lnd.xprv/autopilot/prefattach_test.go
Johan T. Halseth 5ecc209c41
autopilot/interface+agent: remove NodeKey from AttachmentDirective
Instead parse the pubkey bytes only when needed.
2018-12-06 14:26:05 +01:00

693 lines
18 KiB
Go

package autopilot
import (
"bytes"
"io/ioutil"
"os"
"testing"
"time"
prand "math/rand"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
)
func TestConstrainedPrefAttachmentNeedMoreChan(t *testing.T) {
t.Parallel()
prand.Seed(time.Now().Unix())
const (
minChanSize = 0
maxChanSize = btcutil.Amount(btcutil.SatoshiPerBitcoin)
chanLimit = 3
threshold = 0.5
)
constraints := &HeuristicConstraints{
MinChanSize: minChanSize,
MaxChanSize: maxChanSize,
ChanLimit: chanLimit,
Allocation: threshold,
}
randChanID := func() lnwire.ShortChannelID {
return lnwire.NewShortChanIDFromInt(uint64(prand.Int63()))
}
testCases := []struct {
channels []Channel
walletAmt btcutil.Amount
needMore bool
amtAvailable btcutil.Amount
numMore uint32
}{
// Many available funds, but already have too many active open
// channels.
{
[]Channel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(prand.Int31()),
},
{
ChanID: randChanID(),
Capacity: btcutil.Amount(prand.Int31()),
},
{
ChanID: randChanID(),
Capacity: btcutil.Amount(prand.Int31()),
},
},
btcutil.Amount(btcutil.SatoshiPerBitcoin * 10),
false,
0,
0,
},
// Ratio of funds in channels and total funds meets the
// threshold.
{
[]Channel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
},
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
},
},
btcutil.Amount(btcutil.SatoshiPerBitcoin * 2),
false,
0,
0,
},
// Ratio of funds in channels and total funds is below the
// threshold. We have 10 BTC allocated amongst channels and
// funds, atm. We're targeting 50%, so 5 BTC should be
// allocated. Only 1 BTC is atm, so 4 BTC should be
// recommended. We should also request 2 more channels as the
// limit is 3.
{
[]Channel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
},
},
btcutil.Amount(btcutil.SatoshiPerBitcoin * 9),
true,
btcutil.Amount(btcutil.SatoshiPerBitcoin * 4),
2,
},
// Ratio of funds in channels and total funds is below the
// threshold. We have 14 BTC total amongst the wallet's
// balance, and our currently opened channels. Since we're
// targeting a 50% allocation, we should commit 7 BTC. The
// current channels commit 4 BTC, so we should expected 3 BTC
// to be committed. We should only request a single additional
// channel as the limit is 3.
{
[]Channel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
},
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin * 3),
},
},
btcutil.Amount(btcutil.SatoshiPerBitcoin * 10),
true,
btcutil.Amount(btcutil.SatoshiPerBitcoin * 3),
1,
},
// Ratio of funds in channels and total funds is above the
// threshold.
{
[]Channel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
},
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
},
},
btcutil.Amount(btcutil.SatoshiPerBitcoin),
false,
0,
0,
},
}
prefAttach := NewConstrainedPrefAttachment(constraints)
for i, testCase := range testCases {
amtToAllocate, numMore, needMore := prefAttach.NeedMoreChans(
testCase.channels, testCase.walletAmt,
)
if amtToAllocate != testCase.amtAvailable {
t.Fatalf("test #%v: expected %v, got %v",
i, testCase.amtAvailable, amtToAllocate)
}
if needMore != testCase.needMore {
t.Fatalf("test #%v: expected %v, got %v",
i, testCase.needMore, needMore)
}
if numMore != testCase.numMore {
t.Fatalf("test #%v: expected %v, got %v",
i, testCase.numMore, numMore)
}
}
}
type genGraphFunc func() (testGraph, func(), error)
type testGraph interface {
ChannelGraph
addRandChannel(*btcec.PublicKey, *btcec.PublicKey,
btcutil.Amount) (*ChannelEdge, *ChannelEdge, error)
}
func newDiskChanGraph() (testGraph, func(), error) {
// First, create a temporary directory to be used for the duration of
// this test.
tempDirName, err := ioutil.TempDir("", "channeldb")
if err != nil {
return nil, nil, err
}
// Next, create channeldb for the first time.
cdb, err := channeldb.Open(tempDirName)
if err != nil {
return nil, nil, err
}
cleanUp := func() {
cdb.Close()
os.RemoveAll(tempDirName)
}
return &databaseChannelGraph{
db: cdb.ChannelGraph(),
}, cleanUp, nil
}
var _ testGraph = (*databaseChannelGraph)(nil)
func newMemChanGraph() (testGraph, func(), error) {
return newMemChannelGraph(), nil, nil
}
var _ testGraph = (*memChannelGraph)(nil)
var chanGraphs = []struct {
name string
genFunc genGraphFunc
}{
{
name: "disk_graph",
genFunc: newDiskChanGraph,
},
{
name: "mem_graph",
genFunc: newMemChanGraph,
},
}
// TestConstrainedPrefAttachmentSelectEmptyGraph ensures that when passed en
// empty graph, the Select function always detects the state, and returns nil.
// Otherwise, it would be possible for the main Select loop to entire an
// infinite loop.
func TestConstrainedPrefAttachmentSelectEmptyGraph(t *testing.T) {
const (
minChanSize = 0
maxChanSize = btcutil.Amount(btcutil.SatoshiPerBitcoin)
chanLimit = 3
threshold = 0.5
)
constraints := &HeuristicConstraints{
MinChanSize: minChanSize,
MaxChanSize: maxChanSize,
ChanLimit: chanLimit,
Allocation: threshold,
}
// First, we'll generate a random key that represents "us", and create
// a new instance of the heuristic with our set parameters.
self, err := randKey()
if err != nil {
t.Fatalf("unable to generate self key: %v", err)
}
prefAttach := NewConstrainedPrefAttachment(constraints)
skipNodes := make(map[NodeID]struct{})
for _, graph := range chanGraphs {
success := t.Run(graph.name, func(t1 *testing.T) {
graph, cleanup, err := graph.genFunc()
if err != nil {
t1.Fatalf("unable to create graph: %v", err)
}
if cleanup != nil {
defer cleanup()
}
// With the necessary state initialized, we'll not
// attempt to select a set of candidates channel for
// creation given the current state of the graph.
const walletFunds = btcutil.SatoshiPerBitcoin
directives, err := prefAttach.Select(self, graph,
walletFunds, 5, skipNodes)
if err != nil {
t1.Fatalf("unable to select attachment "+
"directives: %v", err)
}
// We shouldn't have selected any new directives as we
// started with an empty graph.
if len(directives) != 0 {
t1.Fatalf("zero attachment directives "+
"should have been returned instead %v were",
len(directives))
}
})
if !success {
break
}
}
}
// TestConstrainedPrefAttachmentSelectTwoVertexes ensures that when passed a
// graph with only two eligible vertexes, then both are selected (without any
// repeats), and the funds are appropriately allocated across each peer.
func TestConstrainedPrefAttachmentSelectTwoVertexes(t *testing.T) {
t.Parallel()
prand.Seed(time.Now().Unix())
const (
minChanSize = 0
maxChanSize = btcutil.Amount(btcutil.SatoshiPerBitcoin)
chanLimit = 3
threshold = 0.5
)
constraints := &HeuristicConstraints{
MinChanSize: minChanSize,
MaxChanSize: maxChanSize,
ChanLimit: chanLimit,
Allocation: threshold,
}
skipNodes := make(map[NodeID]struct{})
for _, graph := range chanGraphs {
success := t.Run(graph.name, func(t1 *testing.T) {
graph, cleanup, err := graph.genFunc()
if err != nil {
t1.Fatalf("unable to create graph: %v", err)
}
if cleanup != nil {
defer cleanup()
}
// First, we'll generate a random key that represents
// "us", and create a new instance of the heuristic
// with our set parameters.
self, err := randKey()
if err != nil {
t1.Fatalf("unable to generate self key: %v", err)
}
prefAttach := NewConstrainedPrefAttachment(constraints)
// For this set, we'll load the memory graph with two
// nodes, and a random channel connecting them.
const chanCapacity = btcutil.SatoshiPerBitcoin
edge1, edge2, err := graph.addRandChannel(nil, nil, chanCapacity)
if err != nil {
t1.Fatalf("unable to generate channel: %v", err)
}
// With the necessary state initialized, we'll not
// attempt to select a set of candidates channel for
// creation given the current state of the graph.
const walletFunds = btcutil.SatoshiPerBitcoin * 10
directives, err := prefAttach.Select(self, graph,
walletFunds, 2, skipNodes)
if err != nil {
t1.Fatalf("unable to select attachment directives: %v", err)
}
// Two new directives should have been selected, one
// for each node already present within the graph.
if len(directives) != 2 {
t1.Fatalf("two attachment directives should have been "+
"returned instead %v were", len(directives))
}
// The node attached to should be amongst the two edges
// created above.
for _, directive := range directives {
edge1Pub := edge1.Peer.PubKey()
edge2Pub := edge2.Peer.PubKey()
switch {
case bytes.Equal(directive.NodeID[:], edge1Pub[:]):
case bytes.Equal(directive.NodeID[:], edge2Pub[:]):
default:
t1.Fatalf("attached to unknown node: %x",
directive.NodeID[:])
}
// As the number of funds available exceed the
// max channel size, both edges should consume
// the maximum channel size.
if directive.ChanAmt != maxChanSize {
t1.Fatalf("max channel size should be allocated, "+
"instead %v was: ", maxChanSize)
}
}
})
if !success {
break
}
}
}
// TestConstrainedPrefAttachmentSelectInsufficientFunds ensures that if the
// balance of the backing wallet is below the set min channel size, then it
// never recommends candidates to attach to.
func TestConstrainedPrefAttachmentSelectInsufficientFunds(t *testing.T) {
t.Parallel()
prand.Seed(time.Now().Unix())
const (
minChanSize = 0
maxChanSize = btcutil.Amount(btcutil.SatoshiPerBitcoin)
chanLimit = 3
threshold = 0.5
)
constraints := &HeuristicConstraints{
MinChanSize: minChanSize,
MaxChanSize: maxChanSize,
ChanLimit: chanLimit,
Allocation: threshold,
}
skipNodes := make(map[NodeID]struct{})
for _, graph := range chanGraphs {
success := t.Run(graph.name, func(t1 *testing.T) {
graph, cleanup, err := graph.genFunc()
if err != nil {
t1.Fatalf("unable to create graph: %v", err)
}
if cleanup != nil {
defer cleanup()
}
// First, we'll generate a random key that represents
// "us", and create a new instance of the heuristic
// with our set parameters.
self, err := randKey()
if err != nil {
t1.Fatalf("unable to generate self key: %v", err)
}
prefAttach := NewConstrainedPrefAttachment(constraints)
// Next, we'll attempt to select a set of candidates,
// passing zero for the amount of wallet funds. This
// should return an empty slice of directives.
directives, err := prefAttach.Select(self, graph, 0,
0, skipNodes)
if err != nil {
t1.Fatalf("unable to select attachment "+
"directives: %v", err)
}
if len(directives) != 0 {
t1.Fatalf("zero attachment directives "+
"should have been returned instead %v were",
len(directives))
}
})
if !success {
break
}
}
}
// TestConstrainedPrefAttachmentSelectGreedyAllocation tests that if upon
// deciding a set of candidates, we're unable to evenly split our funds, then
// we attempt to greedily allocate all funds to each selected vertex (up to the
// max channel size).
func TestConstrainedPrefAttachmentSelectGreedyAllocation(t *testing.T) {
t.Parallel()
prand.Seed(time.Now().Unix())
const (
minChanSize = 0
maxChanSize = btcutil.Amount(btcutil.SatoshiPerBitcoin)
chanLimit = 3
threshold = 0.5
)
constraints := &HeuristicConstraints{
MinChanSize: minChanSize,
MaxChanSize: maxChanSize,
ChanLimit: chanLimit,
Allocation: threshold,
}
skipNodes := make(map[NodeID]struct{})
for _, graph := range chanGraphs {
success := t.Run(graph.name, func(t1 *testing.T) {
graph, cleanup, err := graph.genFunc()
if err != nil {
t1.Fatalf("unable to create graph: %v", err)
}
if cleanup != nil {
defer cleanup()
}
// First, we'll generate a random key that represents
// "us", and create a new instance of the heuristic
// with our set parameters.
self, err := randKey()
if err != nil {
t1.Fatalf("unable to generate self key: %v", err)
}
prefAttach := NewConstrainedPrefAttachment(constraints)
const chanCapacity = btcutil.SatoshiPerBitcoin
// Next, we'll add 3 nodes to the graph, creating an
// "open triangle topology".
edge1, _, err := graph.addRandChannel(nil, nil,
chanCapacity)
if err != nil {
t1.Fatalf("unable to create channel: %v", err)
}
peerPubBytes := edge1.Peer.PubKey()
peerPub, err := btcec.ParsePubKey(
peerPubBytes[:], btcec.S256(),
)
if err != nil {
t.Fatalf("unable to parse pubkey: %v", err)
}
_, _, err = graph.addRandChannel(
peerPub, nil, chanCapacity,
)
if err != nil {
t1.Fatalf("unable to create channel: %v", err)
}
// At this point, there should be three nodes in the
// graph, with node node having two edges.
numNodes := 0
twoChans := false
if err := graph.ForEachNode(func(n Node) error {
numNodes++
numChans := 0
err := n.ForEachChannel(func(c ChannelEdge) error {
numChans++
return nil
})
if err != nil {
return err
}
twoChans = twoChans || (numChans == 2)
return nil
}); err != nil {
t1.Fatalf("unable to traverse graph: %v", err)
}
if numNodes != 3 {
t1.Fatalf("expected 3 nodes, instead have: %v",
numNodes)
}
if !twoChans {
t1.Fatalf("expected node to have two channels")
}
// We'll now begin our test, modeling the available
// wallet balance to be 5.5 BTC. We're shooting for a
// 50/50 allocation, and have 3 BTC in channels. As a
// result, the heuristic should try to greedily
// allocate funds to channels.
const availableBalance = btcutil.SatoshiPerBitcoin * 2.5
directives, err := prefAttach.Select(self, graph,
availableBalance, 5, skipNodes)
if err != nil {
t1.Fatalf("unable to select attachment "+
"directives: %v", err)
}
// Three directives should have been returned.
if len(directives) != 3 {
t1.Fatalf("expected 3 directives, instead "+
"got: %v", len(directives))
}
// The two directive should have the max channel amount
// allocated.
if directives[0].ChanAmt != maxChanSize {
t1.Fatalf("expected recommendation of %v, "+
"instead got %v", maxChanSize,
directives[0].ChanAmt)
}
if directives[1].ChanAmt != maxChanSize {
t1.Fatalf("expected recommendation of %v, "+
"instead got %v", maxChanSize,
directives[1].ChanAmt)
}
// The third channel should have been allocated the
// remainder, or 0.5 BTC.
if directives[2].ChanAmt != (btcutil.SatoshiPerBitcoin * 0.5) {
t1.Fatalf("expected recommendation of %v, "+
"instead got %v", maxChanSize,
directives[2].ChanAmt)
}
})
if !success {
break
}
}
}
// TestConstrainedPrefAttachmentSelectSkipNodes ensures that if a node was
// already select for attachment, then that node is excluded from the set of
// candidate nodes.
func TestConstrainedPrefAttachmentSelectSkipNodes(t *testing.T) {
t.Parallel()
prand.Seed(time.Now().Unix())
const (
minChanSize = 0
maxChanSize = btcutil.Amount(btcutil.SatoshiPerBitcoin)
chanLimit = 3
threshold = 0.5
)
constraints := &HeuristicConstraints{
MinChanSize: minChanSize,
MaxChanSize: maxChanSize,
ChanLimit: chanLimit,
Allocation: threshold,
}
for _, graph := range chanGraphs {
success := t.Run(graph.name, func(t1 *testing.T) {
skipNodes := make(map[NodeID]struct{})
graph, cleanup, err := graph.genFunc()
if err != nil {
t1.Fatalf("unable to create graph: %v", err)
}
if cleanup != nil {
defer cleanup()
}
// First, we'll generate a random key that represents
// "us", and create a new instance of the heuristic
// with our set parameters.
self, err := randKey()
if err != nil {
t1.Fatalf("unable to generate self key: %v", err)
}
prefAttach := NewConstrainedPrefAttachment(constraints)
// Next, we'll create a simple topology of two nodes,
// with a single channel connecting them.
const chanCapacity = btcutil.SatoshiPerBitcoin
_, _, err = graph.addRandChannel(nil, nil,
chanCapacity)
if err != nil {
t1.Fatalf("unable to create channel: %v", err)
}
// With our graph created, we'll now execute the Select
// function to recommend potential attachment
// candidates.
const availableBalance = btcutil.SatoshiPerBitcoin * 2.5
directives, err := prefAttach.Select(self, graph,
availableBalance, 2, skipNodes)
if err != nil {
t1.Fatalf("unable to select attachment "+
"directives: %v", err)
}
// As the channel limit is three, and two nodes are
// present in the graph, both should be selected.
if len(directives) != 2 {
t1.Fatalf("expected two directives, instead "+
"got %v", len(directives))
}
// We'll simulate a channel update by adding the nodes
// we just establish channel with the to set of nodes
// to be skipped.
skipNodes[directives[0].NodeID] = struct{}{}
skipNodes[directives[1].NodeID] = struct{}{}
// If we attempt to make a call to the Select function,
// without providing any new information, then we
// should get no new directives as both nodes has
// already been attached to.
directives, err = prefAttach.Select(self, graph,
availableBalance, 2, skipNodes)
if err != nil {
t1.Fatalf("unable to select attachment "+
"directives: %v", err)
}
if len(directives) != 0 {
t1.Fatalf("zero new directives should have been "+
"selected, but %v were", len(directives))
}
})
if !success {
break
}
}
}