b3afa0c9ed
To facilitate debugging.
274 lines
8.7 KiB
Go
274 lines
8.7 KiB
Go
package sweep
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/btcsuite/btcd/blockchain"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/lightningnetwork/lnd/input"
|
|
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
|
|
)
|
|
|
|
var (
|
|
// DefaultMaxInputsPerTx specifies the default maximum number of inputs
|
|
// allowed in a single sweep tx. If more need to be swept, multiple txes
|
|
// are created and published.
|
|
DefaultMaxInputsPerTx = 100
|
|
)
|
|
|
|
// txInput is an interface that provides the input data required for tx
|
|
// generation.
|
|
type txInput interface {
|
|
input.Input
|
|
parameters() Params
|
|
}
|
|
|
|
// inputSet is a set of inputs that can be used as the basis to generate a tx
|
|
// on.
|
|
type inputSet []input.Input
|
|
|
|
// generateInputPartitionings goes through all given inputs and constructs sets
|
|
// of inputs that can be used to generate a sensible transaction. Each set
|
|
// contains up to the configured maximum number of inputs. Negative yield
|
|
// inputs are skipped. No input sets with a total value after fees below the
|
|
// dust limit are returned.
|
|
func generateInputPartitionings(sweepableInputs []txInput,
|
|
relayFeePerKW, feePerKW chainfee.SatPerKWeight,
|
|
maxInputsPerTx int, wallet Wallet) ([]inputSet, error) {
|
|
|
|
// Sort input by yield. We will start constructing input sets starting
|
|
// with the highest yield inputs. This is to prevent the construction
|
|
// of a set with an output below the dust limit, causing the sweep
|
|
// process to stop, while there are still higher value inputs
|
|
// available. It also allows us to stop evaluating more inputs when the
|
|
// first input in this ordering is encountered with a negative yield.
|
|
//
|
|
// Yield is calculated as the difference between value and added fee
|
|
// for this input. The fee calculation excludes fee components that are
|
|
// common to all inputs, as those wouldn't influence the order. The
|
|
// single component that is differentiating is witness size.
|
|
//
|
|
// For witness size, the upper limit is taken. The actual size depends
|
|
// on the signature length, which is not known yet at this point.
|
|
yields := make(map[wire.OutPoint]int64)
|
|
for _, input := range sweepableInputs {
|
|
size, _, err := input.WitnessType().SizeUpperBound()
|
|
if err != nil {
|
|
return nil, fmt.Errorf(
|
|
"failed adding input weight: %v", err)
|
|
}
|
|
|
|
yields[*input.OutPoint()] = input.SignDesc().Output.Value -
|
|
int64(feePerKW.FeeForWeight(int64(size)))
|
|
}
|
|
|
|
sort.Slice(sweepableInputs, func(i, j int) bool {
|
|
// Because of the specific ordering and termination condition
|
|
// that is described above, we place force sweeps at the start
|
|
// of the list. Otherwise we can't be sure that they will be
|
|
// included in an input set.
|
|
if sweepableInputs[i].parameters().Force {
|
|
return true
|
|
}
|
|
|
|
return yields[*sweepableInputs[i].OutPoint()] >
|
|
yields[*sweepableInputs[j].OutPoint()]
|
|
})
|
|
|
|
// Select blocks of inputs up to the configured maximum number.
|
|
var sets []inputSet
|
|
for len(sweepableInputs) > 0 {
|
|
// Start building a set of positive-yield tx inputs under the
|
|
// condition that the tx will be published with the specified
|
|
// fee rate.
|
|
txInputs := newTxInputSet(
|
|
wallet, feePerKW, relayFeePerKW, maxInputsPerTx,
|
|
)
|
|
|
|
// From the set of sweepable inputs, keep adding inputs to the
|
|
// input set until the tx output value no longer goes up or the
|
|
// maximum number of inputs is reached.
|
|
txInputs.addPositiveYieldInputs(sweepableInputs)
|
|
|
|
// If there are no positive yield inputs, we can stop here.
|
|
inputCount := len(txInputs.inputs)
|
|
if inputCount == 0 {
|
|
return sets, nil
|
|
}
|
|
|
|
// Check the current output value and add wallet utxos if
|
|
// needed to push the output value to the lower limit.
|
|
if err := txInputs.tryAddWalletInputsIfNeeded(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If the output value of this block of inputs does not reach
|
|
// the dust limit, stop sweeping. Because of the sorting,
|
|
// continuing with the remaining inputs will only lead to sets
|
|
// with an even lower output value.
|
|
if !txInputs.dustLimitReached() {
|
|
log.Debugf("Set value %v below dust limit of %v",
|
|
txInputs.outputValue, txInputs.dustLimit)
|
|
return sets, nil
|
|
}
|
|
|
|
log.Infof("Candidate sweep set of size=%v (+%v wallet inputs), "+
|
|
"has yield=%v, weight=%v",
|
|
inputCount, len(txInputs.inputs)-inputCount,
|
|
txInputs.outputValue-txInputs.walletInputTotal,
|
|
txInputs.weightEstimate.Weight())
|
|
|
|
sets = append(sets, txInputs.inputs)
|
|
sweepableInputs = sweepableInputs[inputCount:]
|
|
}
|
|
|
|
return sets, nil
|
|
}
|
|
|
|
// createSweepTx builds a signed tx spending the inputs to a the output script.
|
|
func createSweepTx(inputs []input.Input, outputPkScript []byte,
|
|
currentBlockHeight uint32, feePerKw chainfee.SatPerKWeight,
|
|
signer input.Signer) (*wire.MsgTx, error) {
|
|
|
|
inputs, txWeight := getWeightEstimate(inputs)
|
|
|
|
txFee := feePerKw.FeeForWeight(txWeight)
|
|
|
|
// Sum up the total value contained in the inputs.
|
|
var totalSum btcutil.Amount
|
|
for _, o := range inputs {
|
|
totalSum += btcutil.Amount(o.SignDesc().Output.Value)
|
|
}
|
|
|
|
// Sweep as much possible, after subtracting txn fees.
|
|
sweepAmt := int64(totalSum - txFee)
|
|
|
|
// Create the sweep transaction that we will be building. We use
|
|
// version 2 as it is required for CSV. The txn will sweep the amount
|
|
// after fees to the pkscript generated above.
|
|
sweepTx := wire.NewMsgTx(2)
|
|
sweepTx.AddTxOut(&wire.TxOut{
|
|
PkScript: outputPkScript,
|
|
Value: sweepAmt,
|
|
})
|
|
|
|
sweepTx.LockTime = currentBlockHeight
|
|
|
|
// Add all inputs to the sweep transaction. Ensure that for each
|
|
// csvInput, we set the sequence number properly.
|
|
for _, input := range inputs {
|
|
sweepTx.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: *input.OutPoint(),
|
|
Sequence: input.BlocksToMaturity(),
|
|
})
|
|
}
|
|
|
|
// Before signing the transaction, check to ensure that it meets some
|
|
// basic validity requirements.
|
|
//
|
|
// TODO(conner): add more control to sanity checks, allowing us to
|
|
// delay spending "problem" outputs, e.g. possibly batching with other
|
|
// classes if fees are too low.
|
|
btx := btcutil.NewTx(sweepTx)
|
|
if err := blockchain.CheckTransactionSanity(btx); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
hashCache := txscript.NewTxSigHashes(sweepTx)
|
|
|
|
// With all the inputs in place, use each output's unique input script
|
|
// function to generate the final witness required for spending.
|
|
addInputScript := func(idx int, tso input.Input) error {
|
|
inputScript, err := tso.CraftInputScript(
|
|
signer, sweepTx, hashCache, idx,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
sweepTx.TxIn[idx].Witness = inputScript.Witness
|
|
|
|
if len(inputScript.SigScript) != 0 {
|
|
sweepTx.TxIn[idx].SignatureScript = inputScript.SigScript
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Finally we'll attach a valid input script to each csv and cltv input
|
|
// within the sweeping transaction.
|
|
for i, input := range inputs {
|
|
if err := addInputScript(i, input); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
log.Infof("Creating sweep transaction %v for %v inputs (%s) "+
|
|
"using %v sat/kw, tx_fee=%v", sweepTx.TxHash(), len(inputs),
|
|
inputTypeSummary(inputs), int64(feePerKw), txFee)
|
|
|
|
return sweepTx, nil
|
|
}
|
|
|
|
// getWeightEstimate returns a weight estimate for the given inputs.
|
|
// Additionally, it returns counts for the number of csv and cltv inputs.
|
|
func getWeightEstimate(inputs []input.Input) ([]input.Input, int64) {
|
|
// We initialize a weight estimator so we can accurately asses the
|
|
// amount of fees we need to pay for this sweep transaction.
|
|
//
|
|
// TODO(roasbeef): can be more intelligent about buffering outputs to
|
|
// be more efficient on-chain.
|
|
var weightEstimate input.TxWeightEstimator
|
|
|
|
// Our sweep transaction will pay to a single segwit p2wkh address,
|
|
// ensure it contributes to our weight estimate.
|
|
weightEstimate.AddP2WKHOutput()
|
|
|
|
// For each output, use its witness type to determine the estimate
|
|
// weight of its witness, and add it to the proper set of spendable
|
|
// outputs.
|
|
var sweepInputs []input.Input
|
|
for i := range inputs {
|
|
inp := inputs[i]
|
|
|
|
wt := inp.WitnessType()
|
|
err := wt.AddWeightEstimation(&weightEstimate)
|
|
if err != nil {
|
|
log.Warn(err)
|
|
|
|
// Skip inputs for which no weight estimate can be
|
|
// given.
|
|
continue
|
|
}
|
|
|
|
sweepInputs = append(sweepInputs, inp)
|
|
}
|
|
|
|
return sweepInputs, int64(weightEstimate.Weight())
|
|
}
|
|
|
|
// inputSummary returns a string containing a human readable summary about the
|
|
// witness types of a list of inputs.
|
|
func inputTypeSummary(inputs []input.Input) string {
|
|
// Sort inputs by witness type.
|
|
sortedInputs := make([]input.Input, len(inputs))
|
|
copy(sortedInputs, inputs)
|
|
sort.Slice(sortedInputs, func(i, j int) bool {
|
|
return sortedInputs[i].WitnessType().String() <
|
|
sortedInputs[j].WitnessType().String()
|
|
})
|
|
|
|
var parts []string
|
|
for _, i := range sortedInputs {
|
|
part := fmt.Sprintf("%v (%v)",
|
|
*i.OutPoint(), i.WitnessType())
|
|
|
|
parts = append(parts, part)
|
|
}
|
|
return strings.Join(parts, ", ")
|
|
}
|