lnd.xprv/rpcserver.go
2017-01-14 18:16:59 -08:00

1741 lines
53 KiB
Go

package main
import (
"bytes"
"crypto/rand"
"encoding/hex"
"fmt"
"io"
"math"
"net"
"strings"
"time"
"sync"
"sync/atomic"
"github.com/btcsuite/fastsha256"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/zpay32"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
"github.com/roasbeef/btcwallet/waddrmgr"
"golang.org/x/net/context"
)
var (
defaultAccount uint32 = waddrmgr.DefaultAccountNum
)
// rpcServer is a gRPC, RPC front end to the lnd daemon.
// TODO(roasbeef): pagination support for the list-style calls
type rpcServer struct {
started int32 // To be used atomically.
shutdown int32 // To be used atomically.
server *server
wg sync.WaitGroup
quit chan struct{}
}
// A compile time check to ensure that rpcServer fully implements the
// LightningServer gRPC service.
var _ lnrpc.LightningServer = (*rpcServer)(nil)
// newRpcServer creates and returns a new instance of the rpcServer.
func newRpcServer(s *server) *rpcServer {
return &rpcServer{server: s, quit: make(chan struct{}, 1)}
}
// Start launches any helper goroutines required for the rpcServer
// to function.
func (r *rpcServer) Start() error {
if atomic.AddInt32(&r.started, 1) != 1 {
return nil
}
return nil
}
// Stop signals any active goroutines for a graceful closure.
func (r *rpcServer) Stop() error {
if atomic.AddInt32(&r.shutdown, 1) != 1 {
return nil
}
close(r.quit)
return nil
}
// addrPairsToOutputs converts a map describing a set of outputs to be created,
// the outputs themselves. The passed map pairs up an address, to a desired
// output value amount. Each address is converted to its corresponding pkScript
// to be used within the constructed output(s).
func addrPairsToOutputs(addrPairs map[string]int64) ([]*wire.TxOut, error) {
outputs := make([]*wire.TxOut, 0, len(addrPairs))
for addr, amt := range addrPairs {
addr, err := btcutil.DecodeAddress(addr, activeNetParams.Params)
if err != nil {
return nil, err
}
pkscript, err := txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
outputs = append(outputs, wire.NewTxOut(amt, pkscript))
}
return outputs, nil
}
// sendCoinsOnChain makes an on-chain transaction in or to send coins to one or
// more addresses specified in the passed payment map. The payment map maps an
// address to a specified output value to be sent to that address.
func (r *rpcServer) sendCoinsOnChain(paymentMap map[string]int64) (*chainhash.Hash, error) {
outputs, err := addrPairsToOutputs(paymentMap)
if err != nil {
return nil, err
}
return r.server.lnwallet.SendOutputs(outputs)
}
// SendCoins executes a request to send coins to a particular address. Unlike
// SendMany, this RPC call only allows creating a single output at a time.
func (r *rpcServer) SendCoins(ctx context.Context,
in *lnrpc.SendCoinsRequest) (*lnrpc.SendCoinsResponse, error) {
rpcsLog.Infof("[sendcoins] addr=%v, amt=%v", in.Addr, btcutil.Amount(in.Amount))
paymentMap := map[string]int64{in.Addr: in.Amount}
txid, err := r.sendCoinsOnChain(paymentMap)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendcoins] spend generated txid: %v", txid.String())
return &lnrpc.SendCoinsResponse{Txid: txid.String()}, nil
}
// SendMany handles a request for a transaction create multiple specified
// outputs in parallel.
func (r *rpcServer) SendMany(ctx context.Context,
in *lnrpc.SendManyRequest) (*lnrpc.SendManyResponse, error) {
txid, err := r.sendCoinsOnChain(in.AddrToAmount)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendmany] spend generated txid: %v", txid.String())
return &lnrpc.SendManyResponse{Txid: txid.String()}, nil
}
// NewAddress creates a new address under control of the local wallet.
func (r *rpcServer) NewAddress(ctx context.Context,
in *lnrpc.NewAddressRequest) (*lnrpc.NewAddressResponse, error) {
// Translate the gRPC proto address type to the wallet controller's
// available address types.
var addrType lnwallet.AddressType
switch in.Type {
case lnrpc.NewAddressRequest_WITNESS_PUBKEY_HASH:
addrType = lnwallet.WitnessPubKey
case lnrpc.NewAddressRequest_NESTED_PUBKEY_HASH:
addrType = lnwallet.NestedWitnessPubKey
case lnrpc.NewAddressRequest_PUBKEY_HASH:
addrType = lnwallet.PubKeyHash
}
addr, err := r.server.lnwallet.NewAddress(addrType, false)
if err != nil {
return nil, err
}
rpcsLog.Infof("[newaddress] addr=%v", addr.String())
return &lnrpc.NewAddressResponse{Address: addr.String()}, nil
}
// NewWitnessAddress returns a new native witness address under the control of
// the local wallet.
func (r *rpcServer) NewWitnessAddress(ctx context.Context,
in *lnrpc.NewWitnessAddressRequest) (*lnrpc.NewAddressResponse, error) {
addr, err := r.server.lnwallet.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
return nil, err
}
rpcsLog.Infof("[newaddress] addr=%v", addr.String())
return &lnrpc.NewAddressResponse{Address: addr.String()}, nil
}
// ConnectPeer attempts to establish a connection to a remote peer.
// TODO(roasbeef): also return pubkey and/or identity hash?
func (r *rpcServer) ConnectPeer(ctx context.Context,
in *lnrpc.ConnectPeerRequest) (*lnrpc.ConnectPeerResponse, error) {
if in.Addr == nil {
return nil, fmt.Errorf("need: lnc pubkeyhash@hostname")
}
pubkeyHex, err := hex.DecodeString(in.Addr.Pubkey)
if err != nil {
return nil, err
}
pubkey, err := btcec.ParsePubKey(pubkeyHex, btcec.S256())
if err != nil {
return nil, err
}
host, err := net.ResolveTCPAddr("tcp", in.Addr.Host)
if err != nil {
return nil, err
}
peerAddr := &lnwire.NetAddress{
IdentityKey: pubkey,
Address: host,
ChainNet: activeNetParams.Net,
}
if err := r.server.ConnectToPeer(peerAddr, in.Perm); err != nil {
rpcsLog.Errorf("(connectpeer): error connecting to peer: %v", err)
return nil, err
}
rpcsLog.Debugf("Connected to peer: %v", peerAddr.String())
return &lnrpc.ConnectPeerResponse{}, nil
}
// OpenChannel attempts to open a singly funded channel specified in the
// request to a remote peer.
func (r *rpcServer) OpenChannel(in *lnrpc.OpenChannelRequest,
updateStream lnrpc.Lightning_OpenChannelServer) error {
rpcsLog.Tracef("[openchannel] request to peerid(%v) "+
"allocation(us=%v, them=%v) numconfs=%v", in.TargetPeerId,
in.LocalFundingAmount, in.PushSat, in.NumConfs)
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
// Ensure that the initial balance of the remote party (if pushing
// satoshis) does not execeed the amount the local party has requested
// for funding.
if remoteInitialBalance >= localFundingAmt {
return fmt.Errorf("amount pushed to remote peer for initial " +
"state must be below the local funding amount")
}
var (
nodepubKey *btcec.PublicKey
err error
)
// If the node key is set, the we'll parse the raw bytes into a pubkey
// object so we can easily manipulate it. If this isn't set, then we
// expected the TargetPeerId to be set accordingly.
if len(in.NodePubkey) != 0 {
nodepubKey, err = btcec.ParsePubKey(in.NodePubkey, btcec.S256())
if err != nil {
return err
}
}
// Instruct the server to trigger the necessary events to attempt to
// open a new channel. A stream is returned in place, this stream will
// be used to consume updates of the state of the pending channel.
updateChan, errChan := r.server.OpenChannel(in.TargetPeerId,
nodepubKey, localFundingAmt, remoteInitialBalance, in.NumConfs)
var outpoint wire.OutPoint
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to "+
"identityPub(%x) nor peerID(%v): %v",
nodepubKey.SerializeCompressed(),
in.TargetPeerId, err)
return err
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
if err := updateStream.Send(fundingUpdate); err != nil {
return err
}
// If a final channel open update is being sent, then
// we can break out of our recv loop as we no longer
// need to process any further updates.
switch update := fundingUpdate.Update.(type) {
case *lnrpc.OpenStatusUpdate_ChanOpen:
chanPoint := update.ChanOpen.ChannelPoint
h, _ := chainhash.NewHash(chanPoint.FundingTxid)
outpoint = wire.OutPoint{
Hash: *h,
Index: chanPoint.OutputIndex,
}
break out
}
case <-r.quit:
return nil
}
}
rpcsLog.Tracef("[openchannel] success peerid(%v), ChannelPoint(%v)",
in.TargetPeerId, outpoint)
return nil
}
// OpenChannelSync is a synchronous version of the OpenChannel RPC call. This
// call is meant to be consumed by clients to the REST proxy. As with all other
// sync calls, all byte slices are instead to be populated as hex encoded
// strings.
func (r *rpcServer) OpenChannelSync(ctx context.Context,
in *lnrpc.OpenChannelRequest) (*lnrpc.ChannelPoint, error) {
rpcsLog.Tracef("[openchannel] request to peerid(%v) "+
"allocation(us=%v, them=%v) numconfs=%v", in.TargetPeerId,
in.LocalFundingAmount, in.PushSat, in.NumConfs)
// Decode the provided target node's public key, parsing it into a pub
// key object. For all sync call, byte slices are expected to be
// encoded as hex strings.
keyBytes, err := hex.DecodeString(in.NodePubkeyString)
if err != nil {
return nil, err
}
nodepubKey, err := btcec.ParsePubKey(keyBytes, btcec.S256())
if err != nil {
return nil, err
}
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
// Ensure that the initial balance of the remote party (if pushing
// satoshis) does not execeed the amount the local party has requested
// for funding.
if remoteInitialBalance >= localFundingAmt {
return nil, fmt.Errorf("amount pushed to remote peer for " +
"initial state must be below the local funding amount")
}
updateChan, errChan := r.server.OpenChannel(in.TargetPeerId,
nodepubKey, localFundingAmt, remoteInitialBalance, in.NumConfs)
select {
// If an error occurs them immediately return the error to the client.
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to "+
"identityPub(%x) nor peerID(%v): %v",
nodepubKey, in.TargetPeerId, err)
return nil, err
// Otherwise, wait for the first channel update. The first update sent
// is when the funding transaction is broadcast to the network.
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
// Parse out the txid of the pending funding transaction. The
// sync client can use this to poll against the list of
// PendingChannels.
openUpdate := fundingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
chanUpdate := openUpdate.ChanPending
return &lnrpc.ChannelPoint{
FundingTxid: chanUpdate.Txid,
}, nil
case <-r.quit:
return nil, nil
}
}
// CloseChannel attempts to close an active channel identified by its channel
// point. The actions of this method can additionally be augmented to attempt
// a force close after a timeout period in the case of an inactive peer.
func (r *rpcServer) CloseChannel(in *lnrpc.CloseChannelRequest,
updateStream lnrpc.Lightning_CloseChannelServer) error {
force := in.Force
index := in.ChannelPoint.OutputIndex
txid, err := chainhash.NewHash(in.ChannelPoint.FundingTxid)
if err != nil {
rpcsLog.Errorf("[closechannel] invalid txid: %v", err)
return err
}
chanPoint := wire.NewOutPoint(txid, index)
rpcsLog.Tracef("[closechannel] request for ChannelPoint(%v)",
chanPoint)
var (
updateChan chan *lnrpc.CloseStatusUpdate
errChan chan error
)
// If a force closure was requested, then we'll handle all the details
// around the creation and broadcast of the unilateral closure
// transaction here rather than going to the switch as we don't require
// interaction from the peer.
if force {
// As the first part of the force closure, we first fetch the
// channel from the database, then execute a direct force
// closure broadcasting our current commitment transaction.
channel, err := r.fetchActiveChannel(*chanPoint)
if err != nil {
return err
}
closingTxid, err := r.forceCloseChan(channel)
if err != nil {
return err
}
updateChan = make(chan *lnrpc.CloseStatusUpdate)
errChan = make(chan error)
go func() {
// With the transaction broadcast, we send our first
// update to the client.
updateChan <- &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ClosePending{
ClosePending: &lnrpc.PendingUpdate{
Txid: closingTxid[:],
},
},
}
// Next, we enter the second phase, waiting for the
// channel to be confirmed before we finalize the force
// closure.
notifier := r.server.chainNotifier
confNtfn, err := notifier.RegisterConfirmationsNtfn(closingTxid, 1)
if err != nil {
errChan <- err
return
}
select {
case txConf, ok := <-confNtfn.Confirmed:
if !ok {
return
}
// As the channel has been closed, we can now
// delete it's state from the database.
rpcsLog.Infof("ChannelPoint(%v) is now "+
"closed at height %v", chanPoint,
txConf.BlockHeight)
if err := channel.DeleteState(); err != nil {
errChan <- err
return
}
case <-r.quit:
return
}
// Respond to the local sub-system which requested the
// channel closure.
updateChan <- &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ChanClose{
ChanClose: &lnrpc.ChannelCloseUpdate{
ClosingTxid: closingTxid[:],
Success: true,
},
},
}
// Finally, signal to the breachArbiter that it no
// longer needs to watch the channel as it's been
// closed.
r.server.breachArbiter.settledContracts <- chanPoint
}()
} else {
// Otherwise, the caller has requested a regular interactive
// cooperative channel closure. So we'll forward the request to
// the htlc switch which will handle the negotiation and
// broadcast details.
updateChan, errChan = r.server.htlcSwitch.CloseLink(chanPoint,
CloseRegular)
}
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("[closechannel] unable to close "+
"ChannelPoint(%v): %v", chanPoint, err)
return err
case closingUpdate := <-updateChan:
rpcsLog.Tracef("[closechannel] sending update: %v",
closingUpdate)
if err := updateStream.Send(closingUpdate); err != nil {
return err
}
// If a final channel closing updates is being sent,
// then we can break out of our dispatch loop as we no
// longer need to process any further updates.
switch closeUpdate := closingUpdate.Update.(type) {
case *lnrpc.CloseStatusUpdate_ChanClose:
h, _ := chainhash.NewHash(closeUpdate.ChanClose.ClosingTxid)
rpcsLog.Infof("[closechannel] close completed: "+
"txid(%v)", h)
break out
}
case <-r.quit:
return nil
}
}
return nil
}
// fetchActiveChannel attempts to locate a channel identified by it's channel
// point from the database's set of all currently opened channels.
func (r *rpcServer) fetchActiveChannel(chanPoint wire.OutPoint) (*lnwallet.LightningChannel, error) {
dbChannels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, err
}
// With the channels fetched, attempt to locate the target channel
// according to its channel point.
var dbChan *channeldb.OpenChannel
for _, dbChannel := range dbChannels {
if *dbChannel.ChanID == chanPoint {
dbChan = dbChannel
break
}
}
// If the channel cannot be located, then we exit with an error to the
// caller.
if dbChan == nil {
return nil, fmt.Errorf("unable to find channel")
}
// Otherwise, we create a fully populated channel state machine which
// uses the db channel as backing storage.
return lnwallet.NewLightningChannel(r.server.lnwallet.Signer,
r.server.bio, r.server.chainNotifier, dbChan)
}
// forceCloseChan executes a unilateral close of the target channel by
// broadcasting the current commitment state directly on-chain. Once the
// commitment transaction has been broadcast, a struct describing the final
// state of the channel is sent to the utxoNursery in order to ultimately sweep
// the immature outputs.
func (r *rpcServer) forceCloseChan(channel *lnwallet.LightningChannel) (*chainhash.Hash, error) {
// Execute a unilateral close shutting down all further channel
// operation.
closeSummary, err := channel.ForceClose()
if err != nil {
return nil, err
}
closeTx := closeSummary.CloseTx
txid := closeTx.TxHash()
// With the close transaction in hand, broadcast the transaction to the
// network, thereby entering the psot channel resolution state.
rpcsLog.Infof("Broadcasting force close transaction, ChannelPoint(%v): %v",
channel.ChannelPoint(), newLogClosure(func() string {
return spew.Sdump(closeTx)
}))
if err := r.server.lnwallet.PublishTransaction(closeTx); err != nil {
return nil, err
}
// Send the closed channel summary over to the utxoNursery in order to
// have its outputs swept back into the wallet once they're mature.
r.server.utxoNursery.incubateOutputs(closeSummary)
return &txid, nil
}
// GetInfo serves a request to the "getinfo" RPC call. This call returns
// general information concerning the lightning node including it's LN ID,
// identity address, and information concerning the number of open+pending
// channels.
func (r *rpcServer) GetInfo(ctx context.Context,
in *lnrpc.GetInfoRequest) (*lnrpc.GetInfoResponse, error) {
var activeChannels uint32
serverPeers := r.server.Peers()
for _, serverPeer := range serverPeers {
activeChannels += uint32(len(serverPeer.ChannelSnapshots()))
}
pendingChannels := r.server.fundingMgr.NumPendingChannels()
idPub := r.server.identityPriv.PubKey().SerializeCompressed()
bestHash, bestHeight, err := r.server.bio.GetBestBlock()
if err != nil {
return nil, err
}
isSynced, err := r.server.lnwallet.IsSynced()
if err != nil {
return nil, err
}
// TODO(roasbeef): add synced height n stuff
return &lnrpc.GetInfoResponse{
IdentityPubkey: hex.EncodeToString(idPub),
NumPendingChannels: pendingChannels,
NumActiveChannels: activeChannels,
NumPeers: uint32(len(serverPeers)),
BlockHeight: uint32(bestHeight),
BlockHash: bestHash.String(),
SyncedToChain: isSynced,
Testnet: activeNetParams.Params == &chaincfg.TestNet3Params,
}, nil
}
// ListPeers returns a verbose listing of all currently active peers.
func (r *rpcServer) ListPeers(ctx context.Context,
in *lnrpc.ListPeersRequest) (*lnrpc.ListPeersResponse, error) {
rpcsLog.Tracef("[listpeers] request")
serverPeers := r.server.Peers()
resp := &lnrpc.ListPeersResponse{
Peers: make([]*lnrpc.Peer, 0, len(serverPeers)),
}
for _, serverPeer := range serverPeers {
// TODO(roasbeef): add a snapshot method which grabs peer read mtx
nodePub := serverPeer.addr.IdentityKey.SerializeCompressed()
peer := &lnrpc.Peer{
PubKey: hex.EncodeToString(nodePub),
PeerId: serverPeer.id,
Address: serverPeer.conn.RemoteAddr().String(),
Inbound: serverPeer.inbound,
BytesRecv: atomic.LoadUint64(&serverPeer.bytesReceived),
BytesSent: atomic.LoadUint64(&serverPeer.bytesSent),
}
resp.Peers = append(resp.Peers, peer)
}
rpcsLog.Debugf("[listpeers] yielded %v peers", serverPeers)
return resp, nil
}
// WalletBalance returns the sum of all confirmed unspent outputs under control
// by the wallet. This method can be modified by having the request specify
// only witness outputs should be factored into the final output sum.
// TODO(roasbeef): split into total and confirmed/unconfirmed
// TODO(roasbeef): add async hooks into wallet balance changes
func (r *rpcServer) WalletBalance(ctx context.Context,
in *lnrpc.WalletBalanceRequest) (*lnrpc.WalletBalanceResponse, error) {
balance, err := r.server.lnwallet.ConfirmedBalance(1, in.WitnessOnly)
if err != nil {
return nil, err
}
rpcsLog.Debugf("[walletbalance] balance=%v", balance)
return &lnrpc.WalletBalanceResponse{balance.ToBTC()}, nil
}
// ChannelBalance returns the total available channel flow across all open
// channels in satoshis.
func (r *rpcServer) ChannelBalance(ctx context.Context,
in *lnrpc.ChannelBalanceRequest) (*lnrpc.ChannelBalanceResponse, error) {
channels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, err
}
var balance btcutil.Amount
for _, channel := range channels {
balance += channel.OurBalance
}
return &lnrpc.ChannelBalanceResponse{Balance: int64(balance)}, nil
}
// PendingChannels returns a list of all the channels that are currently
// considered "pending". A channel is pending if it has finished the funding
// workflow and is waiting for confirmations for the funding txn, or is in the
// process of closure, either initiated cooperatively or non-coopertively.
func (r *rpcServer) PendingChannels(ctx context.Context,
in *lnrpc.PendingChannelRequest) (*lnrpc.PendingChannelResponse, error) {
both := in.Status == lnrpc.ChannelStatus_ALL
includeOpen := (in.Status == lnrpc.ChannelStatus_OPENING) || both
includeClose := (in.Status == lnrpc.ChannelStatus_CLOSING) || both
rpcsLog.Debugf("[pendingchannels] %v", in.Status)
var pendingChannels []*lnrpc.PendingChannelResponse_PendingChannel
if includeOpen {
pendingOpenChans := r.server.fundingMgr.PendingChannels()
for _, pendingOpen := range pendingOpenChans {
// TODO(roasbeef): add confirmation progress
pub := pendingOpen.identityPub.SerializeCompressed()
pendingChan := &lnrpc.PendingChannelResponse_PendingChannel{
PeerId: pendingOpen.peerId,
IdentityKey: hex.EncodeToString(pub),
ChannelPoint: pendingOpen.channelPoint.String(),
Capacity: int64(pendingOpen.capacity),
LocalBalance: int64(pendingOpen.localBalance),
RemoteBalance: int64(pendingOpen.remoteBalance),
Status: lnrpc.ChannelStatus_OPENING,
}
pendingChannels = append(pendingChannels, pendingChan)
}
}
if includeClose {
}
return &lnrpc.PendingChannelResponse{
PendingChannels: pendingChannels,
}, nil
}
// ListChannels returns a description of all direct active, open channels the
// node knows of.
// TODO(roasbeef): add 'online' bit to response
func (r *rpcServer) ListChannels(ctx context.Context,
in *lnrpc.ListChannelsRequest) (*lnrpc.ListChannelsResponse, error) {
resp := &lnrpc.ListChannelsResponse{}
graph := r.server.chanDB.ChannelGraph()
dbChannels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, err
}
rpcsLog.Infof("[listchannels] fetched %v channels from DB",
len(dbChannels))
for _, dbChannel := range dbChannels {
nodePub := dbChannel.IdentityPub.SerializeCompressed()
nodeID := hex.EncodeToString(nodePub)
chanPoint := dbChannel.ChanID
// With the channel point known, retrieve the network channel
// ID from the database.
var chanID uint64
chanID, _ = graph.ChannelID(chanPoint)
channel := &lnrpc.ActiveChannel{
RemotePubkey: nodeID,
ChannelPoint: chanPoint.String(),
ChanId: chanID,
Capacity: int64(dbChannel.Capacity),
LocalBalance: int64(dbChannel.OurBalance),
RemoteBalance: int64(dbChannel.TheirBalance),
TotalSatoshisSent: int64(dbChannel.TotalSatoshisSent),
TotalSatoshisReceived: int64(dbChannel.TotalSatoshisReceived),
NumUpdates: dbChannel.NumUpdates,
PendingHtlcs: make([]*lnrpc.HTLC, len(dbChannel.Htlcs)),
}
for i, htlc := range dbChannel.Htlcs {
channel.PendingHtlcs[i] = &lnrpc.HTLC{
Incoming: htlc.Incoming,
Amount: int64(htlc.Amt),
HashLock: htlc.RHash[:],
ExpirationHeight: htlc.RefundTimeout,
RevocationDelay: htlc.RevocationDelay,
}
}
resp.Channels = append(resp.Channels, channel)
}
return resp, nil
}
// savePayment saves a successfully completed payment to the database for
// historical record keeping.
func (r *rpcServer) savePayment(route *routing.Route, amount btcutil.Amount,
rHash []byte) error {
paymentPath := make([][33]byte, len(route.Hops))
for i, hop := range route.Hops {
hopPub := hop.Channel.Node.PubKey.SerializeCompressed()
copy(paymentPath[i][:], hopPub)
}
payment := &channeldb.OutgoingPayment{
Invoice: channeldb.Invoice{
Terms: channeldb.ContractTerm{
Value: btcutil.Amount(amount),
},
CreationDate: time.Now(),
},
Path: paymentPath,
Fee: route.TotalFees,
TimeLockLength: route.TotalTimeLock,
}
copy(payment.PaymentHash[:], rHash)
return r.server.chanDB.AddPayment(payment)
}
// SendPayment dispatches a bi-directional streaming RPC for sending payments
// through the Lightning Network. A single RPC invocation creates a persistent
// bi-directional stream allowing clients to rapidly send payments through the
// Lightning Network with a single persistent connection.
func (r *rpcServer) SendPayment(paymentStream lnrpc.Lightning_SendPaymentServer) error {
errChan := make(chan error, 1)
payChan := make(chan *lnrpc.SendRequest)
// Launch a new goroutine to handle reading new payment requests from
// the client. This way we can handle errors independently of blocking
// and waiting for the next payment request to come through.
go func() {
for {
select {
case <-r.quit:
errChan <- nil
return
default:
// Receive the next pending payment within the
// stream sent by the client. If we read the
// EOF sentinel, then the client has closed the
// stream, and we can exit normally.
nextPayment, err := paymentStream.Recv()
if err == io.EOF {
errChan <- nil
return
} else if err != nil {
errChan <- err
return
}
// If the payment request field isn't blank,
// then the details of the invoice are encoded
// entirely within the encode payReq. So we'll
// attempt to decode it, populating the
// nextPayment accordingly.
if nextPayment.PaymentRequest != "" {
payReq, err := zpay32.Decode(nextPayment.PaymentRequest)
if err != nil {
errChan <- err
return
}
// TODO(roasbeef): eliminate necessary
// encode/decode
nextPayment.Dest = payReq.Destination.SerializeCompressed()
nextPayment.Amt = int64(payReq.Amount)
nextPayment.PaymentHash = payReq.PaymentHash[:]
}
payChan <- nextPayment
}
}
}()
for {
select {
case err := <-errChan:
return err
case nextPayment := <-payChan:
// Parse the details of the payment which include the
// pubkey of the destination and the payment amount.
dest := nextPayment.Dest
amt := btcutil.Amount(nextPayment.Amt)
destNode, err := btcec.ParsePubKey(dest, btcec.S256())
if err != nil {
return err
}
// If we're in debug HTLC mode, then all outgoing
// HTLC's will pay to the same debug rHash. Otherwise,
// we pay to the rHash specified within the RPC
// request.
var rHash [32]byte
if cfg.DebugHTLC && len(nextPayment.PaymentHash) == 0 {
rHash = debugHash
} else {
copy(rHash[:], nextPayment.PaymentHash)
}
// Construct and HTLC packet which a payment route (if
// one is found) to the destination using a Sphinx
// onion packet to encode the route.
htlcPkt, route, err := r.constructPaymentRoute(destNode, amt,
rHash)
if err != nil {
return err
}
// We launch a new goroutine to execute the current
// payment so we can continue to serve requests while
// this payment is being dispatched.
//
// TODO(roasbeef): semaphore to limit num outstanding
// goroutines.
go func() {
// Finally, send this next packet to the
// routing layer in order to complete the next
// payment.
if err := r.server.htlcSwitch.SendHTLC(htlcPkt); err != nil {
errChan <- err
return
}
// Save the completed payment to the database
// for record keeping purposes.
if err := r.savePayment(route, amt, rHash[:]); err != nil {
errChan <- err
return
}
// TODO(roasbeef): proper responses
resp := &lnrpc.SendResponse{}
if err := paymentStream.Send(resp); err != nil {
errChan <- err
return
}
}()
}
}
return nil
}
// SendPaymentSync is the synchronous non-streaming version of SendPayment.
// This RPC is intended to be consumed by clients of the REST proxy.
// Additionally, this RPC expects the destination's public key and the payment
// hash (if any) to be encoded as hex strings.
func (r *rpcServer) SendPaymentSync(ctx context.Context,
nextPayment *lnrpc.SendRequest) (*lnrpc.SendResponse, error) {
var (
destPub *btcec.PublicKey
amt btcutil.Amount
rHash [32]byte
)
// If the proto request has an encoded payment request, then we we'll
// use that solely to dipatch the payment.
if nextPayment.PaymentRequest != "" {
payReq, err := zpay32.Decode(nextPayment.PaymentRequest)
if err != nil {
return nil, err
}
destPub = payReq.Destination
amt = payReq.Amount
rHash = payReq.PaymentHash
// Otherwise, the payment conditions have been manually specified in
// the proto.
} else {
// If we're in debug HTLC mode, then all outgoing HTLC's will pay to
// the same debug rHash. Otherwise, we pay to the rHash specified
// within the RPC request.
if cfg.DebugHTLC && nextPayment.PaymentHashString == "" {
rHash = debugHash
} else {
paymentHash, err := hex.DecodeString(nextPayment.PaymentHashString)
if err != nil {
return nil, err
}
copy(rHash[:], paymentHash)
}
pubBytes, err := hex.DecodeString(nextPayment.DestString)
if err != nil {
return nil, err
}
destPub, err = btcec.ParsePubKey(pubBytes, btcec.S256())
if err != nil {
return nil, err
}
amt = btcutil.Amount(nextPayment.Amt)
}
// Construct and HTLC packet which a payment route (if
// one is found) to the destination using a Sphinx
// onoin packet to encode the route.
htlcPkt, route, err := r.constructPaymentRoute(destPub, amt, rHash)
if err != nil {
return nil, err
}
// Next, send this next packet to the routing layer in order to
// complete the next payment.
if err := r.server.htlcSwitch.SendHTLC(htlcPkt); err != nil {
return nil, err
}
// With the payment completed successfully, we now ave the details of
// the completed payment to the databse for historical record keeping.
if err := r.savePayment(route, amt, rHash[:]); err != nil {
return nil, err
}
return &lnrpc.SendResponse{}, nil
}
// constructPaymentRoute attempts to construct a complete HTLC packet which
// encapsulates a Sphinx onion packet that encodes the end-to-end route any
// payment instructions necessary to complete an HTLC. If a route is unable to
// be located, then an error is returned indicating as much.
func (r *rpcServer) constructPaymentRoute(destNode *btcec.PublicKey,
amt btcutil.Amount, rHash [32]byte) (*htlcPacket, *routing.Route, error) {
const queryTimeout = time.Duration(time.Second * 10)
// Query the channel router for a potential path to the destination
// node that can support our payment amount. If a path is ultimately
// unavailable, then an error will be returned.
route, err := r.server.chanRouter.FindRoute(destNode, amt)
if err != nil {
return nil, nil, err
}
rpcsLog.Tracef("[sendpayment] selected route: %#v", route)
// Generate the raw encoded sphinx packet to be included along with the
// HTLC add message. We snip off the first hop from the path as within
// the routing table's star graph, we're always the first hop.
sphinxPacket, err := generateSphinxPacket(route, rHash[:])
if err != nil {
return nil, nil, err
}
// Craft an HTLC packet to send to the routing sub-system. The
// meta-data within this packet will be used to route the payment
// through the network.
htlcAdd := &lnwire.HTLCAddRequest{
Amount: route.TotalAmount,
RedemptionHashes: [][32]byte{rHash},
OnionBlob: sphinxPacket,
}
firstHopPub := route.Hops[0].Channel.Node.PubKey.SerializeCompressed()
destInterface := chainhash.Hash(fastsha256.Sum256(firstHopPub))
return &htlcPacket{
dest: destInterface,
msg: htlcAdd,
}, route, nil
}
// generateSphinxPacket generates then encodes a sphinx packet which encodes
// the onion route specified by the passed layer 3 route. The blob returned
// from this function can immediately be included within an HTLC add packet to
// be sent to the first hop within the route.
func generateSphinxPacket(route *routing.Route, paymentHash []byte) ([]byte, error) {
// First obtain all the public keys along the route which are contained
// in each hop.
nodes := make([]*btcec.PublicKey, len(route.Hops))
for i, hop := range route.Hops {
// We create a new instance of the public key to avoid possibly
// mutating the curve parameters, which are unset in a higher
// level in order to avoid spamming the logs.
pub := btcec.PublicKey{
btcec.S256(),
hop.Channel.Node.PubKey.X,
hop.Channel.Node.PubKey.Y,
}
nodes[i] = &pub
}
// Next we generate the per-hop payload which gives each node within
// the route the necessary information (fees, CLTV value, etc) to
// properly forward the payment.
// TODO(roasbeef): properly set CLTV value, payment amount, and chain
// within hop paylods.
var hopPayloads [][]byte
for i := 0; i < len(route.Hops); i++ {
payload := bytes.Repeat([]byte{byte('A' + i)},
sphinx.HopPayloadSize)
hopPayloads = append(hopPayloads, payload)
}
sessionKey, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, err
}
// Next generate the onion routing packet which allows
// us to perform privacy preserving source routing
// across the network.
sphinxPacket, err := sphinx.NewOnionPacket(nodes, sessionKey,
hopPayloads, paymentHash)
if err != nil {
return nil, err
}
// Finally, encode Sphinx packet using it's wire representation to be
// included within the HTLC add packet.
var onionBlob bytes.Buffer
if err := sphinxPacket.Encode(&onionBlob); err != nil {
return nil, err
}
rpcsLog.Tracef("[sendpayment] generated sphinx packet: %v",
newLogClosure(func() string {
// We unset the internal curve here in order to keep
// the logs from getting noisy.
sphinxPacket.Header.EphemeralKey.Curve = nil
return spew.Sdump(sphinxPacket)
}))
return onionBlob.Bytes(), nil
}
// AddInvoice attempts to add a new invoice to the invoice database. Any
// duplicated invoices are rejected, therefore all invoices *must* have a
// unique payment preimage.
func (r *rpcServer) AddInvoice(ctx context.Context,
invoice *lnrpc.Invoice) (*lnrpc.AddInvoiceResponse, error) {
var paymentPreimage [32]byte
switch {
// If a preimage wasn't specified, then we'll generate a new preimage
// from fresh cryptographic randomness.
case len(invoice.RPreimage) == 0:
if _, err := rand.Read(paymentPreimage[:]); err != nil {
return nil, err
}
// Otherwise, if a preimage was specified, then it MUST be exactly
// 32-bytes.
case len(invoice.RPreimage) > 0 && len(invoice.RPreimage) != 32:
return nil, fmt.Errorf("payment preimage must be exactly "+
"32 bytes, is instead %v", len(invoice.RPreimage))
// If the preimage meets the size specifications, then it can be used
// as is.
default:
copy(paymentPreimage[:], invoice.RPreimage[:])
}
// The size of the memo and receipt attached must not exceed the
// maximum values for either of the fields.
if len(invoice.Memo) > channeldb.MaxMemoSize {
return nil, fmt.Errorf("memo too large: %v bytes "+
"(maxsize=%v)", len(invoice.Memo), channeldb.MaxMemoSize)
}
if len(invoice.Receipt) > channeldb.MaxReceiptSize {
return nil, fmt.Errorf("receipt too large: %v bytes "+
"(maxsize=%v)", len(invoice.Receipt), channeldb.MaxReceiptSize)
}
// Finally, the value of an invoice MUST NOT be zero.
if invoice.Value == 0 {
return nil, fmt.Errorf("zero value invoices are disallowed")
}
i := &channeldb.Invoice{
CreationDate: time.Now(),
Memo: []byte(invoice.Memo),
Receipt: invoice.Receipt,
Terms: channeldb.ContractTerm{
Value: btcutil.Amount(invoice.Value),
},
}
copy(i.Terms.PaymentPreimage[:], paymentPreimage[:])
rpcsLog.Tracef("[addinvoice] adding new invoice %v",
newLogClosure(func() string {
return spew.Sdump(i)
}))
// With all sanity checks passed, write the invoice to the database.
if err := r.server.invoices.AddInvoice(i); err != nil {
return nil, err
}
// Next, generate the payment hash itself from the pre-image. This will
// be used by clients to query for the state of a particular invoice.
rHash := fastsha256.Sum256(paymentPreimage[:])
// Finally we also create an encoded payment request which allows the
// caller to comactly send the invoice to the payer.
payReqString := zpay32.Encode(&zpay32.PaymentRequest{
Destination: r.server.identityPriv.PubKey(),
PaymentHash: rHash,
Amount: btcutil.Amount(invoice.Value),
})
return &lnrpc.AddInvoiceResponse{
RHash: rHash[:],
PaymentRequest: payReqString,
}, nil
}
// LookupInvoice attemps to look up an invoice according to its payment hash.
// The passed payment hash *must* be exactly 32 bytes, if not an error is
// returned.
func (r *rpcServer) LookupInvoice(ctx context.Context,
req *lnrpc.PaymentHash) (*lnrpc.Invoice, error) {
var (
payHash [32]byte
rHash []byte
err error
)
// If the RHash as a raw string was provided, then decode that and use
// that directly. Otherwise, we use the raw bytes provided.
if req.RHashStr != "" {
rHash, err = hex.DecodeString(req.RHashStr)
if err != nil {
return nil, err
}
} else {
rHash = req.RHash
}
// Ensure that the payment hash is *exactly* 32-bytes.
if len(rHash) != 0 && len(rHash) != 32 {
return nil, fmt.Errorf("payment hash must be exactly "+
"32 bytes, is instead %v", len(rHash))
}
copy(payHash[:], rHash)
rpcsLog.Tracef("[lookupinvoice] searching for invoice %x", payHash[:])
invoice, err := r.server.invoices.LookupInvoice(payHash)
if err != nil {
return nil, err
}
rpcsLog.Tracef("[lookupinvoice] located invoice %v",
newLogClosure(func() string {
return spew.Sdump(invoice)
}))
return &lnrpc.Invoice{
Memo: string(invoice.Memo[:]),
Receipt: invoice.Receipt[:],
RPreimage: invoice.Terms.PaymentPreimage[:],
Value: int64(invoice.Terms.Value),
Settled: invoice.Terms.Settled,
}, nil
}
// ListInvoices returns a list of all the invoices currently stored within the
// database. Any active debug invoices are ignored.
func (r *rpcServer) ListInvoices(ctx context.Context,
req *lnrpc.ListInvoiceRequest) (*lnrpc.ListInvoiceResponse, error) {
dbInvoices, err := r.server.chanDB.FetchAllInvoices(req.PendingOnly)
if err != nil {
return nil, err
}
invoices := make([]*lnrpc.Invoice, len(dbInvoices))
for i, dbInvoice := range dbInvoices {
invoiceAmount := dbInvoice.Terms.Value
paymentPreimge := dbInvoice.Terms.PaymentPreimage[:]
invoice := &lnrpc.Invoice{
Memo: string(dbInvoice.Memo[:]),
Receipt: dbInvoice.Receipt[:],
RPreimage: paymentPreimge,
Value: int64(invoiceAmount),
Settled: dbInvoice.Terms.Settled,
CreationDate: dbInvoice.CreationDate.Unix(),
PaymentRequest: zpay32.Encode(&zpay32.PaymentRequest{
Destination: r.server.identityPriv.PubKey(),
PaymentHash: fastsha256.Sum256(paymentPreimge),
Amount: invoiceAmount,
}),
}
invoices[i] = invoice
}
return &lnrpc.ListInvoiceResponse{
Invoices: invoices,
}, nil
}
// SubscribeInvoices returns a uni-directional stream (sever -> client) for
// notifying the client of newly added/settled invoices.
func (r *rpcServer) SubscribeInvoices(req *lnrpc.InvoiceSubscription,
updateStream lnrpc.Lightning_SubscribeInvoicesServer) error {
invoiceClient := r.server.invoices.SubscribeNotifications()
defer invoiceClient.Cancel()
for {
select {
// TODO(roasbeef): include newly added invoices?
case settledInvoice := <-invoiceClient.SettledInvoices:
invoice := &lnrpc.Invoice{
Memo: string(settledInvoice.Memo[:]),
Receipt: settledInvoice.Receipt[:],
RPreimage: settledInvoice.Terms.PaymentPreimage[:],
Value: int64(settledInvoice.Terms.Value),
Settled: settledInvoice.Terms.Settled,
}
if err := updateStream.Send(invoice); err != nil {
return err
}
case <-r.quit:
return nil
}
}
return nil
}
// SubscribeTransactions creates a uni-directional stream (server -> client) in
// which any newly discovered transactions relevant to the wallet are sent
// over.
func (r *rpcServer) SubscribeTransactions(req *lnrpc.GetTransactionsRequest,
updateStream lnrpc.Lightning_SubscribeTransactionsServer) error {
txClient, err := r.server.lnwallet.SubscribeTransactions()
if err != nil {
return err
}
defer txClient.Cancel()
for {
select {
case tx := <-txClient.ConfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: tx.Value.ToBTC(),
NumConfirmations: tx.NumConfirmations,
BlockHash: tx.BlockHash.String(),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case tx := <-txClient.UnconfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: tx.Value.ToBTC(),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case <-r.quit:
return nil
}
}
return nil
}
// GetTransactions returns a list of describing all the known transactions
// relevant to the wallet.
func (r *rpcServer) GetTransactions(context.Context,
*lnrpc.GetTransactionsRequest) (*lnrpc.TransactionDetails, error) {
// TODO(roasbeef): add pagination support
transactions, err := r.server.lnwallet.ListTransactionDetails()
if err != nil {
return nil, err
}
txDetails := &lnrpc.TransactionDetails{
Transactions: make([]*lnrpc.Transaction, len(transactions)),
}
for i, tx := range transactions {
txDetails.Transactions[i] = &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: tx.Value.ToBTC(),
NumConfirmations: tx.NumConfirmations,
BlockHash: tx.BlockHash.String(),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
}
return txDetails, nil
}
// DescribeGraph returns a description of the latest graph state from the PoV
// of the node. The graph information is partitioned into two components: all
// the nodes/vertexes, and all the edges that connect the vertexes themselves.
// As this is a directed graph, the edges also contain the node directional
// specific routing policy which includes: the time lock delta, fee
// information, etc.
func (r *rpcServer) DescribeGraph(context.Context,
*lnrpc.ChannelGraphRequest) (*lnrpc.ChannelGraph, error) {
resp := &lnrpc.ChannelGraph{}
// Obtain the pinter to the global singleton channel graph, this will
// provide a consistent view of the graph due to bolt db's
// transactional model.
graph := r.server.chanDB.ChannelGraph()
// First iterate through all the known nodes (connected or unconnected
// within the graph), collating their current state into the RPC
// response.
err := graph.ForEachNode(func(node *channeldb.LightningNode) error {
resp.Nodes = append(resp.Nodes, &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: hex.EncodeToString(node.PubKey.SerializeCompressed()),
Address: node.Address.String(),
Alias: node.Alias,
})
return nil
})
if err != nil {
return nil, err
}
// Next, for each active channel we know of within the graph, create a
// similar response which details both the edge information as well as
// the routing policies of th nodes connecting the two edges.
err = graph.ForEachChannel(func(c1, c2 *channeldb.ChannelEdge) error {
edge := marshalDbEdge(c1, c2)
resp.Edges = append(resp.Edges, edge)
return nil
})
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
return nil, err
}
return resp, nil
}
func marshalDbEdge(c1, c2 *channeldb.ChannelEdge) *lnrpc.ChannelEdge {
node1Pub := c2.Node.PubKey.SerializeCompressed()
node2Pub := c1.Node.PubKey.SerializeCompressed()
edge := &lnrpc.ChannelEdge{
ChannelId: c1.ChannelID,
ChanPoint: c1.ChannelPoint.String(),
LastUpdate: uint32(c1.LastUpdate.Unix()),
Node1Pub: hex.EncodeToString(node1Pub),
Node2Pub: hex.EncodeToString(node2Pub),
Capacity: int64(c1.Capacity),
}
edge.Node1Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c1.Expiry),
MinHtlc: int64(c1.MinHTLC),
FeeBaseMsat: int64(c1.FeeBaseMSat),
FeeRateMilliMsat: int64(c1.FeeProportionalMillionths),
}
edge.Node2Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c2.Expiry),
MinHtlc: int64(c2.MinHTLC),
FeeBaseMsat: int64(c2.FeeBaseMSat),
FeeRateMilliMsat: int64(c2.FeeProportionalMillionths),
}
return edge
}
// GetChainInfo returns the latest authenticated network announcement for the
// given channel identified by its channel ID: an 8-byte integer which uniquely
// identifies the location of transaction's funding output within the block
// chain.
func (r *rpcServer) GetChanInfo(_ context.Context, in *lnrpc.ChanInfoRequest) (*lnrpc.ChannelEdge, error) {
graph := r.server.chanDB.ChannelGraph()
edge1, edge2, err := graph.FetchChannelEdgesByID(in.ChanId)
if err != nil {
return nil, err
}
// Convert the database's edge format into the network/RPC edge format
// which couples the edge itself along with the directional node
// routing policies of each node involved within the channel.
channelEdge := marshalDbEdge(edge1, edge2)
return channelEdge, nil
}
// GetNodeInfo returns the latest advertised and aggregate authenticated
// channel information for the specified node identified by its public key.
func (r *rpcServer) GetNodeInfo(_ context.Context, in *lnrpc.NodeInfoRequest) (*lnrpc.NodeInfo, error) {
graph := r.server.chanDB.ChannelGraph()
// First, parse the hex-encoded public key into a full in-memory public
// key object we can work with for querying.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// With the public key decoded, attempt to fetch the node corresponding
// to this public key. If the node cannot be found, then an error will
// be returned.
node, err := graph.FetchLightningNode(pubKey)
if err != nil {
return nil, err
}
// With the node obtained, we'll now iterate through all its out going
// edges to gather some basic statistics about its out going channels.
var (
numChannels uint32
totalCapcity btcutil.Amount
)
if err := node.ForEachChannel(nil, func(edge *channeldb.ChannelEdge) error {
numChannels++
totalCapcity += edge.Capacity
return nil
}); err != nil {
return nil, err
}
return &lnrpc.NodeInfo{
Node: &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: in.PubKey,
Address: node.Address.String(),
Alias: node.Alias,
},
NumChannels: numChannels,
TotalCapacity: int64(totalCapcity),
}, nil
}
// QueryRoute attempts to query the daemons' Channel Router for a possible
// route to a target destination capable of carrying a specific amount of
// satoshis within the route's flow. The retuned route contains the full
// details required to craft and send an HTLC, also including the necessary
// information that should be present within the Sphinx packet encapsualted
// within the HTLC.
//
// TODO(roasbeef): should return a slice of routes in reality
// * create separate PR to send based on well formatted route
func (r *rpcServer) QueryRoute(_ context.Context, in *lnrpc.RouteRequest) (*lnrpc.Route, error) {
// First parse the hex-encdoed public key into a full public key objet
// we can properly manipulate.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// Query the channel router for a possible path to the destination that
// can carry `in.Amt` satoshis _including_ the total fee required on
// the route.
route, err := r.server.chanRouter.FindRoute(pubKey,
btcutil.Amount(in.Amt))
if err != nil {
return nil, err
}
// If a route exsits within the network that is able to support our
// request, then we'll convert the result into the format required by
// the RPC system.
resp := &lnrpc.Route{
TotalTimeLock: route.TotalTimeLock,
TotalFees: int64(route.TotalFees),
TotalAmt: int64(route.TotalAmount),
Hops: make([]*lnrpc.Hop, len(route.Hops)),
}
for i, hop := range route.Hops {
resp.Hops[i] = &lnrpc.Hop{
ChanId: hop.Channel.ChannelID,
ChanCapacity: int64(hop.Channel.Capacity),
AmtToForward: int64(hop.AmtToForward),
Fee: int64(hop.Fee),
}
}
return resp, nil
}
// GetNetworkInfo returns some basic stats about the known channel graph from
// the PoV of the node.
func (r *rpcServer) GetNetworkInfo(context.Context, *lnrpc.NetworkInfoRequest) (*lnrpc.NetworkInfo, error) {
graph := r.server.chanDB.ChannelGraph()
var (
numNodes uint32
numChannels uint32
maxChanOut uint32
totalNetworkCapacity btcutil.Amount
minChannelSize btcutil.Amount = math.MaxInt64
maxChannelSize btcutil.Amount
)
// TODO(roasbeef): ideally all below is completed in a single
// transaction
// First run through all the known nodes in the within our view of the
// network, tallying up the total number of nodes, and also gathering
// each node so we can measure the graph diamter and degree stats
// below.
var nodes []*channeldb.LightningNode
if err := graph.ForEachNode(func(node *channeldb.LightningNode) error {
numNodes++
nodes = append(nodes, node)
return nil
}); err != nil {
return nil, err
}
// With all the nodes gathered, we can now perform a basic traversal to
// ascertain the graph's diameter, and also the max out-degree of a
// node.
for _, node := range nodes {
var outDegree uint32
err := node.ForEachChannel(nil, func(c *channeldb.ChannelEdge) error {
outDegree++
return nil
})
if err != nil {
return nil, err
}
if outDegree > maxChanOut {
outDegree = maxChanOut
}
}
// Finally, we traverse each channel visiting both channel edges at
// once to avoid double counting any stats we're attempting to gather.
if err := graph.ForEachChannel(func(c1, c2 *channeldb.ChannelEdge) error {
chanCapacity := c1.Capacity
if chanCapacity < minChannelSize {
minChannelSize = chanCapacity
}
if chanCapacity > maxChannelSize {
maxChannelSize = chanCapacity
}
totalNetworkCapacity += chanCapacity
numChannels++
return nil
}); err != nil {
return nil, err
}
// TODO(roasbeef): also add oldest channel?
return &lnrpc.NetworkInfo{
MaxOutDegree: maxChanOut,
AvgOutDegree: float64(numChannels) / float64(numNodes),
NumNodes: numNodes,
NumChannels: numChannels,
TotalNetworkCapacity: int64(totalNetworkCapacity),
AvgChannelSize: float64(totalNetworkCapacity) / float64(numChannels),
MinChannelSize: int64(minChannelSize),
MaxChannelSize: int64(maxChannelSize),
}, nil
}
// ListPayments returns a list of all outgoing payments.
func (r *rpcServer) ListPayments(context.Context,
*lnrpc.ListPaymentsRequest) (*lnrpc.ListPaymentsResponse, error) {
rpcsLog.Debugf("[ListPayments]")
payments, err := r.server.chanDB.FetchAllPayments()
if err != nil {
return nil, err
}
paymentsResp := &lnrpc.ListPaymentsResponse{
Payments: make([]*lnrpc.Payment, len(payments)),
}
for i, payment := range payments {
path := make([]string, len(payment.Path))
for i, hop := range payment.Path {
path[i] = hex.EncodeToString(hop[:])
}
paymentsResp.Payments[i] = &lnrpc.Payment{
PaymentHash: hex.EncodeToString(payment.PaymentHash[:]),
Value: int64(payment.Terms.Value),
CreationDate: payment.CreationDate.Unix(),
Path: path,
}
}
return paymentsResp, nil
}
// DeleteAllPayments deletes all outgoing payments from DB.
func (r *rpcServer) DeleteAllPayments(context.Context,
*lnrpc.DeleteAllPaymentsRequest) (*lnrpc.DeleteAllPaymentsResponse, error) {
rpcsLog.Debugf("[DeleteAllPayments]")
if err := r.server.chanDB.DeleteAllPayments(); err != nil {
return nil, err
}
return &lnrpc.DeleteAllPaymentsResponse{}, nil
}
// SetAlias...
func (r *rpcServer) SetAlias(context.Context, *lnrpc.SetAliasRequest) (*lnrpc.SetAliasResponse, error) {
return nil, nil
}
// DebugLevel allows a caller to programmatically set the logging verbosity of
// lnd. The logging can be targeted according to a coarse daemon-wide logging
// level, or in a granular fashion to specify the logging for a target
// sub-system.
func (r *rpcServer) DebugLevel(ctx context.Context,
req *lnrpc.DebugLevelRequest) (*lnrpc.DebugLevelResponse, error) {
// If show is set, then we simply print out the list of available
// sub-systems.
if req.Show {
return &lnrpc.DebugLevelResponse{
SubSystems: strings.Join(supportedSubsystems(), " "),
}, nil
}
rpcsLog.Infof("[debuglevel] changing debug level to: %v", req.LevelSpec)
// Otherwise, we'll attempt to set the logging level using the
// specified level spec.
if err := parseAndSetDebugLevels(req.LevelSpec); err != nil {
return nil, err
}
return &lnrpc.DebugLevelResponse{}, nil
}