lnd.xprv/peer.go
Olaoluwa Osuntokun c0383679d2
lnd: use asynchronous streaming responses for [open|close]channel RPC's
This commit switches the implementation of the open/close channel RPC’s
from a fully blocking synchronous model to one that’s async by default,
allowing callers to add a sync wrapper.

The new proto specs also allow for “updates” for the pending channels
in the form of new confirmations which progress the pending status of
the channel. At this point, only the final open/close updates have been
implemented. Obtaining confirmation notifications requires a bit of
re-working within the current ChainNotifier interface, thus this has
been deferred to a later time.
2016-07-07 15:31:07 -07:00

644 lines
19 KiB
Go

package main
import (
"container/list"
"net"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/fastsha256"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lndc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
)
var (
numNodes int32
)
const (
// pingInterval is the interval at which ping messages are sent.
pingInterval = 30 * time.Second
// outgoingQueueLen is the buffer size of the channel which houses
// messages to be sent across the wire, requested by objects outside
// this struct.
outgoingQueueLen = 50
)
// outgoinMsg packages an lnwire.Message to be sent out on the wire, along with
// a buffered channel which will be sent upon once the write is complete. This
// buffered channel acts as a semaphore to be used for synchronization purposes.
type outgoinMsg struct {
msg lnwire.Message
sentChan chan struct{} // MUST be buffered.
}
// chanSnapshotReq is a message sent by outside sub-systems to a peer in order
// to gain a snapshot of the peer's currently active channels.
type chanSnapshotReq struct {
resp chan []*channeldb.ChannelSnapshot
}
// peer is an active peer on the Lightning Network. This struct is responsible
// for managing any channel state related to this peer. To do so, it has several
// helper goroutines to handle events such as HTLC timeouts, new funding
// workflow, and detecting an uncooperative closure of any active channels.
type peer struct {
// MUST be used atomically.
started int32
connected int32
disconnect int32
conn net.Conn
lightningAddr *lndc.LNAdr
lightningID wire.ShaHash
inbound bool
id int32
// For purposes of detecting retransmits, etc.
lastNMessages map[lnwire.Message]struct{}
// This mutex protects all the stats below it.
sync.RWMutex
timeConnected time.Time
lastSend time.Time
lastRecv time.Time
// The following fields are only meant to be used *atomically*
bytesReceived uint64
bytesSent uint64
satoshisSent uint64
satoshisReceived uint64
// chainNet is the Bitcoin network to which this peer is anchored to.
chainNet wire.BitcoinNet
// sendQueue is the channel which is used to queue outgoing to be
// written onto the wire. Note that this channel is unbuffered.
sendQueue chan outgoinMsg
// outgoingQueue is a buffered channel which allows second/third party
// objects to queue messages to be sent out on the wire.
outgoingQueue chan outgoinMsg
// sendQueueSync is used as a semaphore to synchronize writes between
// the writeHandler and the queueHandler.
sendQueueSync chan struct{}
// activeChannels is a map which stores the state machines of all
// active channels. Channels are indexed into the map by the txid of
// the funding transaction which opened the channel.
activeChannels map[wire.OutPoint]*lnwallet.LightningChannel
chanSnapshotReqs chan *chanSnapshotReq
// newChanBarriers is a map from a channel point to a 'barrier' which
// will be signalled once the channel is fully open. This barrier acts
// as a synchronization point for any incoming/outgoing HTLCs before
// the channel has been fully opened.
// TODO(roasbeef): barrier to sync chan open and handling of first htlc
// message.
newChanBarriers map[wire.OutPoint]chan struct{}
// newChannels is used by the fundingManager to send fully opened
// channels to the source peer which handled the funding workflow.
// TODO(roasbeef): barrier to block until chan open before update
newChannels chan *lnwallet.LightningChannel
// localCloseChanReqs is a channel in which any local requests to
// close a particular channel are sent over.
localCloseChanReqs chan *closeChanReq
// remoteCloseChanReqs is a channel in which any remote requests
// (initiated by the remote peer) close a particular channel are sent
// over.
remoteCloseChanReqs chan *lnwire.CloseRequest
// nextPendingChannelID is an integer which represents the id of the
// next pending channel. Pending channels are tracked by this id
// throughout their lifetime until they become active channels, or are
// cancelled. Channels id's initiated by an outbound node start from 0,
// while channels inititaed by an inbound node start from 2^63. In
// either case, this value is always monotonically increasing.
nextPendingChannelID uint64
pendingChannelMtx sync.RWMutex
server *server
queueQuit chan struct{}
quit chan struct{}
wg sync.WaitGroup
}
// newPeer creates a new peer from an establish connection object, and a
// pointer to the main server.
func newPeer(conn net.Conn, server *server, net wire.BitcoinNet, inbound bool) (*peer, error) {
nodePub := conn.(*lndc.LNDConn).RemotePub
p := &peer{
conn: conn,
lightningID: wire.ShaHash(fastsha256.Sum256(nodePub.SerializeCompressed())),
id: atomic.AddInt32(&numNodes, 1),
chainNet: net,
inbound: inbound,
server: server,
lastNMessages: make(map[lnwire.Message]struct{}),
sendQueueSync: make(chan struct{}, 1),
sendQueue: make(chan outgoinMsg, 1),
outgoingQueue: make(chan outgoinMsg, outgoingQueueLen),
newChanBarriers: make(map[wire.OutPoint]chan struct{}),
activeChannels: make(map[wire.OutPoint]*lnwallet.LightningChannel),
chanSnapshotReqs: make(chan *chanSnapshotReq),
newChannels: make(chan *lnwallet.LightningChannel, 1),
localCloseChanReqs: make(chan *closeChanReq),
remoteCloseChanReqs: make(chan *lnwire.CloseRequest),
queueQuit: make(chan struct{}),
quit: make(chan struct{}),
}
// Initiate the pending channel identifier properly depending on if this
// node is inbound or outbound. This value will be used in an increasing
// manner to track pending channels.
if inbound {
p.nextPendingChannelID = 1 << 63
} else {
p.nextPendingChannelID = 0
}
// Fetch and then load all the active channels we have with this
// remote peer from the database.
activeChans, err := server.chanDB.FetchOpenChannels(&p.lightningID)
if err != nil {
peerLog.Errorf("unable to fetch active chans "+
"for peer %v: %v", p, err)
return nil, err
}
peerLog.Debugf("Loaded %v active channels from database with peerID(%v)",
len(activeChans), p.id)
if err := p.loadActiveChannels(activeChans); err != nil {
return nil, err
}
return p, nil
}
// loadActiveChannels creates indexes within the peer for tracking all active
// channels returned by the database.
func (p *peer) loadActiveChannels(chans []*channeldb.OpenChannel) error {
for _, dbChan := range chans {
chanID := dbChan.ChanID
lnChan, err := lnwallet.NewLightningChannel(p.server.lnwallet,
p.server.lnwallet.ChainNotifier, p.server.chanDB, dbChan)
if err != nil {
return err
}
chanPoint := wire.OutPoint{
Hash: chanID.Hash,
Index: chanID.Index,
}
p.activeChannels[chanPoint] = lnChan
peerLog.Infof("peerID(%v) loaded ChannelPoint(%v)", p.id, chanPoint)
// Update the server's global channel index.
p.server.chanIndexMtx.Lock()
p.server.chanIndex[chanPoint] = p
p.server.chanIndexMtx.Unlock()
}
return nil
}
// Start starts all helper goroutines the peer needs for normal operations.
// In the case this peer has already beeen started, then this function is a
// noop.
func (p *peer) Start() error {
if atomic.AddInt32(&p.started, 1) != 1 {
return nil
}
peerLog.Tracef("peer %v starting", p)
p.wg.Add(5)
go p.readHandler()
go p.queueHandler()
go p.writeHandler()
go p.channelManager()
go p.htlcManager()
return nil
}
// Stop signals the peer for a graceful shutdown. All active goroutines will be
// signaled to wrap up any final actions. This function will also block until
// all goroutines have exited.
func (p *peer) Stop() error {
// If we're already disconnecting, just exit.
if atomic.AddInt32(&p.disconnect, 1) != 1 {
return nil
}
// Otherwise, close the connection if we're currently connected.
if atomic.LoadInt32(&p.connected) != 0 {
p.conn.Close()
}
// Signal all worker goroutines to gracefully exit.
close(p.quit)
p.wg.Wait()
return nil
}
// String returns the string representation of this peer.
func (p *peer) String() string {
return p.conn.RemoteAddr().String()
}
// readNextMessage reads, and returns the next message on the wire along with
// any additional raw payload.
func (p *peer) readNextMessage() (lnwire.Message, []byte, error) {
// TODO(roasbeef): use our own net magic?
n, nextMsg, rawPayload, err := lnwire.ReadMessage(p.conn, 0, p.chainNet)
atomic.AddUint64(&p.bytesReceived, uint64(n))
if err != nil {
return nil, nil, err
}
// TODO(roasbeef): add message summaries
peerLog.Tracef("readMessage from %v: %v", p, newLogClosure(func() string {
return spew.Sdump(nextMsg)
}))
return nextMsg, rawPayload, nil
}
// readHandler is responsible for reading messages off the wire in series, then
// properly dispatching the handling of the message to the proper sub-system.
//
// NOTE: This method MUST be run as a goroutine.
func (p *peer) readHandler() {
// TODO(roasbeef): set timeout for initial channel request or version
// exchange.
out:
for atomic.LoadInt32(&p.disconnect) == 0 {
nextMsg, _, err := p.readNextMessage()
if err != nil {
peerLog.Infof("unable to read message: %v", err)
break out
}
switch msg := nextMsg.(type) {
// TODO(roasbeef): consolidate into predicate (single vs dual)
case *lnwire.SingleFundingRequest:
p.server.fundingMgr.processFundingRequest(msg, p)
case *lnwire.SingleFundingResponse:
p.server.fundingMgr.processFundingResponse(msg, p)
case *lnwire.SingleFundingComplete:
p.server.fundingMgr.processFundingComplete(msg, p)
case *lnwire.SingleFundingSignComplete:
p.server.fundingMgr.processFundingSignComplete(msg, p)
case *lnwire.SingleFundingOpenProof:
p.server.fundingMgr.processFundingOpenProof(msg, p)
case *lnwire.CloseRequest:
p.remoteCloseChanReqs <- msg
}
}
p.wg.Done()
}
// writeMessage writes the target lnwire.Message to the remote peer.
func (p *peer) writeMessage(msg lnwire.Message) error {
// Simply exit if we're shutting down.
if atomic.LoadInt32(&p.disconnect) != 0 {
return nil
}
// TODO(roasbeef): add message summaries
peerLog.Tracef("writeMessage to %v: %v", p, newLogClosure(func() string {
return spew.Sdump(msg)
}))
n, err := lnwire.WriteMessage(p.conn, msg, 0, p.chainNet)
atomic.AddUint64(&p.bytesSent, uint64(n))
return err
}
// writeHandler is a goroutine dedicated to reading messages off of an incoming
// queue, and writing them out to the wire. This goroutine coordinates with the
// queueHandler in order to ensure the incoming message queue is quickly drained.
//
// NOTE: This method MUST be run as a goroutine.
func (p *peer) writeHandler() {
// pingTicker is used to periodically send pings to the remote peer.
pingTicker := time.NewTicker(pingInterval)
defer pingTicker.Stop()
out:
for {
select {
case outMsg := <-p.sendQueue:
switch m := outMsg.msg.(type) {
// TODO(roasbeef): handle special write cases
}
if err := p.writeMessage(outMsg.msg); err != nil {
// TODO(roasbeef): disconnect
peerLog.Errorf("unable to write message: %v", err)
}
// Synchronize with the writeHandler.
p.sendQueueSync <- struct{}{}
case <-pingTicker.C:
// TODO(roasbeef): move ping to time.AfterFunc
case <-p.quit:
break out
}
}
// Wait for the queueHandler to finish so we can empty out all pending
// messages avoiding a possible deadlock somewhere.
<-p.queueQuit
// Drain any lingering messages that we're meant to be sent. But since
// we're shutting down, just ignore them.
fin:
for {
select {
case msg := <-p.sendQueue:
if msg.sentChan != nil {
msg.sentChan <- struct{}{}
}
default:
break fin
}
}
p.wg.Done()
}
// queueHandler is responsible for accepting messages from outside sub-systems
// to be eventually sent out on the wire by the writeHandler.
//
// NOTE: This method MUST be run as a goroutine.
func (p *peer) queueHandler() {
waitOnSync := false
pendingMsgs := list.New()
out:
for {
select {
case msg := <-p.outgoingQueue:
if !waitOnSync {
p.sendQueue <- msg
} else {
pendingMsgs.PushBack(msg)
}
waitOnSync = true
case <-p.sendQueueSync:
// If there aren't any more remaining messages in the
// queue, then we're no longer waiting to synchronize
// with the writeHandler.
next := pendingMsgs.Front()
if next == nil {
waitOnSync = false
continue
}
// Notify the writeHandler about the next item to
// asynchronously send.
val := pendingMsgs.Remove(next)
p.sendQueue <- val.(outgoinMsg)
// TODO(roasbeef): other sync stuffs
case <-p.quit:
break out
}
}
close(p.queueQuit)
p.wg.Done()
}
// queueMsg queues a new lnwire.Message to be eventually sent out on the
// wire.
func (p *peer) queueMsg(msg lnwire.Message, doneChan chan struct{}) {
p.outgoingQueue <- outgoinMsg{msg, doneChan}
}
// ChannelSnapshots returns a slice of channel snapshots detaling all currently
// active channels maintained with the remote peer.
func (p *peer) ChannelSnapshots() []*channeldb.ChannelSnapshot {
resp := make(chan []*channeldb.ChannelSnapshot, 1)
p.chanSnapshotReqs <- &chanSnapshotReq{resp}
return <-resp
}
// channelManager is goroutine dedicated to handling all requests/signals
// pertaining to the opening, cooperative closing, and force closing of all
// channels maintained with the remote peer.
//
// NOTE: This method MUST be run as a goroutine.
func (p *peer) channelManager() {
out:
for {
select {
case req := <-p.chanSnapshotReqs:
snapshots := make([]*channeldb.ChannelSnapshot, 0, len(p.activeChannels))
for _, activeChan := range p.activeChannels {
snapshot := activeChan.StateSnapshot()
snapshots = append(snapshots, snapshot)
}
req.resp <- snapshots
case newChan := <-p.newChannels:
chanPoint := *newChan.ChannelPoint()
p.activeChannels[chanPoint] = newChan
// TODO(roasbeef): signal channel barrier
peerLog.Infof("New channel active ChannelPoint(%v) "+
"with peerId(%v)", chanPoint, p.id)
// Now that the channel is open, update the server's
// map of channels to the peers we have a particular
// channel open to.
// TODO(roasbeef): should server have this knowledge?
p.server.chanIndexMtx.Lock()
p.server.chanIndex[chanPoint] = p
p.server.chanIndexMtx.Unlock()
case req := <-p.localCloseChanReqs:
p.handleLocalClose(req)
case req := <-p.remoteCloseChanReqs:
p.handleRemoteClose(req)
case <-p.quit:
break out
}
}
p.wg.Done()
}
// handleLocalClose kicks-off the workflow to execute a cooperative closure of
// the channel initiated by a local sub-system.
func (p *peer) handleLocalClose(req *closeChanReq) {
chanPoint := req.chanPoint
key := wire.OutPoint{
Hash: chanPoint.Hash,
Index: chanPoint.Index,
}
channel := p.activeChannels[key]
// Shift the channel state machine into a 'closing' state. This
// generates a signature for the closing tx, as well as a txid of the
// closing tx itself, allowing us to watch the network to determine
// when the remote node broadcasts the fully signed closing transaction.
sig, txid, err := channel.InitCooperativeClose()
if err != nil {
req.resp <- nil
req.err <- err
return
}
peerLog.Infof("Executing cooperative closure of "+
"ChanPoint(%v) with peerID(%v), txid=%v", key, p.id,
txid)
// With our signature for the close tx generated, send the signature
// to the remote peer instructing it to close this particular channel
// point.
// TODO(roasbeef): remove encoding redundancy
closeSig, err := btcec.ParseSignature(sig, btcec.S256())
if err != nil {
req.resp <- nil
req.err <- err
return
}
closeReq := lnwire.NewCloseRequest(chanPoint, closeSig)
p.queueMsg(closeReq, nil)
// Finally, launch a goroutine which will request to be notified by the
// ChainNotifier once the closure transaction obtains a single
// confirmation.
go func() {
// TODO(roasbeef): add param for num needed confs
notifier := p.server.lnwallet.ChainNotifier
confNtfn, _ := notifier.RegisterConfirmationsNtfn(txid, 1)
var success bool
select {
case height, ok := <-confNtfn.Confirmed:
// In the case that the ChainNotifier is shutting
// down, all subscriber notification channels will be
// closed, generating a nil receive.
if !ok {
// TODO(roasbeef): check for nil elsewhere
return
}
// The channel has been closed, remove it from any
// active indexes, and the database state.
peerLog.Infof("ChannelPoint(%v) is now "+
"closed at height %v", key, height)
wipeChannel(p, channel)
success = true
case <-p.quit:
return
}
// Respond to the local sub-system which requested the channel
// closure.
req.resp <- &closeChanResp{txid, success}
req.err <- nil
}()
}
// handleRemoteClose completes a request for cooperative channel closure
// initiated by the remote node.
func (p *peer) handleRemoteClose(req *lnwire.CloseRequest) {
chanPoint := req.ChannelPoint
key := wire.OutPoint{
Hash: chanPoint.Hash,
Index: chanPoint.Index,
}
channel := p.activeChannels[key]
// Now that we have their signature for the closure transaction, we
// can assemble the final closure transaction, complete with our
// signature.
sig := req.RequesterCloseSig
closeSig := append(sig.Serialize(), byte(txscript.SigHashAll))
closeTx, err := channel.CompleteCooperativeClose(closeSig)
if err != nil {
peerLog.Errorf("unable to complete cooperative "+
"close for ChannelPoint(%v): %v",
chanPoint, err)
// TODO(roasbeef): send ErrorGeneric to other side
return
}
// Finally, broadcast the closure transaction, to the network.
peerLog.Infof("Broadcasting cooperative close tx: %v", newLogClosure(func() string {
return spew.Sdump(closeTx)
}))
if err := p.server.lnwallet.PublishTransaction(closeTx); err != nil {
peerLog.Errorf("channel close tx from "+
"ChannelPoint(%v) rejected: %v",
chanPoint, err)
// TODO(roasbeef): send ErrorGeneric to other side
return
}
// TODO(roasbeef): also wait for confs before removing state
peerLog.Infof("ChannelPoint(%v) is now "+
"closed", key)
wipeChannel(p, channel)
}
// wipeChannel removes the passed channel from all indexes associated with the
// peer, and deletes the channel from the database.
func wipeChannel(p *peer, channel *lnwallet.LightningChannel) {
chanID := *channel.ChannelPoint()
delete(p.activeChannels, chanID)
p.server.chanIndexMtx.Lock()
delete(p.server.chanIndex, chanID)
p.server.chanIndexMtx.Unlock()
if err := channel.DeleteState(); err != nil {
peerLog.Errorf("Unable to delete ChannelPoint(%v) "+
"from db %v", chanID, err)
}
}
// htlcManager...
// * communicates with the htlc switch over several channels
// * in handler sends to this goroutine after getting final revocation
// * has timeouts etc, to send back on queue handler in case of timeout
func (p *peer) htlcManager() {
out:
for {
select {
case <-p.quit:
break out
}
}
p.wg.Done()
}
// TODO(roasbeef): make all start/stop mutexes a CAS