4ad175c16d
In this commit, we update the `getInputWitnessSizeUpperBound` and all its callers to be aware of nested p2sh witness inputs. We do so by adding another bool which is true if the output is a nested p2sh output. If so, then in order to properly estimate the total weight, the caller needs to factor in the non-witness data of the additional sigScript data push.
905 lines
21 KiB
Go
905 lines
21 KiB
Go
package sweep
|
|
|
|
import (
|
|
"os"
|
|
"runtime/debug"
|
|
"runtime/pprof"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/lightningnetwork/lnd/build"
|
|
"github.com/lightningnetwork/lnd/keychain"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
)
|
|
|
|
var (
|
|
testLog = build.NewSubLogger("SWPR_TEST", nil)
|
|
|
|
testMaxSweepAttempts = 3
|
|
|
|
testMaxInputsPerTx = 3
|
|
)
|
|
|
|
type sweeperTestContext struct {
|
|
t *testing.T
|
|
|
|
sweeper *UtxoSweeper
|
|
notifier *MockNotifier
|
|
estimator *mockFeeEstimator
|
|
backend *mockBackend
|
|
store *MockSweeperStore
|
|
|
|
timeoutChan chan chan time.Time
|
|
publishChan chan wire.MsgTx
|
|
}
|
|
|
|
var (
|
|
spendableInputs []*BaseInput
|
|
testInputCount int
|
|
|
|
testPubKey, _ = btcec.ParsePubKey([]byte{
|
|
0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
|
|
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
|
|
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
|
|
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
|
|
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
|
|
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
|
|
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
|
|
0xb4, 0x12, 0xa3,
|
|
}, btcec.S256())
|
|
)
|
|
|
|
func createTestInput(value int64, witnessType lnwallet.WitnessType) BaseInput {
|
|
hash := chainhash.Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
byte(testInputCount)}
|
|
|
|
input := MakeBaseInput(
|
|
&wire.OutPoint{
|
|
Hash: hash,
|
|
},
|
|
witnessType,
|
|
&lnwallet.SignDescriptor{
|
|
Output: &wire.TxOut{
|
|
Value: value,
|
|
},
|
|
KeyDesc: keychain.KeyDescriptor{
|
|
PubKey: testPubKey,
|
|
},
|
|
},
|
|
0,
|
|
)
|
|
|
|
testInputCount++
|
|
|
|
return input
|
|
}
|
|
|
|
func init() {
|
|
// Create a set of test spendable inputs.
|
|
for i := 0; i < 5; i++ {
|
|
input := createTestInput(int64(10000+i*500),
|
|
lnwallet.CommitmentTimeLock)
|
|
|
|
spendableInputs = append(spendableInputs, &input)
|
|
}
|
|
}
|
|
|
|
func createSweeperTestContext(t *testing.T) *sweeperTestContext {
|
|
notifier := NewMockNotifier(t)
|
|
|
|
store := NewMockSweeperStore()
|
|
|
|
backend := newMockBackend(notifier)
|
|
|
|
estimator := newMockFeeEstimator(10000, 1000)
|
|
|
|
publishChan := make(chan wire.MsgTx, 2)
|
|
ctx := &sweeperTestContext{
|
|
notifier: notifier,
|
|
publishChan: publishChan,
|
|
t: t,
|
|
estimator: estimator,
|
|
backend: backend,
|
|
store: store,
|
|
timeoutChan: make(chan chan time.Time, 1),
|
|
}
|
|
|
|
var outputScriptCount byte
|
|
ctx.sweeper = New(&UtxoSweeperConfig{
|
|
Notifier: notifier,
|
|
PublishTransaction: func(tx *wire.MsgTx) error {
|
|
log.Tracef("Publishing tx %v", tx.TxHash())
|
|
err := backend.publishTransaction(tx)
|
|
select {
|
|
case publishChan <- *tx:
|
|
case <-time.After(defaultTestTimeout):
|
|
t.Fatalf("unexpected tx published")
|
|
}
|
|
return err
|
|
},
|
|
NewBatchTimer: func() <-chan time.Time {
|
|
c := make(chan time.Time, 1)
|
|
ctx.timeoutChan <- c
|
|
return c
|
|
},
|
|
Store: store,
|
|
Signer: &mockSigner{},
|
|
SweepTxConfTarget: 1,
|
|
ChainIO: &mockChainIO{},
|
|
GenSweepScript: func() ([]byte, error) {
|
|
script := []byte{outputScriptCount}
|
|
outputScriptCount++
|
|
return script, nil
|
|
},
|
|
FeeEstimator: estimator,
|
|
MaxInputsPerTx: testMaxInputsPerTx,
|
|
MaxSweepAttempts: testMaxSweepAttempts,
|
|
NextAttemptDeltaFunc: func(attempts int) int32 {
|
|
// Use delta func without random factor.
|
|
return 1 << uint(attempts-1)
|
|
},
|
|
})
|
|
|
|
ctx.sweeper.Start()
|
|
|
|
return ctx
|
|
}
|
|
|
|
func (ctx *sweeperTestContext) tick() {
|
|
testLog.Trace("Waiting for tick to be consumed")
|
|
select {
|
|
case c := <-ctx.timeoutChan:
|
|
select {
|
|
case c <- time.Time{}:
|
|
testLog.Trace("Tick")
|
|
case <-time.After(defaultTestTimeout):
|
|
debug.PrintStack()
|
|
ctx.t.Fatal("tick timeout - tick not consumed")
|
|
}
|
|
case <-time.After(defaultTestTimeout):
|
|
debug.PrintStack()
|
|
ctx.t.Fatal("tick timeout - no new timer created")
|
|
}
|
|
}
|
|
|
|
func (ctx *sweeperTestContext) assertNoNewTimer() {
|
|
select {
|
|
case <-ctx.timeoutChan:
|
|
ctx.t.Fatal("no new timer expected")
|
|
default:
|
|
}
|
|
}
|
|
|
|
func (ctx *sweeperTestContext) finish(expectedGoroutineCount int) {
|
|
// We assume that when finish is called, sweeper has finished all its
|
|
// goroutines. This implies that the waitgroup is empty.
|
|
signalChan := make(chan struct{})
|
|
go func() {
|
|
ctx.sweeper.wg.Wait()
|
|
close(signalChan)
|
|
}()
|
|
|
|
// Simulate exits of the expected number of running goroutines.
|
|
for i := 0; i < expectedGoroutineCount; i++ {
|
|
ctx.sweeper.wg.Done()
|
|
}
|
|
|
|
// We now expect the Wait to succeed.
|
|
select {
|
|
case <-signalChan:
|
|
case <-time.After(time.Second):
|
|
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
|
|
|
|
ctx.t.Fatalf("lingering goroutines detected after test " +
|
|
"is finished")
|
|
}
|
|
|
|
// Restore waitgroup state to what it was before.
|
|
ctx.sweeper.wg.Add(expectedGoroutineCount)
|
|
|
|
// Stop sweeper.
|
|
ctx.sweeper.Stop()
|
|
|
|
// We should have consumed and asserted all published transactions in
|
|
// our unit tests.
|
|
ctx.assertNoTx()
|
|
ctx.assertNoNewTimer()
|
|
if !ctx.backend.isDone() {
|
|
ctx.t.Fatal("unconfirmed txes remaining")
|
|
}
|
|
}
|
|
|
|
func (ctx *sweeperTestContext) assertNoTx() {
|
|
ctx.t.Helper()
|
|
select {
|
|
case <-ctx.publishChan:
|
|
ctx.t.Fatalf("unexpected transactions published")
|
|
default:
|
|
}
|
|
}
|
|
|
|
func (ctx *sweeperTestContext) receiveTx() wire.MsgTx {
|
|
ctx.t.Helper()
|
|
var tx wire.MsgTx
|
|
select {
|
|
case tx = <-ctx.publishChan:
|
|
return tx
|
|
case <-time.After(5 * time.Second):
|
|
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
|
|
|
|
ctx.t.Fatalf("tx not published")
|
|
}
|
|
return tx
|
|
}
|
|
|
|
func (ctx *sweeperTestContext) expectResult(c chan Result, expected error) {
|
|
ctx.t.Helper()
|
|
select {
|
|
case result := <-c:
|
|
if result.Err != expected {
|
|
ctx.t.Fatalf("expected %v result, but got %v",
|
|
expected, result.Err,
|
|
)
|
|
}
|
|
case <-time.After(defaultTestTimeout):
|
|
ctx.t.Fatalf("no result received")
|
|
}
|
|
}
|
|
|
|
// TestSuccess tests the sweeper happy flow.
|
|
func TestSuccess(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
resultChan, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
sweepTx := ctx.receiveTx()
|
|
|
|
ctx.backend.mine()
|
|
|
|
select {
|
|
case result := <-resultChan:
|
|
if result.Err != nil {
|
|
t.Fatalf("expected successful spend, but received "+
|
|
"error %v instead", result.Err)
|
|
}
|
|
if result.Tx.TxHash() != sweepTx.TxHash() {
|
|
t.Fatalf("expected sweep tx ")
|
|
}
|
|
case <-time.After(5 * time.Second):
|
|
t.Fatalf("no result received")
|
|
}
|
|
|
|
ctx.finish(1)
|
|
|
|
// Assert that last tx is stored in the database so we can republish
|
|
// on restart.
|
|
lastTx, err := ctx.store.GetLastPublishedTx()
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
if lastTx == nil || sweepTx.TxHash() != lastTx.TxHash() {
|
|
t.Fatalf("last tx not stored")
|
|
}
|
|
}
|
|
|
|
// TestDust asserts that inputs that are not big enough to raise above the dust
|
|
// limit, are held back until the total set does surpass the limit.
|
|
func TestDust(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
// Sweeping a single output produces a tx of 486 weight units. With the
|
|
// test fee rate, the sweep tx will pay 4860 sat in fees.
|
|
//
|
|
// Create an input so that the output after paying fees is still
|
|
// positive (400 sat), but less than the dust limit (537 sat) for the
|
|
// sweep tx output script (P2WPKH).
|
|
dustInput := createTestInput(5260, lnwallet.CommitmentTimeLock)
|
|
|
|
_, err := ctx.sweeper.SweepInput(&dustInput)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// No sweep transaction is expected now. The sweeper should recognize
|
|
// that the sweep output will not be relayed and not generate the tx.
|
|
|
|
// Sweep another input that brings the tx output above the dust limit.
|
|
largeInput := createTestInput(100000, lnwallet.CommitmentTimeLock)
|
|
|
|
_, err = ctx.sweeper.SweepInput(&largeInput)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
// The second input brings the sweep output above the dust limit. We
|
|
// expect a sweep tx now.
|
|
|
|
sweepTx := ctx.receiveTx()
|
|
if len(sweepTx.TxIn) != 2 {
|
|
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
|
|
"inputs instead", len(sweepTx.TxIn))
|
|
}
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestNegativeInput asserts that no inputs with a negative yield are swept.
|
|
// Negative yield means that the value minus the added fee is negative.
|
|
func TestNegativeInput(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
// Sweep an input large enough to cover fees, so in any case the tx
|
|
// output will be above the dust limit.
|
|
largeInput := createTestInput(100000, lnwallet.CommitmentNoDelay)
|
|
largeInputResult, err := ctx.sweeper.SweepInput(&largeInput)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Sweep an additional input with a negative net yield. The weight of
|
|
// the HtlcAcceptedRemoteSuccess input type adds more in fees than its
|
|
// value at the current fee level.
|
|
negInput := createTestInput(2900, lnwallet.HtlcOfferedRemoteTimeout)
|
|
negInputResult, err := ctx.sweeper.SweepInput(&negInput)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Sweep a third input that has a smaller output than the previous one,
|
|
// but yields positively because of its lower weight.
|
|
positiveInput := createTestInput(2800, lnwallet.CommitmentNoDelay)
|
|
positiveInputResult, err := ctx.sweeper.SweepInput(&positiveInput)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
// We expect that a sweep tx is published now, but it should only
|
|
// contain the large input. The negative input should stay out of sweeps
|
|
// until fees come down to get a positive net yield.
|
|
sweepTx1 := ctx.receiveTx()
|
|
|
|
if !testTxIns(&sweepTx1, []*wire.OutPoint{
|
|
largeInput.OutPoint(), positiveInput.OutPoint(),
|
|
}) {
|
|
t.Fatalf("Tx does not contain expected inputs: %v",
|
|
spew.Sdump(sweepTx1))
|
|
}
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.expectResult(largeInputResult, nil)
|
|
ctx.expectResult(positiveInputResult, nil)
|
|
|
|
// Lower fee rate so that the negative input is no longer negative.
|
|
ctx.estimator.updateFees(1000, 1000)
|
|
|
|
// Create another large input
|
|
secondLargeInput := createTestInput(100000, lnwallet.CommitmentNoDelay)
|
|
secondLargeInputResult, err := ctx.sweeper.SweepInput(&secondLargeInput)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
sweepTx2 := ctx.receiveTx()
|
|
if !testTxIns(&sweepTx2, []*wire.OutPoint{
|
|
secondLargeInput.OutPoint(), negInput.OutPoint(),
|
|
}) {
|
|
t.Fatal("Tx does not contain expected inputs")
|
|
}
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.expectResult(secondLargeInputResult, nil)
|
|
ctx.expectResult(negInputResult, nil)
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
func testTxIns(tx *wire.MsgTx, inputs []*wire.OutPoint) bool {
|
|
if len(tx.TxIn) != len(inputs) {
|
|
return false
|
|
}
|
|
|
|
ins := make(map[wire.OutPoint]struct{})
|
|
for _, in := range tx.TxIn {
|
|
ins[in.PreviousOutPoint] = struct{}{}
|
|
}
|
|
|
|
for _, expectedIn := range inputs {
|
|
if _, ok := ins[*expectedIn]; !ok {
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// TestChunks asserts that large sets of inputs are split into multiple txes.
|
|
func TestChunks(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
// Sweep five inputs.
|
|
for _, input := range spendableInputs[:5] {
|
|
_, err := ctx.sweeper.SweepInput(input)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
// We expect two txes to be published because of the max input count of
|
|
// three.
|
|
sweepTx1 := ctx.receiveTx()
|
|
if len(sweepTx1.TxIn) != 3 {
|
|
t.Fatalf("Expected first tx to sweep 3 inputs, but contains %v "+
|
|
"inputs instead", len(sweepTx1.TxIn))
|
|
}
|
|
|
|
sweepTx2 := ctx.receiveTx()
|
|
if len(sweepTx2.TxIn) != 2 {
|
|
t.Fatalf("Expected first tx to sweep 2 inputs, but contains %v "+
|
|
"inputs instead", len(sweepTx1.TxIn))
|
|
}
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestRemoteSpend asserts that remote spends are properly detected and handled
|
|
// both before the sweep is published as well as after.
|
|
func TestRemoteSpend(t *testing.T) {
|
|
t.Run("pre-sweep", func(t *testing.T) {
|
|
testRemoteSpend(t, false)
|
|
})
|
|
t.Run("post-sweep", func(t *testing.T) {
|
|
testRemoteSpend(t, true)
|
|
})
|
|
}
|
|
|
|
func testRemoteSpend(t *testing.T, postSweep bool) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
resultChan1, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
resultChan2, err := ctx.sweeper.SweepInput(spendableInputs[1])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Spend the input with an unknown tx.
|
|
remoteTx := &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{
|
|
{
|
|
PreviousOutPoint: *(spendableInputs[0].OutPoint()),
|
|
},
|
|
},
|
|
}
|
|
err = ctx.backend.publishTransaction(remoteTx)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
if postSweep {
|
|
ctx.tick()
|
|
|
|
// Tx publication by sweeper returns ErrDoubleSpend. Sweeper
|
|
// will retry the inputs without reporting a result. It could be
|
|
// spent by the remote party.
|
|
ctx.receiveTx()
|
|
}
|
|
|
|
ctx.backend.mine()
|
|
|
|
select {
|
|
case result := <-resultChan1:
|
|
if result.Err != ErrRemoteSpend {
|
|
t.Fatalf("expected remote spend")
|
|
}
|
|
if result.Tx.TxHash() != remoteTx.TxHash() {
|
|
t.Fatalf("expected remote spend tx")
|
|
}
|
|
case <-time.After(5 * time.Second):
|
|
t.Fatalf("no result received")
|
|
}
|
|
|
|
if !postSweep {
|
|
// Assert that the sweeper sweeps the remaining input.
|
|
ctx.tick()
|
|
sweepTx := ctx.receiveTx()
|
|
|
|
if len(sweepTx.TxIn) != 1 {
|
|
t.Fatal("expected sweep to only sweep the one remaining output")
|
|
}
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.expectResult(resultChan2, nil)
|
|
|
|
ctx.finish(1)
|
|
} else {
|
|
// Expected sweeper to be still listening for spend of the
|
|
// error input.
|
|
ctx.finish(2)
|
|
|
|
select {
|
|
case <-resultChan2:
|
|
t.Fatalf("no result expected for error input")
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestIdempotency asserts that offering the same input multiple times is
|
|
// handled correctly.
|
|
func TestIdempotency(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
resultChan1, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
resultChan2, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
ctx.receiveTx()
|
|
|
|
resultChan3, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Spend the input of the sweep tx.
|
|
ctx.backend.mine()
|
|
|
|
ctx.expectResult(resultChan1, nil)
|
|
ctx.expectResult(resultChan2, nil)
|
|
ctx.expectResult(resultChan3, nil)
|
|
|
|
// Offer the same input again. The sweeper will register a spend ntfn
|
|
// for this input. Because the input has already been spent, it will
|
|
// immediately receive the spend notification with a spending tx hash.
|
|
// Because the sweeper kept track of all of its sweep txes, it will
|
|
// recognize the spend as its own.
|
|
resultChan4, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
ctx.expectResult(resultChan4, nil)
|
|
|
|
// Timer is still running, but spend notification was delivered before
|
|
// it expired.
|
|
ctx.tick()
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestNoInputs asserts that nothing happens if nothing happens.
|
|
func TestNoInputs(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
// No tx should appear. This is asserted in finish().
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestRestart asserts that the sweeper picks up sweeping properly after
|
|
// a restart.
|
|
func TestRestart(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
// Sweep input and expect sweep tx.
|
|
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
ctx.tick()
|
|
|
|
ctx.receiveTx()
|
|
|
|
// Restart sweeper.
|
|
ctx.sweeper.Stop()
|
|
|
|
ctx.sweeper = New(ctx.sweeper.cfg)
|
|
ctx.sweeper.Start()
|
|
|
|
// Expect last tx to be republished.
|
|
ctx.receiveTx()
|
|
|
|
// Simulate other subsystem (eg contract resolver) re-offering inputs.
|
|
spendChan1, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
spendChan2, err := ctx.sweeper.SweepInput(spendableInputs[1])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Spend inputs of sweep txes and verify that spend channels signal
|
|
// spends.
|
|
ctx.backend.mine()
|
|
|
|
// Sweeper should recognize that its sweep tx of the previous run is
|
|
// spending the input.
|
|
select {
|
|
case result := <-spendChan1:
|
|
if result.Err != nil {
|
|
t.Fatalf("expected successful sweep")
|
|
}
|
|
case <-time.After(defaultTestTimeout):
|
|
t.Fatalf("no result received")
|
|
}
|
|
|
|
// Timer tick should trigger republishing a sweep for the remaining
|
|
// input.
|
|
ctx.tick()
|
|
|
|
ctx.receiveTx()
|
|
|
|
ctx.backend.mine()
|
|
|
|
select {
|
|
case result := <-spendChan2:
|
|
if result.Err != nil {
|
|
t.Fatalf("expected successful sweep")
|
|
}
|
|
case <-time.After(defaultTestTimeout):
|
|
t.Fatalf("no result received")
|
|
}
|
|
|
|
// Restart sweeper again. No action is expected.
|
|
ctx.sweeper.Stop()
|
|
ctx.sweeper = New(ctx.sweeper.cfg)
|
|
ctx.sweeper.Start()
|
|
|
|
// Expect last tx to be republished.
|
|
ctx.receiveTx()
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestRestartRemoteSpend asserts that the sweeper picks up sweeping properly after
|
|
// a restart with remote spend.
|
|
func TestRestartRemoteSpend(t *testing.T) {
|
|
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
// Sweep input.
|
|
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Sweep another input.
|
|
_, err = ctx.sweeper.SweepInput(spendableInputs[1])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
sweepTx := ctx.receiveTx()
|
|
|
|
// Restart sweeper.
|
|
ctx.sweeper.Stop()
|
|
|
|
ctx.sweeper = New(ctx.sweeper.cfg)
|
|
ctx.sweeper.Start()
|
|
|
|
// Expect last tx to be republished.
|
|
ctx.receiveTx()
|
|
|
|
// Replace the sweep tx with a remote tx spending input 1.
|
|
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
|
|
|
|
remoteTx := &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{
|
|
{
|
|
PreviousOutPoint: *(spendableInputs[1].OutPoint()),
|
|
},
|
|
},
|
|
}
|
|
err = ctx.backend.publishTransaction(remoteTx)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Mine remote spending tx.
|
|
ctx.backend.mine()
|
|
|
|
// Simulate other subsystem (eg contract resolver) re-offering input 0.
|
|
spendChan, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Expect sweeper to construct a new tx, because input 1 was spend
|
|
// remotely.
|
|
ctx.tick()
|
|
|
|
ctx.receiveTx()
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.expectResult(spendChan, nil)
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestRestartConfirmed asserts that the sweeper picks up sweeping properly after
|
|
// a restart with a confirm of our own sweep tx.
|
|
func TestRestartConfirmed(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
// Sweep input.
|
|
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
ctx.receiveTx()
|
|
|
|
// Restart sweeper.
|
|
ctx.sweeper.Stop()
|
|
|
|
ctx.sweeper = New(ctx.sweeper.cfg)
|
|
ctx.sweeper.Start()
|
|
|
|
// Expect last tx to be republished.
|
|
ctx.receiveTx()
|
|
|
|
// Mine the sweep tx.
|
|
ctx.backend.mine()
|
|
|
|
// Simulate other subsystem (eg contract resolver) re-offering input 0.
|
|
spendChan, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Here we expect again a successful sweep.
|
|
ctx.expectResult(spendChan, nil)
|
|
|
|
// Timer started but not needed because spend ntfn was sent.
|
|
ctx.tick()
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestRestartRepublish asserts that sweeper republishes the last published
|
|
// tx on restart.
|
|
func TestRestartRepublish(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
sweepTx := ctx.receiveTx()
|
|
|
|
// Restart sweeper again. No action is expected.
|
|
ctx.sweeper.Stop()
|
|
ctx.sweeper = New(ctx.sweeper.cfg)
|
|
ctx.sweeper.Start()
|
|
|
|
republishedTx := ctx.receiveTx()
|
|
|
|
if sweepTx.TxHash() != republishedTx.TxHash() {
|
|
t.Fatalf("last tx not republished")
|
|
}
|
|
|
|
// Mine the tx to conclude the test properly.
|
|
ctx.backend.mine()
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestRetry tests the sweeper retry flow.
|
|
func TestRetry(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
resultChan0, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
// We expect a sweep to be published.
|
|
ctx.receiveTx()
|
|
|
|
// New block arrives. This should trigger a new sweep attempt timer
|
|
// start.
|
|
ctx.notifier.NotifyEpoch(1000)
|
|
|
|
// Offer a fresh input.
|
|
resultChan1, err := ctx.sweeper.SweepInput(spendableInputs[1])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
// Two txes are expected to be published, because new and retry inputs
|
|
// are separated.
|
|
ctx.receiveTx()
|
|
ctx.receiveTx()
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.expectResult(resultChan0, nil)
|
|
ctx.expectResult(resultChan1, nil)
|
|
|
|
ctx.finish(1)
|
|
}
|
|
|
|
// TestGiveUp asserts that the sweeper gives up on an input if it can't be swept
|
|
// after a configured number of attempts.a
|
|
func TestGiveUp(t *testing.T) {
|
|
ctx := createSweeperTestContext(t)
|
|
|
|
resultChan0, err := ctx.sweeper.SweepInput(spendableInputs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
ctx.tick()
|
|
|
|
// We expect a sweep to be published at height 100 (mockChainIOHeight).
|
|
ctx.receiveTx()
|
|
|
|
// Because of MaxSweepAttemps, two more sweeps will be attempted. We
|
|
// configured exponential back-off without randomness for the test. The
|
|
// second attempt, we expect to happen at 101. The third attempt at 103.
|
|
// At that point, the input is expected to be failed.
|
|
|
|
// Second attempt
|
|
ctx.notifier.NotifyEpoch(101)
|
|
ctx.tick()
|
|
ctx.receiveTx()
|
|
|
|
// Third attempt
|
|
ctx.notifier.NotifyEpoch(103)
|
|
ctx.tick()
|
|
ctx.receiveTx()
|
|
|
|
ctx.expectResult(resultChan0, ErrTooManyAttempts)
|
|
|
|
ctx.backend.mine()
|
|
|
|
ctx.finish(1)
|
|
}
|