75ea05aef6
This commit modifies the current implementation to more closely match what’s currently specified within the spec. The encrypted+MAC’d packet length is no longer included as the associated data for the encryption/decryption of transport messages. This isn’t required as if an active attacker swaps out the encrypted length in the byte string, the decryption+MAC check will simply fail as the nonce won’t be in proper sequence.
653 lines
19 KiB
Go
653 lines
19 KiB
Go
package brontide
|
|
|
|
import (
|
|
"crypto/cipher"
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
"math"
|
|
|
|
"golang.org/x/crypto/hkdf"
|
|
|
|
"github.com/aead/chacha20"
|
|
"github.com/roasbeef/btcd/btcec"
|
|
)
|
|
|
|
const (
|
|
// protocolName is the precise instantiation of the Noise protocol
|
|
// handshake at the center of Brontide. This value will be used as part
|
|
// of the prologue. If the initiator and responder aren't using the
|
|
// exact same string for this value, along with prologue of the Bitcoin
|
|
// network, then the initial handshake will fail.
|
|
protocolName = "Noise_XK_secp256k1_ChaChaPoly_SHA256"
|
|
|
|
// macSize is the length in bytes of the tags generated by poly1305.
|
|
macSize = 16
|
|
|
|
// lengthHeaderSize is the number of bytes used to prefix encode the
|
|
// length of a message payload.
|
|
lengthHeaderSize = 2
|
|
|
|
// keyRotationInterval is the number of messages sent on a single
|
|
// cipher stream before the keys are rotated forwards.
|
|
keyRotationInterval = 1000
|
|
)
|
|
|
|
var (
|
|
ErrMaxMessageLengthExceeded = errors.New("the generated payload exceeds " +
|
|
"the max allowed message length of (2^16)-1")
|
|
)
|
|
|
|
// TODO(roasbeef): free buffer pool?
|
|
|
|
// cipherState encapsulates the state for the AEAD which will be used to
|
|
// encrypt+authenticate any payloads sent during the handshake, and messages
|
|
// sent once the handshake has completed.
|
|
type cipherState struct {
|
|
// nonce is the nonce passed into the chacha20-poly1305 instance for
|
|
// encryption+decryption. The nonce is incremented after each successful
|
|
// encryption/decryption.
|
|
//
|
|
// TODO(roasbeef): this should actually be 96 bit
|
|
nonce uint64
|
|
|
|
// secretKey is the shared symmetric key which will be used to
|
|
// instantiate the cipher.
|
|
//
|
|
// TODO(roasbeef): m-lock??
|
|
secretKey [32]byte
|
|
|
|
// salt is an additional secret which is used during key rotation to
|
|
// generate new keys.
|
|
salt [32]byte
|
|
|
|
// cipher is an instance of the ChaCha20-Poly1305 AEAD construction
|
|
// created using the secretKey above.
|
|
cipher cipher.AEAD
|
|
}
|
|
|
|
// Encrypt returns a ciphertext which is the encryption of the plainText
|
|
// observing the passed associatedData within the AEAD construction.
|
|
func (c *cipherState) Encrypt(associatedData, cipherText, plainText []byte) []byte {
|
|
defer func() {
|
|
c.nonce++
|
|
|
|
if c.nonce > keyRotationInterval {
|
|
c.rotateKey()
|
|
}
|
|
}()
|
|
|
|
var nonce [12]byte
|
|
binary.LittleEndian.PutUint64(nonce[:], c.nonce)
|
|
|
|
return c.cipher.Seal(cipherText, nonce[:], plainText, associatedData)
|
|
}
|
|
|
|
// Decrypt attempts to decrypt the passed ciphertext observing the specified
|
|
// associatedData within the AEAD construction. In the case that the final MAC
|
|
// check fails, then a non-nil error will be returned.
|
|
func (c *cipherState) Decrypt(associatedData, plainText, cipherText []byte) ([]byte, error) {
|
|
defer func() {
|
|
c.nonce++
|
|
|
|
if c.nonce > keyRotationInterval {
|
|
c.rotateKey()
|
|
}
|
|
}()
|
|
|
|
var nonce [12]byte
|
|
binary.LittleEndian.PutUint64(nonce[:], c.nonce)
|
|
|
|
return c.cipher.Open(plainText, nonce[:], cipherText, associatedData)
|
|
}
|
|
|
|
// InitializeKey initializes the secret key and AEAD cipher scheme based off of
|
|
// the passed key.
|
|
func (c *cipherState) InitializeKey(key [32]byte) {
|
|
c.secretKey = key
|
|
c.nonce = 0
|
|
c.cipher = chacha20.NewChaCha20Poly1305(&c.secretKey)
|
|
}
|
|
|
|
// InitializeKeyWithSalt is identical to InitializeKey however it also sets the
|
|
// cipherState's salt field which is used for key rotation.
|
|
func (c *cipherState) InitializeKeyWithSalt(salt, key [32]byte) {
|
|
c.salt = salt
|
|
c.InitializeKey(key)
|
|
}
|
|
|
|
// rotateKey rotates the current encryption/decryption key for this cipherState
|
|
// instance. Key rotation is performed by ratcheting the current key forward
|
|
// using an HKDF invocation with the cipherState's salt as the salt, and the
|
|
// current key as the input.
|
|
func (c *cipherState) rotateKey() {
|
|
var (
|
|
info []byte
|
|
nextKey [32]byte
|
|
)
|
|
|
|
oldKey := c.secretKey
|
|
h := hkdf.New(sha256.New, c.salt[:], oldKey[:], info)
|
|
|
|
// hkdf(ck, k, zero)
|
|
// |
|
|
// | \
|
|
// | \
|
|
// ck k'
|
|
h.Read(c.salt[:])
|
|
h.Read(nextKey[:])
|
|
|
|
c.InitializeKey(nextKey)
|
|
}
|
|
|
|
// symmetricState encapsulates a cipherState object and houses the ephemeral
|
|
// handshake digest state. This struct is used during the handshake to derive
|
|
// new shared secrets based off of the result of ECDH operations. Ultimately,
|
|
// the final key yielded by this struct is the result of an incremental
|
|
// Triple-DH operation.
|
|
type symmetricState struct {
|
|
cipherState
|
|
|
|
// chainingKey is used as the salt to the HKDF function to derive a new
|
|
// chaining key as well as a new tempKey which is used for
|
|
// encryption/decryption.
|
|
chainingKey [32]byte
|
|
|
|
// tempKey is the latter 32 bytes resulted from the latest HKDF
|
|
// iteration. This key is used to encrypt/decrypt any handshake
|
|
// messages or payloads sent until the next DH operation is executed.
|
|
tempKey [32]byte
|
|
|
|
// handshakeDigest is the cumulative hash digest of all handshake
|
|
// messages sent from start to finish. This value is never transmitted
|
|
// to the other side, but will be used as the AD when
|
|
// encrypting/decrypting messages using our AEAD construction.
|
|
handshakeDigest [32]byte
|
|
}
|
|
|
|
// mixKey is implements a basic HKDF-based key ratchet. This method is called
|
|
// with the result of each DH output generated during the handshake process.
|
|
// The first 32 bytes extract from the HKDF reader is the next chaining key,
|
|
// then latter 32 bytes become the temp secret key using within any future AEAD
|
|
// operations until another DH operation is performed.
|
|
func (s *symmetricState) mixKey(input []byte) {
|
|
var info []byte
|
|
|
|
secret := input
|
|
salt := s.chainingKey
|
|
h := hkdf.New(sha256.New, secret, salt[:], info)
|
|
|
|
// hkdf(input, ck, zero)
|
|
// |
|
|
// | \
|
|
// | \
|
|
// ck k
|
|
h.Read(s.chainingKey[:])
|
|
h.Read(s.tempKey[:])
|
|
|
|
// cipher.k = temp_key
|
|
s.InitializeKey(s.tempKey)
|
|
}
|
|
|
|
// mixHash hashes the passed input data into the cumulative handshake digest.
|
|
// The running result of this value (h) is used as the associated data in all
|
|
// decryption/encryption operations.
|
|
func (s *symmetricState) mixHash(data []byte) {
|
|
h := sha256.New()
|
|
h.Write(s.handshakeDigest[:])
|
|
h.Write(data)
|
|
|
|
copy(s.handshakeDigest[:], h.Sum(nil))
|
|
}
|
|
|
|
// EncryptAndHash returns the authenticated encryption of the passed plaintext.
|
|
// When encrypting the handshake digest (h) is used as the associated data to
|
|
// the AEAD cipher.
|
|
func (s *symmetricState) EncryptAndHash(plaintext []byte) []byte {
|
|
ciphertext := s.Encrypt(s.handshakeDigest[:], nil, plaintext)
|
|
|
|
s.mixHash(ciphertext)
|
|
|
|
return ciphertext
|
|
}
|
|
|
|
// DecryptAndHash returns the authenticated decryption of the passed
|
|
// ciphertext. When encrypting the handshake digest (h) is used as the
|
|
// associated data to the AEAD cipher.
|
|
func (s *symmetricState) DecryptAndHash(ciphertext []byte) ([]byte, error) {
|
|
plaintext, err := s.Decrypt(s.handshakeDigest[:], nil, ciphertext)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
s.mixHash(ciphertext)
|
|
|
|
return plaintext, nil
|
|
}
|
|
|
|
// InitializeSymmetric initializes the symmetric state by setting the handshake
|
|
// digest (h) and the chaining key (ck) to protocol name.
|
|
func (s *symmetricState) InitializeSymmetric(protocolName []byte) {
|
|
var empty [32]byte
|
|
|
|
s.handshakeDigest = sha256.Sum256(protocolName)
|
|
s.chainingKey = s.handshakeDigest
|
|
s.InitializeKey(empty)
|
|
}
|
|
|
|
// handshakeState encapsulates the symmetricState and keeps track of all the
|
|
// public keys (static and ephemeral) for both sides during the handshake
|
|
// transcript. If the handshake completes successfully, then two instances of a
|
|
// cipherState are emitted: one to encrypt messages from initiator to
|
|
// responder, and the other for the opposite direction.
|
|
type handshakeState struct {
|
|
symmetricState
|
|
|
|
initiator bool
|
|
|
|
localStatic *btcec.PrivateKey
|
|
localEphemeral *btcec.PrivateKey
|
|
|
|
remoteStatic *btcec.PublicKey
|
|
remoteEphemeral *btcec.PublicKey
|
|
}
|
|
|
|
// newHandshakeState returns a new instance of the handshake state initialized
|
|
// with the prologue and protocol name. If this is the responder's handshake
|
|
// state, then the remotePub can be nil.
|
|
func newHandshakeState(initiator bool, prologue []byte,
|
|
localPub *btcec.PrivateKey, remotePub *btcec.PublicKey) handshakeState {
|
|
|
|
h := handshakeState{
|
|
initiator: initiator,
|
|
localStatic: localPub,
|
|
remoteStatic: remotePub,
|
|
}
|
|
|
|
// Set the current chaining key and handshake digest to the hash of the
|
|
// protocol name, and additionally mix in the prologue. If either sides
|
|
// disagree about the prologue or protocol name, then the handshake
|
|
// will fail.
|
|
h.InitializeSymmetric([]byte(protocolName))
|
|
h.mixHash(prologue)
|
|
|
|
// In Noise_XK, then initiator should know the responder's static
|
|
// public key, therefore we include the responder's static key in the
|
|
// handshake digest. If the initiator gets this value wrong, then the
|
|
// handshake will fail.
|
|
if initiator {
|
|
h.mixHash(remotePub.SerializeCompressed())
|
|
} else {
|
|
h.mixHash(localPub.PubKey().SerializeCompressed())
|
|
}
|
|
|
|
return h
|
|
}
|
|
|
|
// BrontideMachine is a state-machine which implements Brontide: an
|
|
// Authenticated-key Exchange in Three Acts. Brontide is derived from the Noise
|
|
// framework, specifically implementing the Noise_XK handshake. Once the
|
|
// initial 3-act handshake has completed all messages are encrypted with a
|
|
// chacha20 AEAD cipher. On the wire, all messages are prefixed with an
|
|
// authenticated+encrypted length field. Additionally, the encrypted+auth'd
|
|
// length prefix is used as the AD when encrypting+decryption messages. This
|
|
// construction provides confidentiality of packet length, avoids introducing
|
|
// a padding-oracle, and binds the encrypted packet length to the packet
|
|
// itself.
|
|
//
|
|
// The acts proceeds the following order (initiator on the left):
|
|
// GenActOne() ->
|
|
// RecvActOne()
|
|
// <- GenActTwo()
|
|
// RecvActTwo()
|
|
// GenActThree() ->
|
|
// RecvActThree()
|
|
//
|
|
// This exchange corresponds to the following Noise handshake:
|
|
// <- s
|
|
// ...
|
|
// -> e, es
|
|
// <- e, ee
|
|
// -> s, se
|
|
type BrontideMachine struct {
|
|
sendCipher cipherState
|
|
recvCipher cipherState
|
|
|
|
handshakeState
|
|
}
|
|
|
|
// NewBrontideMachine creates a new instance of the brontide state-machine. If
|
|
// the responder (listener) is creating the object, then the remotePub should
|
|
// be nil. The handshake state within brontide is initialized using the ascii
|
|
// string "bitcoin" as the prologue.
|
|
func NewBrontideMachine(initiator bool, localPub *btcec.PrivateKey,
|
|
remotePub *btcec.PublicKey) *BrontideMachine {
|
|
|
|
handshake := newHandshakeState(initiator, []byte("bitcoin"), localPub,
|
|
remotePub)
|
|
|
|
return &BrontideMachine{handshakeState: handshake}
|
|
}
|
|
|
|
// TODO(roasbeef): add version bytes, paramterize in constructor above
|
|
|
|
const (
|
|
// ActOneSize is the size of the packet sent from initiator to
|
|
// responder in ActOne. The packet consists of an ephemeral key in
|
|
// compressed format, and a 16-byte poly1305 tag.
|
|
//
|
|
// 33 + 16
|
|
ActOneSize = 49
|
|
|
|
// ActTwoSize is the size the packet sent from responder to initiator
|
|
// in ActTwo. The packet consists of an ephemeral key in compressed
|
|
// format and a 16-byte poly1305 tag.
|
|
//
|
|
// 33 + 16
|
|
ActTwoSize = 49
|
|
|
|
// ActThreeSize is the size of the packet sent from initiator to
|
|
// responder in ActThree. The packet consists of the initiators static
|
|
// key encrypted with strong forward secrecy and a 16-byte poly1035
|
|
// tag.
|
|
//
|
|
// 33 + 16 + 16
|
|
ActThreeSize = 65
|
|
)
|
|
|
|
// GenActOne generates the initial packet (act one) to be sent from initiator
|
|
// to responder. During act one the initiator generates a fresh ephemeral key,
|
|
// hashes it into the handshake digest, and performs an ECDH between this key
|
|
// and the responder's static key. Future payloads are encrypted with a key
|
|
// derived from this result.
|
|
//
|
|
// -> e, es
|
|
func (b *BrontideMachine) GenActOne() ([ActOneSize]byte, error) {
|
|
var (
|
|
err error
|
|
actOne [ActOneSize]byte
|
|
)
|
|
|
|
// e
|
|
b.localEphemeral, err = btcec.NewPrivateKey(btcec.S256())
|
|
if err != nil {
|
|
return actOne, err
|
|
}
|
|
|
|
ephemeral := b.localEphemeral.PubKey().SerializeCompressed()
|
|
b.mixHash(ephemeral)
|
|
|
|
// es
|
|
s := btcec.GenerateSharedSecret(b.localEphemeral, b.remoteStatic)
|
|
b.mixKey(s)
|
|
|
|
authPayload := b.EncryptAndHash([]byte{})
|
|
|
|
copy(actOne[:33], ephemeral)
|
|
copy(actOne[33:], authPayload)
|
|
|
|
return actOne, nil
|
|
}
|
|
|
|
// RecvActOne processes the act one packet sent by the initiator. The responder
|
|
// executes the mirrored actions to that of the initiator extending the
|
|
// handshake digest and deriving a new shared secret based on a ECDH with the
|
|
// initiator's ephemeral key and responder's static key.
|
|
func (b *BrontideMachine) RecvActOne(actOne [ActOneSize]byte) error {
|
|
var (
|
|
err error
|
|
e [33]byte
|
|
p [16]byte
|
|
)
|
|
|
|
copy(e[:], actOne[:33])
|
|
copy(p[:], actOne[33:])
|
|
|
|
// e
|
|
b.remoteEphemeral, err = btcec.ParsePubKey(e[:], btcec.S256())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
b.mixHash(b.remoteEphemeral.SerializeCompressed())
|
|
|
|
// es
|
|
s := btcec.GenerateSharedSecret(b.localStatic, b.remoteEphemeral)
|
|
b.mixKey(s)
|
|
|
|
// If the initiator doesn't know our static key, then this operation
|
|
// will fail.
|
|
if _, err := b.DecryptAndHash(p[:]); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// GenActTwo generates the second packet (act two) to be sent from the
|
|
// responder to the initiator. The packet for act two is identify to that of
|
|
// act one, but then results in a different ECDH operation between the
|
|
// initiator's and responder's ephemeral keys.
|
|
//
|
|
// <- e, ee
|
|
func (b *BrontideMachine) GenActTwo() ([ActTwoSize]byte, error) {
|
|
var (
|
|
err error
|
|
actTwo [ActTwoSize]byte
|
|
)
|
|
|
|
// e
|
|
b.localEphemeral, err = btcec.NewPrivateKey(btcec.S256())
|
|
if err != nil {
|
|
return actTwo, err
|
|
}
|
|
|
|
ephemeral := b.localEphemeral.PubKey().SerializeCompressed()
|
|
b.mixHash(b.localEphemeral.PubKey().SerializeCompressed())
|
|
|
|
// ee
|
|
s := btcec.GenerateSharedSecret(b.localEphemeral, b.remoteEphemeral)
|
|
b.mixKey(s)
|
|
|
|
authPayload := b.EncryptAndHash([]byte{})
|
|
|
|
copy(actTwo[:33], ephemeral)
|
|
copy(actTwo[33:], authPayload)
|
|
|
|
return actTwo, nil
|
|
}
|
|
|
|
// RecvActTwo processes the second packet (act two) sent from the responder to
|
|
// the initiator. A successful processing of this packet authenticates the
|
|
// initiator to the responder.
|
|
func (b *BrontideMachine) RecvActTwo(actTwo [ActTwoSize]byte) error {
|
|
var (
|
|
err error
|
|
e [33]byte
|
|
p [16]byte
|
|
)
|
|
|
|
copy(e[:], actTwo[:33])
|
|
copy(p[:], actTwo[33:])
|
|
|
|
// e
|
|
b.remoteEphemeral, err = btcec.ParsePubKey(e[:], btcec.S256())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
b.mixHash(b.remoteEphemeral.SerializeCompressed())
|
|
|
|
// ee
|
|
s := btcec.GenerateSharedSecret(b.localEphemeral, b.remoteEphemeral)
|
|
b.mixKey(s)
|
|
|
|
if _, err := b.DecryptAndHash(p[:]); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// GenActThree creates the final (act three) packet of the handshake. Act three
|
|
// is to be sent from the initiator to the responder. The purpose of act three
|
|
// is to transmit the initiator's public key under strong forward secrecy to
|
|
// the responder. This act also includes the final ECDH operation which yields
|
|
// the final session.
|
|
//
|
|
// -> s, se
|
|
func (b *BrontideMachine) GenActThree() ([ActThreeSize]byte, error) {
|
|
var actThree [ActThreeSize]byte
|
|
|
|
ourPubkey := b.localStatic.PubKey().SerializeCompressed()
|
|
ciphertext := b.EncryptAndHash(ourPubkey)
|
|
|
|
s := btcec.GenerateSharedSecret(b.localStatic, b.remoteEphemeral)
|
|
b.mixKey(s)
|
|
|
|
authPayload := b.EncryptAndHash([]byte{})
|
|
|
|
copy(actThree[:49], ciphertext)
|
|
copy(actThree[49:], authPayload)
|
|
|
|
// With the final ECDH operation complete, derive the session sending
|
|
// and receiving keys.
|
|
b.split()
|
|
|
|
return actThree, nil
|
|
}
|
|
|
|
// RecvActThree processes the final act (act three) sent from the initiator to
|
|
// the responder. After processing this act, the responder learns of the
|
|
// initiator's static public key. Decryption of the static key serves to
|
|
// authenticate the initiator to the responder.
|
|
func (b *BrontideMachine) RecvActThree(actThree [ActThreeSize]byte) error {
|
|
var (
|
|
err error
|
|
s [33 + 16]byte
|
|
p [16]byte
|
|
)
|
|
|
|
copy(s[:], actThree[:33+16])
|
|
copy(p[:], actThree[33+16:])
|
|
|
|
// s
|
|
remotePub, err := b.DecryptAndHash(s[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
b.remoteStatic, err = btcec.ParsePubKey(remotePub, btcec.S256())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// se
|
|
se := btcec.GenerateSharedSecret(b.localEphemeral, b.remoteStatic)
|
|
b.mixKey(se)
|
|
|
|
if _, err := b.DecryptAndHash(p[:]); err != nil {
|
|
return err
|
|
}
|
|
|
|
// With the final ECDH operation complete, derive the session sending
|
|
// and receiving keys.
|
|
b.split()
|
|
|
|
return nil
|
|
}
|
|
|
|
// split is the final wrap-up act to be executed at the end of a successful
|
|
// three act handshake. This function creates to internal cipherState
|
|
// instances: one which is used to encrypt messages from the initiator to the
|
|
// responder, and another which is used to encrypt message for the opposite
|
|
// direction.
|
|
func (b *BrontideMachine) split() {
|
|
var (
|
|
empty []byte
|
|
sendKey [32]byte
|
|
recvKey [32]byte
|
|
)
|
|
|
|
h := hkdf.New(sha256.New, b.chainingKey[:], empty, empty)
|
|
|
|
// If we're the initiator the first 32 bytes are used to encrypt our
|
|
// messages and the second 32-bytes to decrypt their messages. For the
|
|
// responder the opposite is true.
|
|
if b.initiator {
|
|
h.Read(sendKey[:])
|
|
b.sendCipher = cipherState{}
|
|
b.sendCipher.InitializeKeyWithSalt(b.chainingKey, sendKey)
|
|
|
|
h.Read(recvKey[:])
|
|
b.recvCipher = cipherState{}
|
|
b.recvCipher.InitializeKeyWithSalt(b.chainingKey, recvKey)
|
|
} else {
|
|
h.Read(recvKey[:])
|
|
b.recvCipher = cipherState{}
|
|
b.recvCipher.InitializeKeyWithSalt(b.chainingKey, recvKey)
|
|
|
|
h.Read(sendKey[:])
|
|
b.sendCipher = cipherState{}
|
|
b.sendCipher.InitializeKeyWithSalt(b.chainingKey, sendKey)
|
|
}
|
|
}
|
|
|
|
// WriteMessage writes the next message p to the passed io.Writer. The
|
|
// ciphertext of the message is pre-pended with an encrypt+auth'd length which
|
|
// must be used as the AD to the AEAD construction when being decrypted by the
|
|
// other side.
|
|
func (b *BrontideMachine) WriteMessage(w io.Writer, p []byte) error {
|
|
// The total length of each message payload including the MAC size
|
|
// payload exceed the largest number encodable within a 16-bit unsigned
|
|
// integer.
|
|
if len(p)+macSize > math.MaxUint16 {
|
|
return ErrMaxMessageLengthExceeded
|
|
}
|
|
|
|
// The full length of the packet includes the 16 byte MAC.
|
|
fullLength := uint16(len(p) + macSize)
|
|
|
|
var pktLen [2]byte
|
|
binary.BigEndian.PutUint16(pktLen[:], fullLength)
|
|
|
|
// First, write out the encrypted+MAC'd length prefix for the packet.
|
|
cipherLen := b.sendCipher.Encrypt(nil, nil, pktLen[:])
|
|
if _, err := w.Write(cipherLen); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Finally, write out the encrypted packet itself. We only write out a
|
|
// single packet, as any fragmentation should have taken place at a
|
|
// higher level.
|
|
cipherText := b.sendCipher.Encrypt(nil, nil, p)
|
|
if _, err := w.Write(cipherText); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// ReadMessage attempts to read the next message from the passed io.Reader. In
|
|
// the case of an authentication error, a non-nil error is returned.
|
|
func (b *BrontideMachine) ReadMessage(r io.Reader) ([]byte, error) {
|
|
var cipherLen [lengthHeaderSize + macSize]byte
|
|
if _, err := io.ReadFull(r, cipherLen[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Attempt to decrypt+auth the packet length present in the stream.
|
|
pktLenBytes, err := b.recvCipher.Decrypt(nil, nil, cipherLen[:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Next, using the length read from the packet header, read the
|
|
// encrypted packet itself.
|
|
pktLen := binary.BigEndian.Uint16(pktLenBytes)
|
|
ciperText := make([]byte, pktLen)
|
|
if _, err := io.ReadFull(r, ciperText[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return b.recvCipher.Decrypt(nil, nil, ciperText)
|
|
}
|