649be5ee0b
Switch Persistence [1/4]: Infra for Sphinx Batched Decoding and Replay Protection
1911 lines
62 KiB
Go
1911 lines
62 KiB
Go
package htlcswitch
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"io"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"crypto/sha256"
|
|
|
|
"github.com/go-errors/errors"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/contractcourt"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/roasbeef/btcd/chaincfg/chainhash"
|
|
)
|
|
|
|
const (
|
|
// expiryGraceDelta is a grace period that the timeout of incoming
|
|
// HTLC's that pay directly to us (i.e we're the "exit node") must up
|
|
// hold. We'll reject any HTLC's who's timeout minus this value is less
|
|
// that or equal to the current block height. We require this in order
|
|
// to ensure that if the extending party goes to the chain, then we'll
|
|
// be able to claim the HTLC still.
|
|
//
|
|
// TODO(roasbeef): must be < default delta
|
|
expiryGraceDelta = 2
|
|
)
|
|
|
|
// ForwardingPolicy describes the set of constraints that a given ChannelLink
|
|
// is to adhere to when forwarding HTLC's. For each incoming HTLC, this set of
|
|
// constraints will be consulted in order to ensure that adequate fees are
|
|
// paid, and our time-lock parameters are respected. In the event that an
|
|
// incoming HTLC violates any of these constraints, it is to be _rejected_ with
|
|
// the error possibly carrying along a ChannelUpdate message that includes the
|
|
// latest policy.
|
|
type ForwardingPolicy struct {
|
|
// MinHTLC is the smallest HTLC that is to be forwarded. This is
|
|
// set when a channel is first opened, and will be static for the
|
|
// lifetime of the channel.
|
|
MinHTLC lnwire.MilliSatoshi
|
|
|
|
// BaseFee is the base fee, expressed in milli-satoshi that must be
|
|
// paid for each incoming HTLC. This field, combined with FeeRate is
|
|
// used to compute the required fee for a given HTLC.
|
|
BaseFee lnwire.MilliSatoshi
|
|
|
|
// FeeRate is the fee rate, expressed in milli-satoshi that must be
|
|
// paid for each incoming HTLC. This field combined with BaseFee is
|
|
// used to compute the required fee for a given HTLC.
|
|
FeeRate lnwire.MilliSatoshi
|
|
|
|
// TimeLockDelta is the absolute time-lock value, expressed in blocks,
|
|
// that will be subtracted from an incoming HTLC's timelock value to
|
|
// create the time-lock value for the forwarded outgoing HTLC. The
|
|
// following constraint MUST hold for an HTLC to be forwarded:
|
|
//
|
|
// * incomingHtlc.timeLock - timeLockDelta = fwdInfo.OutgoingCTLV
|
|
//
|
|
// where fwdInfo is the forwarding information extracted from the
|
|
// per-hop payload of the incoming HTLC's onion packet.
|
|
TimeLockDelta uint32
|
|
|
|
// TODO(roasbeef): add fee module inside of switch
|
|
}
|
|
|
|
// ExpectedFee computes the expected fee for a given htlc amount. The value
|
|
// returned from this function is to be used as a sanity check when forwarding
|
|
// HTLC's to ensure that an incoming HTLC properly adheres to our propagated
|
|
// forwarding policy.
|
|
//
|
|
// TODO(roasbeef): also add in current available channel bandwidth, inverse
|
|
// func
|
|
func ExpectedFee(f ForwardingPolicy, htlcAmt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
|
|
|
|
// TODO(roasbeef): write some basic table driven tests
|
|
return f.BaseFee + (htlcAmt*f.FeeRate)/1000000
|
|
}
|
|
|
|
// Ticker is an interface used to wrap a time.Ticker in a struct,
|
|
// making mocking it easier.
|
|
type Ticker interface {
|
|
Start() <-chan time.Time
|
|
Stop()
|
|
}
|
|
|
|
// BatchTicker implements the Ticker interface, and wraps a time.Ticker.
|
|
type BatchTicker struct {
|
|
ticker *time.Ticker
|
|
}
|
|
|
|
// NewBatchTicker returns a new BatchTicker that wraps the passed
|
|
// time.Ticker.
|
|
func NewBatchTicker(t *time.Ticker) *BatchTicker {
|
|
return &BatchTicker{t}
|
|
}
|
|
|
|
// Start returns the tick channel for the underlying time.Ticker.
|
|
func (t *BatchTicker) Start() <-chan time.Time {
|
|
return t.ticker.C
|
|
}
|
|
|
|
// Stop stops the underlying time.Ticker.
|
|
func (t *BatchTicker) Stop() {
|
|
t.ticker.Stop()
|
|
}
|
|
|
|
// ChannelLinkConfig defines the configuration for the channel link. ALL
|
|
// elements within the configuration MUST be non-nil for channel link to carry
|
|
// out its duties.
|
|
type ChannelLinkConfig struct {
|
|
// FwrdingPolicy is the initial forwarding policy to be used when
|
|
// deciding whether to forwarding incoming HTLC's or not. This value
|
|
// can be updated with subsequent calls to UpdateForwardingPolicy
|
|
// targeted at a given ChannelLink concrete interface implementation.
|
|
FwrdingPolicy ForwardingPolicy
|
|
|
|
// Switch is a subsystem which is used to forward the incoming HTLC
|
|
// packets according to the encoded hop forwarding information
|
|
// contained in the forwarding blob within each HTLC.
|
|
//
|
|
// TODO(roasbeef): remove in favor of simple ForwardPacket closure func
|
|
Switch *Switch
|
|
|
|
// DecodeHopIterator function is responsible for decoding HTLC Sphinx
|
|
// onion blob, and creating hop iterator which will give us next
|
|
// destination of HTLC.
|
|
DecodeHopIterator func(r io.Reader, rHash []byte,
|
|
cltv uint32) (HopIterator, lnwire.FailCode)
|
|
|
|
// DecodeHopIterators facilitates batched decoding of HTLC Sphinx onion
|
|
// blobs, which are then used to inform how to forward an HTLC.
|
|
// NOTE: This function assumes the same set of readers and preimages are
|
|
// always presented for the same identifier.
|
|
DecodeHopIterators func([]byte, []DecodeHopIteratorRequest) (
|
|
[]DecodeHopIteratorResponse, error)
|
|
|
|
// DecodeOnionObfuscator function is responsible for decoding HTLC
|
|
// Sphinx onion blob, and creating onion failure obfuscator.
|
|
DecodeOnionObfuscator ErrorEncrypterExtracter
|
|
|
|
// GetLastChannelUpdate retrieves the latest routing policy for this
|
|
// particular channel. This will be used to provide payment senders our
|
|
// latest policy when sending encrypted error messages.
|
|
GetLastChannelUpdate func() (*lnwire.ChannelUpdate, error)
|
|
|
|
// Peer is a lightning network node with which we have the channel link
|
|
// opened.
|
|
Peer Peer
|
|
|
|
// Registry is a sub-system which responsible for managing the invoices
|
|
// in thread-safe manner.
|
|
Registry InvoiceDatabase
|
|
|
|
// PreimageCache is a global witness beacon that houses any new
|
|
// preimages discovered by other links. We'll use this to add new
|
|
// witnesses that we discover which will notify any sub-systems
|
|
// subscribed to new events.
|
|
PreimageCache contractcourt.WitnessBeacon
|
|
|
|
// UpdateContractSignals is a function closure that we'll use to update
|
|
// outside sub-systems with the latest signals for our inner Lightning
|
|
// channel. These signals will notify the caller when the channel has
|
|
// been closed, or when the set of active HTLC's is updated.
|
|
UpdateContractSignals func(*contractcourt.ContractSignals) error
|
|
|
|
// ChainEvents is an active subscription to the chain watcher for this
|
|
// channel to be notified of any on-chain activity related to this
|
|
// channel.
|
|
ChainEvents *contractcourt.ChainEventSubscription
|
|
|
|
// FeeEstimator is an instance of a live fee estimator which will be
|
|
// used to dynamically regulate the current fee of the commitment
|
|
// transaction to ensure timely confirmation.
|
|
FeeEstimator lnwallet.FeeEstimator
|
|
|
|
// BlockEpochs is an active block epoch event stream backed by an
|
|
// active ChainNotifier instance. The ChannelLink will use new block
|
|
// notifications sent over this channel to decide when a _new_ HTLC is
|
|
// too close to expiry, and also when any active HTLC's have expired
|
|
// (or are close to expiry).
|
|
BlockEpochs *chainntnfs.BlockEpochEvent
|
|
|
|
// DebugHTLC should be turned on if you want all HTLCs sent to a node
|
|
// with the debug htlc R-Hash are immediately settled in the next
|
|
// available state transition.
|
|
DebugHTLC bool
|
|
|
|
// HodlHTLC should be active if you want this node to refrain from
|
|
// settling all incoming HTLCs with the sender if it finds itself to be
|
|
// the exit node.
|
|
//
|
|
// NOTE: HodlHTLC should be active in conjunction with DebugHTLC.
|
|
HodlHTLC bool
|
|
|
|
// SyncStates is used to indicate that we need send the channel
|
|
// reestablishment message to the remote peer. It should be done if our
|
|
// clients have been restarted, or remote peer have been reconnected.
|
|
SyncStates bool
|
|
|
|
// BatchTicker is the ticker that determines the interval that we'll
|
|
// use to check the batch to see if there're any updates we should
|
|
// flush out. By batching updates into a single commit, we attempt
|
|
// to increase throughput by maximizing the number of updates
|
|
// coalesced into a single commit.
|
|
BatchTicker Ticker
|
|
|
|
// BatchSize is the max size of a batch of updates done to the link
|
|
// before we do a state update.
|
|
BatchSize uint32
|
|
}
|
|
|
|
// channelLink is the service which drives a channel's commitment update
|
|
// state-machine. In the event that an htlc needs to be propagated to another
|
|
// link, the forward handler from config is used which sends htlc to the
|
|
// switch. Additionally, the link encapsulate logic of commitment protocol
|
|
// message ordering and updates.
|
|
type channelLink struct {
|
|
// The following fields are only meant to be used *atomically*
|
|
started int32
|
|
shutdown int32
|
|
|
|
// batchCounter is the number of updates which we received from remote
|
|
// side, but not include in commitment transaction yet and plus the
|
|
// current number of settles that have been sent, but not yet committed
|
|
// to the commitment.
|
|
//
|
|
// TODO(andrew.shvv) remove after we add additional
|
|
// BatchNumber() method in state machine.
|
|
batchCounter uint32
|
|
|
|
// bestHeight is the best known height of the main chain. The link will
|
|
// use this information to govern decisions based on HTLC timeouts.
|
|
bestHeight uint32
|
|
|
|
// channel is a lightning network channel to which we apply htlc
|
|
// updates.
|
|
channel *lnwallet.LightningChannel
|
|
|
|
// shortChanID is the most up to date short channel ID for the link.
|
|
shortChanID lnwire.ShortChannelID
|
|
|
|
// cfg is a structure which carries all dependable fields/handlers
|
|
// which may affect behaviour of the service.
|
|
cfg ChannelLinkConfig
|
|
|
|
// overflowQueue is used to store the htlc add updates which haven't
|
|
// been processed because of the commitment transaction overflow.
|
|
overflowQueue *packetQueue
|
|
|
|
// mailBox is the main interface between the outside world and the
|
|
// link. All incoming messages will be sent over this mailBox. Messages
|
|
// include new updates from our connected peer, and new packets to be
|
|
// forwarded sent by the switch.
|
|
mailBox *memoryMailBox
|
|
|
|
// upstream is a channel that new messages sent from the remote peer to
|
|
// the local peer will be sent across.
|
|
upstream chan lnwire.Message
|
|
|
|
// downstream is a channel in which new multi-hop HTLC's to be
|
|
// forwarded will be sent across. Messages from this channel are sent
|
|
// by the HTLC switch.
|
|
downstream chan *htlcPacket
|
|
|
|
// linkControl is a channel which is used to query the state of the
|
|
// link, or update various policies used which govern if an HTLC is to
|
|
// be forwarded and/or accepted.
|
|
linkControl chan interface{}
|
|
|
|
// htlcUpdates is a channel that we'll use to update outside
|
|
// sub-systems with the latest set of active HTLC's on our channel.
|
|
htlcUpdates chan []channeldb.HTLC
|
|
|
|
// logCommitTimer is a timer which is sent upon if we go an interval
|
|
// without receiving/sending a commitment update. It's role is to
|
|
// ensure both chains converge to identical state in a timely manner.
|
|
//
|
|
// TODO(roasbeef): timer should be >> then RTT
|
|
logCommitTimer *time.Timer
|
|
logCommitTick <-chan time.Time
|
|
|
|
sync.RWMutex
|
|
|
|
wg sync.WaitGroup
|
|
quit chan struct{}
|
|
}
|
|
|
|
// NewChannelLink creates a new instance of a ChannelLink given a configuration
|
|
// and active channel that will be used to verify/apply updates to.
|
|
func NewChannelLink(cfg ChannelLinkConfig, channel *lnwallet.LightningChannel,
|
|
currentHeight uint32) ChannelLink {
|
|
|
|
link := &channelLink{
|
|
cfg: cfg,
|
|
channel: channel,
|
|
shortChanID: channel.ShortChanID(),
|
|
mailBox: newMemoryMailBox(),
|
|
linkControl: make(chan interface{}),
|
|
// TODO(roasbeef): just do reserve here?
|
|
logCommitTimer: time.NewTimer(300 * time.Millisecond),
|
|
overflowQueue: newPacketQueue(lnwallet.MaxHTLCNumber / 2),
|
|
bestHeight: currentHeight,
|
|
htlcUpdates: make(chan []channeldb.HTLC),
|
|
quit: make(chan struct{}),
|
|
}
|
|
|
|
link.upstream = link.mailBox.MessageOutBox()
|
|
link.downstream = link.mailBox.PacketOutBox()
|
|
|
|
return link
|
|
}
|
|
|
|
// A compile time check to ensure channelLink implements the ChannelLink
|
|
// interface.
|
|
var _ ChannelLink = (*channelLink)(nil)
|
|
|
|
// Start starts all helper goroutines required for the operation of the channel
|
|
// link.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) Start() error {
|
|
if !atomic.CompareAndSwapInt32(&l.started, 0, 1) {
|
|
err := errors.Errorf("channel link(%v): already started", l)
|
|
log.Warn(err)
|
|
return err
|
|
}
|
|
|
|
log.Infof("ChannelLink(%v) is starting", l)
|
|
|
|
// Before we start the link, we'll update the ChainArbitrator with the
|
|
// set of new channel signals for this channel.
|
|
//
|
|
// TODO(roasbeef): split goroutines within channel arb to avoid
|
|
go func() {
|
|
err := l.cfg.UpdateContractSignals(&contractcourt.ContractSignals{
|
|
HtlcUpdates: l.htlcUpdates,
|
|
ShortChanID: l.channel.ShortChanID(),
|
|
})
|
|
if err != nil {
|
|
log.Errorf("Unable to update signals for "+
|
|
"ChannelLink(%v)", l)
|
|
}
|
|
}()
|
|
|
|
l.mailBox.Start()
|
|
l.overflowQueue.Start()
|
|
|
|
l.wg.Add(1)
|
|
go l.htlcManager()
|
|
|
|
return nil
|
|
}
|
|
|
|
// Stop gracefully stops all active helper goroutines, then waits until they've
|
|
// exited.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) Stop() {
|
|
if !atomic.CompareAndSwapInt32(&l.shutdown, 0, 1) {
|
|
log.Warnf("channel link(%v): already stopped", l)
|
|
return
|
|
}
|
|
|
|
log.Infof("ChannelLink(%v) is stopping", l)
|
|
|
|
if l.cfg.ChainEvents.Cancel != nil {
|
|
l.cfg.ChainEvents.Cancel()
|
|
}
|
|
|
|
l.channel.Stop()
|
|
|
|
l.mailBox.Stop()
|
|
l.overflowQueue.Stop()
|
|
|
|
close(l.quit)
|
|
l.wg.Wait()
|
|
}
|
|
|
|
// EligibleToForward returns a bool indicating if the channel is able to
|
|
// actively accept requests to forward HTLC's. We're able to forward HTLC's if
|
|
// we know the remote party's next revocation point. Otherwise, we can't
|
|
// initiate new channel state.
|
|
func (l *channelLink) EligibleToForward() bool {
|
|
return l.channel.RemoteNextRevocation() != nil
|
|
}
|
|
|
|
// sampleNetworkFee samples the current fee rate on the network to get into the
|
|
// chain in a timely manner. The returned value is expressed in fee-per-kw, as
|
|
// this is the native rate used when computing the fee for commitment
|
|
// transactions, and the second-level HTLC transactions.
|
|
func (l *channelLink) sampleNetworkFee() (lnwallet.SatPerKWeight, error) {
|
|
// We'll first query for the sat/vbyte recommended to be confirmed
|
|
// within 3 blocks.
|
|
feePerVSize, err := l.cfg.FeeEstimator.EstimateFeePerVSize(3)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// Once we have this fee rate, we'll convert to sat-per-kw.
|
|
feePerKw := feePerVSize.FeePerKWeight()
|
|
|
|
log.Debugf("ChannelLink(%v): sampled fee rate for 3 block conf: %v "+
|
|
"sat/kw", l, int64(feePerKw))
|
|
|
|
return feePerKw, nil
|
|
}
|
|
|
|
// shouldAdjustCommitFee returns true if we should update our commitment fee to
|
|
// match that of the network fee. We'll only update our commitment fee if the
|
|
// network fee is +/- 10% to our network fee.
|
|
func shouldAdjustCommitFee(netFee, chanFee lnwallet.SatPerKWeight) bool {
|
|
switch {
|
|
// If the network fee is greater than the commitment fee, then we'll
|
|
// switch to it if it's at least 10% greater than the commit fee.
|
|
case netFee > chanFee && netFee >= (chanFee+(chanFee*10)/100):
|
|
return true
|
|
|
|
// If the network fee is less than our commitment fee, then we'll
|
|
// switch to it if it's at least 10% less than the commitment fee.
|
|
case netFee < chanFee && netFee <= (chanFee-(chanFee*10)/100):
|
|
return true
|
|
|
|
// Otherwise, we won't modify our fee.
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// syncChanState attempts to synchronize channel states with the remote party.
|
|
// This method is to be called upon reconnection after the initial funding
|
|
// flow. We'll compare out commitment chains with the remote party, and re-send
|
|
// either a danging commit signature, a revocation, or both.
|
|
func (l *channelLink) syncChanStates() error {
|
|
log.Infof("Attempting to re-resynchronize ChannelPoint(%v)",
|
|
l.channel.ChannelPoint())
|
|
|
|
// First, we'll generate our ChanSync message to send to the other
|
|
// side. Based on this message, the remote party will decide if they
|
|
// need to retransmit any data or not.
|
|
localChanSyncMsg, err := l.channel.ChanSyncMsg()
|
|
if err != nil {
|
|
return fmt.Errorf("unable to generate chan sync message for "+
|
|
"ChannelPoint(%v)", l.channel.ChannelPoint())
|
|
}
|
|
if err := l.cfg.Peer.SendMessage(localChanSyncMsg); err != nil {
|
|
return fmt.Errorf("Unable to send chan sync message for "+
|
|
"ChannelPoint(%v)", l.channel.ChannelPoint())
|
|
}
|
|
|
|
var msgsToReSend []lnwire.Message
|
|
|
|
// Next, we'll wait to receive the ChanSync message with a timeout
|
|
// period. The first message sent MUST be the ChanSync message,
|
|
// otherwise, we'll terminate the connection.
|
|
chanSyncDeadline := time.After(time.Second * 30)
|
|
select {
|
|
case msg := <-l.upstream:
|
|
remoteChanSyncMsg, ok := msg.(*lnwire.ChannelReestablish)
|
|
if !ok {
|
|
return fmt.Errorf("first message sent to sync "+
|
|
"should be ChannelReestablish, instead "+
|
|
"received: %T", msg)
|
|
}
|
|
|
|
// If the remote party indicates that they think we haven't
|
|
// done any state updates yet, then we'll retransmit the
|
|
// funding locked message first. We do this, as at this point
|
|
// we can't be sure if they've really received the
|
|
// FundingLocked message.
|
|
if remoteChanSyncMsg.NextLocalCommitHeight == 1 &&
|
|
localChanSyncMsg.NextLocalCommitHeight == 1 &&
|
|
!l.channel.IsPending() {
|
|
|
|
log.Infof("ChannelPoint(%v): resending "+
|
|
"FundingLocked message to peer",
|
|
l.channel.ChannelPoint())
|
|
|
|
nextRevocation, err := l.channel.NextRevocationKey()
|
|
if err != nil {
|
|
return fmt.Errorf("unable to create next "+
|
|
"revocation: %v", err)
|
|
}
|
|
|
|
fundingLockedMsg := lnwire.NewFundingLocked(
|
|
l.ChanID(), nextRevocation,
|
|
)
|
|
err = l.cfg.Peer.SendMessage(fundingLockedMsg)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to re-send "+
|
|
"FundingLocked: %v", err)
|
|
}
|
|
}
|
|
|
|
// In any case, we'll then process their ChanSync message.
|
|
log.Infof("Received re-establishment message from remote side "+
|
|
"for channel(%v)", l.channel.ChannelPoint())
|
|
|
|
// We've just received a ChnSync message from the remote party,
|
|
// so we'll process the message in order to determine if we
|
|
// need to re-transmit any messages to the remote party.
|
|
msgsToReSend, err = l.channel.ProcessChanSyncMsg(remoteChanSyncMsg)
|
|
if err != nil {
|
|
// TODO(roasbeef): check concrete type of error, act
|
|
// accordingly
|
|
return fmt.Errorf("unable to handle upstream reestablish "+
|
|
"message: %v", err)
|
|
}
|
|
|
|
if len(msgsToReSend) > 0 {
|
|
log.Infof("Sending %v updates to synchronize the "+
|
|
"state for ChannelPoint(%v)", len(msgsToReSend),
|
|
l.channel.ChannelPoint())
|
|
}
|
|
|
|
// If we have any messages to retransmit, we'll do so
|
|
// immediately so we return to a synchronized state as soon as
|
|
// possible.
|
|
for _, msg := range msgsToReSend {
|
|
l.cfg.Peer.SendMessage(msg)
|
|
}
|
|
|
|
case <-l.quit:
|
|
return fmt.Errorf("shutting down")
|
|
|
|
case <-chanSyncDeadline:
|
|
return fmt.Errorf("didn't receive ChannelReestablish before " +
|
|
"deadline")
|
|
}
|
|
|
|
// In order to prep for the fragment below, we'll note if we
|
|
// retransmitted any HTLC's settles earlier. We'll track them by the
|
|
// HTLC index of the remote party in order to avoid erroneously sending
|
|
// a duplicate settle.
|
|
htlcsSettled := make(map[uint64]struct{})
|
|
for _, msg := range msgsToReSend {
|
|
settleMsg, ok := msg.(*lnwire.UpdateFulfillHTLC)
|
|
if !ok {
|
|
// If this isn't a settle message, then we'll skip it.
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we'll note the ID of the HTLC we're settling so we
|
|
// don't duplicate it below.
|
|
htlcsSettled[settleMsg.ID] = struct{}{}
|
|
}
|
|
|
|
// Now that we've synchronized our state, we'll check to see if
|
|
// there're any HTLC's that we received, but weren't able to settle
|
|
// directly the last time we were active. If we find any, then we'll
|
|
// send the settle message, then being to initiate a state transition.
|
|
//
|
|
// TODO(roasbeef): can later just inspect forwarding package
|
|
activeHTLCs := l.channel.ActiveHtlcs()
|
|
for _, htlc := range activeHTLCs {
|
|
if !htlc.Incoming {
|
|
continue
|
|
}
|
|
|
|
// Before we attempt to settle this HTLC, we'll check to see if
|
|
// we just re-sent it as part of the channel sync. If so, then
|
|
// we'll skip it.
|
|
if _, ok := htlcsSettled[htlc.HtlcIndex]; ok {
|
|
continue
|
|
}
|
|
|
|
// Now we'll check to if we we actually know the preimage if we
|
|
// don't then we'll skip it.
|
|
preimage, ok := l.cfg.PreimageCache.LookupPreimage(htlc.RHash[:])
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
// At this point, we've found an unsettled HTLC that we know
|
|
// the preimage to, so we'll send a settle message to the
|
|
// remote party.
|
|
var p [32]byte
|
|
copy(p[:], preimage)
|
|
err := l.channel.SettleHTLC(p, htlc.HtlcIndex)
|
|
if err != nil {
|
|
l.fail("unable to settle htlc: %v", err)
|
|
return err
|
|
}
|
|
|
|
// We'll now mark the HTLC as settled in the invoice database,
|
|
// then send the settle message to the remote party.
|
|
err = l.cfg.Registry.SettleInvoice(htlc.RHash)
|
|
if err != nil {
|
|
l.fail("unable to settle invoice: %v", err)
|
|
return err
|
|
}
|
|
l.batchCounter++
|
|
l.cfg.Peer.SendMessage(&lnwire.UpdateFulfillHTLC{
|
|
ChanID: l.ChanID(),
|
|
ID: htlc.HtlcIndex,
|
|
PaymentPreimage: p,
|
|
})
|
|
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// htlcManager is the primary goroutine which drives a channel's commitment
|
|
// update state-machine in response to messages received via several channels.
|
|
// This goroutine reads messages from the upstream (remote) peer, and also from
|
|
// downstream channel managed by the channel link. In the event that an htlc
|
|
// needs to be forwarded, then send-only forward handler is used which sends
|
|
// htlc packets to the switch. Additionally, the this goroutine handles acting
|
|
// upon all timeouts for any active HTLCs, manages the channel's revocation
|
|
// window, and also the htlc trickle queue+timer for this active channels.
|
|
//
|
|
// NOTE: This MUST be run as a goroutine.
|
|
func (l *channelLink) htlcManager() {
|
|
defer func() {
|
|
l.wg.Done()
|
|
l.cfg.BlockEpochs.Cancel()
|
|
log.Infof("ChannelLink(%v) has exited", l)
|
|
}()
|
|
|
|
log.Infof("HTLC manager for ChannelPoint(%v) started, "+
|
|
"bandwidth=%v", l.channel.ChannelPoint(), l.Bandwidth())
|
|
|
|
// TODO(roasbeef): need to call wipe chan whenever D/C?
|
|
|
|
// If this isn't the first time that this channel link has been
|
|
// created, then we'll need to check to see if we need to
|
|
// re-synchronize state with the remote peer. settledHtlcs is a map of
|
|
// HTLC's that we re-settled as part of the channel state sync.
|
|
if l.cfg.SyncStates {
|
|
// TODO(roasbeef): need to ensure haven't already settled?
|
|
if err := l.syncChanStates(); err != nil {
|
|
l.fail(err.Error())
|
|
return
|
|
}
|
|
}
|
|
|
|
batchTick := l.cfg.BatchTicker.Start()
|
|
defer l.cfg.BatchTicker.Stop()
|
|
|
|
// TODO(roasbeef): fail chan in case of protocol violation
|
|
out:
|
|
for {
|
|
select {
|
|
|
|
// A new block has arrived, we'll check the network fee to see
|
|
// if we should adjust our commitment fee, and also update our
|
|
// track of the best current height.
|
|
case blockEpoch, ok := <-l.cfg.BlockEpochs.Epochs:
|
|
if !ok {
|
|
break out
|
|
}
|
|
|
|
l.bestHeight = uint32(blockEpoch.Height)
|
|
|
|
// If we're not the initiator of the channel, don't we
|
|
// don't control the fees, so we can ignore this.
|
|
if !l.channel.IsInitiator() {
|
|
continue
|
|
}
|
|
|
|
// If we are the initiator, then we'll sample the
|
|
// current fee rate to get into the chain within 3
|
|
// blocks.
|
|
feePerKw, err := l.sampleNetworkFee()
|
|
if err != nil {
|
|
log.Errorf("unable to sample network fee: %v", err)
|
|
continue
|
|
}
|
|
|
|
// We'll check to see if we should update the fee rate
|
|
// based on our current set fee rate.
|
|
commitFee := l.channel.CommitFeeRate()
|
|
if !shouldAdjustCommitFee(feePerKw, commitFee) {
|
|
continue
|
|
}
|
|
|
|
// If we do, then we'll send a new UpdateFee message to
|
|
// the remote party, to be locked in with a new update.
|
|
if err := l.updateChannelFee(feePerKw); err != nil {
|
|
log.Errorf("unable to update fee rate: %v", err)
|
|
continue
|
|
}
|
|
|
|
// The underlying channel has notified us of a unilateral close
|
|
// carried out by the remote peer. In the case of such an
|
|
// event, we'll wipe the channel state from the peer, and mark
|
|
// the contract as fully settled. Afterwards we can exit.
|
|
//
|
|
// TODO(roasbeef): add force closure? also breach?
|
|
case <-l.cfg.ChainEvents.UnilateralClosure:
|
|
log.Warnf("Remote peer has closed ChannelPoint(%v) on-chain",
|
|
l.channel.ChannelPoint())
|
|
|
|
// TODO(roasbeef): remove all together
|
|
go func() {
|
|
chanPoint := l.channel.ChannelPoint()
|
|
if err := l.cfg.Peer.WipeChannel(chanPoint); err != nil {
|
|
log.Errorf("unable to wipe channel %v", err)
|
|
}
|
|
}()
|
|
|
|
break out
|
|
|
|
case <-l.logCommitTick:
|
|
// If we haven't sent or received a new commitment
|
|
// update in some time, check to see if we have any
|
|
// pending updates we need to commit due to our
|
|
// commitment chains being desynchronized.
|
|
if l.channel.FullySynced() {
|
|
continue
|
|
}
|
|
|
|
if err := l.updateCommitTx(); err != nil {
|
|
l.fail("unable to update commitment: %v", err)
|
|
break out
|
|
}
|
|
|
|
case <-batchTick:
|
|
// If the current batch is empty, then we have no work
|
|
// here.
|
|
if l.batchCounter == 0 {
|
|
continue
|
|
}
|
|
|
|
// Otherwise, attempt to extend the remote commitment
|
|
// chain including all the currently pending entries.
|
|
// If the send was unsuccessful, then abandon the
|
|
// update, waiting for the revocation window to open
|
|
// up.
|
|
if err := l.updateCommitTx(); err != nil {
|
|
l.fail("unable to update commitment: %v", err)
|
|
break out
|
|
}
|
|
|
|
// A packet that previously overflowed the commitment
|
|
// transaction is now eligible for processing once again. So
|
|
// we'll attempt to re-process the packet in order to allow it
|
|
// to continue propagating within the network.
|
|
case packet := <-l.overflowQueue.outgoingPkts:
|
|
msg := packet.htlc.(*lnwire.UpdateAddHTLC)
|
|
log.Tracef("Reprocessing downstream add update "+
|
|
"with payment hash(%x)", msg.PaymentHash[:])
|
|
|
|
l.handleDownStreamPkt(packet, true)
|
|
|
|
// A message from the switch was just received. This indicates
|
|
// that the link is an intermediate hop in a multi-hop HTLC
|
|
// circuit.
|
|
case pkt := <-l.downstream:
|
|
// If we have non empty processing queue then we'll add
|
|
// this to the overflow rather than processing it
|
|
// directly. Once an active HTLC is either settled or
|
|
// failed, then we'll free up a new slot.
|
|
htlc, ok := pkt.htlc.(*lnwire.UpdateAddHTLC)
|
|
if ok && l.overflowQueue.Length() != 0 {
|
|
log.Infof("Downstream htlc add update with "+
|
|
"payment hash(%x) have been added to "+
|
|
"reprocessing queue, batch_size=%v",
|
|
htlc.PaymentHash[:],
|
|
l.batchCounter)
|
|
|
|
l.overflowQueue.AddPkt(pkt)
|
|
continue
|
|
}
|
|
l.handleDownStreamPkt(pkt, false)
|
|
|
|
// A message from the connected peer was just received. This
|
|
// indicates that we have a new incoming HTLC, either directly
|
|
// for us, or part of a multi-hop HTLC circuit.
|
|
case msg := <-l.upstream:
|
|
l.handleUpstreamMsg(msg)
|
|
|
|
// TODO(roasbeef): make distinct goroutine to handle?
|
|
case cmd := <-l.linkControl:
|
|
|
|
switch req := cmd.(type) {
|
|
case *policyUpdate:
|
|
// In order to avoid overriding a valid policy
|
|
// with a "null" field in the new policy, we'll
|
|
// only update to the set sub policy if the new
|
|
// value isn't uninitialized.
|
|
if req.policy.BaseFee != 0 {
|
|
l.cfg.FwrdingPolicy.BaseFee = req.policy.BaseFee
|
|
}
|
|
if req.policy.FeeRate != 0 {
|
|
l.cfg.FwrdingPolicy.FeeRate = req.policy.FeeRate
|
|
}
|
|
if req.policy.TimeLockDelta != 0 {
|
|
l.cfg.FwrdingPolicy.TimeLockDelta = req.policy.TimeLockDelta
|
|
}
|
|
|
|
if req.done != nil {
|
|
close(req.done)
|
|
}
|
|
}
|
|
|
|
case <-l.quit:
|
|
break out
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleDownStreamPkt processes an HTLC packet sent from the downstream HTLC
|
|
// Switch. Possible messages sent by the switch include requests to forward new
|
|
// HTLCs, timeout previously cleared HTLCs, and finally to settle currently
|
|
// cleared HTLCs with the upstream peer.
|
|
//
|
|
// TODO(roasbeef): add sync ntfn to ensure switch always has consistent view?
|
|
func (l *channelLink) handleDownStreamPkt(pkt *htlcPacket, isReProcess bool) {
|
|
var isSettle bool
|
|
switch htlc := pkt.htlc.(type) {
|
|
case *lnwire.UpdateAddHTLC:
|
|
// A new payment has been initiated via the downstream channel,
|
|
// so we add the new HTLC to our local log, then update the
|
|
// commitment chains.
|
|
htlc.ChanID = l.ChanID()
|
|
index, err := l.channel.AddHTLC(htlc)
|
|
if err != nil {
|
|
switch err {
|
|
|
|
// The channels spare bandwidth is fully allocated, so
|
|
// we'll put this HTLC into the overflow queue.
|
|
case lnwallet.ErrMaxHTLCNumber:
|
|
log.Infof("Downstream htlc add update with "+
|
|
"payment hash(%x) have been added to "+
|
|
"reprocessing queue, batch: %v",
|
|
htlc.PaymentHash[:],
|
|
l.batchCounter)
|
|
|
|
l.overflowQueue.AddPkt(pkt)
|
|
return
|
|
|
|
// The HTLC was unable to be added to the state
|
|
// machine, as a result, we'll signal the switch to
|
|
// cancel the pending payment.
|
|
default:
|
|
log.Warnf("Unable to handle downstream add HTLC: %v", err)
|
|
|
|
var (
|
|
localFailure = false
|
|
reason lnwire.OpaqueReason
|
|
)
|
|
|
|
failure := lnwire.NewTemporaryChannelFailure(nil)
|
|
|
|
// Encrypt the error back to the source unless the payment was
|
|
// generated locally.
|
|
if pkt.obfuscator == nil {
|
|
var b bytes.Buffer
|
|
err := lnwire.EncodeFailure(&b, failure, 0)
|
|
if err != nil {
|
|
log.Errorf("unable to encode failure: %v", err)
|
|
return
|
|
}
|
|
reason = lnwire.OpaqueReason(b.Bytes())
|
|
localFailure = true
|
|
} else {
|
|
var err error
|
|
reason, err = pkt.obfuscator.EncryptFirstHop(failure)
|
|
if err != nil {
|
|
log.Errorf("unable to obfuscate error: %v", err)
|
|
return
|
|
}
|
|
}
|
|
|
|
failPkt := &htlcPacket{
|
|
incomingChanID: pkt.incomingChanID,
|
|
incomingHTLCID: pkt.incomingHTLCID,
|
|
amount: htlc.Amount,
|
|
isRouted: true,
|
|
localFailure: localFailure,
|
|
htlc: &lnwire.UpdateFailHTLC{
|
|
Reason: reason,
|
|
},
|
|
}
|
|
|
|
// TODO(roasbeef): need to identify if sent
|
|
// from switch so don't need to obfuscate
|
|
go l.cfg.Switch.forward(failPkt)
|
|
return
|
|
}
|
|
}
|
|
|
|
log.Tracef("Received downstream htlc: payment_hash=%x, "+
|
|
"local_log_index=%v, batch_size=%v",
|
|
htlc.PaymentHash[:], index, l.batchCounter+1)
|
|
|
|
// Create circuit (remember the path) in order to forward
|
|
// settle/fail packet back.
|
|
l.cfg.Switch.addCircuit(&PaymentCircuit{
|
|
PaymentHash: htlc.PaymentHash,
|
|
IncomingChanID: pkt.incomingChanID,
|
|
IncomingHTLCID: pkt.incomingHTLCID,
|
|
IncomingAmt: pkt.incomingHtlcAmt,
|
|
OutgoingChanID: l.ShortChanID(),
|
|
OutgoingHTLCID: index,
|
|
OutgoingAmt: htlc.Amount,
|
|
ErrorEncrypter: pkt.obfuscator,
|
|
})
|
|
|
|
htlc.ID = index
|
|
l.cfg.Peer.SendMessage(htlc)
|
|
|
|
case *lnwire.UpdateFulfillHTLC:
|
|
// An HTLC we forward to the switch has just settled somewhere
|
|
// upstream. Therefore we settle the HTLC within the our local
|
|
// state machine.
|
|
err := l.channel.SettleHTLC(htlc.PaymentPreimage, pkt.incomingHTLCID)
|
|
if err != nil {
|
|
// TODO(roasbeef): broadcast on-chain
|
|
l.fail("unable to settle incoming HTLC: %v", err)
|
|
return
|
|
}
|
|
|
|
// With the HTLC settled, we'll need to populate the wire
|
|
// message to target the specific channel and HTLC to be
|
|
// cancelled.
|
|
htlc.ChanID = l.ChanID()
|
|
htlc.ID = pkt.incomingHTLCID
|
|
|
|
// Then we send the HTLC settle message to the connected peer
|
|
// so we can continue the propagation of the settle message.
|
|
l.cfg.Peer.SendMessage(htlc)
|
|
isSettle = true
|
|
|
|
case *lnwire.UpdateFailHTLC:
|
|
// An HTLC cancellation has been triggered somewhere upstream,
|
|
// we'll remove then HTLC from our local state machine.
|
|
err := l.channel.FailHTLC(pkt.incomingHTLCID, htlc.Reason)
|
|
if err != nil {
|
|
log.Errorf("unable to cancel HTLC: %v", err)
|
|
return
|
|
}
|
|
|
|
// With the HTLC removed, we'll need to populate the wire
|
|
// message to target the specific channel and HTLC to be
|
|
// cancelled. The "Reason" field will have already been set
|
|
// within the switch.
|
|
htlc.ChanID = l.ChanID()
|
|
htlc.ID = pkt.incomingHTLCID
|
|
|
|
// Finally, we send the HTLC message to the peer which
|
|
// initially created the HTLC.
|
|
l.cfg.Peer.SendMessage(htlc)
|
|
isSettle = true
|
|
}
|
|
|
|
l.batchCounter++
|
|
|
|
// If this newly added update exceeds the min batch size for adds, or
|
|
// this is a settle request, then initiate an update.
|
|
if l.batchCounter >= l.cfg.BatchSize || isSettle {
|
|
if err := l.updateCommitTx(); err != nil {
|
|
l.fail("unable to update commitment: %v", err)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleUpstreamMsg processes wire messages related to commitment state
|
|
// updates from the upstream peer. The upstream peer is the peer whom we have a
|
|
// direct channel with, updating our respective commitment chains.
|
|
func (l *channelLink) handleUpstreamMsg(msg lnwire.Message) {
|
|
switch msg := msg.(type) {
|
|
|
|
case *lnwire.UpdateAddHTLC:
|
|
// We just received an add request from an upstream peer, so we
|
|
// add it to our state machine, then add the HTLC to our
|
|
// "settle" list in the event that we know the preimage.
|
|
index, err := l.channel.ReceiveHTLC(msg)
|
|
if err != nil {
|
|
l.fail("unable to handle upstream add HTLC: %v", err)
|
|
return
|
|
}
|
|
|
|
log.Tracef("Receive upstream htlc with payment hash(%x), "+
|
|
"assigning index: %v", msg.PaymentHash[:], index)
|
|
|
|
case *lnwire.UpdateFulfillHTLC:
|
|
pre := msg.PaymentPreimage
|
|
idx := msg.ID
|
|
if err := l.channel.ReceiveHTLCSettle(pre, idx); err != nil {
|
|
// TODO(roasbeef): broadcast on-chain
|
|
l.fail("unable to handle upstream settle HTLC: %v", err)
|
|
return
|
|
}
|
|
|
|
// TODO(roasbeef): pipeline to switch
|
|
|
|
// As we've learned of a new preimage for the first time, we'll
|
|
// add it to to our preimage cache. By doing this, we ensure
|
|
// any contested contracts watched by any on-chain arbitrators
|
|
// can now sweep this HTLC on-chain.
|
|
go func() {
|
|
err := l.cfg.PreimageCache.AddPreimage(pre[:])
|
|
if err != nil {
|
|
log.Errorf("unable to add preimage=%x to "+
|
|
"cache", pre[:])
|
|
}
|
|
}()
|
|
|
|
case *lnwire.UpdateFailMalformedHTLC:
|
|
// Convert the failure type encoded within the HTLC fail
|
|
// message to the proper generic lnwire error code.
|
|
var failure lnwire.FailureMessage
|
|
switch msg.FailureCode {
|
|
case lnwire.CodeInvalidOnionVersion:
|
|
failure = &lnwire.FailInvalidOnionVersion{
|
|
OnionSHA256: msg.ShaOnionBlob,
|
|
}
|
|
case lnwire.CodeInvalidOnionHmac:
|
|
failure = &lnwire.FailInvalidOnionHmac{
|
|
OnionSHA256: msg.ShaOnionBlob,
|
|
}
|
|
|
|
case lnwire.CodeInvalidOnionKey:
|
|
failure = &lnwire.FailInvalidOnionKey{
|
|
OnionSHA256: msg.ShaOnionBlob,
|
|
}
|
|
default:
|
|
log.Errorf("Unknown failure code: %v", msg.FailureCode)
|
|
failure = &lnwire.FailTemporaryChannelFailure{}
|
|
}
|
|
|
|
// With the error parsed, we'll convert the into it's opaque
|
|
// form.
|
|
var b bytes.Buffer
|
|
if err := lnwire.EncodeFailure(&b, failure, 0); err != nil {
|
|
log.Errorf("unable to encode malformed error: %v", err)
|
|
return
|
|
}
|
|
|
|
// If remote side have been unable to parse the onion blob we
|
|
// have sent to it, than we should transform the malformed HTLC
|
|
// message to the usual HTLC fail message.
|
|
err := l.channel.ReceiveFailHTLC(msg.ID, b.Bytes())
|
|
if err != nil {
|
|
l.fail("unable to handle upstream fail HTLC: %v", err)
|
|
return
|
|
}
|
|
|
|
case *lnwire.UpdateFailHTLC:
|
|
idx := msg.ID
|
|
err := l.channel.ReceiveFailHTLC(idx, msg.Reason[:])
|
|
if err != nil {
|
|
l.fail("unable to handle upstream fail HTLC: %v", err)
|
|
return
|
|
}
|
|
|
|
case *lnwire.CommitSig:
|
|
// We just received a new updates to our local commitment
|
|
// chain, validate this new commitment, closing the link if
|
|
// invalid.
|
|
err := l.channel.ReceiveNewCommitment(msg.CommitSig, msg.HtlcSigs)
|
|
if err != nil {
|
|
// If we were unable to reconstruct their proposed
|
|
// commitment, then we'll examine the type of error. If
|
|
// it's an InvalidCommitSigError, then we'll send a
|
|
// direct error.
|
|
//
|
|
// TODO(roasbeef): force close chan
|
|
if _, ok := err.(*lnwallet.InvalidCommitSigError); ok {
|
|
l.cfg.Peer.SendMessage(&lnwire.Error{
|
|
ChanID: l.ChanID(),
|
|
Data: []byte(err.Error()),
|
|
})
|
|
}
|
|
|
|
l.fail("ChannelPoint(%v): unable to accept new "+
|
|
"commitment: %v", l.channel.ChannelPoint(), err)
|
|
return
|
|
}
|
|
|
|
// As we've just just accepted a new state, we'll now
|
|
// immediately send the remote peer a revocation for our prior
|
|
// state.
|
|
nextRevocation, currentHtlcs, err := l.channel.RevokeCurrentCommitment()
|
|
if err != nil {
|
|
log.Errorf("unable to revoke commitment: %v", err)
|
|
return
|
|
}
|
|
l.cfg.Peer.SendMessage(nextRevocation)
|
|
|
|
// Since we just revoked our commitment, we may have a new set
|
|
// of HTLC's on our commitment, so we'll send them over our
|
|
// HTLC update channel so any callers can be notified.
|
|
select {
|
|
case l.htlcUpdates <- currentHtlcs:
|
|
case <-l.quit:
|
|
return
|
|
}
|
|
|
|
// As we've just received a commitment signature, we'll
|
|
// re-start the log commit timer to wake up the main processing
|
|
// loop to check if we need to send a commitment signature as
|
|
// we owe one.
|
|
//
|
|
// TODO(roasbeef): instead after revocation?
|
|
if !l.logCommitTimer.Stop() {
|
|
select {
|
|
case <-l.logCommitTimer.C:
|
|
default:
|
|
}
|
|
}
|
|
l.logCommitTimer.Reset(300 * time.Millisecond)
|
|
l.logCommitTick = l.logCommitTimer.C
|
|
|
|
// If both commitment chains are fully synced from our PoV,
|
|
// then we don't need to reply with a signature as both sides
|
|
// already have a commitment with the latest accepted l.
|
|
if l.channel.FullySynced() {
|
|
return
|
|
}
|
|
|
|
// Otherwise, the remote party initiated the state transition,
|
|
// so we'll reply with a signature to provide them with their
|
|
// version of the latest commitment.
|
|
if err := l.updateCommitTx(); err != nil {
|
|
l.fail("unable to update commitment: %v", err)
|
|
return
|
|
}
|
|
|
|
case *lnwire.RevokeAndAck:
|
|
// We've received a revocation from the remote chain, if valid,
|
|
// this moves the remote chain forward, and expands our
|
|
// revocation window.
|
|
htlcs, err := l.channel.ReceiveRevocation(msg)
|
|
if err != nil {
|
|
l.fail("unable to accept revocation: %v", err)
|
|
return
|
|
}
|
|
|
|
// After we treat HTLCs as included in both remote/local
|
|
// commitment transactions they might be safely propagated over
|
|
// htlc switch or settled if our node was last node in htlc
|
|
// path.
|
|
htlcsToForward := l.processLockedInHtlcs(htlcs)
|
|
go func() {
|
|
log.Debugf("ChannelPoint(%v) forwarding %v HTLC's",
|
|
l.channel.ChannelPoint(), len(htlcsToForward))
|
|
for _, packet := range htlcsToForward {
|
|
if err := l.cfg.Switch.forward(packet); err != nil {
|
|
// TODO(roasbeef): cancel back htlc
|
|
// under certain conditions?
|
|
log.Errorf("channel link(%v): "+
|
|
"unhandled error while forwarding "+
|
|
"htlc packet over htlc "+
|
|
"switch: %v", l, err)
|
|
}
|
|
}
|
|
}()
|
|
|
|
case *lnwire.UpdateFee:
|
|
// We received fee update from peer. If we are the initiator we
|
|
// will fail the channel, if not we will apply the update.
|
|
fee := lnwallet.SatPerKWeight(msg.FeePerKw)
|
|
if err := l.channel.ReceiveUpdateFee(fee); err != nil {
|
|
l.fail("error receiving fee update: %v", err)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// updateCommitTx signs, then sends an update to the remote peer adding a new
|
|
// commitment to their commitment chain which includes all the latest updates
|
|
// we've received+processed up to this point.
|
|
func (l *channelLink) updateCommitTx() error {
|
|
theirCommitSig, htlcSigs, err := l.channel.SignNextCommitment()
|
|
if err == lnwallet.ErrNoWindow {
|
|
log.Tracef("revocation window exhausted, unable to send %v",
|
|
l.batchCounter)
|
|
return nil
|
|
} else if err != nil {
|
|
return err
|
|
}
|
|
|
|
commitSig := &lnwire.CommitSig{
|
|
ChanID: l.ChanID(),
|
|
CommitSig: theirCommitSig,
|
|
HtlcSigs: htlcSigs,
|
|
}
|
|
l.cfg.Peer.SendMessage(commitSig)
|
|
|
|
// We've just initiated a state transition, attempt to stop the
|
|
// logCommitTimer. If the timer already ticked, then we'll consume the
|
|
// value, dropping
|
|
if l.logCommitTimer != nil && !l.logCommitTimer.Stop() {
|
|
select {
|
|
case <-l.logCommitTimer.C:
|
|
default:
|
|
}
|
|
}
|
|
l.logCommitTick = nil
|
|
|
|
// Finally, clear our the current batch, so we can accurately make
|
|
// further batch flushing decisions.
|
|
l.batchCounter = 0
|
|
|
|
return nil
|
|
}
|
|
|
|
// Peer returns the representation of remote peer with which we have the
|
|
// channel link opened.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) Peer() Peer {
|
|
return l.cfg.Peer
|
|
}
|
|
|
|
// ShortChanID returns the short channel ID for the channel link. The short
|
|
// channel ID encodes the exact location in the main chain that the original
|
|
// funding output can be found.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) ShortChanID() lnwire.ShortChannelID {
|
|
l.RLock()
|
|
defer l.RUnlock()
|
|
return l.shortChanID
|
|
}
|
|
|
|
// UpdateShortChanID updates the short channel ID for a link. This may be
|
|
// required in the event that a link is created before the short chan ID for it
|
|
// is known, or a re-org occurs, and the funding transaction changes location
|
|
// within the chain.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) UpdateShortChanID(sid lnwire.ShortChannelID) {
|
|
l.Lock()
|
|
defer l.Unlock()
|
|
|
|
log.Infof("Updating short chan ID for ChannelPoint(%v)", l)
|
|
|
|
l.shortChanID = sid
|
|
|
|
go func() {
|
|
err := l.cfg.UpdateContractSignals(&contractcourt.ContractSignals{
|
|
HtlcUpdates: l.htlcUpdates,
|
|
ShortChanID: l.channel.ShortChanID(),
|
|
})
|
|
if err != nil {
|
|
log.Errorf("Unable to update signals for "+
|
|
"ChannelLink(%v)", l)
|
|
}
|
|
}()
|
|
|
|
return
|
|
}
|
|
|
|
// ChanID returns the channel ID for the channel link. The channel ID is a more
|
|
// compact representation of a channel's full outpoint.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) ChanID() lnwire.ChannelID {
|
|
return lnwire.NewChanIDFromOutPoint(l.channel.ChannelPoint())
|
|
}
|
|
|
|
// getBandwidthCmd is a wrapper for get bandwidth handler.
|
|
type getBandwidthCmd struct {
|
|
resp chan lnwire.MilliSatoshi
|
|
}
|
|
|
|
// Bandwidth returns the total amount that can flow through the channel link at
|
|
// this given instance. The value returned is expressed in millisatoshi and can
|
|
// be used by callers when making forwarding decisions to determine if a link
|
|
// can accept an HTLC.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) Bandwidth() lnwire.MilliSatoshi {
|
|
channelBandwidth := l.channel.AvailableBalance()
|
|
overflowBandwidth := l.overflowQueue.TotalHtlcAmount()
|
|
linkBandwidth := channelBandwidth - overflowBandwidth
|
|
reserve := lnwire.NewMSatFromSatoshis(l.channel.LocalChanReserve())
|
|
|
|
// If the channel reserve is greater than the total available
|
|
// balance of the link, just return 0.
|
|
if linkBandwidth < reserve {
|
|
return 0
|
|
}
|
|
|
|
// Else the amount that is available to flow through the link at
|
|
// this point is the available balance minus the reserve amount
|
|
// we are required to keep as collateral.
|
|
return linkBandwidth - reserve
|
|
}
|
|
|
|
// policyUpdate is a message sent to a channel link when an outside sub-system
|
|
// wishes to update the current forwarding policy.
|
|
type policyUpdate struct {
|
|
policy ForwardingPolicy
|
|
|
|
done chan struct{}
|
|
}
|
|
|
|
// UpdateForwardingPolicy updates the forwarding policy for the target
|
|
// ChannelLink. Once updated, the link will use the new forwarding policy to
|
|
// govern if it an incoming HTLC should be forwarded or not. Note that this
|
|
// processing of the new policy will ensure that uninitialized fields in the
|
|
// passed policy won't override already initialized fields in the current
|
|
// policy.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) UpdateForwardingPolicy(newPolicy ForwardingPolicy) {
|
|
cmd := &policyUpdate{
|
|
policy: newPolicy,
|
|
done: make(chan struct{}),
|
|
}
|
|
|
|
select {
|
|
case l.linkControl <- cmd:
|
|
case <-l.quit:
|
|
}
|
|
|
|
select {
|
|
case <-cmd.done:
|
|
case <-l.quit:
|
|
}
|
|
}
|
|
|
|
// Stats returns the statistics of channel link.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) Stats() (uint64, lnwire.MilliSatoshi, lnwire.MilliSatoshi) {
|
|
snapshot := l.channel.StateSnapshot()
|
|
|
|
return snapshot.ChannelCommitment.CommitHeight,
|
|
snapshot.TotalMSatSent,
|
|
snapshot.TotalMSatReceived
|
|
}
|
|
|
|
// String returns the string representation of channel link.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) String() string {
|
|
return l.channel.ChannelPoint().String()
|
|
}
|
|
|
|
// HandleSwitchPacket handles the switch packets. This packets which might be
|
|
// forwarded to us from another channel link in case the htlc update came from
|
|
// another peer or if the update was created by user
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) HandleSwitchPacket(packet *htlcPacket) {
|
|
l.mailBox.AddPacket(packet)
|
|
}
|
|
|
|
// HandleChannelUpdate handles the htlc requests as settle/add/fail which sent
|
|
// to us from remote peer we have a channel with.
|
|
//
|
|
// NOTE: Part of the ChannelLink interface.
|
|
func (l *channelLink) HandleChannelUpdate(message lnwire.Message) {
|
|
l.mailBox.AddMessage(message)
|
|
}
|
|
|
|
// updateChannelFee updates the commitment fee-per-kw on this channel by
|
|
// committing to an update_fee message.
|
|
func (l *channelLink) updateChannelFee(feePerKw lnwallet.SatPerKWeight) error {
|
|
|
|
log.Infof("ChannelPoint(%v): updating commit fee to %v sat/kw", l,
|
|
feePerKw)
|
|
|
|
// We skip sending the UpdateFee message if the channel is not
|
|
// currently eligible to forward messages.
|
|
if !l.EligibleToForward() {
|
|
log.Debugf("ChannelPoint(%v): skipping fee update for " +
|
|
"inactive channel")
|
|
return nil
|
|
}
|
|
|
|
// First, we'll update the local fee on our commitment.
|
|
if err := l.channel.UpdateFee(feePerKw); err != nil {
|
|
return err
|
|
}
|
|
|
|
// We'll then attempt to send a new UpdateFee message, and also lock it
|
|
// in immediately by triggering a commitment update.
|
|
msg := lnwire.NewUpdateFee(l.ChanID(), uint32(feePerKw))
|
|
if err := l.cfg.Peer.SendMessage(msg); err != nil {
|
|
return err
|
|
}
|
|
return l.updateCommitTx()
|
|
}
|
|
|
|
// processLockedInHtlcs serially processes each of the log updates which have
|
|
// been "locked-in". An HTLC is considered locked-in once it has been fully
|
|
// committed to in both the remote and local commitment state. Once a channel
|
|
// updates is locked-in, then it can be acted upon, meaning: settling HTLCs,
|
|
// cancelling them, or forwarding new HTLCs to the next hop.
|
|
func (l *channelLink) processLockedInHtlcs(
|
|
paymentDescriptors []*lnwallet.PaymentDescriptor) []*htlcPacket {
|
|
|
|
var (
|
|
needUpdate bool
|
|
packetsToForward []*htlcPacket
|
|
)
|
|
|
|
for _, pd := range paymentDescriptors {
|
|
// TODO(roasbeef): rework log entries to a shared
|
|
// interface.
|
|
switch pd.EntryType {
|
|
|
|
// A settle for an HTLC we previously forwarded HTLC has been
|
|
// received. So we'll forward the HTLC to the switch which will
|
|
// handle propagating the settle to the prior hop.
|
|
case lnwallet.Settle:
|
|
settlePacket := &htlcPacket{
|
|
outgoingChanID: l.ShortChanID(),
|
|
outgoingHTLCID: pd.ParentIndex,
|
|
amount: pd.Amount,
|
|
htlc: &lnwire.UpdateFulfillHTLC{
|
|
PaymentPreimage: pd.RPreimage,
|
|
},
|
|
}
|
|
|
|
// Add the packet to the batch to be forwarded, and
|
|
// notify the overflow queue that a spare spot has been
|
|
// freed up within the commitment state.
|
|
packetsToForward = append(packetsToForward, settlePacket)
|
|
l.overflowQueue.SignalFreeSlot()
|
|
|
|
// A failureCode message for a previously forwarded HTLC has
|
|
// been received. As a result a new slot will be freed up in
|
|
// our commitment state, so we'll forward this to the switch so
|
|
// the backwards undo can continue.
|
|
case lnwallet.Fail:
|
|
// Fetch the reason the HTLC was cancelled so we can
|
|
// continue to propagate it.
|
|
failPacket := &htlcPacket{
|
|
outgoingChanID: l.ShortChanID(),
|
|
outgoingHTLCID: pd.ParentIndex,
|
|
amount: pd.Amount,
|
|
htlc: &lnwire.UpdateFailHTLC{
|
|
Reason: lnwire.OpaqueReason(pd.FailReason),
|
|
},
|
|
}
|
|
|
|
// Add the packet to the batch to be forwarded, and
|
|
// notify the overflow queue that a spare spot has been
|
|
// freed up within the commitment state.
|
|
packetsToForward = append(packetsToForward, failPacket)
|
|
l.overflowQueue.SignalFreeSlot()
|
|
|
|
// An incoming HTLC add has been full-locked in. As a result we
|
|
// can now examine the forwarding details of the HTLC, and the
|
|
// HTLC itself to decide if: we should forward it, cancel it,
|
|
// or are able to settle it (and it adheres to our fee related
|
|
// constraints).
|
|
case lnwallet.Add:
|
|
// Fetch the onion blob that was included within this
|
|
// processed payment descriptor.
|
|
var onionBlob [lnwire.OnionPacketSize]byte
|
|
copy(onionBlob[:], pd.OnionBlob)
|
|
|
|
// Before adding the new htlc to the state machine,
|
|
// parse the onion object in order to obtain the
|
|
// routing information with DecodeHopIterator function
|
|
// which process the Sphinx packet.
|
|
//
|
|
// We include the payment hash of the htlc as it's
|
|
// authenticated within the Sphinx packet itself as
|
|
// associated data in order to thwart attempts a replay
|
|
// attacks. In the case of a replay, an attacker is
|
|
// *forced* to use the same payment hash twice, thereby
|
|
// losing their money entirely.
|
|
onionReader := bytes.NewReader(onionBlob[:])
|
|
chanIterator, failureCode := l.cfg.DecodeHopIterator(
|
|
onionReader, pd.RHash[:], pd.Timeout,
|
|
)
|
|
if failureCode != lnwire.CodeNone {
|
|
// If we're unable to process the onion blob
|
|
// than we should send the malformed htlc error
|
|
// to payment sender.
|
|
l.sendMalformedHTLCError(pd.HtlcIndex, failureCode,
|
|
onionBlob[:])
|
|
needUpdate = true
|
|
|
|
log.Errorf("unable to decode onion hop "+
|
|
"iterator: %v", failureCode)
|
|
continue
|
|
}
|
|
|
|
// Retrieve onion obfuscator from onion blob in order
|
|
// to produce initial obfuscation of the onion
|
|
// failureCode.
|
|
obfuscator, failureCode := chanIterator.ExtractErrorEncrypter(
|
|
l.cfg.DecodeOnionObfuscator,
|
|
)
|
|
if failureCode != lnwire.CodeNone {
|
|
// If we're unable to process the onion blob
|
|
// than we should send the malformed htlc error
|
|
// to payment sender.
|
|
l.sendMalformedHTLCError(pd.HtlcIndex, failureCode,
|
|
onionBlob[:])
|
|
needUpdate = true
|
|
|
|
log.Errorf("unable to decode onion "+
|
|
"obfuscator: %v", failureCode)
|
|
continue
|
|
}
|
|
|
|
heightNow := l.bestHeight
|
|
|
|
fwdInfo := chanIterator.ForwardingInstructions()
|
|
switch fwdInfo.NextHop {
|
|
case exitHop:
|
|
if l.cfg.DebugHTLC && l.cfg.HodlHTLC {
|
|
log.Warnf("hodl HTLC mode enabled, " +
|
|
"will not attempt to settle " +
|
|
"HTLC with sender")
|
|
continue
|
|
}
|
|
|
|
// First, we'll check the expiry of the HTLC
|
|
// itself against, the current block height. If
|
|
// the timeout is too soon, then we'll reject
|
|
// the HTLC.
|
|
if pd.Timeout-expiryGraceDelta <= heightNow {
|
|
log.Errorf("htlc(%x) has an expiry "+
|
|
"that's too soon: expiry=%v, "+
|
|
"best_height=%v", pd.RHash[:],
|
|
pd.Timeout, heightNow)
|
|
|
|
failure := lnwire.FailFinalIncorrectCltvExpiry{}
|
|
l.sendHTLCError(pd.HtlcIndex, &failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// We're the designated payment destination.
|
|
// Therefore we attempt to see if we have an
|
|
// invoice locally which'll allow us to settle
|
|
// this htlc.
|
|
invoiceHash := chainhash.Hash(pd.RHash)
|
|
invoice, err := l.cfg.Registry.LookupInvoice(invoiceHash)
|
|
if err != nil {
|
|
log.Errorf("unable to query invoice registry: "+
|
|
" %v", err)
|
|
failure := lnwire.FailUnknownPaymentHash{}
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// If this invoice has already been settled,
|
|
// then we'll reject it as we don't allow an
|
|
// invoice to be paid twice.
|
|
if invoice.Terms.Settled == true {
|
|
log.Warnf("Rejecting duplicate "+
|
|
"payment for hash=%x", pd.RHash[:])
|
|
failure := lnwire.FailUnknownPaymentHash{}
|
|
l.sendHTLCError(
|
|
pd.HtlcIndex, failure, obfuscator,
|
|
)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// If we're not currently in debug mode, and
|
|
// the extended htlc doesn't meet the value
|
|
// requested, then we'll fail the htlc.
|
|
// Otherwise, we settle this htlc within our
|
|
// local state update log, then send the update
|
|
// entry to the remote party.
|
|
//
|
|
// NOTE: We make an exception when the value
|
|
// requested by the invoice is zero. This means
|
|
// the invoice allows the payee to specify the
|
|
// amount of satoshis they wish to send.
|
|
// So since we expect the htlc to have a
|
|
// different amount, we should not fail.
|
|
if !l.cfg.DebugHTLC && invoice.Terms.Value > 0 &&
|
|
pd.Amount < invoice.Terms.Value {
|
|
log.Errorf("rejecting htlc due to incorrect "+
|
|
"amount: expected %v, received %v",
|
|
invoice.Terms.Value, pd.Amount)
|
|
failure := lnwire.FailIncorrectPaymentAmount{}
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// As we're the exit hop, we'll double check
|
|
// the hop-payload included in the HTLC to
|
|
// ensure that it was crafted correctly by the
|
|
// sender and matches the HTLC we were
|
|
// extended.
|
|
//
|
|
// NOTE: We make an exception when the value
|
|
// requested by the invoice is zero. This means
|
|
// the invoice allows the payee to specify the
|
|
// amount of satoshis they wish to send.
|
|
// So since we expect the htlc to have a
|
|
// different amount, we should not fail.
|
|
if !l.cfg.DebugHTLC && invoice.Terms.Value > 0 &&
|
|
fwdInfo.AmountToForward != invoice.Terms.Value {
|
|
|
|
log.Errorf("Onion payload of incoming "+
|
|
"htlc(%x) has incorrect value: "+
|
|
"expected %v, got %v", pd.RHash,
|
|
invoice.Terms.Value,
|
|
fwdInfo.AmountToForward)
|
|
|
|
failure := lnwire.FailIncorrectPaymentAmount{}
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// We'll also ensure that our time-lock value
|
|
// has been computed correctly.
|
|
//
|
|
// TODO(roasbeef): also accept global default?
|
|
expectedHeight := heightNow + l.cfg.FwrdingPolicy.TimeLockDelta
|
|
if !l.cfg.DebugHTLC {
|
|
switch {
|
|
case fwdInfo.OutgoingCTLV < expectedHeight:
|
|
log.Errorf("Onion payload of incoming "+
|
|
"htlc(%x) has incorrect time-lock: "+
|
|
"expected %v, got %v",
|
|
pd.RHash[:], expectedHeight,
|
|
fwdInfo.OutgoingCTLV)
|
|
|
|
failure := lnwire.NewFinalIncorrectCltvExpiry(
|
|
fwdInfo.OutgoingCTLV,
|
|
)
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
case pd.Timeout != fwdInfo.OutgoingCTLV:
|
|
log.Errorf("HTLC(%x) has incorrect "+
|
|
"time-lock: expected %v, got %v",
|
|
pd.RHash[:], pd.Timeout,
|
|
fwdInfo.OutgoingCTLV)
|
|
|
|
failure := lnwire.NewFinalIncorrectCltvExpiry(
|
|
fwdInfo.OutgoingCTLV,
|
|
)
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
}
|
|
|
|
preimage := invoice.Terms.PaymentPreimage
|
|
err = l.channel.SettleHTLC(preimage, pd.HtlcIndex)
|
|
if err != nil {
|
|
l.fail("unable to settle htlc: %v", err)
|
|
return nil
|
|
}
|
|
|
|
// Notify the invoiceRegistry of the invoices
|
|
// we just settled with this latest commitment
|
|
// update.
|
|
err = l.cfg.Registry.SettleInvoice(invoiceHash)
|
|
if err != nil {
|
|
l.fail("unable to settle invoice: %v", err)
|
|
return nil
|
|
}
|
|
|
|
// HTLC was successfully settled locally send
|
|
// notification about it remote peer.
|
|
l.cfg.Peer.SendMessage(&lnwire.UpdateFulfillHTLC{
|
|
ChanID: l.ChanID(),
|
|
ID: pd.HtlcIndex,
|
|
PaymentPreimage: preimage,
|
|
})
|
|
needUpdate = true
|
|
|
|
// There are additional channels left within this
|
|
// route. So we'll verify that our forwarding
|
|
// constraints have been properly met by by this
|
|
// incoming HTLC.
|
|
default:
|
|
// We want to avoid forwarding an HTLC which
|
|
// will expire in the near future, so we'll
|
|
// reject an HTLC if its expiration time is too
|
|
// close to the current height.
|
|
timeDelta := l.cfg.FwrdingPolicy.TimeLockDelta
|
|
if pd.Timeout-timeDelta <= heightNow {
|
|
log.Errorf("htlc(%x) has an expiry "+
|
|
"that's too soon: outgoing_expiry=%v, "+
|
|
"best_height=%v", pd.RHash[:],
|
|
pd.Timeout-timeDelta, heightNow)
|
|
|
|
var failure lnwire.FailureMessage
|
|
update, err := l.cfg.GetLastChannelUpdate()
|
|
if err != nil {
|
|
failure = lnwire.NewTemporaryChannelFailure(nil)
|
|
} else {
|
|
failure = lnwire.NewExpiryTooSoon(*update)
|
|
}
|
|
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// As our second sanity check, we'll ensure that
|
|
// the passed HTLC isn't too small. If so, then
|
|
// we'll cancel the HTLC directly.
|
|
if pd.Amount < l.cfg.FwrdingPolicy.MinHTLC {
|
|
log.Errorf("Incoming htlc(%x) is too "+
|
|
"small: min_htlc=%v, htlc_value=%v",
|
|
pd.RHash[:], l.cfg.FwrdingPolicy.MinHTLC,
|
|
pd.Amount)
|
|
|
|
// As part of the returned error, we'll
|
|
// send our latest routing policy so
|
|
// the sending node obtains the most up
|
|
// to date data.
|
|
var failure lnwire.FailureMessage
|
|
update, err := l.cfg.GetLastChannelUpdate()
|
|
if err != nil {
|
|
failure = lnwire.NewTemporaryChannelFailure(nil)
|
|
} else {
|
|
failure = lnwire.NewAmountBelowMinimum(
|
|
pd.Amount, *update)
|
|
}
|
|
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// Next, using the amount of the incoming HTLC,
|
|
// we'll calculate the expected fee this
|
|
// incoming HTLC must carry in order to be
|
|
// accepted.
|
|
expectedFee := ExpectedFee(
|
|
l.cfg.FwrdingPolicy,
|
|
fwdInfo.AmountToForward,
|
|
)
|
|
|
|
// If the actual fee is less than our expected
|
|
// fee, then we'll reject this HTLC as it
|
|
// didn't provide a sufficient amount of fees,
|
|
// or the values have been tampered with, or
|
|
// the send used incorrect/dated information to
|
|
// construct the forwarding information for
|
|
// this hop. In any case, we'll cancel this
|
|
// HTLC.
|
|
actualFee := pd.Amount - fwdInfo.AmountToForward
|
|
if pd.Amount < fwdInfo.AmountToForward ||
|
|
actualFee < expectedFee {
|
|
|
|
log.Errorf("Incoming htlc(%x) has "+
|
|
"insufficient fee: expected "+
|
|
"%v, got %v", pd.RHash[:],
|
|
int64(expectedFee),
|
|
int64(pd.Amount-fwdInfo.AmountToForward))
|
|
|
|
// As part of the returned error, we'll
|
|
// send our latest routing policy so
|
|
// the sending node obtains the most up
|
|
// to date data.
|
|
var failure lnwire.FailureMessage
|
|
update, err := l.cfg.GetLastChannelUpdate()
|
|
if err != nil {
|
|
failure = lnwire.NewTemporaryChannelFailure(nil)
|
|
} else {
|
|
failure = lnwire.NewFeeInsufficient(pd.Amount,
|
|
*update)
|
|
}
|
|
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// Finally, we'll ensure that the time-lock on
|
|
// the outgoing HTLC meets the following
|
|
// constraint: the incoming time-lock minus our
|
|
// time-lock delta should equal the outgoing
|
|
// time lock. Otherwise, whether the sender
|
|
// messed up, or an intermediate node tampered
|
|
// with the HTLC.
|
|
if pd.Timeout-timeDelta < fwdInfo.OutgoingCTLV {
|
|
log.Errorf("Incoming htlc(%x) has "+
|
|
"incorrect time-lock value: "+
|
|
"expected at least %v block delta, "+
|
|
"got %v block delta", pd.RHash[:],
|
|
timeDelta,
|
|
pd.Timeout-fwdInfo.OutgoingCTLV)
|
|
|
|
// Grab the latest routing policy so
|
|
// the sending node is up to date with
|
|
// our current policy.
|
|
update, err := l.cfg.GetLastChannelUpdate()
|
|
if err != nil {
|
|
l.fail("unable to create channel update "+
|
|
"while handling the error: %v", err)
|
|
return nil
|
|
}
|
|
|
|
failure := lnwire.NewIncorrectCltvExpiry(
|
|
pd.Timeout, *update)
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
// TODO(roasbeef): also add max timeout value
|
|
|
|
// With all our forwarding constraints met,
|
|
// we'll create the outgoing HTLC using the
|
|
// parameters as specified in the forwarding
|
|
// info.
|
|
addMsg := &lnwire.UpdateAddHTLC{
|
|
Expiry: fwdInfo.OutgoingCTLV,
|
|
Amount: fwdInfo.AmountToForward,
|
|
PaymentHash: pd.RHash,
|
|
}
|
|
|
|
// Finally, we'll encode the onion packet for
|
|
// the _next_ hop using the hop iterator
|
|
// decoded for the current hop.
|
|
buf := bytes.NewBuffer(addMsg.OnionBlob[0:0])
|
|
err := chanIterator.EncodeNextHop(buf)
|
|
if err != nil {
|
|
log.Errorf("unable to encode the "+
|
|
"remaining route %v", err)
|
|
|
|
failure := lnwire.NewTemporaryChannelFailure(nil)
|
|
l.sendHTLCError(pd.HtlcIndex, failure, obfuscator)
|
|
needUpdate = true
|
|
continue
|
|
}
|
|
|
|
updatePacket := &htlcPacket{
|
|
incomingChanID: l.ShortChanID(),
|
|
incomingHTLCID: pd.HtlcIndex,
|
|
outgoingChanID: fwdInfo.NextHop,
|
|
incomingHtlcAmt: pd.Amount,
|
|
amount: addMsg.Amount,
|
|
htlc: addMsg,
|
|
obfuscator: obfuscator,
|
|
}
|
|
packetsToForward = append(packetsToForward, updatePacket)
|
|
}
|
|
}
|
|
}
|
|
|
|
if needUpdate {
|
|
// With all the settle/cancel updates added to the local and
|
|
// remote HTLC logs, initiate a state transition by updating
|
|
// the remote commitment chain.
|
|
if err := l.updateCommitTx(); err != nil {
|
|
l.fail("unable to update commitment: %v", err)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
return packetsToForward
|
|
}
|
|
|
|
// sendHTLCError functions cancels HTLC and send cancel message back to the
|
|
// peer from which HTLC was received.
|
|
func (l *channelLink) sendHTLCError(htlcIndex uint64,
|
|
failure lnwire.FailureMessage, e ErrorEncrypter) {
|
|
|
|
reason, err := e.EncryptFirstHop(failure)
|
|
if err != nil {
|
|
log.Errorf("unable to obfuscate error: %v", err)
|
|
return
|
|
}
|
|
|
|
err = l.channel.FailHTLC(htlcIndex, reason)
|
|
if err != nil {
|
|
log.Errorf("unable cancel htlc: %v", err)
|
|
return
|
|
}
|
|
|
|
l.cfg.Peer.SendMessage(&lnwire.UpdateFailHTLC{
|
|
ChanID: l.ChanID(),
|
|
ID: htlcIndex,
|
|
Reason: reason,
|
|
})
|
|
}
|
|
|
|
// sendMalformedHTLCError helper function which sends the malformed HTLC update
|
|
// to the payment sender.
|
|
func (l *channelLink) sendMalformedHTLCError(htlcIndex uint64,
|
|
code lnwire.FailCode, onionBlob []byte) {
|
|
|
|
shaOnionBlob := sha256.Sum256(onionBlob)
|
|
err := l.channel.MalformedFailHTLC(htlcIndex, code, shaOnionBlob)
|
|
if err != nil {
|
|
log.Errorf("unable cancel htlc: %v", err)
|
|
return
|
|
}
|
|
|
|
l.cfg.Peer.SendMessage(&lnwire.UpdateFailMalformedHTLC{
|
|
ChanID: l.ChanID(),
|
|
ID: htlcIndex,
|
|
ShaOnionBlob: shaOnionBlob,
|
|
FailureCode: code,
|
|
})
|
|
}
|
|
|
|
// fail helper function which is used to encapsulate the action necessary for
|
|
// proper disconnect.
|
|
func (l *channelLink) fail(format string, a ...interface{}) {
|
|
reason := errors.Errorf(format, a...)
|
|
log.Error(reason)
|
|
go l.cfg.Peer.Disconnect(reason)
|
|
}
|