lnd.xprv/htlcswitch.go
BitfuryLightning 327768f4ad routing: Move tools inside lnd. Refactor and delete unneeded stuff
Use [33]byte for graph vertex representation.
Delete unneeded stuff:
1. DeepEqual for graph comparison
2. EdgePath
3. 2-thread BFS
4. Table transfer messages and neighborhood radius
5. Beacons

Refactor:
1. Change ID to Vertex
2. Test use table driven approach
3. Add comments
4. Make graph internal representation private
5. Use wire.OutPoint as  EdgeId
6. Decouple routing messages from routing implementation
7. Delete Async methods
8. Delete unneeded channels and priority buffer from manager
9. Delete unneeded interfaces in internal graph realisation
10. Renamed ID to Vertex
2016-11-23 20:37:43 -06:00

698 lines
22 KiB
Go

package main
import (
"encoding/hex"
"fmt"
"sync"
"sync/atomic"
"time"
"golang.org/x/crypto/ripemd160"
"github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/routing/rt/graph"
"github.com/btcsuite/fastsha256"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
const (
// htlcQueueSize...
// buffer bloat ;)
htlcQueueSize = 50
)
// link represents a an active channel capable of forwarding HTLC's. Each
// active channel registered with the htlc switch creates a new link which will
// be used for forwarding outgoing HTLC's. The link also has additional
// meta-data such as the current available bandwidth of the link (in satoshis)
// which aide the switch in optimally forwarding HTLC's.
type link struct {
capacity btcutil.Amount
availableBandwidth int64 // atomic
linkChan chan *htlcPacket
peer *peer
chanPoint *wire.OutPoint
}
// htlcPacket is a wrapper around an lnwire message which adds, times out, or
// settles an active HTLC. The dest field denotes the name of the interface to
// forward this htlcPacket on.
type htlcPacket struct {
sync.RWMutex
dest wire.ShaHash
index uint32
srcLink wire.OutPoint
onion *sphinx.ProcessedPacket
msg lnwire.Message
amt btcutil.Amount
err chan error
}
// circuitKey uniquely identifies an active Sphinx (onion routing) circuit
// between two open channels. Currently, the rHash of the HTLC which created
// the circuit is used to uniquely identify each circuit.
// TODO(roasbeef): need to also add in the settle/clear channel points in order
// to support fragmenting payments on the link layer: 1 to N, N to N, etc.
type circuitKey [32]byte
// paymentCircuit represents an active Sphinx (onion routing) circuit between
// two active links within the htlcSwitch. A payment circuit is created once a
// link forwards an HTLC add request which initites the creation of the ciruit.
// The onion routing informtion contained within this message is used to
// identify the settle/clear ends of the circuit. A circuit may be re-used (not
// torndown) in the case that multiple HTLC's with the send RHash are sent.
type paymentCircuit struct {
// TODO(roasbeef): add reference count so know when to delete?
// * atomic int re
// * due to same r-value being re-used?
// NOTE: This integer must be used *atomically*.
refCount uint32
// clear is the link the htlcSwitch will forward the HTLC add message
// that initiated the circuit to. Once the message is forwarded, the
// payment circuit is considered "active" from the POV of the switch as
// both the incoming/outgoing channels have the cleared HTLC within
// their latest state.
clear *link
// settle is the link the htlcSwitch will forward the HTLC settle it
// receives from the outgoing peer to. Once the switch forwards the
// settle message to this link, the payment circuit is considered
// complete unless the reference count on the circuit is greater than
// 1.
settle *link
}
// HtlcSwitch is a central messaging bus for all incoming/outgoing HTLC's.
// Connected peers with active channels are treated as named interfaces which
// refer to active channels as links. A link is the switche's message
// communication point with the goroutine that manages an active channel. New
// links are registered each time a channel is created, and unregistered once
// the channel is closed. The switch manages the hand-off process for multi-hop
// HTLC's, forwarding HTLC's initiated from within the daemon, and additionally
// splitting up incoming/outgoing HTLC's to a particular interface amongst many
// links (payment fragmentation).
// TODO(roasbeef): active sphinx circuits need to be synced to disk
type htlcSwitch struct {
started int32 // atomic
shutdown int32 // atomic
// chanIndex maps a channel's outpoint to a link which contains
// additional information about the channel, and additionally houses a
// pointer to the peer mangaing the channel.
chanIndexMtx sync.RWMutex
chanIndex map[wire.OutPoint]*link
// interfaces maps a node's ID to the set of links (active channels) we
// currently have open with that peer.
// TODO(roasbeef): combine w/ onionIndex?
interfaceMtx sync.RWMutex
interfaces map[wire.ShaHash][]*link
// onionIndex is an index used to properly forward a message
// to the next hop within a Sphinx circuit. Within the sphinx packets,
// the "next-hop" destination is encoded as the hash160 of the node's
// public key serialized in compressed format.
onionMtx sync.RWMutex
onionIndex map[[ripemd160.Size]byte][]*link
// paymentCircuits maps a circuit key to an active payment circuit
// amongst two oepn channels. This map is used to properly clear/settle
// onion routed payments within the network.
paymentCircuits map[circuitKey]*paymentCircuit
// linkControl is a channel used by connected links to notify the
// switch of a non-multi-hop triggered link state update.
linkControl chan interface{}
// outgoingPayments is a channel that outgoing payments initiated by
// the RPC system.
outgoingPayments chan *htlcPacket
// htlcPlex is the channel in which all connected links use to
// coordinate the setup/tear down of Sphinx (onion routing) payment
// circuits. Active links forward any add/settle messages over this
// channel each state transition, sending new adds/settles which are
// fully locked in.
htlcPlex chan *htlcPacket
gateway []byte
router *routing.RoutingManager
// TODO(roasbeef): messaging chan to/from upper layer (routing - L3)
// TODO(roasbeef): sampler to log sat/sec and tx/sec
wg sync.WaitGroup
quit chan struct{}
}
// newHtlcSwitch creates a new htlcSwitch.
func newHtlcSwitch(gateway []byte, r *routing.RoutingManager) *htlcSwitch {
return &htlcSwitch{
router: r,
gateway: gateway,
chanIndex: make(map[wire.OutPoint]*link),
interfaces: make(map[wire.ShaHash][]*link),
onionIndex: make(map[[ripemd160.Size]byte][]*link),
paymentCircuits: make(map[circuitKey]*paymentCircuit),
linkControl: make(chan interface{}),
htlcPlex: make(chan *htlcPacket, htlcQueueSize),
outgoingPayments: make(chan *htlcPacket, htlcQueueSize),
quit: make(chan struct{}),
}
}
// Start starts all helper goroutines required for the operation of the switch.
func (h *htlcSwitch) Start() error {
if !atomic.CompareAndSwapInt32(&h.started, 0, 1) {
return nil
}
h.wg.Add(2)
go h.networkAdmin()
go h.htlcForwarder()
return nil
}
// Stop gracefully stops all active helper goroutines, then waits until they've
// exited.
func (h *htlcSwitch) Stop() error {
if !atomic.CompareAndSwapInt32(&h.shutdown, 0, 1) {
return nil
}
close(h.quit)
h.wg.Wait()
return nil
}
// SendHTLC queues a HTLC packet for forwarding over the designated interface.
// In the event that the interface has insufficient capacity for the payment,
// an error is returned. Additionally, if the interface cannot be found, an
// alternative error is returned.
func (h *htlcSwitch) SendHTLC(htlcPkt *htlcPacket) error {
htlcPkt.err = make(chan error, 1)
h.outgoingPayments <- htlcPkt
return <-htlcPkt.err
}
// htlcForwarder is responsible for optimally forwarding (and possibly
// fragmenting) incoming/outgoing HTLC's amongst all active interfaces and
// their links. The duties of the forwarder are similar to that of a network
// switch, in that it facilitates multi-hop payments by acting as a central
// messaging bus. The switch communicates will active links to create, manage,
// and tear down active onion routed payments.Each active channel is modeled
// as networked device with meta-data such as the available payment bandwidth,
// and total link capacity.
func (h *htlcSwitch) htlcForwarder() {
// TODO(roasbeef): track pending payments here instead of within each peer?
// Examine settles/timeouts from htlcPlex. Add src to htlcPacket, key by
// (src, htlcKey).
// TODO(roasbeef): cleared vs settled distinction
var numUpdates uint64
var satSent, satRecv btcutil.Amount
logTicker := time.NewTicker(10 * time.Second)
out:
for {
select {
case htlcPkt := <-h.outgoingPayments:
dest := htlcPkt.dest
h.interfaceMtx.RLock()
chanInterface, ok := h.interfaces[dest]
h.interfaceMtx.RUnlock()
if !ok {
err := fmt.Errorf("Unable to locate link %x",
dest[:])
hswcLog.Errorf(err.Error())
htlcPkt.err <- err
continue
}
wireMsg := htlcPkt.msg.(*lnwire.HTLCAddRequest)
amt := btcutil.Amount(wireMsg.Amount)
// Handle this send request in a distinct goroutine in
// order to avoid a possible deadlock between the htlc
// switch and channel's htlc manager.
for _, link := range chanInterface {
// TODO(roasbeef): implement HTLC fragmentation
// * avoid full channel depletion at higher
// level (here) instead of within state
// machine?
if link.availableBandwidth < int64(amt) {
continue
}
hswcLog.Tracef("Sending %v to %x", amt, dest[:])
go func() {
link.linkChan <- htlcPkt
}()
n := atomic.AddInt64(&link.availableBandwidth,
-int64(amt))
hswcLog.Tracef("Decrementing link %v bandwidth to %v",
link.chanPoint, n)
continue out
}
hswcLog.Errorf("Unable to send payment, insufficient capacity")
htlcPkt.err <- fmt.Errorf("Insufficient capacity")
case pkt := <-h.htlcPlex:
// TODO(roasbeef): properly account with cleared vs settled
numUpdates += 1
hswcLog.Tracef("plex packet: %v", newLogClosure(func() string {
return spew.Sdump(pkt)
}))
switch wireMsg := pkt.msg.(type) {
// A link has just forwarded us a new HTLC, therefore
// we initiate the payment circuit within our internal
// state so we can properly forward the ultimate
// settle message.
case *lnwire.HTLCAddRequest:
// Create the two ends of the payment circuit
// required to ensure completion of this new
// payment.
nextHop := pkt.onion.NextHop
h.onionMtx.RLock()
clearLink, ok := h.onionIndex[nextHop]
h.onionMtx.RUnlock()
if !ok {
hswcLog.Errorf("unable to find dest end of "+
"circuit: %x", nextHop)
continue
}
h.chanIndexMtx.RLock()
settleLink := h.chanIndex[pkt.srcLink]
h.chanIndexMtx.RUnlock()
// TODO(roasbeef): examine per-hop info to decide on link?
// * check clear has enough available sat
circuit := &paymentCircuit{
clear: clearLink[0],
settle: settleLink,
}
cKey := circuitKey(wireMsg.RedemptionHashes[0])
h.paymentCircuits[cKey] = circuit
hswcLog.Debugf("Creating onion circuit for %x: %v<->%v",
cKey[:], clearLink[0].chanPoint,
settleLink.chanPoint)
// With the circuit initiated, send the htlcPkt
// to the clearing link within the circuit to
// continue propagating the HTLC across the
// network.
circuit.clear.linkChan <- &htlcPacket{
msg: wireMsg,
err: make(chan error, 1),
}
// Reduce the available bandwidth for the link
// as it will clear the above HTLC, increasing
// the limbo balance within the channel.
n := atomic.AddInt64(&circuit.clear.availableBandwidth,
-int64(pkt.amt))
hswcLog.Tracef("Decrementing link %v bandwidth to %v",
circuit.clear.chanPoint, n)
satRecv += pkt.amt
// We've just received a settle message which means we
// can finalize the payment circuit by forwarding the
// settle msg to the link which initially created the
// circuit.
case *lnwire.HTLCSettleRequest:
rHash := fastsha256.Sum256(wireMsg.RedemptionProofs[0][:])
var cKey circuitKey
copy(cKey[:], rHash[:])
// If we initiated the payment then there won't
// be an active circuit to continue propagating
// the settle over. Therefore, we exit early.
circuit, ok := h.paymentCircuits[cKey]
if !ok {
hswcLog.Debugf("No existing circuit "+
"for %x", rHash[:])
satSent += pkt.amt
continue
}
hswcLog.Debugf("Closing completed onion "+
"circuit for %x: %v<->%v", rHash[:],
circuit.clear.chanPoint,
circuit.settle.chanPoint)
circuit.settle.linkChan <- &htlcPacket{
msg: wireMsg,
err: make(chan error, 1),
}
// Increase the available bandwidth for the
// link as it will settle the above HTLC,
// subtracting from the limbo balacne and
// incrementing its local balance.
n := atomic.AddInt64(&circuit.settle.availableBandwidth,
int64(pkt.amt))
hswcLog.Tracef("Incrementing link %v bandwidth to %v",
circuit.settle.chanPoint, n)
satSent += pkt.amt
}
case <-logTicker.C:
if numUpdates == 0 {
continue
}
hswcLog.Infof("Sent %v satoshis, received %v satoshi in "+
"the last 10 seconds (%v tx/sec)",
satSent.ToUnit(btcutil.AmountSatoshi),
satRecv.ToUnit(btcutil.AmountSatoshi),
float64(numUpdates)/10)
satSent = 0
satRecv = 0
numUpdates = 0
case <-h.quit:
break out
}
}
h.wg.Done()
}
// networkAdmin is responsible for handline requests to register, unregister,
// and close any link. In the event that a unregister requests leaves an
// interface with no active links, that interface is garbage collected.
func (h *htlcSwitch) networkAdmin() {
out:
for {
select {
case msg := <-h.linkControl:
switch req := msg.(type) {
case *closeLinkReq:
h.handleCloseLink(req)
case *registerLinkMsg:
h.handleRegisterLink(req)
case *unregisterLinkMsg:
h.handleUnregisterLink(req)
case *linkInfoUpdateMsg:
h.handleLinkUpdate(req)
}
case <-h.quit:
break out
}
}
h.wg.Done()
}
// handleRegisterLink registers a new link within the channel index, and also
// adds the link to the existing set of links for the target interface.
func (h *htlcSwitch) handleRegisterLink(req *registerLinkMsg) {
chanPoint := req.linkInfo.ChannelPoint
newLink := &link{
capacity: req.linkInfo.Capacity,
availableBandwidth: int64(req.linkInfo.LocalBalance),
linkChan: req.linkChan,
peer: req.peer,
chanPoint: chanPoint,
}
// First update the channel index with this new channel point. The
// channel index will be used to quickly lookup channels in order to:
// close them, update their link capacity, or possibly during multi-hop
// HTLC forwarding.
h.chanIndexMtx.Lock()
h.chanIndex[*chanPoint] = newLink
h.chanIndexMtx.Unlock()
interfaceID := req.peer.lightningID
h.interfaceMtx.Lock()
h.interfaces[interfaceID] = append(h.interfaces[interfaceID], newLink)
h.interfaceMtx.Unlock()
// Next, update the onion index which is used to look up the
// settle/clear links during multi-hop payments and to dispatch
// outgoing payments initiated by a local sub-system.
var onionId [ripemd160.Size]byte
copy(onionId[:], btcutil.Hash160(req.peer.addr.IdentityKey.SerializeCompressed()))
h.onionMtx.Lock()
h.onionIndex[onionId] = h.interfaces[interfaceID]
h.onionMtx.Unlock()
hswcLog.Infof("registering new link, interface=%x, onion_link=%x, "+
"chan_point=%v, capacity=%v", interfaceID[:], onionId,
chanPoint, newLink.capacity)
if req.done != nil {
req.done <- struct{}{}
}
}
// handleUnregisterLink unregisters a currently active link. If the deletion of
// this link leaves the interface empty, then the interface entry itself is
// also deleted.
func (h *htlcSwitch) handleUnregisterLink(req *unregisterLinkMsg) {
hswcLog.Infof("unregistering active link, interface=%v, chan_point=%v",
hex.EncodeToString(req.chanInterface[:]), req.chanPoint)
chanInterface := req.chanInterface
h.interfaceMtx.RLock()
links := h.interfaces[chanInterface]
h.interfaceMtx.RUnlock()
// A request with a nil channel point indicates that all the current
// links for this channel should be cleared.
chansRemoved := make([]*wire.OutPoint, 0, len(links))
if req.chanPoint == nil {
hswcLog.Infof("purging all active links for interface %v",
hex.EncodeToString(chanInterface[:]))
for _, link := range links {
h.chanIndexMtx.Lock()
delete(h.chanIndex, *link.chanPoint)
h.chanIndexMtx.Unlock()
chansRemoved = append(chansRemoved, link.chanPoint)
}
links = nil
} else {
h.chanIndexMtx.Lock()
delete(h.chanIndex, *req.chanPoint)
h.chanIndexMtx.Unlock()
for i := 0; i < len(links); i++ {
chanLink := links[i]
if chanLink.chanPoint == req.chanPoint {
chansRemoved = append(chansRemoved, req.chanPoint)
// We perform an in-place delete by sliding
// every element down one, then slicing off the
// last element. Additionally, we update the
// slice reference within the source map to
// ensure full deletion.
copy(links[i:], links[i+1:])
links[len(links)-1] = nil
h.interfaceMtx.Lock()
h.interfaces[chanInterface] = links[:len(links)-1]
h.interfaceMtx.Unlock()
break
}
}
}
// Purge the now inactive channels from the routing table.
// TODO(roasbeef): routing layer should only see the links as a
// summation of their capacity/etc
// * distinction between connection close and channel close
for _, linkChan := range chansRemoved {
err := h.router.RemoveChannel(
graph.NewVertex(h.gateway),
graph.NewVertex(req.remoteID),
graph.NewEdgeID(*linkChan),
)
if err != nil {
hswcLog.Errorf("unable to remove channel from "+
"routing table: %v", err)
}
}
// TODO(roasbeef): clean up/modify onion links
// * just have the interfaces index be keyed on hash160?
if len(links) == 0 {
hswcLog.Infof("interface %v has no active links, destroying",
hex.EncodeToString(chanInterface[:]))
h.interfaceMtx.Lock()
delete(h.interfaces, chanInterface)
h.interfaceMtx.Unlock()
}
if req.done != nil {
req.done <- struct{}{}
}
}
// handleCloseLink sends a message to the peer responsible for the target
// channel point, instructing it to initiate a cooperative channel closure.
func (h *htlcSwitch) handleCloseLink(req *closeLinkReq) {
h.chanIndexMtx.RLock()
targetLink, ok := h.chanIndex[*req.chanPoint]
h.chanIndexMtx.RUnlock()
if !ok {
req.err <- fmt.Errorf("channel point %v not found", req.chanPoint)
return
}
hswcLog.Infof("requesting interface %v to close link %v",
hex.EncodeToString(targetLink.peer.lightningID[:]), req.chanPoint)
targetLink.peer.localCloseChanReqs <- req
}
// handleLinkUpdate processes the link info update message by adjusting the
// channels available bandwidth by the delta specified within the message.
func (h *htlcSwitch) handleLinkUpdate(req *linkInfoUpdateMsg) {
h.chanIndexMtx.RLock()
link := h.chanIndex[*req.targetLink]
h.chanIndexMtx.RUnlock()
atomic.AddInt64(&link.availableBandwidth, int64(req.bandwidthDelta))
hswcLog.Tracef("adjusting bandwidth of link %v by %v", req.targetLink,
req.bandwidthDelta)
}
// registerLinkMsg is message which requests a new link to be registered.
type registerLinkMsg struct {
peer *peer
linkInfo *channeldb.ChannelSnapshot
linkChan chan *htlcPacket
done chan struct{}
}
// RegisterLink requests the htlcSwitch to register a new active link. The new
// link encapsulates an active channel. The htlc plex channel is returned. The
// plex channel allows the switch to properly de-multiplex incoming/outgoing
// HTLC messages forwarding them to their proper destination in the multi-hop
// settings.
func (h *htlcSwitch) RegisterLink(p *peer, linkInfo *channeldb.ChannelSnapshot,
linkChan chan *htlcPacket) chan *htlcPacket {
done := make(chan struct{}, 1)
req := &registerLinkMsg{p, linkInfo, linkChan, done}
h.linkControl <- req
<-done
return h.htlcPlex
}
// unregisterLinkMsg is a message which requests the active link be unregistered.
type unregisterLinkMsg struct {
chanInterface [32]byte
chanPoint *wire.OutPoint
// remoteID is the identity public key of the node we're removing the
// link between. The public key is expected to be serialized in
// compressed form.
// TODO(roasbeef): redo interface map
remoteID []byte
done chan struct{}
}
// UnregisterLink requets the htlcSwitch to unregiser the new active link. An
// unregistered link will no longer be considered a candidate to forward
// HTLC's.
func (h *htlcSwitch) UnregisterLink(remotePub *btcec.PublicKey, chanPoint *wire.OutPoint) {
done := make(chan struct{}, 1)
rawPub := remotePub.SerializeCompressed()
h.linkControl <- &unregisterLinkMsg{
chanInterface: fastsha256.Sum256(rawPub),
chanPoint: chanPoint,
remoteID: rawPub,
done: done,
}
<-done
}
// closeChanReq represents a request to close a particular channel specified
// by its outpoint.
type closeLinkReq struct {
chanPoint *wire.OutPoint
forceClose bool
updates chan *lnrpc.CloseStatusUpdate
err chan error
}
// CloseLink closes an active link targetted by it's channel point. Closing the
// link initiates a cooperative channel closure iff forceClose is false. If
// forceClose is true, then a unilateral channel closure is executed.
// TODO(roabeef): bool flag for timeout
func (h *htlcSwitch) CloseLink(chanPoint *wire.OutPoint,
forceClose bool) (chan *lnrpc.CloseStatusUpdate, chan error) {
updateChan := make(chan *lnrpc.CloseStatusUpdate, 1)
errChan := make(chan error, 1)
h.linkControl <- &closeLinkReq{
chanPoint: chanPoint,
forceClose: forceClose,
updates: updateChan,
err: errChan,
}
return updateChan, errChan
}
// linkInfoUpdateMsg encapsulates a request for the htlc switch to update the
// meta-data related to the target link.
type linkInfoUpdateMsg struct {
targetLink *wire.OutPoint
bandwidthDelta btcutil.Amount
}
// UpdateLink sends a message to the switch to update the available bandwidth
// within the link by the passed satoshi delta. This function may be used when
// re-anchoring to boost the capacity of a channel, or once a peer settles an
// HTLC invoice.
func (h *htlcSwitch) UpdateLink(chanPoint *wire.OutPoint, bandwidthDelta btcutil.Amount) {
h.linkControl <- &linkInfoUpdateMsg{chanPoint, bandwidthDelta}
}