lnd.xprv/htlcswitch/hop/iterator.go
2019-11-04 15:10:50 -08:00

370 lines
12 KiB
Go

package hop
import (
"bytes"
"fmt"
"io"
"github.com/btcsuite/btcd/btcec"
sphinx "github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/lnwire"
)
// Iterator is an interface that abstracts away the routing information
// included in HTLC's which includes the entirety of the payment path of an
// HTLC. This interface provides two basic method which carry out: how to
// interpret the forwarding information encoded within the HTLC packet, and hop
// to encode the forwarding information for the _next_ hop.
type Iterator interface {
// HopPayload returns the set of fields that detail exactly _how_ this
// hop should forward the HTLC to the next hop. Additionally, the
// information encoded within the returned ForwardingInfo is to be used
// by each hop to authenticate the information given to it by the prior
// hop. The payload will also contain any additional TLV fields provided
// by the sender.
HopPayload() (*Payload, error)
// EncodeNextHop encodes the onion packet destined for the next hop
// into the passed io.Writer.
EncodeNextHop(w io.Writer) error
// ExtractErrorEncrypter returns the ErrorEncrypter needed for this hop,
// along with a failure code to signal if the decoding was successful.
ExtractErrorEncrypter(ErrorEncrypterExtracter) (ErrorEncrypter,
lnwire.FailCode)
}
// sphinxHopIterator is the Sphinx implementation of hop iterator which uses
// onion routing to encode the payment route in such a way so that node might
// see only the next hop in the route..
type sphinxHopIterator struct {
// ogPacket is the original packet from which the processed packet is
// derived.
ogPacket *sphinx.OnionPacket
// processedPacket is the outcome of processing an onion packet. It
// includes the information required to properly forward the packet to
// the next hop.
processedPacket *sphinx.ProcessedPacket
}
// makeSphinxHopIterator converts a processed packet returned from a sphinx
// router and converts it into an hop iterator for usage in the link.
func makeSphinxHopIterator(ogPacket *sphinx.OnionPacket,
packet *sphinx.ProcessedPacket) *sphinxHopIterator {
return &sphinxHopIterator{
ogPacket: ogPacket,
processedPacket: packet,
}
}
// A compile time check to ensure sphinxHopIterator implements the HopIterator
// interface.
var _ Iterator = (*sphinxHopIterator)(nil)
// Encode encodes iterator and writes it to the writer.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) EncodeNextHop(w io.Writer) error {
return r.processedPacket.NextPacket.Encode(w)
}
// HopPayload returns the set of fields that detail exactly _how_ this hop
// should forward the HTLC to the next hop. Additionally, the information
// encoded within the returned ForwardingInfo is to be used by each hop to
// authenticate the information given to it by the prior hop. The payload will
// also contain any additional TLV fields provided by the sender.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) HopPayload() (*Payload, error) {
switch r.processedPacket.Payload.Type {
// If this is the legacy payload, then we'll extract the information
// directly from the pre-populated ForwardingInstructions field.
case sphinx.PayloadLegacy:
fwdInst := r.processedPacket.ForwardingInstructions
return NewLegacyPayload(fwdInst), nil
// Otherwise, if this is the TLV payload, then we'll make a new stream
// to decode only what we need to make routing decisions.
case sphinx.PayloadTLV:
return NewPayloadFromReader(bytes.NewReader(
r.processedPacket.Payload.Payload,
))
default:
return nil, fmt.Errorf("unknown sphinx payload type: %v",
r.processedPacket.Payload.Type)
}
}
// ExtractErrorEncrypter decodes and returns the ErrorEncrypter for this hop,
// along with a failure code to signal if the decoding was successful. The
// ErrorEncrypter is used to encrypt errors back to the sender in the event that
// a payment fails.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) ExtractErrorEncrypter(
extracter ErrorEncrypterExtracter) (ErrorEncrypter, lnwire.FailCode) {
return extracter(r.ogPacket.EphemeralKey)
}
// OnionProcessor is responsible for keeping all sphinx dependent parts inside
// and expose only decoding function. With such approach we give freedom for
// subsystems which wants to decode sphinx path to not be dependable from
// sphinx at all.
//
// NOTE: The reason for keeping decoder separated from hop iterator is too
// maintain the hop iterator abstraction. Without it the structures which using
// the hop iterator should contain sphinx router which makes their creations in
// tests dependent from the sphinx internal parts.
type OnionProcessor struct {
router *sphinx.Router
}
// NewOnionProcessor creates new instance of decoder.
func NewOnionProcessor(router *sphinx.Router) *OnionProcessor {
return &OnionProcessor{router}
}
// Start spins up the onion processor's sphinx router.
func (p *OnionProcessor) Start() error {
return p.router.Start()
}
// Stop shutsdown the onion processor's sphinx router.
func (p *OnionProcessor) Stop() error {
p.router.Stop()
return nil
}
// DecodeHopIterator attempts to decode a valid sphinx packet from the passed io.Reader
// instance using the rHash as the associated data when checking the relevant
// MACs during the decoding process.
func (p *OnionProcessor) DecodeHopIterator(r io.Reader, rHash []byte,
incomingCltv uint32) (Iterator, lnwire.FailCode) {
onionPkt := &sphinx.OnionPacket{}
if err := onionPkt.Decode(r); err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to decode onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
// Attempt to process the Sphinx packet. We include the payment hash of
// the HTLC as it's authenticated within the Sphinx packet itself as
// associated data in order to thwart attempts a replay attacks. In the
// case of a replay, an attacker is *forced* to use the same payment
// hash twice, thereby losing their money entirely.
sphinxPacket, err := p.router.ProcessOnionPacket(
onionPkt, rHash, incomingCltv,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return makeSphinxHopIterator(onionPkt, sphinxPacket), lnwire.CodeNone
}
// DecodeHopIteratorRequest encapsulates all date necessary to process an onion
// packet, perform sphinx replay detection, and schedule the entry for garbage
// collection.
type DecodeHopIteratorRequest struct {
OnionReader io.Reader
RHash []byte
IncomingCltv uint32
}
// DecodeHopIteratorResponse encapsulates the outcome of a batched sphinx onion
// processing.
type DecodeHopIteratorResponse struct {
HopIterator Iterator
FailCode lnwire.FailCode
}
// Result returns the (HopIterator, lnwire.FailCode) tuple, which should
// correspond to the index of a particular DecodeHopIteratorRequest.
//
// NOTE: The HopIterator should be considered invalid if the fail code is
// anything but lnwire.CodeNone.
func (r *DecodeHopIteratorResponse) Result() (Iterator, lnwire.FailCode) {
return r.HopIterator, r.FailCode
}
// DecodeHopIterators performs batched decoding and validation of incoming
// sphinx packets. For the same `id`, this method will return the same iterators
// and failcodes upon subsequent invocations.
//
// NOTE: In order for the responses to be valid, the caller must guarantee that
// the presented readers and rhashes *NEVER* deviate across invocations for the
// same id.
func (p *OnionProcessor) DecodeHopIterators(id []byte,
reqs []DecodeHopIteratorRequest) ([]DecodeHopIteratorResponse, error) {
var (
batchSize = len(reqs)
onionPkts = make([]sphinx.OnionPacket, batchSize)
resps = make([]DecodeHopIteratorResponse, batchSize)
)
tx := p.router.BeginTxn(id, batchSize)
for i, req := range reqs {
onionPkt := &onionPkts[i]
resp := &resps[i]
err := onionPkt.Decode(req.OnionReader)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to decode onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
err = tx.ProcessOnionPacket(
uint16(i), onionPkt, req.RHash, req.IncomingCltv,
)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionHMAC:
resp.FailCode = lnwire.CodeInvalidOnionHmac
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to process onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
}
// With that batch created, we will now attempt to write the shared
// secrets to disk. This operation will returns the set of indices that
// were detected as replays, and the computed sphinx packets for all
// indices that did not fail the above loop. Only indices that are not
// in the replay set should be considered valid, as they are
// opportunistically computed.
packets, replays, err := tx.Commit()
if err != nil {
log.Errorf("unable to process onion packet batch %x: %v",
id, err)
// If we failed to commit the batch to the secret share log, we
// will mark all not-yet-failed channels with a temporary
// channel failure and exit since we cannot proceed.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
log.Errorf("unable to process onion packet %x-%v",
id, i)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
}
// TODO(conner): return real errors to caller so link can fail?
return resps, err
}
// Otherwise, the commit was successful. Now we will post process any
// remaining packets, additionally failing any that were included in the
// replay set.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
// If this index is contained in the replay set, mark it with a
// temporary channel failure error code. We infer that the
// offending error was due to a replayed packet because this
// index was found in the replay set.
if replays.Contains(uint16(i)) {
log.Errorf("unable to process onion packet: %v",
sphinx.ErrReplayedPacket)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
continue
}
// Finally, construct a hop iterator from our processed sphinx
// packet, simultaneously caching the original onion packet.
resp.HopIterator = makeSphinxHopIterator(&onionPkts[i], &packets[i])
}
return resps, nil
}
// ExtractErrorEncrypter takes an io.Reader which should contain the onion
// packet as original received by a forwarding node and creates an
// ErrorEncrypter instance using the derived shared secret. In the case that en
// error occurs, a lnwire failure code detailing the parsing failure will be
// returned.
func (p *OnionProcessor) ExtractErrorEncrypter(ephemeralKey *btcec.PublicKey) (
ErrorEncrypter, lnwire.FailCode) {
onionObfuscator, err := sphinx.NewOnionErrorEncrypter(
p.router, ephemeralKey,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return &SphinxErrorEncrypter{
OnionErrorEncrypter: onionObfuscator,
EphemeralKey: ephemeralKey,
}, lnwire.CodeNone
}