c2301c14b2
This commit moves supplying of the information in the LightningPayment to the initialization of the paymentSession, away from every call to RequestRoute. Instead the paymentSession will store this information internally, as it doesn't change between payment attempts. This is done to rid the RequestRoute call of the LightingPayment argument, as for SendToRoute calls, it is not needed to supply the next route.
152 lines
5.1 KiB
Go
152 lines
5.1 KiB
Go
package routing
|
|
|
|
import (
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/routing/route"
|
|
"github.com/lightningnetwork/lnd/zpay32"
|
|
)
|
|
|
|
// A compile time assertion to ensure MissionControl meets the
|
|
// PaymentSessionSource interface.
|
|
var _ PaymentSessionSource = (*SessionSource)(nil)
|
|
|
|
// SessionSource defines a source for the router to retrieve new payment
|
|
// sessions.
|
|
type SessionSource struct {
|
|
// Graph is the channel graph that will be used to gather metrics from
|
|
// and also to carry out path finding queries.
|
|
Graph *channeldb.ChannelGraph
|
|
|
|
// QueryBandwidth is a method that allows querying the lower link layer
|
|
// to determine the up to date available bandwidth at a prospective link
|
|
// to be traversed. If the link isn't available, then a value of zero
|
|
// should be returned. Otherwise, the current up to date knowledge of
|
|
// the available bandwidth of the link should be returned.
|
|
QueryBandwidth func(*channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi
|
|
|
|
// SelfNode is our own node.
|
|
SelfNode *channeldb.LightningNode
|
|
|
|
// MissionControl is a shared memory of sorts that executions of payment
|
|
// path finding use in order to remember which vertexes/edges were
|
|
// pruned from prior attempts. During payment execution, errors sent by
|
|
// nodes are mapped into a vertex or edge to be pruned. Each run will
|
|
// then take into account this set of pruned vertexes/edges to reduce
|
|
// route failure and pass on graph information gained to the next
|
|
// execution.
|
|
MissionControl MissionController
|
|
|
|
// PathFindingConfig defines global parameters that control the
|
|
// trade-off in path finding between fees and probabiity.
|
|
PathFindingConfig PathFindingConfig
|
|
}
|
|
|
|
// NewPaymentSession creates a new payment session backed by the latest prune
|
|
// view from Mission Control. An optional set of routing hints can be provided
|
|
// in order to populate additional edges to explore when finding a path to the
|
|
// payment's destination.
|
|
func (m *SessionSource) NewPaymentSession(p *LightningPayment) (
|
|
PaymentSession, error) {
|
|
|
|
edges, err := RouteHintsToEdges(p.RouteHints, p.Target)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
sourceNode, err := m.Graph.SourceNode()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
getBandwidthHints := func() (map[uint64]lnwire.MilliSatoshi,
|
|
error) {
|
|
|
|
return generateBandwidthHints(sourceNode, m.QueryBandwidth)
|
|
}
|
|
|
|
return &paymentSession{
|
|
additionalEdges: edges,
|
|
getBandwidthHints: getBandwidthHints,
|
|
sessionSource: m,
|
|
payment: p,
|
|
pathFinder: findPath,
|
|
}, nil
|
|
}
|
|
|
|
// NewPaymentSessionForRoute creates a new paymentSession instance that is just
|
|
// used for failure reporting to missioncontrol.
|
|
func (m *SessionSource) NewPaymentSessionForRoute(preBuiltRoute *route.Route) PaymentSession {
|
|
return &paymentSession{
|
|
sessionSource: m,
|
|
preBuiltRoute: preBuiltRoute,
|
|
}
|
|
}
|
|
|
|
// NewPaymentSessionEmpty creates a new paymentSession instance that is empty,
|
|
// and will be exhausted immediately. Used for failure reporting to
|
|
// missioncontrol for resumed payment we don't want to make more attempts for.
|
|
func (m *SessionSource) NewPaymentSessionEmpty() PaymentSession {
|
|
return &paymentSession{
|
|
sessionSource: m,
|
|
preBuiltRoute: &route.Route{},
|
|
preBuiltRouteTried: true,
|
|
}
|
|
}
|
|
|
|
// RouteHintsToEdges converts a list of invoice route hints to an edge map that
|
|
// can be passed into pathfinding.
|
|
func RouteHintsToEdges(routeHints [][]zpay32.HopHint, target route.Vertex) (
|
|
map[route.Vertex][]*channeldb.ChannelEdgePolicy, error) {
|
|
|
|
edges := make(map[route.Vertex][]*channeldb.ChannelEdgePolicy)
|
|
|
|
// Traverse through all of the available hop hints and include them in
|
|
// our edges map, indexed by the public key of the channel's starting
|
|
// node.
|
|
for _, routeHint := range routeHints {
|
|
// If multiple hop hints are provided within a single route
|
|
// hint, we'll assume they must be chained together and sorted
|
|
// in forward order in order to reach the target successfully.
|
|
for i, hopHint := range routeHint {
|
|
// In order to determine the end node of this hint,
|
|
// we'll need to look at the next hint's start node. If
|
|
// we've reached the end of the hints list, we can
|
|
// assume we've reached the destination.
|
|
endNode := &channeldb.LightningNode{}
|
|
if i != len(routeHint)-1 {
|
|
endNode.AddPubKey(routeHint[i+1].NodeID)
|
|
} else {
|
|
targetPubKey, err := btcec.ParsePubKey(
|
|
target[:], btcec.S256(),
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
endNode.AddPubKey(targetPubKey)
|
|
}
|
|
|
|
// Finally, create the channel edge from the hop hint
|
|
// and add it to list of edges corresponding to the node
|
|
// at the start of the channel.
|
|
edge := &channeldb.ChannelEdgePolicy{
|
|
Node: endNode,
|
|
ChannelID: hopHint.ChannelID,
|
|
FeeBaseMSat: lnwire.MilliSatoshi(
|
|
hopHint.FeeBaseMSat,
|
|
),
|
|
FeeProportionalMillionths: lnwire.MilliSatoshi(
|
|
hopHint.FeeProportionalMillionths,
|
|
),
|
|
TimeLockDelta: hopHint.CLTVExpiryDelta,
|
|
}
|
|
|
|
v := route.NewVertex(hopHint.NodeID)
|
|
edges[v] = append(edges[v], edge)
|
|
}
|
|
}
|
|
|
|
return edges, nil
|
|
}
|