lnd.xprv/rpcserver.go

2223 lines
69 KiB
Go

package main
import (
"crypto/rand"
"crypto/sha256"
"encoding/hex"
"errors"
"fmt"
"io"
"math"
"net"
"strconv"
"strings"
"time"
"sync"
"sync/atomic"
"github.com/boltdb/bolt"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/zpay32"
"github.com/roasbeef/btcd/blockchain"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
"github.com/roasbeef/btcwallet/waddrmgr"
"github.com/tv42/zbase32"
"golang.org/x/net/context"
)
var (
defaultAccount uint32 = waddrmgr.DefaultAccountNum
)
// rpcServer is a gRPC, RPC front end to the lnd daemon.
// TODO(roasbeef): pagination support for the list-style calls
type rpcServer struct {
started int32 // To be used atomically.
shutdown int32 // To be used atomically.
server *server
wg sync.WaitGroup
quit chan struct{}
}
// A compile time check to ensure that rpcServer fully implements the
// LightningServer gRPC service.
var _ lnrpc.LightningServer = (*rpcServer)(nil)
// newRPCServer creates and returns a new instance of the rpcServer.
func newRPCServer(s *server) *rpcServer {
return &rpcServer{server: s, quit: make(chan struct{}, 1)}
}
// Start launches any helper goroutines required for the rpcServer
// to function.
func (r *rpcServer) Start() error {
if atomic.AddInt32(&r.started, 1) != 1 {
return nil
}
return nil
}
// Stop signals any active goroutines for a graceful closure.
func (r *rpcServer) Stop() error {
if atomic.AddInt32(&r.shutdown, 1) != 1 {
return nil
}
close(r.quit)
return nil
}
// addrPairsToOutputs converts a map describing a set of outputs to be created,
// the outputs themselves. The passed map pairs up an address, to a desired
// output value amount. Each address is converted to its corresponding pkScript
// to be used within the constructed output(s).
func addrPairsToOutputs(addrPairs map[string]int64) ([]*wire.TxOut, error) {
outputs := make([]*wire.TxOut, 0, len(addrPairs))
for addr, amt := range addrPairs {
addr, err := btcutil.DecodeAddress(addr, activeNetParams.Params)
if err != nil {
return nil, err
}
pkscript, err := txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
outputs = append(outputs, wire.NewTxOut(amt, pkscript))
}
return outputs, nil
}
// sendCoinsOnChain makes an on-chain transaction in or to send coins to one or
// more addresses specified in the passed payment map. The payment map maps an
// address to a specified output value to be sent to that address.
func (r *rpcServer) sendCoinsOnChain(paymentMap map[string]int64) (*chainhash.Hash, error) {
outputs, err := addrPairsToOutputs(paymentMap)
if err != nil {
return nil, err
}
return r.server.cc.wallet.SendOutputs(outputs)
}
// SendCoins executes a request to send coins to a particular address. Unlike
// SendMany, this RPC call only allows creating a single output at a time.
func (r *rpcServer) SendCoins(ctx context.Context,
in *lnrpc.SendCoinsRequest) (*lnrpc.SendCoinsResponse, error) {
rpcsLog.Infof("[sendcoins] addr=%v, amt=%v", in.Addr, btcutil.Amount(in.Amount))
paymentMap := map[string]int64{in.Addr: in.Amount}
txid, err := r.sendCoinsOnChain(paymentMap)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendcoins] spend generated txid: %v", txid.String())
return &lnrpc.SendCoinsResponse{Txid: txid.String()}, nil
}
// SendMany handles a request for a transaction create multiple specified
// outputs in parallel.
func (r *rpcServer) SendMany(ctx context.Context,
in *lnrpc.SendManyRequest) (*lnrpc.SendManyResponse, error) {
txid, err := r.sendCoinsOnChain(in.AddrToAmount)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendmany] spend generated txid: %v", txid.String())
return &lnrpc.SendManyResponse{Txid: txid.String()}, nil
}
// NewAddress creates a new address under control of the local wallet.
func (r *rpcServer) NewAddress(ctx context.Context,
in *lnrpc.NewAddressRequest) (*lnrpc.NewAddressResponse, error) {
// Translate the gRPC proto address type to the wallet controller's
// available address types.
var addrType lnwallet.AddressType
switch in.Type {
case lnrpc.NewAddressRequest_WITNESS_PUBKEY_HASH:
addrType = lnwallet.WitnessPubKey
case lnrpc.NewAddressRequest_NESTED_PUBKEY_HASH:
addrType = lnwallet.NestedWitnessPubKey
case lnrpc.NewAddressRequest_PUBKEY_HASH:
addrType = lnwallet.PubKeyHash
}
addr, err := r.server.cc.wallet.NewAddress(addrType, false)
if err != nil {
return nil, err
}
rpcsLog.Infof("[newaddress] addr=%v", addr.String())
return &lnrpc.NewAddressResponse{Address: addr.String()}, nil
}
// NewWitnessAddress returns a new native witness address under the control of
// the local wallet.
func (r *rpcServer) NewWitnessAddress(ctx context.Context,
in *lnrpc.NewWitnessAddressRequest) (*lnrpc.NewAddressResponse, error) {
addr, err := r.server.cc.wallet.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
return nil, err
}
rpcsLog.Infof("[newaddress] addr=%v", addr.String())
return &lnrpc.NewAddressResponse{Address: addr.String()}, nil
}
// SignMessage signs a message with the resident node's private key. The
// returned signature string is zbase32 encoded and pubkey recoverable,
// meaning that only the message digest and signature are needed for
// verification.
func (r *rpcServer) SignMessage(ctx context.Context,
in *lnrpc.SignMessageRequest) (*lnrpc.SignMessageResponse, error) {
if in.Msg == nil {
return nil, fmt.Errorf("need a message to sign")
}
sigBytes, err := r.server.nodeSigner.SignCompact(in.Msg)
if err != nil {
return nil, err
}
sig := zbase32.EncodeToString(sigBytes)
return &lnrpc.SignMessageResponse{Signature: sig}, nil
}
// VerifyMessage verifies a signature over a msg. The signature must be
// zbase32 encoded and signed by an active node in the resident node's
// channel database. In addition to returning the validity of the signature,
// VerifyMessage also returns the recovered pubkey from the signature.
func (r *rpcServer) VerifyMessage(ctx context.Context,
in *lnrpc.VerifyMessageRequest) (*lnrpc.VerifyMessageResponse, error) {
if in.Msg == nil {
return nil, fmt.Errorf("need a message to verify")
}
// The signature should be zbase32 encoded
sig, err := zbase32.DecodeString(in.Signature)
if err != nil {
return nil, fmt.Errorf("failed to decode signature: %v", err)
}
// The signature is over the double-sha256 hash of the message.
digest := chainhash.DoubleHashB(in.Msg)
// RecoverCompact both recovers the pubkey and validates the signature.
pubKey, _, err := btcec.RecoverCompact(btcec.S256(), sig, digest)
if err != nil {
return &lnrpc.VerifyMessageResponse{Valid: false}, nil
}
pubKeyHex := hex.EncodeToString(pubKey.SerializeCompressed())
// Query the channel graph to ensure a node in the network with active
// channels signed the message.
// TODO(phlip9): Require valid nodes to have capital in active channels.
graph := r.server.chanDB.ChannelGraph()
_, active, err := graph.HasLightningNode(pubKey)
if err != nil {
return nil, fmt.Errorf("failed to query graph: %v", err)
}
return &lnrpc.VerifyMessageResponse{Valid: active, Pubkey: pubKeyHex}, nil
}
// ConnectPeer attempts to establish a connection to a remote peer.
func (r *rpcServer) ConnectPeer(ctx context.Context,
in *lnrpc.ConnectPeerRequest) (*lnrpc.ConnectPeerResponse, error) {
if in.Addr == nil {
return nil, fmt.Errorf("need: lnc pubkeyhash@hostname")
}
pubkeyHex, err := hex.DecodeString(in.Addr.Pubkey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubkeyHex, btcec.S256())
if err != nil {
return nil, err
}
// Connections to ourselves are disallowed for obvious reasons.
if pubKey.IsEqual(r.server.identityPriv.PubKey()) {
return nil, fmt.Errorf("cannot make connection to self")
}
// If the address doesn't already have a port, we'll assume the current
// default port.
var addr string
_, _, err = net.SplitHostPort(in.Addr.Host)
if err != nil {
addr = net.JoinHostPort(in.Addr.Host, strconv.Itoa(defaultPeerPort))
} else {
addr = in.Addr.Host
}
host, err := net.ResolveTCPAddr("tcp", addr)
if err != nil {
return nil, err
}
peerAddr := &lnwire.NetAddress{
IdentityKey: pubKey,
Address: host,
ChainNet: activeNetParams.Net,
}
if err := r.server.ConnectToPeer(peerAddr, in.Perm); err != nil {
rpcsLog.Errorf("(connectpeer): error connecting to peer: %v", err)
return nil, err
}
rpcsLog.Debugf("Connected to peer: %v", peerAddr.String())
return &lnrpc.ConnectPeerResponse{}, nil
}
// DisconnectPeer attempts to disconnect one peer from another identified by a
// given pubKey. In the case that we currently ahve a pending or active channel
// with the target peer, then
func (r *rpcServer) DisconnectPeer(ctx context.Context,
in *lnrpc.DisconnectPeerRequest) (*lnrpc.DisconnectPeerResponse, error) {
rpcsLog.Debugf("[disconnectpeer] from peer(%s)", in.PubKey)
// First we'll validate the string passed in within the request to
// ensure that it's a valid hex-string, and also a valid compressed
// public key.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, fmt.Errorf("unable to decode pubkey bytes: %v", err)
}
peerPubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, fmt.Errorf("unable to parse pubkey: %v", err)
}
// Next, we'll fetch the pending/active channels we have with a
// particular peer.
nodeChannels, err := r.server.chanDB.FetchOpenChannels(peerPubKey)
if err != nil {
return nil, fmt.Errorf("unable to fetch channels for peer: %v", err)
}
// In order to avoid erroneously disconnecting from a peer that we have
// an active channel with, if we have any channels active with this
// peer, then we'll disallow disconnecting from them.
if len(nodeChannels) > 0 {
return nil, fmt.Errorf("cannot disconnect from peer(%x), "+
"all active channels with the peer need to be closed "+
"first", pubKeyBytes)
}
// With all initial validation complete, we'll now request that the
// sever disconnects from the per.
if err := r.server.DisconnectPeer(peerPubKey); err != nil {
return nil, fmt.Errorf("unable to disconnect peer: %v", err)
}
return &lnrpc.DisconnectPeerResponse{}, nil
}
// OpenChannel attempts to open a singly funded channel specified in the
// request to a remote peer.
func (r *rpcServer) OpenChannel(in *lnrpc.OpenChannelRequest,
updateStream lnrpc.Lightning_OpenChannelServer) error {
rpcsLog.Tracef("[openchannel] request to peerid(%v) "+
"allocation(us=%v, them=%v)", in.TargetPeerId,
in.LocalFundingAmount, in.PushSat)
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
// Ensure that the initial balance of the remote party (if pushing
// satoshis) does not execeed the amount the local party has requested
// for funding.
if remoteInitialBalance >= localFundingAmt {
return fmt.Errorf("amount pushed to remote peer for initial " +
"state must be below the local funding amount")
}
const minChannelSize = btcutil.Amount(6000)
// Restrict the size of the channel we'll actually open. Atm, we
// require the amount to be above 6k satoahis s we currently hard-coded
// a 5k satoshi fee in several areas. As a result 6k sat is the min
// channnel size that allows us to safely sit above the dust threshold
// after fees are applied
// TODO(roasbeef): remove after dynamic fees are in
if localFundingAmt < minChannelSize {
return fmt.Errorf("channel is too small, the minimum channel "+
"size is: %v (6k sat)", minChannelSize)
}
var (
nodePubKey *btcec.PublicKey
nodePubKeyBytes []byte
err error
)
// TODO(roasbeef): also return channel ID?
// If the node key is set, the we'll parse the raw bytes into a pubkey
// object so we can easily manipulate it. If this isn't set, then we
// expected the TargetPeerId to be set accordingly.
if len(in.NodePubkey) != 0 {
nodePubKey, err = btcec.ParsePubKey(in.NodePubkey, btcec.S256())
if err != nil {
return err
}
// Making a channel to ourselves wouldn't be of any use, so we
// explicitly disallow them.
if nodePubKey.IsEqual(r.server.identityPriv.PubKey()) {
return fmt.Errorf("cannot open channel to self")
}
nodePubKeyBytes = nodePubKey.SerializeCompressed()
}
// Instruct the server to trigger the necessary events to attempt to
// open a new channel. A stream is returned in place, this stream will
// be used to consume updates of the state of the pending channel.
updateChan, errChan := r.server.OpenChannel(in.TargetPeerId,
nodePubKey, localFundingAmt, remoteInitialBalance)
var outpoint wire.OutPoint
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to "+
"identityPub(%x) nor peerID(%v): %v",
nodePubKeyBytes, in.TargetPeerId, err)
return err
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
if err := updateStream.Send(fundingUpdate); err != nil {
return err
}
// If a final channel open update is being sent, then
// we can break out of our recv loop as we no longer
// need to process any further updates.
switch update := fundingUpdate.Update.(type) {
case *lnrpc.OpenStatusUpdate_ChanOpen:
chanPoint := update.ChanOpen.ChannelPoint
h, _ := chainhash.NewHash(chanPoint.FundingTxid)
outpoint = wire.OutPoint{
Hash: *h,
Index: chanPoint.OutputIndex,
}
break out
}
case <-r.quit:
return nil
}
}
rpcsLog.Tracef("[openchannel] success peerid(%v), ChannelPoint(%v)",
in.TargetPeerId, outpoint)
return nil
}
// OpenChannelSync is a synchronous version of the OpenChannel RPC call. This
// call is meant to be consumed by clients to the REST proxy. As with all other
// sync calls, all byte slices are instead to be populated as hex encoded
// strings.
func (r *rpcServer) OpenChannelSync(ctx context.Context,
in *lnrpc.OpenChannelRequest) (*lnrpc.ChannelPoint, error) {
rpcsLog.Tracef("[openchannel] request to peerid(%v) "+
"allocation(us=%v, them=%v)", in.TargetPeerId,
in.LocalFundingAmount, in.PushSat)
// Creation of channels before the wallet syncs up is currently
// disallowed.
isSynced, err := r.server.cc.wallet.IsSynced()
if err != nil {
return nil, err
}
if !isSynced {
return nil, errors.New("channels cannot be created before the " +
"wallet is fully synced")
}
// Decode the provided target node's public key, parsing it into a pub
// key object. For all sync call, byte slices are expected to be
// encoded as hex strings.
keyBytes, err := hex.DecodeString(in.NodePubkeyString)
if err != nil {
return nil, err
}
nodepubKey, err := btcec.ParsePubKey(keyBytes, btcec.S256())
if err != nil {
return nil, err
}
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
// Ensure that the initial balance of the remote party (if pushing
// satoshis) does not execeed the amount the local party has requested
// for funding.
if remoteInitialBalance >= localFundingAmt {
return nil, fmt.Errorf("amount pushed to remote peer for " +
"initial state must be below the local funding amount")
}
updateChan, errChan := r.server.OpenChannel(in.TargetPeerId,
nodepubKey, localFundingAmt, remoteInitialBalance)
select {
// If an error occurs them immediately return the error to the client.
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to "+
"identityPub(%x) nor peerID(%v): %v",
nodepubKey, in.TargetPeerId, err)
return nil, err
// Otherwise, wait for the first channel update. The first update sent
// is when the funding transaction is broadcast to the network.
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
// Parse out the txid of the pending funding transaction. The
// sync client can use this to poll against the list of
// PendingChannels.
openUpdate := fundingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
chanUpdate := openUpdate.ChanPending
return &lnrpc.ChannelPoint{
FundingTxid: chanUpdate.Txid,
}, nil
case <-r.quit:
return nil, nil
}
}
// CloseLink attempts to close an active channel identified by its channel
// point. The actions of this method can additionally be augmented to attempt
// a force close after a timeout period in the case of an inactive peer.
func (r *rpcServer) CloseChannel(in *lnrpc.CloseChannelRequest,
updateStream lnrpc.Lightning_CloseChannelServer) error {
force := in.Force
index := in.ChannelPoint.OutputIndex
txid, err := chainhash.NewHash(in.ChannelPoint.FundingTxid)
if err != nil {
rpcsLog.Errorf("[closechannel] invalid txid: %v", err)
return err
}
chanPoint := wire.NewOutPoint(txid, index)
rpcsLog.Tracef("[closechannel] request for ChannelPoint(%v)",
chanPoint)
var (
updateChan chan *lnrpc.CloseStatusUpdate
errChan chan error
)
// If a force closure was requested, then we'll handle all the details
// around the creation and broadcast of the unilateral closure
// transaction here rather than going to the switch as we don't require
// interaction from the peer.
if force {
// As the first part of the force closure, we first fetch the
// channel from the database, then execute a direct force
// closure broadcasting our current commitment transaction.
channel, err := r.fetchActiveChannel(*chanPoint)
if err != nil {
return err
}
_, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return err
}
// As we're force closing this channel, as a precaution, we'll
// ensure that the switch doesn't continue to see this channel
// as eligible for forwarding HTLC's. If the peer is online,
// then we'll also purge all of its indexes.
remotePub := &channel.StateSnapshot().RemoteIdentity
if peer, err := r.server.findPeer(remotePub); err == nil {
// TODO(roasbeef): actually get the active channel
// instead too?
// * so only need to grab from database
peer.WipeChannel(channel)
} else {
chanID := lnwire.NewChanIDFromOutPoint(channel.ChannelPoint())
r.server.htlcSwitch.RemoveLink(chanID)
}
r.server.breachArbiter.settledContracts <- chanPoint
// With the necessary indexes cleaned up, we'll now force close
// the channel.
closingTxid, err := r.forceCloseChan(channel)
if err != nil {
rpcsLog.Errorf("unable to force close transaction: %v", err)
return err
}
// With the transaction broadcast, we send our first update to
// the client.
updateChan = make(chan *lnrpc.CloseStatusUpdate, 1)
updateChan <- &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ClosePending{
ClosePending: &lnrpc.PendingUpdate{
Txid: closingTxid[:],
},
},
}
errChan = make(chan error, 1)
notifier := r.server.cc.chainNotifier
go waitForChanToClose(uint32(bestHeight), notifier, errChan, chanPoint,
closingTxid, func() {
// Respond to the local subsystem which
// requested the channel closure.
updateChan <- &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ChanClose{
ChanClose: &lnrpc.ChannelCloseUpdate{
ClosingTxid: closingTxid[:],
Success: true,
},
},
}
})
// TODO(roasbeef): utxo nursery marks as fully closed
} else {
// Otherwise, the caller has requested a regular interactive
// cooperative channel closure. So we'll forward the request to
// the htlc switch which will handle the negotiation and
// broadcast details.
updateChan, errChan = r.server.htlcSwitch.CloseLink(chanPoint,
htlcswitch.CloseRegular)
}
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("[closechannel] unable to close "+
"ChannelPoint(%v): %v", chanPoint, err)
return err
case closingUpdate := <-updateChan:
rpcsLog.Tracef("[closechannel] sending update: %v",
closingUpdate)
if err := updateStream.Send(closingUpdate); err != nil {
return err
}
// If a final channel closing updates is being sent,
// then we can break out of our dispatch loop as we no
// longer need to process any further updates.
switch closeUpdate := closingUpdate.Update.(type) {
case *lnrpc.CloseStatusUpdate_ChanClose:
h, _ := chainhash.NewHash(closeUpdate.ChanClose.ClosingTxid)
rpcsLog.Infof("[closechannel] close completed: "+
"txid(%v)", h)
break out
}
case <-r.quit:
return nil
}
}
return nil
}
// fetchActiveChannel attempts to locate a channel identified by it's channel
// point from the database's set of all currently opened channels.
func (r *rpcServer) fetchActiveChannel(chanPoint wire.OutPoint) (*lnwallet.LightningChannel, error) {
dbChannels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, err
}
// With the channels fetched, attempt to locate the target channel
// according to its channel point.
var dbChan *channeldb.OpenChannel
for _, dbChannel := range dbChannels {
if dbChannel.FundingOutpoint == chanPoint {
dbChan = dbChannel
break
}
}
// If the channel cannot be located, then we exit with an error to the
// caller.
if dbChan == nil {
return nil, fmt.Errorf("unable to find channel")
}
// Otherwise, we create a fully populated channel state machine which
// uses the db channel as backing storage.
return lnwallet.NewLightningChannel(r.server.cc.wallet.Cfg.Signer, nil,
r.server.cc.feeEstimator, dbChan)
}
// forceCloseChan executes a unilateral close of the target channel by
// broadcasting the current commitment state directly on-chain. Once the
// commitment transaction has been broadcast, a struct describing the final
// state of the channel is sent to the utxoNursery in order to ultimately sweep
// the immature outputs.
func (r *rpcServer) forceCloseChan(channel *lnwallet.LightningChannel) (*chainhash.Hash, error) {
// Execute a unilateral close shutting down all further channel
// operation.
closeSummary, err := channel.ForceClose()
if err != nil {
return nil, err
}
closeTx := closeSummary.CloseTx
txid := closeTx.TxHash()
// With the close transaction in hand, broadcast the transaction to the
// network, thereby entering the postk channel resolution state.
rpcsLog.Infof("Broadcasting force close transaction, ChannelPoint(%v): %v",
channel.ChannelPoint(), newLogClosure(func() string {
return spew.Sdump(closeTx)
}))
if err := r.server.cc.wallet.PublishTransaction(closeTx); err != nil {
return nil, err
}
// Now that the closing transaction has been broadcast successfully,
// we'll mark this channel as being in the pending closed state. The
// UTXO nursery will mark the channel as fully closed once all the
// outputs have been swept.
chanPoint := channel.ChannelPoint()
chanInfo := channel.StateSnapshot()
closeInfo := &channeldb.ChannelCloseSummary{
ChanPoint: *chanPoint,
ClosingTXID: closeTx.TxHash(),
RemotePub: &chanInfo.RemoteIdentity,
Capacity: chanInfo.Capacity,
SettledBalance: chanInfo.LocalBalance,
TimeLockedBalance: chanInfo.LocalBalance,
CloseType: channeldb.ForceClose,
IsPending: true,
}
if err := channel.DeleteState(closeInfo); err != nil {
return nil, err
}
// Send the closed channel summary over to the utxoNursery in order to
// have its outputs swept back into the wallet once they're mature.
r.server.utxoNursery.IncubateOutputs(closeSummary)
return &txid, nil
}
// GetInfo serves a request to the "getinfo" RPC call. This call returns
// general information concerning the lightning node including it's LN ID,
// identity address, and information concerning the number of open+pending
// channels.
func (r *rpcServer) GetInfo(ctx context.Context,
in *lnrpc.GetInfoRequest) (*lnrpc.GetInfoResponse, error) {
var activeChannels uint32
serverPeers := r.server.Peers()
for _, serverPeer := range serverPeers {
activeChannels += uint32(len(serverPeer.ChannelSnapshots()))
}
pendingChannels, err := r.server.fundingMgr.NumPendingChannels()
if err != nil {
return nil, fmt.Errorf("unable to get number of pending "+
"channels: %v", err)
}
idPub := r.server.identityPriv.PubKey().SerializeCompressed()
bestHash, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, fmt.Errorf("unable to get best block info: %v", err)
}
isSynced, err := r.server.cc.wallet.IsSynced()
if err != nil {
return nil, fmt.Errorf("unable to sync PoV of the wallet "+
"with current best block in the main chain: %v", err)
}
activeChains := make([]string, registeredChains.NumActiveChains())
for i, chain := range registeredChains.ActiveChains() {
activeChains[i] = chain.String()
}
// TODO(roasbeef): add synced height n stuff
return &lnrpc.GetInfoResponse{
IdentityPubkey: hex.EncodeToString(idPub),
NumPendingChannels: pendingChannels,
NumActiveChannels: activeChannels,
NumPeers: uint32(len(serverPeers)),
BlockHeight: uint32(bestHeight),
BlockHash: bestHash.String(),
SyncedToChain: isSynced,
Testnet: activeNetParams.Params == &chaincfg.TestNet3Params,
Chains: activeChains,
}, nil
}
// ListPeers returns a verbose listing of all currently active peers.
func (r *rpcServer) ListPeers(ctx context.Context,
in *lnrpc.ListPeersRequest) (*lnrpc.ListPeersResponse, error) {
rpcsLog.Tracef("[listpeers] request")
serverPeers := r.server.Peers()
resp := &lnrpc.ListPeersResponse{
Peers: make([]*lnrpc.Peer, 0, len(serverPeers)),
}
for _, serverPeer := range serverPeers {
// TODO(roasbeef): add a snapshot method which grabs peer read mtx
var (
satSent int64
satRecv int64
)
// In order to display the total number of satoshis of outbound
// (sent) and inbound (recv'd) satoshis that have been
// transported through this peer, we'll sum up the sent/recv'd
// values for each of the active channels we have with the
// peer.
chans := serverPeer.ChannelSnapshots()
for _, c := range chans {
satSent += int64(c.TotalSatoshisSent)
satRecv += int64(c.TotalSatoshisReceived)
}
nodePub := serverPeer.addr.IdentityKey.SerializeCompressed()
peer := &lnrpc.Peer{
PubKey: hex.EncodeToString(nodePub),
PeerId: serverPeer.id,
Address: serverPeer.conn.RemoteAddr().String(),
Inbound: serverPeer.inbound,
BytesRecv: atomic.LoadUint64(&serverPeer.bytesReceived),
BytesSent: atomic.LoadUint64(&serverPeer.bytesSent),
SatSent: satSent,
SatRecv: satRecv,
PingTime: serverPeer.PingTime(),
}
resp.Peers = append(resp.Peers, peer)
}
rpcsLog.Debugf("[listpeers] yielded %v peers", serverPeers)
return resp, nil
}
// WalletBalance returns the sum of all confirmed unspent outputs under control
// by the wallet. This method can be modified by having the request specify
// only witness outputs should be factored into the final output sum.
// TODO(roasbeef): split into total and confirmed/unconfirmed
// TODO(roasbeef): add async hooks into wallet balance changes
func (r *rpcServer) WalletBalance(ctx context.Context,
in *lnrpc.WalletBalanceRequest) (*lnrpc.WalletBalanceResponse, error) {
balance, err := r.server.cc.wallet.ConfirmedBalance(1, in.WitnessOnly)
if err != nil {
return nil, err
}
rpcsLog.Debugf("[walletbalance] balance=%v", balance)
return &lnrpc.WalletBalanceResponse{
Balance: int64(balance),
}, nil
}
// ChannelBalance returns the total available channel flow across all open
// channels in satoshis.
func (r *rpcServer) ChannelBalance(ctx context.Context,
in *lnrpc.ChannelBalanceRequest) (*lnrpc.ChannelBalanceResponse, error) {
channels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, err
}
var balance btcutil.Amount
for _, channel := range channels {
if !channel.IsPending {
balance += channel.LocalBalance
}
}
return &lnrpc.ChannelBalanceResponse{Balance: int64(balance)}, nil
}
// PendingChannels returns a list of all the channels that are currently
// considered "pending". A channel is pending if it has finished the funding
// workflow and is waiting for confirmations for the funding txn, or is in the
// process of closure, either initiated cooperatively or non-cooperatively.
func (r *rpcServer) PendingChannels(ctx context.Context,
in *lnrpc.PendingChannelRequest) (*lnrpc.PendingChannelResponse, error) {
rpcsLog.Debugf("[pendingchannels]")
resp := &lnrpc.PendingChannelResponse{}
// First, we'll populate the response with all the channels that are
// soon to be opened. We can easily fetch this data from the database
// and map the db struct to the proto response.
pendingOpenChannels, err := r.server.chanDB.FetchPendingChannels()
if err != nil {
return nil, err
}
resp.PendingOpenChannels = make([]*lnrpc.PendingChannelResponse_PendingOpenChannel,
len(pendingOpenChannels))
for i, pendingChan := range pendingOpenChannels {
pub := pendingChan.IdentityPub.SerializeCompressed()
// As this is required for display purposes, we'll calculate
// the weight of the commitment transaction. We also add on the
// estimated weight of the witness to calculate the weight of
// the transaction if it were to be immediately unilaterally
// broadcast.
// TODO(roasbeef): query for funding tx from wallet, display
// that also?
utx := btcutil.NewTx(&pendingChan.CommitTx)
commitBaseWeight := blockchain.GetTransactionWeight(utx)
commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight
resp.PendingOpenChannels[i] = &lnrpc.PendingChannelResponse_PendingOpenChannel{
Channel: &lnrpc.PendingChannelResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: pendingChan.FundingOutpoint.String(),
Capacity: int64(pendingChan.Capacity),
LocalBalance: int64(pendingChan.LocalBalance),
RemoteBalance: int64(pendingChan.RemoteBalance),
},
CommitWeight: commitWeight,
CommitFee: int64(pendingChan.CommitFee),
FeePerKw: int64(pendingChan.FeePerKw),
// TODO(roasbeef): need to track confirmation height
}
}
_, currentHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, err
}
// Next, we'll examine the channels that are soon to be closed so we
// can populate these fields within the response.
pendingCloseChannels, err := r.server.chanDB.FetchClosedChannels(true)
if err != nil {
return nil, err
}
for _, pendingClose := range pendingCloseChannels {
// First construct the channel struct itself, this will be
// needed regardless of how this channel was closed.
pub := pendingClose.RemotePub.SerializeCompressed()
chanPoint := pendingClose.ChanPoint
channel := &lnrpc.PendingChannelResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: chanPoint.String(),
Capacity: int64(pendingClose.Capacity),
LocalBalance: int64(pendingClose.SettledBalance),
}
closeTXID := pendingClose.ClosingTXID.String()
switch pendingClose.CloseType {
// If the channel was closed cooperatively, then we'll only
// need to tack on the closing txid.
case channeldb.CooperativeClose:
resp.PendingClosingChannels = append(
resp.PendingClosingChannels,
&lnrpc.PendingChannelResponse_ClosedChannel{
Channel: channel,
ClosingTxid: closeTXID,
},
)
resp.TotalLimboBalance += channel.LocalBalance
// If the channel was force closed, then we'll need to query
// the utxoNursery for additional information.
case channeldb.ForceClose:
forceClose := &lnrpc.PendingChannelResponse_ForceClosedChannel{
Channel: channel,
ClosingTxid: closeTXID,
}
// Query for the maturity state for this force closed
// channel. If we didn't have any time-locked outputs,
// then the nursery may not know of the contract.
nurseryInfo, err := r.server.utxoNursery.NurseryReport(&chanPoint)
if err != nil && err != ErrContractNotFound {
return nil, fmt.Errorf("unable to obtain "+
"nursery report for ChannelPoint(%v): %v",
chanPoint, err)
}
// If the nursery knows of this channel, then we can
// populate information detailing exactly how much
// funds are time locked and also the height in which
// we can ultimately sweep the funds into the wallet.
if nurseryInfo != nil {
forceClose.LimboBalance = int64(nurseryInfo.limboBalance)
forceClose.MaturityHeight = nurseryInfo.maturityHeight
// If the transaction has been confirmed, then
// we can compute how many blocks it has left.
if forceClose.MaturityHeight != 0 {
forceClose.BlocksTilMaturity = (forceClose.MaturityHeight -
uint32(currentHeight))
}
resp.TotalLimboBalance += int64(nurseryInfo.limboBalance)
}
resp.PendingForceClosingChannels = append(
resp.PendingForceClosingChannels,
forceClose,
)
}
}
return resp, nil
}
// ListChannels returns a description of all direct active, open channels the
// node knows of.
func (r *rpcServer) ListChannels(ctx context.Context,
in *lnrpc.ListChannelsRequest) (*lnrpc.ListChannelsResponse, error) {
resp := &lnrpc.ListChannelsResponse{}
graph := r.server.chanDB.ChannelGraph()
dbChannels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, err
}
rpcsLog.Infof("[listchannels] fetched %v channels from DB",
len(dbChannels))
for _, dbChannel := range dbChannels {
if dbChannel.IsPending {
continue
}
nodePub := dbChannel.IdentityPub
nodeID := hex.EncodeToString(nodePub.SerializeCompressed())
chanPoint := dbChannel.FundingOutpoint
// With the channel point known, retrieve the network channel
// ID from the database.
var chanID uint64
chanID, _ = graph.ChannelID(&chanPoint)
var peerOnline bool
if _, err := r.server.findPeer(nodePub); err == nil {
peerOnline = true
}
// As this is required for display purposes, we'll calculate
// the weight of the commitment transaction. We also add on the
// estimated weight of the witness to calculate the weight of
// the transaction if it were to be immediately unilaterally
// broadcast.
utx := btcutil.NewTx(&dbChannel.CommitTx)
commitBaseWeight := blockchain.GetTransactionWeight(utx)
commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight
channel := &lnrpc.ActiveChannel{
Active: peerOnline,
RemotePubkey: nodeID,
ChannelPoint: chanPoint.String(),
ChanId: chanID,
Capacity: int64(dbChannel.Capacity),
LocalBalance: int64(dbChannel.LocalBalance),
RemoteBalance: int64(dbChannel.RemoteBalance),
CommitFee: int64(dbChannel.CommitFee),
CommitWeight: commitWeight,
FeePerKw: int64(dbChannel.FeePerKw),
TotalSatoshisSent: int64(dbChannel.TotalSatoshisSent),
TotalSatoshisReceived: int64(dbChannel.TotalSatoshisReceived),
NumUpdates: dbChannel.NumUpdates,
PendingHtlcs: make([]*lnrpc.HTLC, len(dbChannel.Htlcs)),
}
for i, htlc := range dbChannel.Htlcs {
channel.PendingHtlcs[i] = &lnrpc.HTLC{
Incoming: htlc.Incoming,
Amount: int64(htlc.Amt),
HashLock: htlc.RHash[:],
ExpirationHeight: htlc.RefundTimeout,
}
}
resp.Channels = append(resp.Channels, channel)
}
return resp, nil
}
// savePayment saves a successfully completed payment to the database for
// historical record keeping.
func (r *rpcServer) savePayment(route *routing.Route, amount btcutil.Amount,
rHash []byte) error {
paymentPath := make([][33]byte, len(route.Hops))
for i, hop := range route.Hops {
hopPub := hop.Channel.Node.PubKey.SerializeCompressed()
copy(paymentPath[i][:], hopPub)
}
payment := &channeldb.OutgoingPayment{
Invoice: channeldb.Invoice{
Terms: channeldb.ContractTerm{
Value: amount,
},
CreationDate: time.Now(),
},
Path: paymentPath,
Fee: route.TotalFees,
TimeLockLength: route.TotalTimeLock,
}
copy(payment.PaymentHash[:], rHash)
return r.server.chanDB.AddPayment(payment)
}
// SendPayment dispatches a bi-directional streaming RPC for sending payments
// through the Lightning Network. A single RPC invocation creates a persistent
// bi-directional stream allowing clients to rapidly send payments through the
// Lightning Network with a single persistent connection.
func (r *rpcServer) SendPayment(paymentStream lnrpc.Lightning_SendPaymentServer) error {
errChan := make(chan error, 1)
payChan := make(chan *lnrpc.SendRequest)
// TODO(roasbeef): check payment filter to see if already used?
// In order to limit the level of concurrency and prevent a client from
// attempting to OOM the server, we'll set up a semaphore to create an
// upper ceiling on the number of outstanding payments.
const numOutstandingPayments = 2000
htlcSema := make(chan struct{}, numOutstandingPayments)
for i := 0; i < numOutstandingPayments; i++ {
htlcSema <- struct{}{}
}
// Launch a new goroutine to handle reading new payment requests from
// the client. This way we can handle errors independently of blocking
// and waiting for the next payment request to come through.
go func() {
for {
select {
case <-r.quit:
errChan <- nil
return
default:
// Receive the next pending payment within the
// stream sent by the client. If we read the
// EOF sentinel, then the client has closed the
// stream, and we can exit normally.
nextPayment, err := paymentStream.Recv()
if err == io.EOF {
errChan <- nil
return
} else if err != nil {
errChan <- err
return
}
// If the payment request field isn't blank,
// then the details of the invoice are encoded
// entirely within the encode payReq. So we'll
// attempt to decode it, populating the
// nextPayment accordingly.
if nextPayment.PaymentRequest != "" {
payReq, err := zpay32.Decode(nextPayment.PaymentRequest)
if err != nil {
errChan <- err
return
}
// TODO(roasbeef): eliminate necessary
// encode/decode
nextPayment.Dest = payReq.Destination.SerializeCompressed()
nextPayment.Amt = int64(payReq.Amount)
nextPayment.PaymentHash = payReq.PaymentHash[:]
}
payChan <- nextPayment
}
}
}()
for {
select {
case err := <-errChan:
return err
case nextPayment := <-payChan:
// Parse the details of the payment which include the
// pubkey of the destination and the payment amount.
dest := nextPayment.Dest
amt := btcutil.Amount(nextPayment.Amt)
destNode, err := btcec.ParsePubKey(dest, btcec.S256())
if err != nil {
return err
}
// If we're in debug HTLC mode, then all outgoing HTLCs
// will pay to the same debug rHash. Otherwise, we pay
// to the rHash specified within the RPC request.
var rHash [32]byte
if cfg.DebugHTLC && len(nextPayment.PaymentHash) == 0 {
rHash = debugHash
} else {
copy(rHash[:], nextPayment.PaymentHash)
}
// We launch a new goroutine to execute the current
// payment so we can continue to serve requests while
// this payment is being dispatched.
go func() {
// Attempt to grab a free semaphore slot, using
// a defer to eventually release the slot
// regardless of payment success.
<-htlcSema
defer func() {
htlcSema <- struct{}{}
}()
// Construct a payment request to send to the
// channel router. If the payment is
// successful, the route chosen will be
// returned. Otherwise, we'll get a non-nil
// error.
payment := &routing.LightningPayment{
Target: destNode,
Amount: amt,
PaymentHash: rHash,
}
preImage, route, err := r.server.chanRouter.SendPayment(payment)
if err != nil {
// If we receive payment error than,
// instead of terminating the stream,
// send error response to the user.
err := paymentStream.Send(&lnrpc.SendResponse{
PaymentError: err.Error(),
PaymentPreimage: nil,
PaymentRoute: nil,
})
if err != nil {
errChan <- err
return
}
return
}
// Save the completed payment to the database
// for record keeping purposes.
if err := r.savePayment(route, amt, rHash[:]); err != nil {
errChan <- err
return
}
err = paymentStream.Send(&lnrpc.SendResponse{
PaymentPreimage: preImage[:],
PaymentRoute: marshalRoute(route),
})
if err != nil {
errChan <- err
return
}
}()
}
}
}
// SendPaymentSync is the synchronous non-streaming version of SendPayment.
// This RPC is intended to be consumed by clients of the REST proxy.
// Additionally, this RPC expects the destination's public key and the payment
// hash (if any) to be encoded as hex strings.
func (r *rpcServer) SendPaymentSync(ctx context.Context,
nextPayment *lnrpc.SendRequest) (*lnrpc.SendResponse, error) {
var (
destPub *btcec.PublicKey
amt btcutil.Amount
rHash [32]byte
)
// If the proto request has an encoded payment request, then we we'll
// use that solely to dipatch the payment.
if nextPayment.PaymentRequest != "" {
payReq, err := zpay32.Decode(nextPayment.PaymentRequest)
if err != nil {
return nil, err
}
destPub = payReq.Destination
amt = payReq.Amount
rHash = payReq.PaymentHash
// Otherwise, the payment conditions have been manually
// specified in the proto.
} else {
// If we're in debug HTLC mode, then all outgoing HTLCs will
// pay to the same debug rHash. Otherwise, we pay to the rHash
// specified within the RPC request.
if cfg.DebugHTLC && nextPayment.PaymentHashString == "" {
rHash = debugHash
} else {
paymentHash, err := hex.DecodeString(nextPayment.PaymentHashString)
if err != nil {
return nil, err
}
copy(rHash[:], paymentHash)
}
pubBytes, err := hex.DecodeString(nextPayment.DestString)
if err != nil {
return nil, err
}
destPub, err = btcec.ParsePubKey(pubBytes, btcec.S256())
if err != nil {
return nil, err
}
amt = btcutil.Amount(nextPayment.Amt)
}
// Finally, send a payment request to the channel router. If the
// payment succeeds, then the returned route will be that was used
// successfully within the payment.
preImage, route, err := r.server.chanRouter.SendPayment(&routing.LightningPayment{
Target: destPub,
Amount: amt,
PaymentHash: rHash,
})
if err != nil {
return nil, err
}
// With the payment completed successfully, we now ave the details of
// the completed payment to the database for historical record keeping.
if err := r.savePayment(route, amt, rHash[:]); err != nil {
return nil, err
}
return &lnrpc.SendResponse{
PaymentPreimage: preImage[:],
PaymentRoute: marshalRoute(route),
}, nil
}
// AddInvoice attempts to add a new invoice to the invoice database. Any
// duplicated invoices are rejected, therefore all invoices *must* have a
// unique payment preimage.
func (r *rpcServer) AddInvoice(ctx context.Context,
invoice *lnrpc.Invoice) (*lnrpc.AddInvoiceResponse, error) {
var paymentPreimage [32]byte
switch {
// If a preimage wasn't specified, then we'll generate a new preimage
// from fresh cryptographic randomness.
case len(invoice.RPreimage) == 0:
if _, err := rand.Read(paymentPreimage[:]); err != nil {
return nil, err
}
// Otherwise, if a preimage was specified, then it MUST be exactly
// 32-bytes.
case len(invoice.RPreimage) > 0 && len(invoice.RPreimage) != 32:
return nil, fmt.Errorf("payment preimage must be exactly "+
"32 bytes, is instead %v", len(invoice.RPreimage))
// If the preimage meets the size specifications, then it can be used
// as is.
default:
copy(paymentPreimage[:], invoice.RPreimage[:])
}
// The size of the memo and receipt attached must not exceed the
// maximum values for either of the fields.
if len(invoice.Memo) > channeldb.MaxMemoSize {
return nil, fmt.Errorf("memo too large: %v bytes "+
"(maxsize=%v)", len(invoice.Memo), channeldb.MaxMemoSize)
}
if len(invoice.Receipt) > channeldb.MaxReceiptSize {
return nil, fmt.Errorf("receipt too large: %v bytes "+
"(maxsize=%v)", len(invoice.Receipt), channeldb.MaxReceiptSize)
}
// Finally, the value of an invoice MUST NOT be zero.
if invoice.Value == 0 {
return nil, fmt.Errorf("zero value invoices are disallowed")
}
i := &channeldb.Invoice{
CreationDate: time.Now(),
Memo: []byte(invoice.Memo),
Receipt: invoice.Receipt,
Terms: channeldb.ContractTerm{
Value: btcutil.Amount(invoice.Value),
},
}
copy(i.Terms.PaymentPreimage[:], paymentPreimage[:])
rpcsLog.Tracef("[addinvoice] adding new invoice %v",
newLogClosure(func() string {
return spew.Sdump(i)
}))
// With all sanity checks passed, write the invoice to the database.
if err := r.server.invoices.AddInvoice(i); err != nil {
return nil, err
}
// Next, generate the payment hash itself from the preimage. This will
// be used by clients to query for the state of a particular invoice.
rHash := sha256.Sum256(paymentPreimage[:])
// Finally we also create an encoded payment request which allows the
// caller to comactly send the invoice to the payer.
payReqString := zpay32.Encode(&zpay32.PaymentRequest{
Destination: r.server.identityPriv.PubKey(),
PaymentHash: rHash,
Amount: btcutil.Amount(invoice.Value),
})
return &lnrpc.AddInvoiceResponse{
RHash: rHash[:],
PaymentRequest: payReqString,
}, nil
}
// LookupInvoice attemps to look up an invoice according to its payment hash.
// The passed payment hash *must* be exactly 32 bytes, if not an error is
// returned.
func (r *rpcServer) LookupInvoice(ctx context.Context,
req *lnrpc.PaymentHash) (*lnrpc.Invoice, error) {
var (
payHash [32]byte
rHash []byte
err error
)
// If the RHash as a raw string was provided, then decode that and use
// that directly. Otherwise, we use the raw bytes provided.
if req.RHashStr != "" {
rHash, err = hex.DecodeString(req.RHashStr)
if err != nil {
return nil, err
}
} else {
rHash = req.RHash
}
// Ensure that the payment hash is *exactly* 32-bytes.
if len(rHash) != 0 && len(rHash) != 32 {
return nil, fmt.Errorf("payment hash must be exactly "+
"32 bytes, is instead %v", len(rHash))
}
copy(payHash[:], rHash)
rpcsLog.Tracef("[lookupinvoice] searching for invoice %x", payHash[:])
invoice, err := r.server.invoices.LookupInvoice(payHash)
if err != nil {
return nil, err
}
rpcsLog.Tracef("[lookupinvoice] located invoice %v",
newLogClosure(func() string {
return spew.Sdump(invoice)
}))
preimage := invoice.Terms.PaymentPreimage
return &lnrpc.Invoice{
Memo: string(invoice.Memo[:]),
Receipt: invoice.Receipt[:],
RHash: rHash,
RPreimage: preimage[:],
Value: int64(invoice.Terms.Value),
CreationDate: invoice.CreationDate.Unix(),
Settled: invoice.Terms.Settled,
PaymentRequest: zpay32.Encode(&zpay32.PaymentRequest{
Destination: r.server.identityPriv.PubKey(),
PaymentHash: sha256.Sum256(preimage[:]),
Amount: invoice.Terms.Value,
}),
}, nil
}
// ListInvoices returns a list of all the invoices currently stored within the
// database. Any active debug invoices are ignored.
func (r *rpcServer) ListInvoices(ctx context.Context,
req *lnrpc.ListInvoiceRequest) (*lnrpc.ListInvoiceResponse, error) {
dbInvoices, err := r.server.chanDB.FetchAllInvoices(req.PendingOnly)
if err != nil {
return nil, err
}
invoices := make([]*lnrpc.Invoice, len(dbInvoices))
for i, dbInvoice := range dbInvoices {
invoiceAmount := dbInvoice.Terms.Value
paymentPreimge := dbInvoice.Terms.PaymentPreimage[:]
rHash := sha256.Sum256(paymentPreimge)
invoice := &lnrpc.Invoice{
Memo: string(dbInvoice.Memo[:]),
Receipt: dbInvoice.Receipt[:],
RHash: rHash[:],
RPreimage: paymentPreimge,
Value: int64(invoiceAmount),
Settled: dbInvoice.Terms.Settled,
CreationDate: dbInvoice.CreationDate.Unix(),
PaymentRequest: zpay32.Encode(&zpay32.PaymentRequest{
Destination: r.server.identityPriv.PubKey(),
PaymentHash: sha256.Sum256(paymentPreimge),
Amount: invoiceAmount,
}),
}
invoices[i] = invoice
}
return &lnrpc.ListInvoiceResponse{
Invoices: invoices,
}, nil
}
// SubscribeInvoices returns a uni-directional stream (sever -> client) for
// notifying the client of newly added/settled invoices.
func (r *rpcServer) SubscribeInvoices(req *lnrpc.InvoiceSubscription,
updateStream lnrpc.Lightning_SubscribeInvoicesServer) error {
invoiceClient := r.server.invoices.SubscribeNotifications()
defer invoiceClient.Cancel()
for {
select {
// TODO(roasbeef): include newly added invoices?
case settledInvoice := <-invoiceClient.SettledInvoices:
preImage := settledInvoice.Terms.PaymentPreimage[:]
rHash := sha256.Sum256(preImage)
invoice := &lnrpc.Invoice{
Memo: string(settledInvoice.Memo[:]),
Receipt: settledInvoice.Receipt[:],
RHash: rHash[:],
RPreimage: preImage,
Value: int64(settledInvoice.Terms.Value),
Settled: settledInvoice.Terms.Settled,
}
if err := updateStream.Send(invoice); err != nil {
return err
}
case <-r.quit:
return nil
}
}
}
// SubscribeTransactions creates a uni-directional stream (server -> client) in
// which any newly discovered transactions relevant to the wallet are sent
// over.
func (r *rpcServer) SubscribeTransactions(req *lnrpc.GetTransactionsRequest,
updateStream lnrpc.Lightning_SubscribeTransactionsServer) error {
txClient, err := r.server.cc.wallet.SubscribeTransactions()
if err != nil {
return err
}
defer txClient.Cancel()
for {
select {
case tx := <-txClient.ConfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
NumConfirmations: tx.NumConfirmations,
BlockHash: tx.BlockHash.String(),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case tx := <-txClient.UnconfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case <-r.quit:
return nil
}
}
}
// GetTransactions returns a list of describing all the known transactions
// relevant to the wallet.
func (r *rpcServer) GetTransactions(context.Context,
*lnrpc.GetTransactionsRequest) (*lnrpc.TransactionDetails, error) {
// TODO(btcsuite): add pagination support
transactions, err := r.server.cc.wallet.ListTransactionDetails()
if err != nil {
return nil, err
}
txDetails := &lnrpc.TransactionDetails{
Transactions: make([]*lnrpc.Transaction, len(transactions)),
}
for i, tx := range transactions {
txDetails.Transactions[i] = &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
NumConfirmations: tx.NumConfirmations,
BlockHash: tx.BlockHash.String(),
BlockHeight: tx.BlockHeight,
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
}
return txDetails, nil
}
// DescribeGraph returns a description of the latest graph state from the PoV
// of the node. The graph information is partitioned into two components: all
// the nodes/vertexes, and all the edges that connect the vertexes themselves.
// As this is a directed graph, the edges also contain the node directional
// specific routing policy which includes: the time lock delta, fee
// information, etc.
func (r *rpcServer) DescribeGraph(context.Context,
*lnrpc.ChannelGraphRequest) (*lnrpc.ChannelGraph, error) {
resp := &lnrpc.ChannelGraph{}
// Obtain the pointer to the global singleton channel graph, this will
// provide a consistent view of the graph due to bolt db's
// transactional model.
graph := r.server.chanDB.ChannelGraph()
// First iterate through all the known nodes (connected or unconnected
// within the graph), collating their current state into the RPC
// response.
err := graph.ForEachNode(nil, func(_ *bolt.Tx, node *channeldb.LightningNode) error {
nodeAddrs := make([]*lnrpc.NodeAddress, 0)
for _, addr := range node.Addresses {
nodeAddr := &lnrpc.NodeAddress{
Network: addr.Network(),
Addr: addr.String(),
}
nodeAddrs = append(nodeAddrs, nodeAddr)
}
resp.Nodes = append(resp.Nodes, &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: hex.EncodeToString(node.PubKey.SerializeCompressed()),
Addresses: nodeAddrs,
Alias: node.Alias,
})
return nil
})
if err != nil {
return nil, err
}
// Next, for each active channel we know of within the graph, create a
// similar response which details both the edge information as well as
// the routing policies of th nodes connecting the two edges.
err = graph.ForEachChannel(func(edgeInfo *channeldb.ChannelEdgeInfo,
c1, c2 *channeldb.ChannelEdgePolicy) error {
edge := marshalDbEdge(edgeInfo, c1, c2)
resp.Edges = append(resp.Edges, edge)
return nil
})
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
return nil, err
}
return resp, nil
}
func marshalDbEdge(edgeInfo *channeldb.ChannelEdgeInfo,
c1, c2 *channeldb.ChannelEdgePolicy) *lnrpc.ChannelEdge {
var (
lastUpdate int64
)
if c2 != nil {
lastUpdate = c2.LastUpdate.Unix()
}
if c1 != nil {
lastUpdate = c1.LastUpdate.Unix()
}
edge := &lnrpc.ChannelEdge{
ChannelId: edgeInfo.ChannelID,
ChanPoint: edgeInfo.ChannelPoint.String(),
// TODO(roasbeef): update should be on edge info itself
LastUpdate: uint32(lastUpdate),
Node1Pub: hex.EncodeToString(edgeInfo.NodeKey1.SerializeCompressed()),
Node2Pub: hex.EncodeToString(edgeInfo.NodeKey2.SerializeCompressed()),
Capacity: int64(edgeInfo.Capacity),
}
if c1 != nil {
edge.Node1Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c1.TimeLockDelta),
MinHtlc: int64(c1.MinHTLC),
FeeBaseMsat: int64(c1.FeeBaseMSat),
FeeRateMilliMsat: int64(c1.FeeProportionalMillionths),
}
}
if c2 != nil {
edge.Node2Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c2.TimeLockDelta),
MinHtlc: int64(c2.MinHTLC),
FeeBaseMsat: int64(c2.FeeBaseMSat),
FeeRateMilliMsat: int64(c2.FeeProportionalMillionths),
}
}
return edge
}
// GetChainInfo returns the latest authenticated network announcement for the
// given channel identified by its channel ID: an 8-byte integer which uniquely
// identifies the location of transaction's funding output within the block
// chain.
func (r *rpcServer) GetChanInfo(_ context.Context, in *lnrpc.ChanInfoRequest) (*lnrpc.ChannelEdge, error) {
graph := r.server.chanDB.ChannelGraph()
edgeInfo, edge1, edge2, err := graph.FetchChannelEdgesByID(in.ChanId)
if err != nil {
return nil, err
}
// Convert the database's edge format into the network/RPC edge format
// which couples the edge itself along with the directional node
// routing policies of each node involved within the channel.
channelEdge := marshalDbEdge(edgeInfo, edge1, edge2)
return channelEdge, nil
}
// GetNodeInfo returns the latest advertised and aggregate authenticated
// channel information for the specified node identified by its public key.
func (r *rpcServer) GetNodeInfo(_ context.Context, in *lnrpc.NodeInfoRequest) (*lnrpc.NodeInfo, error) {
graph := r.server.chanDB.ChannelGraph()
// First, parse the hex-encoded public key into a full in-memory public
// key object we can work with for querying.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// With the public key decoded, attempt to fetch the node corresponding
// to this public key. If the node cannot be found, then an error will
// be returned.
node, err := graph.FetchLightningNode(pubKey)
if err != nil {
return nil, err
}
// With the node obtained, we'll now iterate through all its out going
// edges to gather some basic statistics about its out going channels.
var (
numChannels uint32
totalCapcity btcutil.Amount
)
if err := node.ForEachChannel(nil, func(_ *bolt.Tx, edge *channeldb.ChannelEdgeInfo,
_ *channeldb.ChannelEdgePolicy) error {
numChannels++
totalCapcity += edge.Capacity
return nil
}); err != nil {
return nil, err
}
nodeAddrs := make([]*lnrpc.NodeAddress, 0)
for _, addr := range node.Addresses {
nodeAddr := &lnrpc.NodeAddress{
Network: addr.Network(),
Addr: addr.String(),
}
nodeAddrs = append(nodeAddrs, nodeAddr)
}
// TODO(roasbeef): list channels as well?
return &lnrpc.NodeInfo{
Node: &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: in.PubKey,
Addresses: nodeAddrs,
Alias: node.Alias,
},
NumChannels: numChannels,
TotalCapacity: int64(totalCapcity),
}, nil
}
// QueryRoutes attempts to query the daemons' Channel Router for a possible
// route to a target destination capable of carrying a specific amount of
// satoshis within the route's flow. The retuned route contains the full
// details required to craft and send an HTLC, also including the necessary
// information that should be present within the Sphinx packet encapsualted
// within the HTLC.
//
// TODO(roasbeef): should return a slice of routes in reality
// * create separate PR to send based on well formatted route
func (r *rpcServer) QueryRoutes(_ context.Context,
in *lnrpc.QueryRoutesRequest) (*lnrpc.QueryRoutesResponse, error) {
// First parse the hex-encdoed public key into a full public key objet
// we can properly manipulate.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// Query the channel router for a possible path to the destination that
// can carry `in.Amt` satoshis _including_ the total fee required on
// the route.
routes, err := r.server.chanRouter.FindRoutes(pubKey,
btcutil.Amount(in.Amt))
if err != nil {
return nil, err
}
// For each valid route, we'll convert the result into the format
// required by the RPC system.
routeResp := &lnrpc.QueryRoutesResponse{
Routes: make([]*lnrpc.Route, len(routes)),
}
for i, route := range routes {
routeResp.Routes[i] = marshalRoute(route)
}
return routeResp, nil
}
func marshalRoute(route *routing.Route) *lnrpc.Route {
resp := &lnrpc.Route{
TotalTimeLock: route.TotalTimeLock,
TotalFees: int64(route.TotalFees),
TotalAmt: int64(route.TotalAmount),
Hops: make([]*lnrpc.Hop, len(route.Hops)),
}
for i, hop := range route.Hops {
resp.Hops[i] = &lnrpc.Hop{
ChanId: hop.Channel.ChannelID,
ChanCapacity: int64(hop.Channel.Capacity),
AmtToForward: int64(hop.AmtToForward),
Fee: int64(hop.Fee),
}
}
return resp
}
// GetNetworkInfo returns some basic stats about the known channel graph from
// the PoV of the node.
func (r *rpcServer) GetNetworkInfo(context.Context, *lnrpc.NetworkInfoRequest) (*lnrpc.NetworkInfo, error) {
graph := r.server.chanDB.ChannelGraph()
var (
numNodes uint32
numChannels uint32
maxChanOut uint32
totalNetworkCapacity btcutil.Amount
minChannelSize btcutil.Amount = math.MaxInt64
maxChannelSize btcutil.Amount
)
// We'll use this map to de-duplicate channels during our traversal.
// This is needed since channels are directional, so there will be two
// edges for each channel within the graph.
seenChans := make(map[uint64]struct{})
// We'll run through all the known nodes in the within our view of the
// network, tallying up the total number of nodes, and also gathering
// each node so we can measure the graph diameter and degree stats
// below.
if err := graph.ForEachNode(nil, func(tx *bolt.Tx, node *channeldb.LightningNode) error {
// Increment the total number of nodes with each iteration.
numNodes++
// For each channel we'll compute the out degree of each node,
// and also update our running tallies of the min/max channel
// capacity, as well as the total channel capacity. We pass
// through the db transaction from the outer view so we can
// re-use it within this inner view.
var outDegree uint32
if err := node.ForEachChannel(tx, func(_ *bolt.Tx,
edge *channeldb.ChannelEdgeInfo, _ *channeldb.ChannelEdgePolicy) error {
// Bump up the out degree for this node for each
// channel encountered.
outDegree++
// If we've already seen this channel, then we'll
// return early to ensure that we don't double-count
// stats.
if _, ok := seenChans[edge.ChannelID]; ok {
return nil
}
// Compare the capacity of this channel against the
// running min/max to see if we should update the
// extrema.
chanCapacity := edge.Capacity
if chanCapacity < minChannelSize {
minChannelSize = chanCapacity
}
if chanCapacity > maxChannelSize {
maxChannelSize = chanCapacity
}
// Accumulate the total capacity of this channel to the
// network wide-capacity.
totalNetworkCapacity += chanCapacity
numChannels++
seenChans[edge.ChannelID] = struct{}{}
return nil
}); err != nil {
return err
}
// Finally, if the out degree of this node is greater than what
// we've seen so far, update the maxChanOut variable.
if outDegree > maxChanOut {
maxChanOut = outDegree
}
return nil
}); err != nil {
return nil, err
}
// If we don't have any channels, then reset the minChannelSize to zero
// to avoid outputting NaN in encoded JSOn.
if numChannels == 0 {
minChannelSize = 0
}
// TODO(roasbeef): graph diameter
// TODO(roasbeef): also add oldest channel?
// * also add median channel size
netInfo := &lnrpc.NetworkInfo{
MaxOutDegree: maxChanOut,
AvgOutDegree: float64(numChannels) / float64(numNodes),
NumNodes: numNodes,
NumChannels: numChannels,
TotalNetworkCapacity: int64(totalNetworkCapacity),
AvgChannelSize: float64(totalNetworkCapacity) / float64(numChannels),
MinChannelSize: int64(minChannelSize),
MaxChannelSize: int64(maxChannelSize),
}
// Similarly, if we don't have any channels, then we'll also set the
// average channel size to zero in order to avoid weird JSON encoding
// outputs.
if numChannels == 0 {
netInfo.AvgChannelSize = 0
}
return netInfo, nil
}
// StopDaemon will send a shutdown request to the interrupt handler, triggering
// a graceful shutdown of the daemon.
func (r *rpcServer) StopDaemon(context.Context, *lnrpc.StopRequest) (*lnrpc.StopResponse, error) {
shutdownRequestChannel <- struct{}{}
return &lnrpc.StopResponse{}, nil
}
// SubscribeChannelGraph launches a streaming RPC that allows the caller to
// receive notifications upon any changes the channel graph topology from the
// review of the responding node. Events notified include: new nodes coming
// online, nodes updating their authenticated attributes, new channels being
// advertised, updates in the routing policy for a directional channel edge,
// and finally when prior channels are closed on-chain.
func (r *rpcServer) SubscribeChannelGraph(req *lnrpc.GraphTopologySubscription,
updateStream lnrpc.Lightning_SubscribeChannelGraphServer) error {
// First, we start by subscribing to a new intent to receive
// notifications from the channel router.
client, err := r.server.chanRouter.SubscribeTopology()
if err != nil {
return err
}
// Ensure that the resources for the topology update client is cleaned
// up once either the server, or client exists.
defer client.Cancel()
for {
select {
// A new update has been sent by the channel router, we'll
// marshal it into the form expected by the gRPC client, then
// send it off.
case topChange, ok := <-client.TopologyChanges:
// If the second value from the channel read is nil,
// then this means that the channel router is exiting
// or the notification client was cancelled. So we'll
// exit early.
if !ok {
return errors.New("server shutting down")
}
// Convert the struct from the channel router into the
// form expected by the gRPC service then send it off
// to the client.
graphUpdate := marshallTopologyChange(topChange)
if err := updateStream.Send(graphUpdate); err != nil {
return err
}
// The server is quitting, so we'll exit immediately. Returning
// nil will close the clients read end of the stream.
case <-r.quit:
return nil
}
}
}
// marshallTopologyChange performs a mapping from the topology change sturct
// returned by the router to the form of notifications expected by the current
// gRPC service.
func marshallTopologyChange(topChange *routing.TopologyChange) *lnrpc.GraphTopologyUpdate {
// encodeKey is a simple helper function that converts a live public
// key into a hex-encoded version of the compressed serialization for
// the public key.
encodeKey := func(k *btcec.PublicKey) string {
return hex.EncodeToString(k.SerializeCompressed())
}
nodeUpdates := make([]*lnrpc.NodeUpdate, len(topChange.NodeUpdates))
for i, nodeUpdate := range topChange.NodeUpdates {
addrs := make([]string, len(nodeUpdate.Addresses))
for i, addr := range nodeUpdate.Addresses {
addrs[i] = addr.String()
}
nodeUpdates[i] = &lnrpc.NodeUpdate{
Addresses: addrs,
IdentityKey: encodeKey(nodeUpdate.IdentityKey),
GlobalFeatures: nodeUpdate.GlobalFeatures,
Alias: nodeUpdate.Alias,
}
}
channelUpdates := make([]*lnrpc.ChannelEdgeUpdate, len(topChange.ChannelEdgeUpdates))
for i, channelUpdate := range topChange.ChannelEdgeUpdates {
channelUpdates[i] = &lnrpc.ChannelEdgeUpdate{
ChanId: channelUpdate.ChanID,
ChanPoint: &lnrpc.ChannelPoint{
FundingTxid: channelUpdate.ChanPoint.Hash[:],
OutputIndex: channelUpdate.ChanPoint.Index,
},
Capacity: int64(channelUpdate.Capacity),
RoutingPolicy: &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(channelUpdate.TimeLockDelta),
MinHtlc: int64(channelUpdate.MinHTLC),
FeeBaseMsat: int64(channelUpdate.BaseFee),
FeeRateMilliMsat: int64(channelUpdate.FeeRate),
},
AdvertisingNode: encodeKey(channelUpdate.AdvertisingNode),
ConnectingNode: encodeKey(channelUpdate.ConnectingNode),
}
}
closedChans := make([]*lnrpc.ClosedChannelUpdate, len(topChange.ClosedChannels))
for i, closedChan := range topChange.ClosedChannels {
closedChans[i] = &lnrpc.ClosedChannelUpdate{
ChanId: closedChan.ChanID,
Capacity: int64(closedChan.Capacity),
ClosedHeight: closedChan.ClosedHeight,
ChanPoint: &lnrpc.ChannelPoint{
FundingTxid: closedChan.ChanPoint.Hash[:],
OutputIndex: closedChan.ChanPoint.Index,
},
}
}
return &lnrpc.GraphTopologyUpdate{
NodeUpdates: nodeUpdates,
ChannelUpdates: channelUpdates,
ClosedChans: closedChans,
}
}
// ListPayments returns a list of all outgoing payments.
func (r *rpcServer) ListPayments(context.Context,
*lnrpc.ListPaymentsRequest) (*lnrpc.ListPaymentsResponse, error) {
rpcsLog.Debugf("[ListPayments]")
payments, err := r.server.chanDB.FetchAllPayments()
if err != nil && err != channeldb.ErrNoPaymentsCreated {
return nil, err
}
paymentsResp := &lnrpc.ListPaymentsResponse{
Payments: make([]*lnrpc.Payment, len(payments)),
}
for i, payment := range payments {
path := make([]string, len(payment.Path))
for i, hop := range payment.Path {
path[i] = hex.EncodeToString(hop[:])
}
paymentsResp.Payments[i] = &lnrpc.Payment{
PaymentHash: hex.EncodeToString(payment.PaymentHash[:]),
Value: int64(payment.Terms.Value),
CreationDate: payment.CreationDate.Unix(),
Path: path,
}
}
return paymentsResp, nil
}
// DeleteAllPayments deletes all outgoing payments from DB.
func (r *rpcServer) DeleteAllPayments(context.Context,
*lnrpc.DeleteAllPaymentsRequest) (*lnrpc.DeleteAllPaymentsResponse, error) {
rpcsLog.Debugf("[DeleteAllPayments]")
if err := r.server.chanDB.DeleteAllPayments(); err != nil {
return nil, err
}
return &lnrpc.DeleteAllPaymentsResponse{}, nil
}
// SetAlias...
func (r *rpcServer) SetAlias(context.Context, *lnrpc.SetAliasRequest) (*lnrpc.SetAliasResponse, error) {
return nil, nil
}
// DebugLevel allows a caller to programmatically set the logging verbosity of
// lnd. The logging can be targeted according to a coarse daemon-wide logging
// level, or in a granular fashion to specify the logging for a target
// sub-system.
func (r *rpcServer) DebugLevel(ctx context.Context,
req *lnrpc.DebugLevelRequest) (*lnrpc.DebugLevelResponse, error) {
// If show is set, then we simply print out the list of available
// sub-systems.
if req.Show {
return &lnrpc.DebugLevelResponse{
SubSystems: strings.Join(supportedSubsystems(), " "),
}, nil
}
rpcsLog.Infof("[debuglevel] changing debug level to: %v", req.LevelSpec)
// Otherwise, we'll attempt to set the logging level using the
// specified level spec.
if err := parseAndSetDebugLevels(req.LevelSpec); err != nil {
return nil, err
}
return &lnrpc.DebugLevelResponse{}, nil
}
// DecodePayReq takes an encoded payment request string and attempts to decode
// it, returning a full description of the conditions encoded within the
// payment request.
func (r *rpcServer) DecodePayReq(ctx context.Context,
req *lnrpc.PayReqString) (*lnrpc.PayReq, error) {
// Fist we'll attempt to decode the payment request string, if the
// request is invalid or the checksum doesn't match, then we'll exit
// here with an error.
payReq, err := zpay32.Decode(req.PayReq)
if err != nil {
return nil, err
}
dest := payReq.Destination.SerializeCompressed()
return &lnrpc.PayReq{
Destination: hex.EncodeToString(dest),
PaymentHash: hex.EncodeToString(payReq.PaymentHash[:]),
NumSatoshis: int64(payReq.Amount),
}, nil
}