e910b12d33
github.com/lightningnetwork/lnd master ✗ 0m ◒ ▶ golint htlcswitch.go:292:4: should replace numUpdates += 1 with numUpdates++ htlcswitch.go:554:6: var onionId should be onionID htlcswitch.go:629:7: var onionId should be onionID lnd_test.go:133:1: context.Context should be the first parameter of a function lnd_test.go:177:1: context.Context should be the first parameter of a function networktest.go:84:2: struct field nodeId should be nodeID peer.go:1704:16: should omit 2nd value from range; this loop is equivalent to `for invoice := range ...` rpcserver.go:57:6: func newRpcServer should be newRPCServer github.com/lightningnetwork/lnd master ✗ 9m ⚑ ◒ ⍉ ▶ go vet features.go:12: github.com/lightningnetwork/lnd/lnwire.Feature composite literal uses unkeyed fields fundingmanager.go:380: no formatting directive in Errorf call exit status 1
1849 lines
60 KiB
Go
1849 lines
60 KiB
Go
package main
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"io"
|
|
"io/ioutil"
|
|
"os"
|
|
"path/filepath"
|
|
"strings"
|
|
"sync"
|
|
"testing"
|
|
"time"
|
|
|
|
"sync/atomic"
|
|
|
|
"encoding/hex"
|
|
"reflect"
|
|
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/go-errors/errors"
|
|
"github.com/lightningnetwork/lnd/lnrpc"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/roasbeef/btcd/chaincfg"
|
|
"github.com/roasbeef/btcd/chaincfg/chainhash"
|
|
"github.com/roasbeef/btcd/rpctest"
|
|
"github.com/roasbeef/btcd/wire"
|
|
"github.com/roasbeef/btcrpcclient"
|
|
"github.com/roasbeef/btcutil"
|
|
"golang.org/x/net/context"
|
|
"google.golang.org/grpc"
|
|
)
|
|
|
|
// harnessTest wraps a regular testing.T providing enhanced error detection
|
|
// and propagation. All error will be augmented with a full stack-trace in
|
|
// order to aid in debugging. Additionally, any panics caused by active
|
|
// test cases will also be handled and represented as fatals.
|
|
type harnessTest struct {
|
|
t *testing.T
|
|
|
|
// testCase is populated during test execution and represents the
|
|
// current test case.
|
|
testCase *testCase
|
|
}
|
|
|
|
// newHarnessTest creates a new instance of a harnessTest from a regular
|
|
// testing.T instance.
|
|
func newHarnessTest(t *testing.T) *harnessTest {
|
|
return &harnessTest{t, nil}
|
|
}
|
|
|
|
// Fatalf causes the current active test case to fail with a fatal error. All
|
|
// integration tests should mark test failures solely with this method due to
|
|
// the error stack traces it produces.
|
|
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
|
|
stacktrace := errors.Wrap(fmt.Sprintf(format, a...), 1).ErrorStack()
|
|
|
|
if h.testCase != nil {
|
|
h.t.Fatalf("Failed: (%v): exited with error: \n"+
|
|
"%v", h.testCase.name, stacktrace)
|
|
} else {
|
|
h.t.Fatalf("Error outside of test: %v", stacktrace)
|
|
}
|
|
}
|
|
|
|
// RunTestCase executes a harness test case. Any errors or panics will be
|
|
// represented as fatal.
|
|
func (h *harnessTest) RunTestCase(testCase *testCase, net *networkHarness) {
|
|
h.testCase = testCase
|
|
defer func() {
|
|
h.testCase = nil
|
|
}()
|
|
|
|
defer func() {
|
|
if err := recover(); err != nil {
|
|
description := errors.Wrap(err, 2).ErrorStack()
|
|
h.t.Fatalf("Failed: (%v) paniced with: \n%v",
|
|
h.testCase.name, description)
|
|
}
|
|
}()
|
|
|
|
testCase.test(net, h)
|
|
h.t.Logf("Passed: (%v)", h.testCase.name)
|
|
return
|
|
}
|
|
|
|
func (h *harnessTest) Logf(format string, args ...interface{}) {
|
|
h.t.Logf(format, args...)
|
|
}
|
|
|
|
func (h *harnessTest) Log(args ...interface{}) {
|
|
h.t.Log(args...)
|
|
}
|
|
|
|
func assertTxInBlock(t *harnessTest, block *wire.MsgBlock, txid *chainhash.Hash) {
|
|
for _, tx := range block.Transactions {
|
|
sha := tx.TxHash()
|
|
if bytes.Equal(txid[:], sha[:]) {
|
|
return
|
|
}
|
|
}
|
|
|
|
t.Fatalf("funding tx was not included in block")
|
|
}
|
|
|
|
// mineBlocks mine 'num' of blocks and check that blocks are present in
|
|
// node blockchain.
|
|
func mineBlocks(t *harnessTest, net *networkHarness, num uint32) []*wire.MsgBlock {
|
|
blocks := make([]*wire.MsgBlock, num)
|
|
|
|
blockHashes, err := net.Miner.Node.Generate(num)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate blocks: %v", err)
|
|
}
|
|
|
|
for i, blockHash := range blockHashes {
|
|
block, err := net.Miner.Node.GetBlock(blockHash)
|
|
if err != nil {
|
|
t.Fatalf("unable to get block: %v", err)
|
|
}
|
|
|
|
blocks[i] = block
|
|
}
|
|
|
|
return blocks
|
|
}
|
|
|
|
// openChannelAndAssert attempts to open a channel with the specified
|
|
// parameters extended from Alice to Bob. Additionally, two items are asserted
|
|
// after the channel is considered open: the funding transaction should be
|
|
// found within a block, and that Alice can report the status of the new
|
|
// channel.
|
|
func openChannelAndAssert(ctx context.Context, t *harnessTest, net *networkHarness,
|
|
alice, bob *lightningNode, fundingAmt btcutil.Amount,
|
|
pushAmt btcutil.Amount) *lnrpc.ChannelPoint {
|
|
|
|
chanOpenUpdate, err := net.OpenChannel(ctx, alice, bob, fundingAmt,
|
|
pushAmt, 1)
|
|
if err != nil {
|
|
t.Fatalf("unable to open channel: %v", err)
|
|
}
|
|
|
|
// Mine a block, then wait for Alice's node to notify us that the
|
|
// channel has been opened. The funding transaction should be found
|
|
// within the newly mined block.
|
|
block := mineBlocks(t, net, 1)[0]
|
|
|
|
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
|
|
if err != nil {
|
|
t.Fatalf("error while waiting for channel open: %v", err)
|
|
}
|
|
fundingTxID, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
|
|
if err != nil {
|
|
t.Fatalf("unable to create sha hash: %v", err)
|
|
}
|
|
assertTxInBlock(t, block, fundingTxID)
|
|
|
|
// The channel should be listed in the peer information returned by
|
|
// both peers.
|
|
chanPoint := wire.OutPoint{
|
|
Hash: *fundingTxID,
|
|
Index: fundingChanPoint.OutputIndex,
|
|
}
|
|
if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
|
|
t.Fatalf("unable to assert channel existence: %v", err)
|
|
}
|
|
|
|
return fundingChanPoint
|
|
}
|
|
|
|
// closeChannelAndAssert attempts to close a channel identified by the passed
|
|
// channel point owned by the passed lighting node. A fully blocking channel
|
|
// closure is attempted, therefore the passed context should be a child derived
|
|
// via timeout from a base parent. Additionally, once the channel has been
|
|
// detected as closed, an assertion checks that the transaction is found within
|
|
// a block.
|
|
func closeChannelAndAssert(ctx context.Context, t *harnessTest, net *networkHarness,
|
|
node *lightningNode, fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {
|
|
|
|
closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
|
|
if err != nil {
|
|
t.Fatalf("unable to close channel: %v", err)
|
|
}
|
|
|
|
// Finally, generate a single block, wait for the final close status
|
|
// update, then ensure that the closing transaction was included in the
|
|
// block.
|
|
block := mineBlocks(t, net, 1)[0]
|
|
|
|
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
|
|
if err != nil {
|
|
t.Fatalf("error while waiting for channel close: %v", err)
|
|
}
|
|
|
|
assertTxInBlock(t, block, closingTxid)
|
|
|
|
return closingTxid
|
|
}
|
|
|
|
// testBasicChannelFunding performs a test exercising expected behavior from a
|
|
// basic funding workflow. The test creates a new channel between Alice and
|
|
// Bob, then immediately closes the channel after asserting some expected post
|
|
// conditions. Finally, the chain itself is checked to ensure the closing
|
|
// transaction was mined.
|
|
func testBasicChannelFunding(net *networkHarness, t *harnessTest) {
|
|
timeout := time.Duration(time.Second * 5)
|
|
ctxb := context.Background()
|
|
|
|
chanAmt := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
|
|
pushAmt := btcutil.Amount(100000)
|
|
|
|
// First establish a channel with a capacity of 0.5 BTC between Alice
|
|
// and Bob with Alice pushing 100k satoshis to Bob's side during
|
|
// funding. This function will block until the channel itself is fully
|
|
// open or an error occurs in the funding process. A series of
|
|
// assertions will be executed to ensure the funding process completed
|
|
// successfully.
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
|
|
chanAmt, pushAmt)
|
|
|
|
// With then channel open, ensure that the amount specified above has
|
|
// properly been pushed to Bob.
|
|
balReq := &lnrpc.ChannelBalanceRequest{}
|
|
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to get alice's balance: %v", err)
|
|
}
|
|
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to get bobs's balance: %v", err)
|
|
}
|
|
if aliceBal.Balance != int64(chanAmt-pushAmt) {
|
|
t.Fatalf("alice's balance is incorrect: expected %v got %v",
|
|
chanAmt-pushAmt, aliceBal)
|
|
}
|
|
if bobBal.Balance != int64(pushAmt) {
|
|
t.Fatalf("bob's balance is incorrect: expected %v got %v",
|
|
pushAmt, bobBal.Balance)
|
|
}
|
|
|
|
// Finally, immediately close the channel. This function will also
|
|
// block until the channel is closed and will additionally assert the
|
|
// relevant channel closing post conditions.
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
|
|
}
|
|
|
|
// testChannelBalance creates a new channel between Alice and Bob, then
|
|
// checks channel balance to be equal amount specified while creation of channel.
|
|
func testChannelBalance(net *networkHarness, t *harnessTest) {
|
|
timeout := time.Duration(time.Second * 5)
|
|
|
|
// Open a channel with 0.5 BTC between Alice and Bob, ensuring the
|
|
// channel has been opened properly.
|
|
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
|
|
ctx, _ := context.WithTimeout(context.Background(), timeout)
|
|
|
|
// Creates a helper closure to be used below which asserts the proper
|
|
// response to a channel balance RPC.
|
|
checkChannelBalance := func(node lnrpc.LightningClient,
|
|
amount btcutil.Amount) {
|
|
|
|
response, err := node.ChannelBalance(ctx, &lnrpc.ChannelBalanceRequest{})
|
|
if err != nil {
|
|
t.Fatalf("unable to get channel balance: %v", err)
|
|
}
|
|
|
|
balance := btcutil.Amount(response.Balance)
|
|
if balance != amount {
|
|
t.Fatalf("channel balance wrong: %v != %v", balance,
|
|
amount)
|
|
}
|
|
}
|
|
|
|
chanPoint := openChannelAndAssert(ctx, t, net, net.Alice, net.Bob,
|
|
amount, 0)
|
|
|
|
// As this is a single funder channel, Alice's balance should be
|
|
// exactly 0.5 BTC since now state transitions have taken place yet.
|
|
checkChannelBalance(net.Alice, amount)
|
|
|
|
// Since we only explicitly wait for Alice's channel open notification,
|
|
// Bob might not yet have updated his internal state in response to
|
|
// Alice's channel open proof. So we sleep here for a second to let Bob
|
|
// catch up.
|
|
// TODO(roasbeef): Bob should also watch for the channel on-chain after
|
|
// the changes to restrict the number of pending channels are in.
|
|
time.Sleep(time.Second)
|
|
|
|
// Ensure Bob currently has no available balance within the channel.
|
|
checkChannelBalance(net.Bob, 0)
|
|
|
|
// Finally close the channel between Alice and Bob, asserting that the
|
|
// channel has been properly closed on-chain.
|
|
ctx, _ = context.WithTimeout(context.Background(), timeout)
|
|
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
|
|
}
|
|
|
|
// testChannelForceClosure performs a test to exercise the behavior of "force"
|
|
// closing a channel or unilaterally broadcasting the latest local commitment
|
|
// state on-chain. The test creates a new channel between Alice and Bob, then
|
|
// force closes the channel after some cursory assertions. Within the test, two
|
|
// transactions should be broadcast on-chain, the commitment transaction itself
|
|
// (which closes the channel), and the sweep transaction a few blocks later
|
|
// once the output(s) become mature. This test also includes several restarts
|
|
// to ensure that the transaction output states are persisted throughout
|
|
// the forced closure process.
|
|
//
|
|
// TODO(roasbeef): also add an unsettled HTLC before force closing.
|
|
func testChannelForceClosure(net *networkHarness, t *harnessTest) {
|
|
timeout := time.Duration(time.Second * 10)
|
|
ctxb := context.Background()
|
|
|
|
// Before we start, obtain Bob's current wallet balance, we'll check to
|
|
// ensure that at the end of the force closure by Alice, Bob recognizes
|
|
// his new on-chain output.
|
|
bobBalReq := &lnrpc.WalletBalanceRequest{}
|
|
bobBalResp, err := net.Bob.WalletBalance(ctxb, bobBalReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to get bob's balance: %v", err)
|
|
}
|
|
bobStartingBalance := btcutil.Amount(bobBalResp.Balance * 1e8)
|
|
|
|
// First establish a channel with a capacity of 100k satoshis between
|
|
// Alice and Bob. We also push 50k satoshis of the initial amount
|
|
// towards Bob.
|
|
numFundingConfs := uint32(1)
|
|
chanAmt := btcutil.Amount(10e4)
|
|
pushAmt := btcutil.Amount(5e4)
|
|
chanOpenUpdate, err := net.OpenChannel(ctxb, net.Alice, net.Bob,
|
|
chanAmt, pushAmt, numFundingConfs)
|
|
if err != nil {
|
|
t.Fatalf("unable to open channel: %v", err)
|
|
}
|
|
|
|
if _, err := net.Miner.Node.Generate(numFundingConfs); err != nil {
|
|
t.Fatalf("unable to mine block: %v", err)
|
|
}
|
|
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
|
|
if err != nil {
|
|
t.Fatalf("error while waiting for channel to open: %v", err)
|
|
}
|
|
|
|
// Now that the channel is open, immediately execute a force closure of
|
|
// the channel. This will also assert that the commitment transaction
|
|
// was immediately broadcast in order to fulfill the force closure
|
|
// request.
|
|
_, closingTxID, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
|
|
if err != nil {
|
|
t.Fatalf("unable to execute force channel closure: %v", err)
|
|
}
|
|
|
|
// The several restarts in this test are intended to ensure that when a
|
|
// channel is force-closed, the UTXO nursery has persisted the state of
|
|
// the channel in the closure process and will recover the correct state
|
|
// when the system comes back on line. This restart tests state
|
|
// persistence at the beginning of the process, when the commitment
|
|
// transaction has been broadcast but not yet confirmed in a block.
|
|
if err := net.RestartNode(net.Alice, nil); err != nil {
|
|
t.Fatalf("Node restart failed: %v", err)
|
|
}
|
|
|
|
// Mine a block which should confirm the commitment transaction
|
|
// broadcast as a result of the force closure.
|
|
if _, err := net.Miner.Node.Generate(1); err != nil {
|
|
t.Fatalf("unable to generate block: %v", err)
|
|
}
|
|
|
|
// The following sleep provides time for the UTXO nursery to move the
|
|
// output from the preschool to the kindergarten database buckets
|
|
// prior to RestartNode() being triggered. Without this sleep, the
|
|
// database update may fail, causing the UTXO nursery to retry the move
|
|
// operation upon restart. This will change the blockheights from what
|
|
// is expected by the test.
|
|
// TODO(bvu): refactor out this sleep.
|
|
duration := time.Millisecond * 300
|
|
time.Sleep(duration)
|
|
|
|
// The following restart is intended to ensure that outputs from the
|
|
// force close commitment transaction have been persisted once the
|
|
// transaction has been confirmed, but before the outputs are spendable
|
|
// (the "kindergarten" bucket.)
|
|
if err := net.RestartNode(net.Alice, nil); err != nil {
|
|
t.Fatalf("Node restart failed: %v", err)
|
|
}
|
|
|
|
// Currently within the codebase, the default CSV is 4 relative blocks.
|
|
// For the persistence test, we generate three blocks, then trigger
|
|
// a restart and then generate the final block that should trigger
|
|
// the creation of the sweep transaction.
|
|
// TODO(roasbeef): should check default value in config here instead,
|
|
// or make delay a param
|
|
const defaultCSV = 4
|
|
if _, err := net.Miner.Node.Generate(defaultCSV - 1); err != nil {
|
|
t.Fatalf("unable to mine blocks: %v", err)
|
|
}
|
|
|
|
// The following restart checks to ensure that outputs in the kindergarten
|
|
// bucket are persisted while waiting for the required number of
|
|
// confirmations to be reported.
|
|
if err := net.RestartNode(net.Alice, nil); err != nil {
|
|
t.Fatalf("Node restart failed: %v", err)
|
|
}
|
|
|
|
if _, err := net.Miner.Node.Generate(1); err != nil {
|
|
t.Fatalf("unable to mine blocks: %v", err)
|
|
}
|
|
|
|
// At this point, the sweeping transaction should now be broadcast. So
|
|
// we fetch the node's mempool to ensure it has been properly
|
|
// broadcast.
|
|
var sweepingTXID *chainhash.Hash
|
|
var mempool []*chainhash.Hash
|
|
mempoolTimeout := time.After(3 * time.Second)
|
|
checkMempoolTick := time.NewTicker(100 * time.Millisecond)
|
|
defer checkMempoolTick.Stop()
|
|
mempoolPoll:
|
|
for {
|
|
select {
|
|
case <-mempoolTimeout:
|
|
t.Fatalf("sweep tx not found in mempool")
|
|
case <-checkMempoolTick.C:
|
|
mempool, err = net.Miner.Node.GetRawMempool()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch node's mempool: %v", err)
|
|
}
|
|
if len(mempool) != 0 {
|
|
break mempoolPoll
|
|
}
|
|
}
|
|
}
|
|
|
|
// There should be exactly one transaction within the mempool at this
|
|
// point.
|
|
// TODO(roasbeef): assertion may not necessarily hold with concurrent
|
|
// test executions
|
|
if len(mempool) != 1 {
|
|
t.Fatalf("node's mempool is wrong size, expected 1 got %v",
|
|
len(mempool))
|
|
}
|
|
sweepingTXID = mempool[0]
|
|
|
|
// Fetch the sweep transaction, all input it's spending should be from
|
|
// the commitment transaction which was broadcast on-chain.
|
|
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch sweep tx: %v", err)
|
|
}
|
|
for _, txIn := range sweepTx.MsgTx().TxIn {
|
|
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
|
|
t.Fatalf("sweep transaction not spending from commit "+
|
|
"tx %v, instead spending %v",
|
|
closingTxID, txIn.PreviousOutPoint)
|
|
}
|
|
}
|
|
|
|
// Finally, we mine an additional block which should include the sweep
|
|
// transaction as the input scripts and the sequence locks on the
|
|
// inputs should be properly met.
|
|
blockHash, err := net.Miner.Node.Generate(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate block: %v", err)
|
|
}
|
|
block, err := net.Miner.Node.GetBlock(blockHash[0])
|
|
if err != nil {
|
|
t.Fatalf("unable to get block: %v", err)
|
|
}
|
|
|
|
assertTxInBlock(t, block, sweepTx.Hash())
|
|
|
|
// At this point, Bob should now be aware of his new immediately
|
|
// spendable on-chain balance, as it was Alice who broadcast the
|
|
// commitment transaction.
|
|
bobBalResp, err = net.Bob.WalletBalance(ctxb, bobBalReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to get bob's balance: %v", err)
|
|
}
|
|
bobExpectedBalance := bobStartingBalance + pushAmt
|
|
if btcutil.Amount(bobBalResp.Balance*1e8) < bobExpectedBalance {
|
|
t.Fatalf("bob's balance is incorrect: expected %v got %v",
|
|
bobExpectedBalance, btcutil.Amount(bobBalResp.Balance*1e8))
|
|
}
|
|
}
|
|
|
|
func testSingleHopInvoice(net *networkHarness, t *harnessTest) {
|
|
ctxb := context.Background()
|
|
timeout := time.Duration(time.Second * 5)
|
|
|
|
// Open a channel with 100k satoshis between Alice and Bob with Alice being
|
|
// the sole funder of the channel.
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanAmt := btcutil.Amount(100000)
|
|
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
|
|
chanAmt, 0)
|
|
|
|
assertPaymentBalance := func(amt btcutil.Amount) {
|
|
balReq := &lnrpc.ChannelBalanceRequest{}
|
|
|
|
// The balances of Alice and Bob should be updated accordingly.
|
|
aliceBalance, err := net.Alice.ChannelBalance(ctxb, balReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for alice's balance: %v", err)
|
|
}
|
|
bobBalance, err := net.Bob.ChannelBalance(ctxb, balReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for bob's balance: %v", err)
|
|
}
|
|
if aliceBalance.Balance != int64(chanAmt-amt) {
|
|
t.Fatalf("Alice's balance is incorrect got %v, expected %v",
|
|
aliceBalance, int64(chanAmt-amt))
|
|
}
|
|
if bobBalance.Balance != int64(amt) {
|
|
t.Fatalf("Bob's balance is incorrect got %v, expected %v",
|
|
bobBalance, amt)
|
|
}
|
|
|
|
// Both channels should also have properly accunted from the amount
|
|
// that has been sent/received over the channel.
|
|
listReq := &lnrpc.ListChannelsRequest{}
|
|
aliceListChannels, err := net.Alice.ListChannels(ctxb, listReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for alice's channel list: %v", err)
|
|
}
|
|
aliceSatoshisSent := aliceListChannels.Channels[0].TotalSatoshisSent
|
|
if aliceSatoshisSent != int64(amt) {
|
|
t.Fatalf("Alice's satoshis sent is incorrect got %v, expected %v",
|
|
aliceSatoshisSent, amt)
|
|
}
|
|
|
|
bobListChannels, err := net.Bob.ListChannels(ctxb, listReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for bob's channel list: %v", err)
|
|
}
|
|
bobSatoshisReceived := bobListChannels.Channels[0].TotalSatoshisReceived
|
|
if bobSatoshisReceived != int64(amt) {
|
|
t.Fatalf("Bob's satoshis received is incorrect got %v, expected %v",
|
|
bobSatoshisReceived, amt)
|
|
}
|
|
}
|
|
|
|
// Now that the channel is open, create an invoice for Bob which
|
|
// expects a payment of 1000 satoshis from Alice paid via a particular
|
|
// preimage.
|
|
const paymentAmt = 1000
|
|
preimage := bytes.Repeat([]byte("A"), 32)
|
|
invoice := &lnrpc.Invoice{
|
|
Memo: "testing",
|
|
RPreimage: preimage,
|
|
Value: paymentAmt,
|
|
}
|
|
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice: %v", err)
|
|
}
|
|
|
|
// With the invoice for Bob added, send a payment towards Alice paying
|
|
// to the above generated invoice.
|
|
time.Sleep(time.Millisecond * 500)
|
|
sendStream, err := net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create alice payment stream: %v", err)
|
|
}
|
|
sendReq := &lnrpc.SendRequest{
|
|
PaymentHash: invoiceResp.RHash,
|
|
Dest: net.Bob.PubKey[:],
|
|
Amt: paymentAmt,
|
|
}
|
|
if err := sendStream.Send(sendReq); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// Ensure we obtain the proper preimage in the response.
|
|
resp, err := sendStream.Recv()
|
|
if err != nil {
|
|
t.Fatalf("error when attempting recv: %v", err)
|
|
}
|
|
if !bytes.Equal(preimage, resp.PaymentPreimage) {
|
|
t.Fatalf("preimage mismatch: expected %v, got %v", preimage,
|
|
resp.PaymentPreimage)
|
|
}
|
|
|
|
// Bob's invoice should now be found and marked as settled.
|
|
// TODO(roasbeef): remove sleep after hooking into the to-be-written
|
|
// invoice settlement notification stream
|
|
payHash := &lnrpc.PaymentHash{
|
|
RHash: invoiceResp.RHash,
|
|
}
|
|
dbInvoice, err := net.Bob.LookupInvoice(ctxb, payHash)
|
|
if err != nil {
|
|
t.Fatalf("unable to lookup invoice: %v", err)
|
|
}
|
|
if !dbInvoice.Settled {
|
|
t.Fatalf("bob's invoice should be marked as settled: %v",
|
|
spew.Sdump(dbInvoice))
|
|
}
|
|
|
|
// With the payment completed all balance related stats should be
|
|
// properly updated.
|
|
assertPaymentBalance(paymentAmt)
|
|
|
|
// Create another invoice for Bob, this time leaving off the preimage
|
|
// to one will be randomly generated. We'll test the proper
|
|
// encoding/decoding of the zpay32 payment requests.
|
|
invoice = &lnrpc.Invoice{
|
|
Memo: "test3",
|
|
Value: paymentAmt,
|
|
}
|
|
invoiceResp, err = net.Bob.AddInvoice(ctxb, invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice: %v", err)
|
|
}
|
|
|
|
// Next send another payment, but this time using a zpay32 encoded
|
|
// invoice rather than manually specifying the payment details.
|
|
if err := sendStream.Send(&lnrpc.SendRequest{
|
|
PaymentRequest: invoiceResp.PaymentRequest,
|
|
}); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
if _, err := sendStream.Recv(); err != nil {
|
|
t.Fatalf("error when attempting recv: %v", err)
|
|
}
|
|
|
|
// The second payment should also have succeeded, with the balances
|
|
// being update accordingly.
|
|
assertPaymentBalance(paymentAmt * 2)
|
|
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
|
|
}
|
|
|
|
func testListPayments(net *networkHarness, t *harnessTest) {
|
|
ctxb := context.Background()
|
|
timeout := time.Duration(time.Second * 5)
|
|
|
|
// First start by deleting all payments that Alice knows of. This will
|
|
// allow us to execute the test with a clean state for Alice.
|
|
delPaymentsReq := &lnrpc.DeleteAllPaymentsRequest{}
|
|
if _, err := net.Alice.DeleteAllPayments(ctxb, delPaymentsReq); err != nil {
|
|
t.Fatalf("unable to delete payments: %v", err)
|
|
}
|
|
|
|
// Check that there are no payments before test.
|
|
reqInit := &lnrpc.ListPaymentsRequest{}
|
|
paymentsRespInit, err := net.Alice.ListPayments(ctxb, reqInit)
|
|
if err != nil {
|
|
t.Fatalf("error when obtaining Alice payments: %v", err)
|
|
}
|
|
if len(paymentsRespInit.Payments) != 0 {
|
|
t.Fatalf("incorrect number of payments, got %v, want %v",
|
|
len(paymentsRespInit.Payments), 0)
|
|
}
|
|
|
|
// Open a channel with 100k satoshis between Alice and Bob with Alice
|
|
// being the sole funder of the channel.
|
|
chanAmt := btcutil.Amount(100000)
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
|
|
chanAmt, 0)
|
|
|
|
// Now that the channel is open, create an invoice for Bob which
|
|
// expects a payment of 1000 satoshis from Alice paid via a particular
|
|
// preimage.
|
|
const paymentAmt = 1000
|
|
preimage := bytes.Repeat([]byte("B"), 32)
|
|
invoice := &lnrpc.Invoice{
|
|
Memo: "testing",
|
|
RPreimage: preimage,
|
|
Value: paymentAmt,
|
|
}
|
|
addInvoiceCtxt, _ := context.WithTimeout(ctxb, timeout)
|
|
invoiceResp, err := net.Bob.AddInvoice(addInvoiceCtxt, invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice: %v", err)
|
|
}
|
|
|
|
// With the invoice for Bob added, send a payment towards Alice paying
|
|
// to the above generated invoice.
|
|
time.Sleep(time.Millisecond * 300)
|
|
sendStream, err := net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create alice payment stream: %v", err)
|
|
}
|
|
sendReq := &lnrpc.SendRequest{
|
|
PaymentHash: invoiceResp.RHash,
|
|
Dest: net.Bob.PubKey[:],
|
|
Amt: paymentAmt,
|
|
}
|
|
if err := sendStream.Send(sendReq); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
if _, err := sendStream.Recv(); err != nil {
|
|
t.Fatalf("error when attempting recv: %v", err)
|
|
}
|
|
|
|
// Grab Alice's list of payments, she should show the existence of
|
|
// exactly one payment.
|
|
req := &lnrpc.ListPaymentsRequest{}
|
|
paymentsResp, err := net.Alice.ListPayments(ctxb, req)
|
|
if err != nil {
|
|
t.Fatalf("error when obtaining Alice payments: %v", err)
|
|
}
|
|
if len(paymentsResp.Payments) != 1 {
|
|
t.Fatalf("incorrect number of payments, got %v, want %v",
|
|
len(paymentsResp.Payments), 1)
|
|
}
|
|
p := paymentsResp.Payments[0]
|
|
|
|
// Ensure that the stored path shows a direct payment to Bob with no
|
|
// other nodes in-between.
|
|
expectedPath := []string{
|
|
net.Bob.PubKeyStr,
|
|
}
|
|
if !reflect.DeepEqual(p.Path, expectedPath) {
|
|
t.Fatalf("incorrect path, got %v, want %v",
|
|
p.Path, expectedPath)
|
|
}
|
|
|
|
// The payment amount should also match our previous payment directly.
|
|
if p.Value != paymentAmt {
|
|
t.Fatalf("incorrect amount, got %v, want %v",
|
|
p.Value, paymentAmt)
|
|
}
|
|
|
|
// The payment hash (or r-hash) should have been stored correctly.
|
|
correctRHash := hex.EncodeToString(invoiceResp.RHash)
|
|
if !reflect.DeepEqual(p.PaymentHash, correctRHash) {
|
|
t.Fatalf("incorrect RHash, got %v, want %v",
|
|
p.PaymentHash, correctRHash)
|
|
}
|
|
|
|
// Finally, as we made a single-hop direct payment, there should have
|
|
// been no fee applied.
|
|
if p.Fee != 0 {
|
|
t.Fatalf("incorrect Fee, got %v, want %v", p.Fee, 0)
|
|
}
|
|
|
|
// Delete all payments from Alice. DB should have no payments.
|
|
delReq := &lnrpc.DeleteAllPaymentsRequest{}
|
|
_, err = net.Alice.DeleteAllPayments(ctxb, delReq)
|
|
if err != nil {
|
|
t.Fatalf("Can't delete payments at the end: %v", err)
|
|
}
|
|
|
|
// Check that there are no payments before test.
|
|
listReq := &lnrpc.ListPaymentsRequest{}
|
|
paymentsResp, err = net.Alice.ListPayments(ctxb, listReq)
|
|
if err != nil {
|
|
t.Fatalf("error when obtaining Alice payments: %v", err)
|
|
}
|
|
if len(paymentsResp.Payments) != 0 {
|
|
t.Fatalf("incorrect number of payments, got %v, want %v",
|
|
len(paymentsRespInit.Payments), 0)
|
|
}
|
|
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
|
|
}
|
|
|
|
func testMultiHopPayments(net *networkHarness, t *harnessTest) {
|
|
const chanAmt = btcutil.Amount(100000)
|
|
ctxb := context.Background()
|
|
timeout := time.Duration(time.Second * 5)
|
|
|
|
// Open a channel with 100k satoshis between Alice and Bob with Alice
|
|
// being the sole funder of the channel.
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
|
|
net.Bob, chanAmt, 0)
|
|
|
|
aliceChanTXID, err := chainhash.NewHash(chanPointAlice.FundingTxid)
|
|
if err != nil {
|
|
t.Fatalf("unable to create sha hash: %v", err)
|
|
}
|
|
aliceFundPoint := wire.OutPoint{
|
|
Hash: *aliceChanTXID,
|
|
Index: chanPointAlice.OutputIndex,
|
|
}
|
|
|
|
// Create a new node (Carol), load her with some funds, then establish
|
|
// a connection between Carol and Alice with a channel that has
|
|
// identical capacity to the one created above.
|
|
//
|
|
// The network topology should now look like: Carol -> Alice -> Bob
|
|
carol, err := net.NewNode(nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to create new nodes: %v", err)
|
|
}
|
|
if err := net.ConnectNodes(ctxb, carol, net.Alice); err != nil {
|
|
t.Fatalf("unable to connect carol to alice: %v", err)
|
|
}
|
|
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
|
|
if err != nil {
|
|
t.Fatalf("unable to send coins to carol: %v", err)
|
|
}
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
|
|
net.Alice, chanAmt, 0)
|
|
|
|
carolChanTXID, err := chainhash.NewHash(chanPointCarol.FundingTxid)
|
|
if err != nil {
|
|
t.Fatalf("unable to create sha hash: %v", err)
|
|
}
|
|
carolFundPoint := wire.OutPoint{
|
|
Hash: *carolChanTXID,
|
|
Index: chanPointCarol.OutputIndex,
|
|
}
|
|
|
|
// Create 5 invoices for Bob, which expect a payment from Carol for 1k
|
|
// satoshis with a different preimage each time.
|
|
const numPayments = 5
|
|
const paymentAmt = 1000
|
|
rHashes := make([][]byte, numPayments)
|
|
for i := 0; i < numPayments; i++ {
|
|
invoice := &lnrpc.Invoice{
|
|
Memo: "testing",
|
|
Value: paymentAmt,
|
|
}
|
|
resp, err := net.Bob.AddInvoice(ctxb, invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice: %v", err)
|
|
}
|
|
|
|
rHashes[i] = resp.RHash
|
|
}
|
|
|
|
// Carol's routing table should show a path from Carol -> Alice -> Bob,
|
|
// with the two channels above recognized as the only links within the
|
|
// network.
|
|
time.Sleep(time.Second * 2)
|
|
req := &lnrpc.ChannelGraphRequest{}
|
|
chanGraph, err := carol.DescribeGraph(ctxb, req)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for carol's routing table: %v", err)
|
|
}
|
|
if len(chanGraph.Edges) != 2 {
|
|
t.Fatalf("only two channels should be seen as active in the "+
|
|
"network, instead %v are", len(chanGraph.Edges))
|
|
}
|
|
for _, link := range chanGraph.Edges {
|
|
switch {
|
|
case link.ChanPoint == aliceFundPoint.String():
|
|
switch {
|
|
case link.Node1Pub == net.Alice.PubKeyStr &&
|
|
link.Node2Pub == net.Bob.PubKeyStr:
|
|
continue
|
|
case link.Node1Pub == net.Bob.PubKeyStr &&
|
|
link.Node2Pub == net.Alice.PubKeyStr:
|
|
continue
|
|
default:
|
|
t.Fatalf("unknown link within routing "+
|
|
"table: %v", spew.Sdump(link))
|
|
}
|
|
case link.ChanPoint == carolFundPoint.String():
|
|
switch {
|
|
case link.Node1Pub == net.Alice.PubKeyStr &&
|
|
link.Node2Pub == carol.PubKeyStr:
|
|
continue
|
|
case link.Node1Pub == carol.PubKeyStr &&
|
|
link.Node2Pub == net.Alice.PubKeyStr:
|
|
continue
|
|
default:
|
|
t.Fatalf("unknown link within routing "+
|
|
"table: %v", spew.Sdump(link))
|
|
}
|
|
default:
|
|
t.Fatalf("unknown channel %v found in routing table, "+
|
|
"only %v and %v should exist", spew.Sdump(link),
|
|
aliceFundPoint, carolFundPoint)
|
|
}
|
|
}
|
|
|
|
// Using Carol as the source, pay to the 5 invoices from Bob created above.
|
|
carolPayStream, err := carol.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment stream for carol: %v", err)
|
|
}
|
|
|
|
// Concurrently pay off all 5 of Bob's invoices. Each of the goroutines
|
|
// will unblock on the recv once the HTLC it sent has been fully
|
|
// settled.
|
|
var wg sync.WaitGroup
|
|
for _, rHash := range rHashes {
|
|
sendReq := &lnrpc.SendRequest{
|
|
PaymentHash: rHash,
|
|
Dest: net.Bob.PubKey[:],
|
|
Amt: paymentAmt,
|
|
}
|
|
|
|
if err := carolPayStream.Send(sendReq); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
if _, err := carolPayStream.Recv(); err != nil {
|
|
t.Fatalf("unable to recv pay resp: %v", err)
|
|
}
|
|
}
|
|
|
|
finClear := make(chan struct{})
|
|
go func() {
|
|
wg.Wait()
|
|
close(finClear)
|
|
}()
|
|
|
|
select {
|
|
case <-time.After(time.Second * 10):
|
|
t.Fatalf("HTLCs not cleared after 10 seconds")
|
|
case <-finClear:
|
|
}
|
|
|
|
assertAsymmetricBalance := func(node *lightningNode,
|
|
chanPoint wire.OutPoint, localBalance,
|
|
remoteBalance int64) {
|
|
|
|
channelName := ""
|
|
switch chanPoint {
|
|
case carolFundPoint:
|
|
channelName = "Carol(local) => Alice(remote)"
|
|
case aliceFundPoint:
|
|
channelName = "Alice(local) => Bob(remote)"
|
|
}
|
|
|
|
checkBalance := func() error {
|
|
listReq := &lnrpc.ListChannelsRequest{}
|
|
resp, err := node.ListChannels(ctxb, listReq)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to for node's "+
|
|
"channels: %v", err)
|
|
}
|
|
for _, channel := range resp.Channels {
|
|
if channel.ChannelPoint != chanPoint.String() {
|
|
continue
|
|
}
|
|
|
|
if channel.LocalBalance != localBalance {
|
|
return fmt.Errorf("%v: incorrect local "+
|
|
"balances: %v != %v", channelName,
|
|
channel.LocalBalance, localBalance)
|
|
}
|
|
|
|
if channel.RemoteBalance != remoteBalance {
|
|
return fmt.Errorf("%v: incorrect remote "+
|
|
"balances: %v != %v", channelName,
|
|
channel.RemoteBalance, remoteBalance)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
return fmt.Errorf("channel not found")
|
|
}
|
|
|
|
// As far as HTLC inclusion in commitment transaction might be
|
|
// postponed we will try to check the balance couple of
|
|
// times, and then if after some period of time we receive wrong
|
|
// balance return the error.
|
|
// TODO(roasbeef): remove sleep after invoice notification hooks
|
|
// are in place
|
|
var timeover uint32
|
|
go func() {
|
|
<-time.After(time.Second * 20)
|
|
atomic.StoreUint32(&timeover, 1)
|
|
}()
|
|
|
|
for {
|
|
isTimeover := atomic.LoadUint32(&timeover) == 1
|
|
if err := checkBalance(); err != nil {
|
|
if isTimeover {
|
|
t.Fatalf("Check balance failed: %v", err)
|
|
}
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point all the channels within our proto network should be
|
|
// shifted by 5k satoshis in the direction of Bob, the sink within the
|
|
// payment flow generated above. The order of asserts corresponds to
|
|
// increasing of time is needed to embed the HTLC in commitment
|
|
// transaction, in channel Carol->Alice->Bob, order is Bob,Alice,Carol.
|
|
const sourceBal = int64(95000)
|
|
const sinkBal = int64(5000)
|
|
assertAsymmetricBalance(net.Bob, aliceFundPoint, sinkBal, sourceBal)
|
|
assertAsymmetricBalance(net.Alice, aliceFundPoint, sourceBal, sinkBal)
|
|
assertAsymmetricBalance(net.Alice, carolFundPoint, sinkBal, sourceBal)
|
|
assertAsymmetricBalance(carol, carolFundPoint, sourceBal, sinkBal)
|
|
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
|
|
|
|
// Finally, shutdown the node we created for the duration of the tests,
|
|
// only leaving the two seed nodes (Alice and Bob) within our test
|
|
// network.
|
|
if err := carol.shutdown(); err != nil {
|
|
t.Fatalf("unable to shutdown carol: %v", err)
|
|
}
|
|
}
|
|
|
|
func testInvoiceSubscriptions(net *networkHarness, t *harnessTest) {
|
|
const chanAmt = btcutil.Amount(500000)
|
|
ctxb := context.Background()
|
|
timeout := time.Duration(time.Second * 5)
|
|
|
|
// Open a channel with 500k satoshis between Alice and Bob with Alice
|
|
// being the sole funder of the channel.
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
|
|
chanAmt, 0)
|
|
|
|
// Next create a new invoice for Bob requesting 1k satoshis.
|
|
// TODO(roasbeef): make global list of invoices for each node to re-use
|
|
// and avoid collisions
|
|
const paymentAmt = 1000
|
|
preimage := bytes.Repeat([]byte{byte(90)}, 32)
|
|
invoice := &lnrpc.Invoice{
|
|
Memo: "testing",
|
|
RPreimage: preimage,
|
|
Value: paymentAmt,
|
|
}
|
|
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice: %v", err)
|
|
}
|
|
|
|
// Create a new invoice subscription client for Bob, the notification
|
|
// should be dispatched shortly below.
|
|
req := &lnrpc.InvoiceSubscription{}
|
|
bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctxb, req)
|
|
if err != nil {
|
|
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
|
|
}
|
|
|
|
updateSent := make(chan struct{})
|
|
go func() {
|
|
invoiceUpdate, err := bobInvoiceSubscription.Recv()
|
|
if err != nil {
|
|
t.Fatalf("unable to recv invoice update: %v", err)
|
|
}
|
|
|
|
// The invoice update should exactly match the invoice created
|
|
// above, but should now be settled.
|
|
if !invoiceUpdate.Settled {
|
|
t.Fatalf("invoice not settled but shoudl be")
|
|
}
|
|
if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
|
|
t.Fatalf("payment preimages don't match: expected %v, got %v",
|
|
invoice.RPreimage, invoiceUpdate.RPreimage)
|
|
}
|
|
|
|
close(updateSent)
|
|
}()
|
|
|
|
// With the assertion above set up, send a payment from Alice to Bob
|
|
// which should finalize and settle the invoice.
|
|
time.Sleep(time.Millisecond * 500)
|
|
sendStream, err := net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create alice payment stream: %v", err)
|
|
}
|
|
sendReq := &lnrpc.SendRequest{
|
|
PaymentHash: invoiceResp.RHash,
|
|
Dest: net.Bob.PubKey[:],
|
|
Amt: paymentAmt,
|
|
}
|
|
if err := sendStream.Send(sendReq); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
if _, err := sendStream.Recv(); err != nil {
|
|
t.Fatalf("error when attempting recv: %v", err)
|
|
}
|
|
|
|
select {
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("update not sent after 5 seconds")
|
|
case <-updateSent: // Fall through on success
|
|
}
|
|
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
|
|
}
|
|
|
|
// testBasicChannelCreation test multiple channel opening and closing.
|
|
func testBasicChannelCreation(net *networkHarness, t *harnessTest) {
|
|
const (
|
|
numChannels = 2
|
|
timeout = time.Duration(time.Second * 5)
|
|
amount = btcutil.Amount(btcutil.SatoshiPerBitcoin)
|
|
)
|
|
|
|
// Open the channel between Alice and Bob, asserting that the
|
|
// channel has been properly open on-chain.
|
|
chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
|
|
for i := 0; i < numChannels; i++ {
|
|
ctx, _ := context.WithTimeout(context.Background(), timeout)
|
|
chanPoints[i] = openChannelAndAssert(ctx, t, net, net.Alice,
|
|
net.Bob, amount, 0)
|
|
}
|
|
|
|
// Close the channel between Alice and Bob, asserting that the
|
|
// channel has been properly closed on-chain.
|
|
for _, chanPoint := range chanPoints {
|
|
ctx, _ := context.WithTimeout(context.Background(), timeout)
|
|
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
|
|
}
|
|
}
|
|
|
|
// testMaxPendingChannels checks that error is returned from remote peer if
|
|
// max pending channel number was exceeded and that '--maxpendingchannels' flag
|
|
// exists and works properly.
|
|
func testMaxPendingChannels(net *networkHarness, t *harnessTest) {
|
|
maxPendingChannels := defaultMaxPendingChannels + 1
|
|
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin)
|
|
|
|
timeout := time.Duration(time.Second * 10)
|
|
ctx, _ := context.WithTimeout(context.Background(), timeout)
|
|
|
|
// Create a new node (Carol) with greater number of max pending
|
|
// channels.
|
|
args := []string{
|
|
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
|
|
}
|
|
carol, err := net.NewNode(args)
|
|
if err != nil {
|
|
t.Fatalf("unable to create new nodes: %v", err)
|
|
}
|
|
|
|
ctx, _ = context.WithTimeout(context.Background(), timeout)
|
|
if err := net.ConnectNodes(ctx, net.Alice, carol); err != nil {
|
|
t.Fatalf("unable to connect carol to alice: %v", err)
|
|
}
|
|
|
|
ctx, _ = context.WithTimeout(context.Background(), timeout)
|
|
carolBalance := btcutil.Amount(maxPendingChannels) * amount
|
|
if err := net.SendCoins(ctx, carolBalance, carol); err != nil {
|
|
t.Fatalf("unable to send coins to carol: %v", err)
|
|
}
|
|
|
|
// Send open channel requests without generating new blocks thereby
|
|
// increasing pool of pending channels. Then check that we can't
|
|
// open the channel if the number of pending channels exceed
|
|
// max value.
|
|
openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
|
|
for i := 0; i < maxPendingChannels; i++ {
|
|
ctx, _ = context.WithTimeout(context.Background(), timeout)
|
|
stream, err := net.OpenChannel(ctx, net.Alice, carol, amount,
|
|
0, 1)
|
|
if err != nil {
|
|
t.Fatalf("unable to open channel: %v", err)
|
|
}
|
|
openStreams[i] = stream
|
|
}
|
|
|
|
// Carol exhausted available amount of pending channels, next open
|
|
// channel request should cause ErrorGeneric to be sent back to Alice.
|
|
ctx, _ = context.WithTimeout(context.Background(), timeout)
|
|
_, err = net.OpenChannel(ctx, net.Alice, carol, amount, 0, 1)
|
|
if err == nil {
|
|
t.Fatalf("error wasn't received")
|
|
} else if grpc.Code(err) != lnwire.ErrMaxPendingChannels.ToGrpcCode() {
|
|
t.Fatalf("not expected error was received: %v", err)
|
|
}
|
|
|
|
// For now our channels are in pending state, in order to not
|
|
// interfere with other tests we should clean up - complete opening
|
|
// of the channel and then close it.
|
|
|
|
// Mine a block, then wait for node's to notify us that the channel
|
|
// has been opened. The funding transactions should be found within the
|
|
// newly mined block.
|
|
block := mineBlocks(t, net, 1)[0]
|
|
|
|
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
|
|
for i, stream := range openStreams {
|
|
ctxt, _ := context.WithTimeout(context.Background(), timeout)
|
|
fundingChanPoint, err := net.WaitForChannelOpen(ctxt, stream)
|
|
if err != nil {
|
|
t.Fatalf("error while waiting for channel open: %v", err)
|
|
}
|
|
|
|
fundingTxID, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
|
|
if err != nil {
|
|
t.Fatalf("unable to create sha hash: %v", err)
|
|
}
|
|
|
|
assertTxInBlock(t, block, fundingTxID)
|
|
|
|
// The channel should be listed in the peer information
|
|
// returned by both peers.
|
|
chanPoint := wire.OutPoint{
|
|
Hash: *fundingTxID,
|
|
Index: fundingChanPoint.OutputIndex,
|
|
}
|
|
time.Sleep(time.Millisecond * 500)
|
|
if err := net.AssertChannelExists(ctx, net.Alice, &chanPoint); err != nil {
|
|
t.Fatalf("unable to assert channel existence: %v", err)
|
|
}
|
|
|
|
chanPoints[i] = fundingChanPoint
|
|
}
|
|
|
|
// Next, close the channel between Alice and Carol, asserting that the
|
|
// channel has been properly closed on-chain.
|
|
for _, chanPoint := range chanPoints {
|
|
ctxt, _ := context.WithTimeout(context.Background(), timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
|
|
}
|
|
|
|
// Finally, shutdown the node we created for the duration of the tests,
|
|
// only leaving the two seed nodes (Alice and Bob) within our test
|
|
// network.
|
|
if err := carol.shutdown(); err != nil {
|
|
t.Fatalf("unable to shutdown carol: %v", err)
|
|
}
|
|
}
|
|
|
|
func copyFile(dest, src string) error {
|
|
s, err := os.Open(src)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
defer s.Close()
|
|
|
|
d, err := os.Create(dest)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if _, err := io.Copy(d, s); err != nil {
|
|
d.Close()
|
|
return err
|
|
}
|
|
|
|
return d.Close()
|
|
|
|
}
|
|
|
|
func testRevokedCloseRetribution(net *networkHarness, t *harnessTest) {
|
|
ctxb := context.Background()
|
|
const (
|
|
timeout = time.Duration(time.Second * 5)
|
|
chanAmt = btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
|
|
paymentAmt = 10000
|
|
numInvoices = 6
|
|
)
|
|
|
|
// In order to test Alice's response to an uncooperative channel
|
|
// closure by Bob, we'll first open up a channel between them with a
|
|
// 0.5 BTC value.
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
|
|
chanAmt, 0)
|
|
|
|
// With the channel open, we'll create a few invoices for Bob that
|
|
// Alice will pay to in order to advance the state of the channel.
|
|
bobPaymentHashes := make([][]byte, numInvoices)
|
|
for i := 0; i < numInvoices; i++ {
|
|
preimage := bytes.Repeat([]byte{byte(255 - i)}, 32)
|
|
invoice := &lnrpc.Invoice{
|
|
Memo: "testing",
|
|
RPreimage: preimage,
|
|
Value: paymentAmt,
|
|
}
|
|
resp, err := net.Bob.AddInvoice(ctxb, invoice)
|
|
if err != nil {
|
|
t.Fatalf("unable to add invoice: %v", err)
|
|
}
|
|
|
|
bobPaymentHashes[i] = resp.RHash
|
|
}
|
|
|
|
// As we'll be querying the state of bob's channels frequently we'll
|
|
// create a closure helper function for the purpose.
|
|
getBobChanInfo := func() (*lnrpc.ActiveChannel, error) {
|
|
req := &lnrpc.ListChannelsRequest{}
|
|
bobChannelInfo, err := net.Bob.ListChannels(ctxb, req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(bobChannelInfo.Channels) != 1 {
|
|
t.Fatalf("bob should only have a single channel, instead he has %v",
|
|
len(bobChannelInfo.Channels))
|
|
}
|
|
|
|
return bobChannelInfo.Channels[0], nil
|
|
}
|
|
|
|
// Open up a payment stream to Alice that we'll use to send payment to
|
|
// Bob. We also create a small helper function to send payments to Bob,
|
|
// consuming the payment hashes we generated above.
|
|
alicePayStream, err := net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment stream for alice: %v", err)
|
|
}
|
|
sendPayments := func(start, stop int) error {
|
|
for i := start; i < stop; i++ {
|
|
sendReq := &lnrpc.SendRequest{
|
|
PaymentHash: bobPaymentHashes[i],
|
|
Dest: net.Bob.PubKey[:],
|
|
Amt: paymentAmt,
|
|
}
|
|
if err := alicePayStream.Send(sendReq); err != nil {
|
|
return err
|
|
}
|
|
if _, err := alicePayStream.Recv(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Send payments from Alice to Bob using 3 of Bob's payment hashes
|
|
// generated above.
|
|
if err := sendPayments(0, numInvoices/2); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// Next query for Bob's channel state, as we sent 3 payments of 10k
|
|
// satoshis each, Bob should now see his balance as being 30k satoshis.
|
|
bobChan, err := getBobChanInfo()
|
|
if err != nil {
|
|
t.Fatalf("unable to get bob's channel info: %v", err)
|
|
}
|
|
if bobChan.LocalBalance != 30000 {
|
|
t.Fatalf("bob's balance is incorrect, got %v, expected %v",
|
|
bobChan.LocalBalance, 30000)
|
|
}
|
|
|
|
// Grab Bob's current commitment height (update number), we'll later
|
|
// revert him to this state after additional updates to force him to
|
|
// broadcast this soon to be revoked state.
|
|
bobStateNumPreCopy := bobChan.NumUpdates
|
|
|
|
// Create a temporary file to house Bob's database state at this
|
|
// particular point in history.
|
|
bobTempDbPath, err := ioutil.TempDir("", "bob-past-state")
|
|
if err != nil {
|
|
t.Fatalf("unable to create temp db folder: %v", err)
|
|
}
|
|
bobTempDbFile := filepath.Join(bobTempDbPath, "channel.db")
|
|
defer os.Remove(bobTempDbPath)
|
|
|
|
// With the temporary file created, copy Bob's current state into the
|
|
// temporary file we created above. Later after more updates, we'll
|
|
// restore this state.
|
|
bobDbPath := filepath.Join(net.Bob.cfg.DataDir, "simnet/channel.db")
|
|
if err := copyFile(bobTempDbFile, bobDbPath); err != nil {
|
|
t.Fatalf("unable to copy database files: %v", err)
|
|
}
|
|
|
|
// Finally, send payments from Alice to Bob, consuming Bob's remaining
|
|
// payment hashes.
|
|
if err := sendPayments(numInvoices/2, numInvoices); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
bobChan, err = getBobChanInfo()
|
|
if err != nil {
|
|
t.Fatalf("unable to get bob chan info: %v", err)
|
|
}
|
|
|
|
// Now we shutdown Bob, copying over the his temporary database state
|
|
// which has the *prior* channel state over his current most up to date
|
|
// state. With this, we essentially force Bob to travel back in time
|
|
// within the channel's history.
|
|
if err = net.RestartNode(net.Bob, func() error {
|
|
return os.Rename(bobTempDbFile, bobDbPath)
|
|
}); err != nil {
|
|
t.Fatalf("unable to restart node: %v", err)
|
|
}
|
|
|
|
// Now query for Bob's channel state, it should show that he's at a
|
|
// state number in the past, not the *latest* state.
|
|
bobChan, err = getBobChanInfo()
|
|
if err != nil {
|
|
t.Fatalf("unable to get bob chan info: %v", err)
|
|
}
|
|
if bobChan.NumUpdates != bobStateNumPreCopy {
|
|
t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
|
|
}
|
|
|
|
// Now force Bob to execute a *force* channel closure by unilaterally
|
|
// broadcasting his current channel state. This is actually the
|
|
// commitment transaction of a prior *revoked* state, so he'll soon
|
|
// feel the wrath of Alice's retribution.
|
|
breachTXID := closeChannelAndAssert(ctxb, t, net, net.Bob, chanPoint,
|
|
true)
|
|
|
|
// Query the mempool for Alice's justice transaction, this should be
|
|
// broadcast as Bob's contract breaching transaction gets confirmed
|
|
// above.
|
|
var justiceTXID *chainhash.Hash
|
|
breakTimeout := time.After(time.Second * 5)
|
|
poll:
|
|
for {
|
|
select {
|
|
case <-breakTimeout:
|
|
t.Fatalf("justice tx not found in mempool")
|
|
default:
|
|
}
|
|
|
|
mempool, err := net.Miner.Node.GetRawMempool()
|
|
if err != nil {
|
|
t.Fatalf("unable to get mempool: %v", err)
|
|
}
|
|
|
|
if len(mempool) == 0 {
|
|
continue
|
|
}
|
|
|
|
justiceTXID = mempool[0]
|
|
break poll
|
|
}
|
|
|
|
// Query for the mempool transaction found above. Then assert that all
|
|
// the inputs of this transaction are spending outputs generated by
|
|
// Bob's breach transaction above.
|
|
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for justice tx: %v", err)
|
|
}
|
|
for _, txIn := range justiceTx.MsgTx().TxIn {
|
|
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
|
|
t.Fatalf("justice tx not spending commitment utxo "+
|
|
"instead is: %v", txIn.PreviousOutPoint)
|
|
}
|
|
}
|
|
|
|
// Now mine a block, this transaction should include Alice's justice
|
|
// transaction which was just accepted into the mempool.
|
|
block := mineBlocks(t, net, 1)[0]
|
|
|
|
// The block should have exactly *two* transactions, one of which is
|
|
// the justice transaction.
|
|
if len(block.Transactions) != 2 {
|
|
t.Fatalf("transaction wasn't mined")
|
|
}
|
|
justiceSha := block.Transactions[1].TxHash()
|
|
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
|
|
t.Fatalf("justice tx wasn't mined")
|
|
}
|
|
|
|
// Finally, obtain Alice's channel state, she shouldn't report any
|
|
// channel as she just successfully brought Bob to justice by sweeping
|
|
// all the channel funds.
|
|
time.Sleep(time.Second * 2)
|
|
req := &lnrpc.ListChannelsRequest{}
|
|
aliceChanInfo, err := net.Alice.ListChannels(ctxb, req)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for alice's channels: %v", err)
|
|
}
|
|
if len(aliceChanInfo.Channels) != 0 {
|
|
t.Fatalf("alice shouldn't have a channel: %v",
|
|
spew.Sdump(aliceChanInfo.Channels))
|
|
}
|
|
}
|
|
|
|
func testHtlcErrorPropagation(net *networkHarness, t *harnessTest) {
|
|
// In this test we wish to exercise the daemon's correct parsing,
|
|
// handling, and propagation of errors that occur while processing a
|
|
// multi-hop payment.
|
|
timeout := time.Duration(time.Second * 5)
|
|
ctxb := context.Background()
|
|
|
|
const chanAmt = btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
|
|
|
|
// First establish a channel with a capacity of 0.5 BTC between Alice
|
|
// and Bob.
|
|
ctxt, _ := context.WithTimeout(ctxb, timeout)
|
|
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
|
|
chanAmt, 0)
|
|
|
|
assertBaseBalance := func() {
|
|
balReq := &lnrpc.ChannelBalanceRequest{}
|
|
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to get channel balance: %v", err)
|
|
}
|
|
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to get channel balance: %v", err)
|
|
}
|
|
if aliceBal.Balance != int64(chanAmt) {
|
|
t.Fatalf("alice has an incorrect balance: expected %v got %v",
|
|
int64(chanAmt), aliceBal)
|
|
}
|
|
if bobBal.Balance != int64(chanAmt) {
|
|
t.Fatalf("bob has an incorrect balance: expected %v got %v",
|
|
int64(chanAmt), bobBal)
|
|
}
|
|
}
|
|
|
|
// Since we'd like to test some multi-hop failure scenarios, we'll
|
|
// introduce another node into our test network: Carol.
|
|
carol, err := net.NewNode(nil)
|
|
if err != nil {
|
|
t.Fatalf("unable to create new nodes: %v", err)
|
|
}
|
|
|
|
// Next, we'll create a connection from Bob to Carol, and open a
|
|
// channel between them so we have the topology: Alice -> Bob -> Carol.
|
|
// The channel created will be of lower capacity that the one created
|
|
// above.
|
|
if err := net.ConnectNodes(ctxb, net.Bob, carol); err != nil {
|
|
t.Fatalf("unable to connect bob to carol: %v", err)
|
|
}
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
const bobChanAmt = btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
|
|
chanPointBob := openChannelAndAssert(ctxt, t, net, net.Bob, carol,
|
|
chanAmt, 0)
|
|
|
|
// Ensure that Alice has Carol in her routing table before proceeding.
|
|
nodeInfoReq := &lnrpc.NodeInfoRequest{
|
|
PubKey: carol.PubKeyStr,
|
|
}
|
|
checkTableTimeout := time.After(time.Second * 10)
|
|
checkTableTicker := time.NewTicker(100 * time.Millisecond)
|
|
defer checkTableTicker.Stop()
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case <-checkTableTicker.C:
|
|
_, err := net.Alice.GetNodeInfo(ctxb, nodeInfoReq)
|
|
if err != nil && strings.Contains(err.Error(),
|
|
"unable to find") {
|
|
|
|
continue
|
|
}
|
|
|
|
break out
|
|
case <-checkTableTimeout:
|
|
t.Fatalf("carol's node announcement didn't propagate within " +
|
|
"the timeout period")
|
|
}
|
|
}
|
|
|
|
// With the channels, open we can now start to test our multi-hop error
|
|
// scenarios. First, we'll generate an invoice from carol that we'll
|
|
// use to test some error cases.
|
|
const payAmt = 10000
|
|
invoiceReq := &lnrpc.Invoice{
|
|
Memo: "kek99",
|
|
Value: payAmt,
|
|
}
|
|
carolInvoice, err := carol.AddInvoice(ctxb, invoiceReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate carol invoice: %v", err)
|
|
}
|
|
|
|
// TODO(roasbeef): return failure response rather than failing entire
|
|
// stream on payment error.
|
|
alicePayStream, err := net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment stream: %v", err)
|
|
}
|
|
|
|
// For the first scenario, we'll test the cancellation of an HTLC with
|
|
// an unknown payment hash.
|
|
sendReq := &lnrpc.SendRequest{
|
|
PaymentHash: bytes.Repeat([]byte("Z"), 32), // Wrong hash.
|
|
Dest: carol.PubKey[:],
|
|
Amt: payAmt,
|
|
}
|
|
if err := alicePayStream.Send(sendReq); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// The payment should've resulted in an error since we went it with the
|
|
// wrong payment hash.
|
|
_, err = alicePayStream.Recv()
|
|
if err == nil {
|
|
t.Fatalf("payment should have been rejected due to invalid " +
|
|
"payment hash")
|
|
} else if !strings.Contains(err.Error(), "preimage") {
|
|
// TODO(roasbeef): make into proper gRPC error code
|
|
t.Fatalf("payment should have failed due to unknown preimage, "+
|
|
"instead failed due to : %v", err)
|
|
}
|
|
|
|
// The balances of all parties should be the same as initially since
|
|
// the HTLC was cancelled.
|
|
assertBaseBalance()
|
|
|
|
// We need to create another payment stream since the first one was
|
|
// closed due to an error.
|
|
alicePayStream, err = net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment stream: %v", err)
|
|
}
|
|
|
|
// Next, we'll test the case of a recognized payHash but, an incorrect
|
|
// value on the extended HTLC.
|
|
sendReq = &lnrpc.SendRequest{
|
|
PaymentHash: carolInvoice.RHash,
|
|
Dest: carol.PubKey[:],
|
|
Amt: 1000, // 10k satoshis are expected.
|
|
}
|
|
if err := alicePayStream.Send(sendReq); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// The payment should fail with an error since we sent 1k satoshis
|
|
// isn't of 10k as was requested.
|
|
_, err = alicePayStream.Recv()
|
|
if err == nil {
|
|
t.Fatalf("payment should have been rejected due to wrong " +
|
|
"HTLC amount")
|
|
} else if !strings.Contains(err.Error(), "htlc value") {
|
|
t.Fatalf("payment should have failed due to wrong amount, "+
|
|
"instead failed due to: %v", err)
|
|
}
|
|
|
|
// The balances of all parties should be the same as initially since
|
|
// the HTLC was cancelled.
|
|
assertBaseBalance()
|
|
|
|
// Next we'll test an error that occurs mid-route due to an outgoing
|
|
// link having insufficient capacity. In order to do so, we'll first
|
|
// need to unbalance the link connecting Bob<->Carol.
|
|
bobPayStream, err := net.Bob.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment stream: %v", err)
|
|
}
|
|
|
|
// To do so, we'll push most of the funds in the channel over to
|
|
// Alice's side, leaving on 10k satoshis of available balance for bob.
|
|
invoiceReq = &lnrpc.Invoice{
|
|
Value: int64(chanAmt) - 10000,
|
|
}
|
|
carolInvoice2, err := carol.AddInvoice(ctxb, invoiceReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate carol invoice: %v", err)
|
|
}
|
|
if err := bobPayStream.Send(&lnrpc.SendRequest{
|
|
PaymentRequest: carolInvoice2.PaymentRequest,
|
|
}); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
if _, err := bobPayStream.Recv(); err != nil {
|
|
t.Fatalf("bob's payment failed: %v", err)
|
|
}
|
|
|
|
// At this point, Alice has 50mil satoshis on her side of the channel,
|
|
// but Bob only has 10k available on his side of the channel. So a
|
|
// payment from Alice to Carol worth 100k satoshis should fail.
|
|
alicePayStream, err = net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment stream: %v", err)
|
|
}
|
|
invoiceReq = &lnrpc.Invoice{
|
|
Value: 100000,
|
|
}
|
|
carolInvoice3, err := carol.AddInvoice(ctxb, invoiceReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate carol invoice: %v", err)
|
|
}
|
|
if err := alicePayStream.Send(&lnrpc.SendRequest{
|
|
PaymentRequest: carolInvoice3.PaymentRequest,
|
|
}); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
_, err = alicePayStream.Recv()
|
|
if err == nil {
|
|
t.Fatalf("payment should fail due to insufficient "+
|
|
"capacity: %v", err)
|
|
} else if !strings.Contains(err.Error(), "capacity") {
|
|
t.Fatalf("payment should fail due to insufficient capacity, "+
|
|
"instead: %v", err)
|
|
}
|
|
|
|
// For our final test, we'll ensure that if a target link isn't
|
|
// available for what ever reason then the payment fails accordingly.
|
|
//
|
|
// We'll attempt to complete the original invoice we created with Carol
|
|
// above, but before we do so, Carol will go offline, resulting in a
|
|
// failed payment.
|
|
if err := carol.shutdown(); err != nil {
|
|
t.Fatalf("unable to shutdown carol: %v", err)
|
|
}
|
|
time.Sleep(time.Second * 2)
|
|
alicePayStream, err = net.Alice.SendPayment(ctxb)
|
|
if err != nil {
|
|
t.Fatalf("unable to create payment stream: %v", err)
|
|
}
|
|
if err := alicePayStream.Send(&lnrpc.SendRequest{
|
|
PaymentRequest: carolInvoice.PaymentRequest,
|
|
}); err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
_, err = alicePayStream.Recv()
|
|
if err == nil {
|
|
t.Fatalf("payment should have failed")
|
|
} else if !strings.Contains(err.Error(), "hop unknown") {
|
|
t.Fatalf("payment should fail due to unknown hop, instead: %v",
|
|
err)
|
|
}
|
|
|
|
// Finally, immediately close the channel. This function will also
|
|
// block until the channel is closed and will additionally assert the
|
|
// relevant channel closing post conditions.
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
|
|
|
|
// Force close Bob's final channel, also mining enough blocks to
|
|
// trigger a sweep of the funds by the utxoNursery.
|
|
// TODO(roasbeef): use config value for default CSV here.
|
|
ctxt, _ = context.WithTimeout(ctxb, timeout)
|
|
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, true)
|
|
if _, err := net.Miner.Node.Generate(5); err != nil {
|
|
t.Fatalf("unable to generate blocks: %v", err)
|
|
}
|
|
}
|
|
|
|
type testCase struct {
|
|
name string
|
|
test func(net *networkHarness, t *harnessTest)
|
|
}
|
|
|
|
var testsCases = []*testCase{
|
|
{
|
|
name: "basic funding flow",
|
|
test: testBasicChannelFunding,
|
|
},
|
|
{
|
|
name: "channel force closure",
|
|
test: testChannelForceClosure,
|
|
},
|
|
{
|
|
name: "channel balance",
|
|
test: testChannelBalance,
|
|
},
|
|
{
|
|
name: "single hop invoice",
|
|
test: testSingleHopInvoice,
|
|
},
|
|
{
|
|
name: "list outgoing payments",
|
|
test: testListPayments,
|
|
},
|
|
{
|
|
name: "max pending channel",
|
|
test: testMaxPendingChannels,
|
|
},
|
|
{
|
|
name: "multi-hop payments",
|
|
test: testMultiHopPayments,
|
|
},
|
|
{
|
|
name: "multiple channel creation",
|
|
test: testBasicChannelCreation,
|
|
},
|
|
{
|
|
name: "invoice update subscription",
|
|
test: testInvoiceSubscriptions,
|
|
},
|
|
{
|
|
name: "multi-hop htlc error propagation",
|
|
test: testHtlcErrorPropagation,
|
|
},
|
|
{
|
|
// TODO(roasbeef): test always needs to be last as Bob's state
|
|
// is borked since we trick him into attempting to cheat Alice?
|
|
name: "revoked uncooperative close retribution",
|
|
test: testRevokedCloseRetribution,
|
|
},
|
|
}
|
|
|
|
// TestLightningNetworkDaemon performs a series of integration tests amongst a
|
|
// programmatically driven network of lnd nodes.
|
|
func TestLightningNetworkDaemon(t *testing.T) {
|
|
ht := newHarnessTest(t)
|
|
|
|
// First create the network harness to gain access to its
|
|
// 'OnTxAccepted' call back.
|
|
lndHarness, err := newNetworkHarness()
|
|
if err != nil {
|
|
ht.Fatalf("unable to create lightning network harness: %v", err)
|
|
}
|
|
defer lndHarness.TearDownAll()
|
|
|
|
handlers := &btcrpcclient.NotificationHandlers{
|
|
OnTxAccepted: lndHarness.OnTxAccepted,
|
|
}
|
|
|
|
// Spawn a new goroutine to watch for any fatal errors that any of the
|
|
// running lnd processes encounter. If an error occurs, then the test
|
|
// fails immediately with a fatal error, as far as fatal is happening
|
|
// inside goroutine main goroutine would not be finished at the same
|
|
// time as we receive fatal error from lnd process.
|
|
testsFin := make(chan struct{})
|
|
go func() {
|
|
select {
|
|
case err := <-lndHarness.ProcessErrors():
|
|
ht.Fatalf("lnd finished with error (stderr): "+
|
|
"\n%v", err)
|
|
case <-testsFin:
|
|
return
|
|
}
|
|
}()
|
|
|
|
// First create an instance of the btcd's rpctest.Harness. This will be
|
|
// used to fund the wallets of the nodes within the test network and to
|
|
// drive blockchain related events within the network. Revert the default
|
|
// setting of accepting non-standard transactions on simnet to reject them.
|
|
// Transactions on the lightning network should always be standard to get
|
|
// better guarantees of getting included in to blocks.
|
|
args := []string{"--rejectnonstd"}
|
|
btcdHarness, err := rpctest.New(harnessNetParams, handlers, args)
|
|
if err != nil {
|
|
ht.Fatalf("unable to create mining node: %v", err)
|
|
}
|
|
defer btcdHarness.TearDown()
|
|
if err := btcdHarness.SetUp(true, 50); err != nil {
|
|
ht.Fatalf("unable to set up mining node: %v", err)
|
|
}
|
|
if err := btcdHarness.Node.NotifyNewTransactions(false); err != nil {
|
|
ht.Fatalf("unable to request transaction notifications: %v", err)
|
|
}
|
|
|
|
// Next mine enough blocks in order for segwit and the CSV package
|
|
// soft-fork to activate on SimNet.
|
|
numBlocks := chaincfg.SimNetParams.MinerConfirmationWindow * 2
|
|
if _, err := btcdHarness.Node.Generate(numBlocks); err != nil {
|
|
ht.Fatalf("unable to generate blocks: %v", err)
|
|
}
|
|
|
|
// With the btcd harness created, we can now complete the
|
|
// initialization of the network. args - list of lnd arguments,
|
|
// example: "--debuglevel=debug"
|
|
// TODO(roasbeef): create master balanced channel with all the monies?
|
|
if err := lndHarness.InitializeSeedNodes(btcdHarness, nil); err != nil {
|
|
ht.Fatalf("unable to initialize seed nodes: %v", err)
|
|
}
|
|
if err = lndHarness.SetUp(); err != nil {
|
|
ht.Fatalf("unable to set up test lightning network: %v", err)
|
|
}
|
|
|
|
t.Logf("Running %v integration tests", len(testsCases))
|
|
for _, testCase := range testsCases {
|
|
ht.RunTestCase(testCase, lndHarness)
|
|
}
|
|
|
|
close(testsFin)
|
|
}
|