels.aliceToBob.CommitFeeRate()
|
|
bobFeeRate := channels.bobToAlice.CommitFeeRate()
|
|
if aliceFeeRate != bobFeeRate {
|
|
t.Fatalf("fee rates don't match: expected %v got %v",
|
|
aliceFeeRate, bobFeeRate)
|
|
}
|
|
if aliceFeeRate != startingFeeRate {
|
|
t.Fatalf("alice's fee rate shouldn't have changed: "+
|
|
"expected %v, got %v", aliceFeeRate, startingFeeRate)
|
|
}
|
|
if bobFeeRate != startingFeeRate {
|
|
t.Fatalf("bob's fee rate shouldn't have changed: "+
|
|
"expected %v, got %v", bobFeeRate, startingFeeRate)
|
|
}
|
|
|
|
// Now we'll send a new block update to all end points, with a new
|
|
// height THAT'S OVER 9000!!!
|
|
select {
|
|
case n.aliceBlockEpoch <- &chainntnfs.BlockEpoch{
|
|
Height: 9001,
|
|
}:
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("link didn't read block epoch")
|
|
}
|
|
select {
|
|
case n.bobFirstBlockEpoch <- &chainntnfs.BlockEpoch{
|
|
Height: 9001,
|
|
}:
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("link didn't read block epoch")
|
|
}
|
|
|
|
// Next, we'll set up a deliver a fee rate that's triple the current
|
|
// fee rate. This should cause the Alice (the initiator) to trigger a
|
|
// fee update.
|
|
newFeeRate := startingFeeRate * 3
|
|
select {
|
|
case n.feeEstimator.byteFeeIn <- startingFeeRateSatPerVByte * 3:
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("alice didn't query for the new " +
|
|
"network fee")
|
|
}
|
|
|
|
time.Sleep(time.Second * 2)
|
|
|
|
// At this point, Alice should've triggered a new fee update that
|
|
// increased the fee rate to match the new rate.
|
|
aliceFeeRate = channels.aliceToBob.CommitFeeRate()
|
|
bobFeeRate = channels.bobToAlice.CommitFeeRate()
|
|
if aliceFeeRate != newFeeRate {
|
|
t.Fatalf("alice's fee rate didn't change: expected %v, got %v",
|
|
newFeeRate, aliceFeeRate)
|
|
}
|
|
if bobFeeRate != newFeeRate {
|
|
t.Fatalf("bob's fee rate didn't change: expected %v, got %v",
|
|
newFeeRate, aliceFeeRate)
|
|
}
|
|
if aliceFeeRate != bobFeeRate {
|
|
t.Fatalf("fee rates don't match: expected %v got %v",
|
|
aliceFeeRate, bobFeeRate)
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkAcceptDuplicatePayment tests that if a link receives an
|
|
// incoming HTLC for a payment we have already settled, then it accepts the
|
|
// HTLC. We do this to simplify the processing of settles after restarts or
|
|
// failures, reducing ambiguity when a batch is only partially processed.
|
|
func TestChannelLinkAcceptDuplicatePayment(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// First, we'll create our traditional three hop network. We'll only be
|
|
// interacting with and asserting the state of two of the end points
|
|
// for this test.
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
|
|
// We'll start off by making a payment from Alice to Carol. We'll
|
|
// manually generate this request so we can control all the parameters.
|
|
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink)
|
|
blob, err := generateRoute(hops...)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
invoice, htlc, err := generatePayment(amount, htlcAmt, totalTimelock,
|
|
blob)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
if err := n.carolServer.registry.AddInvoice(*invoice); err != nil {
|
|
t.Fatalf("unable to add invoice in carol registry: %v", err)
|
|
}
|
|
|
|
// With the invoice now added to Carol's registry, we'll send the
|
|
// payment. It should succeed w/o any issues as it has been crafted
|
|
// properly.
|
|
_, err = n.aliceServer.htlcSwitch.SendHTLC(n.bobServer.PubKey(), htlc,
|
|
newMockDeobfuscator())
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment to carol: %v", err)
|
|
}
|
|
|
|
// Now, if we attempt to send the payment *again* it should be rejected
|
|
// as it's a duplicate request.
|
|
_, err = n.aliceServer.htlcSwitch.SendHTLC(n.bobServer.PubKey(), htlc,
|
|
newMockDeobfuscator())
|
|
if err != nil {
|
|
t.Fatalf("error shouldn't have been received got: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestChannelLinkAcceptOverpay tests that if we create an invoice for sender,
|
|
// and the sender sends *more* than specified in the invoice, then we'll still
|
|
// accept it and settle as normal.
|
|
func TestChannelLinkAcceptOverpay(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// First, we'll create our traditional three hop network. We'll only be
|
|
// interacting with and asserting the state of two of the end points
|
|
// for this test.
|
|
channels, cleanUp, _, err := createClusterChannels(
|
|
btcutil.SatoshiPerBitcoin*3,
|
|
btcutil.SatoshiPerBitcoin*5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
|
|
channels.bobToCarol, channels.carolToBob, testStartingHeight)
|
|
if err := n.start(); err != nil {
|
|
t.Fatalf("unable to start three hop network: %v", err)
|
|
}
|
|
defer n.stop()
|
|
|
|
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
|
|
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
|
|
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
|
|
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
|
|
|
|
// We'll request a route to send 10k satoshis via Alice -> Bob ->
|
|
// Carol.
|
|
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
htlcAmt, totalTimelock, hops := generateHops(
|
|
amount, testStartingHeight,
|
|
n.firstBobChannelLink, n.carolChannelLink,
|
|
)
|
|
|
|
// When we actually go to send the payment, we'll actually create an
|
|
// invoice at Carol for only half of this amount.
|
|
receiver := n.carolServer
|
|
rhash, err := n.makePayment(
|
|
n.aliceServer, n.carolServer, n.bobServer.PubKey(),
|
|
hops, amount/2, htlcAmt, totalTimelock,
|
|
).Wait(30 * time.Second)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Even though we sent 2x what was asked for, Carol should still have
|
|
// accepted the payment and marked it as settled.
|
|
invoice, err := receiver.registry.LookupInvoice(rhash)
|
|
if err != nil {
|
|
t.Fatalf("unable to get invoice: %v", err)
|
|
}
|
|
if !invoice.Terms.Settled {
|
|
t.Fatal("carol invoice haven't been settled")
|
|
}
|
|
|
|
expectedAliceBandwidth := aliceBandwidthBefore - htlcAmt
|
|
if expectedAliceBandwidth != n.aliceChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedAliceBandwidth, n.aliceChannelLink.Bandwidth())
|
|
}
|
|
|
|
expectedBobBandwidth1 := firstBobBandwidthBefore + htlcAmt
|
|
if expectedBobBandwidth1 != n.firstBobChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedBobBandwidth1, n.firstBobChannelLink.Bandwidth())
|
|
}
|
|
|
|
expectedBobBandwidth2 := secondBobBandwidthBefore - amount
|
|
if expectedBobBandwidth2 != n.secondBobChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedBobBandwidth2, n.secondBobChannelLink.Bandwidth())
|
|
}
|
|
|
|
expectedCarolBandwidth := carolBandwidthBefore + amount
|
|
if expectedCarolBandwidth != n.carolChannelLink.Bandwidth() {
|
|
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
|
|
expectedCarolBandwidth, n.carolChannelLink.Bandwidth())
|
|
}
|
|
}
|
|
|
|
// chanRestoreFunc is a method signature for functions that can reload both
|
|
// endpoints of a link from their persistent storage engines.
|
|
type chanRestoreFunc func() (*lnwallet.LightningChannel, *lnwallet.LightningChannel, error)
|
|
|
|
// persistentLinkHarness is used to control the lifecylce of a link and the
|
|
// switch that operates it. It supports the ability to restart either the link
|
|
// or both the link and the switch.
|
|
type persistentLinkHarness struct {
|
|
t *testing.T
|
|
|
|
link ChannelLink
|
|
coreLink *channelLink
|
|
channel *lnwallet.LightningChannel
|
|
|
|
batchTicker chan time.Time
|
|
msgs chan lnwire.Message
|
|
|
|
restoreChan chanRestoreFunc
|
|
}
|
|
|
|
// newPersistentLinkHarness initializes a new persistentLinkHarness and derives
|
|
// the supporting references from the active link.
|
|
func newPersistentLinkHarness(t *testing.T, link ChannelLink,
|
|
batchTicker chan time.Time,
|
|
restore chanRestoreFunc) *persistentLinkHarness {
|
|
|
|
coreLink := link.(*channelLink)
|
|
|
|
return &persistentLinkHarness{
|
|
t: t,
|
|
link: link,
|
|
coreLink: coreLink,
|
|
channel: coreLink.channel,
|
|
batchTicker: batchTicker,
|
|
msgs: coreLink.cfg.Peer.(*mockPeer).sentMsgs,
|
|
restoreChan: restore,
|
|
}
|
|
}
|
|
|
|
// restart facilitates a shutdown and restart of the link maintained by the
|
|
// harness. The primary purpose of this method is to ensure the consistency of
|
|
// the supporting references is maintained across restarts.
|
|
//
|
|
// If `restartSwitch` is set, the entire switch will also be restarted,
|
|
// and will be reinitialized with the contents of the channeldb backing Alice's
|
|
// channel.
|
|
//
|
|
// Any number of hodl flags can be passed as additional arguments to this
|
|
// method. If none are provided, the mask will be extracted as hodl.MaskNone.
|
|
func (h *persistentLinkHarness) restart(restartSwitch bool,
|
|
hodlFlags ...hodl.Flag) func() {
|
|
|
|
// First, remove the link from the switch.
|
|
h.coreLink.cfg.Switch.RemoveLink(h.link.ChanID())
|
|
|
|
var htlcSwitch *Switch
|
|
if restartSwitch {
|
|
// If a switch restart is requested, we will stop it and
|
|
// leave htlcSwitch nil, which will trigger the creation
|
|
// of a fresh instance in restartLink.
|
|
h.coreLink.cfg.Switch.Stop()
|
|
} else {
|
|
// Otherwise, we capture the switch's reference so that
|
|
// it can be carried over to the restarted link.
|
|
htlcSwitch = h.coreLink.cfg.Switch
|
|
}
|
|
|
|
// Since our in-memory state may have diverged from our persistent
|
|
// state, we will restore the persisted state to ensure we always start
|
|
// the link in a consistent state.
|
|
var err error
|
|
h.channel, _, err = h.restoreChan()
|
|
if err != nil {
|
|
h.t.Fatalf("unable to restore channels: %v", err)
|
|
}
|
|
|
|
// Now, restart the link using the channel state. This will take care of
|
|
// adding the link to an existing switch, or creating a new one using
|
|
// the database owned by the link.
|
|
var cleanUp func()
|
|
h.link, h.batchTicker, cleanUp, err = restartLink(
|
|
h.channel, htlcSwitch, hodlFlags,
|
|
)
|
|
if err != nil {
|
|
h.t.Fatalf("unable to restart alicelink: %v", err)
|
|
}
|
|
|
|
// Repopulate the remaining fields in the harness.
|
|
h.coreLink = h.link.(*channelLink)
|
|
h.msgs = h.coreLink.cfg.Peer.(*mockPeer).sentMsgs
|
|
|
|
return cleanUp
|
|
}
|
|
|
|
// checkSent reads the links message stream and verify that the messages are
|
|
// dequeued in the same order as provided by `pkts`.
|
|
func (h *persistentLinkHarness) checkSent(pkts []*htlcPacket) {
|
|
for _, pkt := range pkts {
|
|
var msg lnwire.Message
|
|
select {
|
|
case msg = <-h.msgs:
|
|
case <-time.After(15 * time.Second):
|
|
h.t.Fatalf("did not receive message")
|
|
}
|
|
|
|
if !reflect.DeepEqual(msg, pkt.htlc) {
|
|
h.t.Fatalf("unexpected packet, want %v, got %v",
|
|
pkt.htlc, msg)
|
|
}
|
|
}
|
|
}
|
|
|
|
// commitCircuits accepts a list of circuits and tries to commit them to the
|
|
// switch's circuit map. The forwarding actions are returned if there was no
|
|
// failure.
|
|
func (h *persistentLinkHarness) commitCircuits(circuits []*PaymentCircuit) *CircuitFwdActions {
|
|
fwdActions, err := h.coreLink.cfg.Switch.commitCircuits(circuits...)
|
|
if err != nil {
|
|
h.t.Fatalf("unable to commit circuit: %v", err)
|
|
}
|
|
|
|
return fwdActions
|
|
}
|
|
|
|
func (h *persistentLinkHarness) assertNumPendingNumOpenCircuits(
|
|
wantPending, wantOpen int) {
|
|
|
|
_, _, line, _ := runtime.Caller(1)
|
|
|
|
numPending := h.coreLink.cfg.Switch.circuits.NumPending()
|
|
if numPending != wantPending {
|
|
h.t.Fatalf("line: %d: wrong number of pending circuits: "+
|
|
"want %d, got %d", line, wantPending, numPending)
|
|
}
|
|
numOpen := h.coreLink.cfg.Switch.circuits.NumOpen()
|
|
if numOpen != wantOpen {
|
|
h.t.Fatalf("line: %d: wrong number of open circuits: "+
|
|
"want %d, got %d", line, wantOpen, numOpen)
|
|
}
|
|
}
|
|
|
|
// trySignNextCommitment signals the batch ticker so that the link will try to
|
|
// update its commitment transaction.
|
|
func (h *persistentLinkHarness) trySignNextCommitment() {
|
|
select {
|
|
case h.batchTicker <- time.Now():
|
|
// Give the link enough time to process the request.
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
case <-time.After(15 * time.Second):
|
|
h.t.Fatalf("did not initiate state transition")
|
|
}
|
|
}
|
|
|
|
// restartLink creates a new channel link from the given channel state, and adds
|
|
// to an htlcswitch. If none is provided by the caller, a new one will be
|
|
// created using Alice's database.
|
|
func restartLink(aliceChannel *lnwallet.LightningChannel, aliceSwitch *Switch,
|
|
hodlFlags []hodl.Flag) (ChannelLink, chan time.Time, func(), error) {
|
|
|
|
var (
|
|
globalEpoch = &chainntnfs.BlockEpochEvent{
|
|
Epochs: make(chan *chainntnfs.BlockEpoch),
|
|
Cancel: func() {
|
|
},
|
|
}
|
|
invoiceRegistry = newMockRegistry()
|
|
decoder = newMockIteratorDecoder()
|
|
obfuscator = NewMockObfuscator()
|
|
alicePeer = &mockPeer{
|
|
sentMsgs: make(chan lnwire.Message, 2000),
|
|
quit: make(chan struct{}),
|
|
}
|
|
|
|
globalPolicy = ForwardingPolicy{
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(5),
|
|
BaseFee: lnwire.NewMSatFromSatoshis(1),
|
|
TimeLockDelta: 6,
|
|
}
|
|
|
|
pCache = &mockPreimageCache{
|
|
// hash -> preimage
|
|
preimageMap: make(map[[32]byte][]byte),
|
|
}
|
|
)
|
|
|
|
aliceDb := aliceChannel.State().Db
|
|
|
|
if aliceSwitch == nil {
|
|
var err error
|
|
aliceSwitch, err = New(Config{DB: aliceDb})
|
|
if err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
}
|
|
|
|
t := make(chan time.Time)
|
|
ticker := &mockTicker{t}
|
|
aliceCfg := ChannelLinkConfig{
|
|
FwrdingPolicy: globalPolicy,
|
|
Peer: alicePeer,
|
|
Switch: aliceSwitch,
|
|
Circuits: aliceSwitch.CircuitModifier(),
|
|
ForwardPackets: aliceSwitch.ForwardPackets,
|
|
DecodeHopIterators: decoder.DecodeHopIterators,
|
|
ExtractErrorEncrypter: func(*btcec.PublicKey) (
|
|
ErrorEncrypter, lnwire.FailCode) {
|
|
return obfuscator, lnwire.CodeNone
|
|
},
|
|
FetchLastChannelUpdate: mockGetChanUpdateMessage,
|
|
PreimageCache: pCache,
|
|
UpdateContractSignals: func(*contractcourt.ContractSignals) error {
|
|
return nil
|
|
},
|
|
Registry: invoiceRegistry,
|
|
ChainEvents: &contractcourt.ChainEventSubscription{},
|
|
BlockEpochs: globalEpoch,
|
|
BatchTicker: ticker,
|
|
FwdPkgGCTicker: NewBatchTicker(time.NewTicker(5 * time.Second)),
|
|
// Make the BatchSize large enough to not
|
|
// trigger commit update automatically during tests.
|
|
BatchSize: 10000,
|
|
// Set any hodl flags requested for the new link.
|
|
HodlMask: hodl.MaskFromFlags(hodlFlags...),
|
|
DebugHTLC: len(hodlFlags) > 0,
|
|
}
|
|
|
|
const startingHeight = 100
|
|
aliceLink := NewChannelLink(aliceCfg, aliceChannel, startingHeight)
|
|
if err := aliceSwitch.AddLink(aliceLink); err != nil {
|
|
return nil, nil, nil, err
|
|
}
|
|
go func() {
|
|
for {
|
|
select {
|
|
case <-aliceLink.(*channelLink).htlcUpdates:
|
|
case <-aliceLink.(*channelLink).quit:
|
|
return
|
|
}
|
|
}
|
|
}()
|
|
|
|
cleanUp := func() {
|
|
close(alicePeer.quit)
|
|
defer aliceLink.Stop()
|
|
}
|
|
|
|
return aliceLink, t, cleanUp, nil
|
|
}
|