lnd.xprv/keychain/btcwallet.go
Olaoluwa Osuntokun e86babe133
keychain: extend DerivePrivKey to derive based on pubkey+KeyFamily
In this commit, we extend the DerivePrivKey method to allow callers that
don't know the full KeyLocator information to attempt to derive a
private key via a brute force mechanism. If we don't now the full
KeyLoactor, then given the KeyFamily, we can walk down the derivation
path and compare keys one by one. In order to ensure we don' t enter an
infinite loop when given an unknown public key, we cap the number of
keys derived at 100k.

An upcoming feature to lnd that adds static channel backups will utilize
this feature, as we need to derive the shachain root given only the
public key and key family, as we don't currently store this KeyLocator
on disk.
2019-01-04 14:41:41 -08:00

374 lines
11 KiB
Go

package keychain
import (
"crypto/sha256"
"fmt"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcwallet/waddrmgr"
"github.com/btcsuite/btcwallet/wallet"
"github.com/btcsuite/btcwallet/walletdb"
)
const (
// CoinTypeBitcoin specifies the BIP44 coin type for Bitcoin key
// derivation.
CoinTypeBitcoin uint32 = 0
// CoinTypeTestnet specifies the BIP44 coin type for all testnet key
// derivation.
CoinTypeTestnet = 1
// CoinTypeLitecoin specifies the BIP44 coin type for Litecoin key
// derivation.
CoinTypeLitecoin = 2
)
var (
// lightningAddrSchema is the scope addr schema for all keys that we
// derive. We'll treat them all as p2wkh addresses, as atm we must
// specify a particular type.
lightningAddrSchema = waddrmgr.ScopeAddrSchema{
ExternalAddrType: waddrmgr.WitnessPubKey,
InternalAddrType: waddrmgr.WitnessPubKey,
}
// waddrmgrNamespaceKey is the namespace key that the waddrmgr state is
// stored within the top-level waleltdb buckets of btcwallet.
waddrmgrNamespaceKey = []byte("waddrmgr")
)
// BtcWalletKeyRing is an implementation of both the KeyRing and SecretKeyRing
// interfaces backed by btcwallet's internal root waddrmgr. Internally, we'll
// be using a ScopedKeyManager to do all of our derivations, using the key
// scope and scope addr scehma defined above. Re-using the existing key scope
// construction means that all key derivation will be protected under the root
// seed of the wallet, making each derived key fully deterministic.
type BtcWalletKeyRing struct {
// wallet is a pointer to the active instance of the btcwallet core.
// This is required as we'll need to manually open database
// transactions in order to derive addresses and lookup relevant keys
wallet *wallet.Wallet
// chainKeyScope defines the purpose and coin type to be used when generating
// keys for this keyring.
chainKeyScope waddrmgr.KeyScope
// lightningScope is a pointer to the scope that we'll be using as a
// sub key manager to derive all the keys that we require.
lightningScope *waddrmgr.ScopedKeyManager
}
// NewBtcWalletKeyRing creates a new implementation of the
// keychain.SecretKeyRing interface backed by btcwallet.
//
// NOTE: The passed waddrmgr.Manager MUST be unlocked in order for the keychain
// to function.
func NewBtcWalletKeyRing(w *wallet.Wallet, coinType uint32) SecretKeyRing {
// Construct the key scope that will be used within the waddrmgr to
// create an HD chain for deriving all of our required keys. A different
// scope is used for each specific coin type.
chainKeyScope := waddrmgr.KeyScope{
Purpose: BIP0043Purpose,
Coin: coinType,
}
return &BtcWalletKeyRing{
wallet: w,
chainKeyScope: chainKeyScope,
}
}
// keyScope attempts to return the key scope that we'll use to derive all of
// our keys. If the scope has already been fetched from the database, then a
// cached version will be returned. Otherwise, we'll fetch it from the database
// and cache it for subsequent accesses.
func (b *BtcWalletKeyRing) keyScope() (*waddrmgr.ScopedKeyManager, error) {
// If the scope has already been populated, then we'll return it
// directly.
if b.lightningScope != nil {
return b.lightningScope, nil
}
// Otherwise, we'll first do a check to ensure that the root manager
// isn't locked, as otherwise we won't be able to *use* the scope.
if b.wallet.Manager.IsLocked() {
return nil, fmt.Errorf("cannot create BtcWalletKeyRing with " +
"locked waddrmgr.Manager")
}
// If the manager is indeed unlocked, then we'll fetch the scope, cache
// it, and return to the caller.
lnScope, err := b.wallet.Manager.FetchScopedKeyManager(b.chainKeyScope)
if err != nil {
return nil, err
}
b.lightningScope = lnScope
return lnScope, nil
}
// createAccountIfNotExists will create the corresponding account for a key
// family if it doesn't already exist in the database.
func (b *BtcWalletKeyRing) createAccountIfNotExists(
addrmgrNs walletdb.ReadWriteBucket, keyFam KeyFamily,
scope *waddrmgr.ScopedKeyManager) error {
// If this is the multi-sig key family, then we can return early as
// this is the default account that's created.
if keyFam == KeyFamilyMultiSig {
return nil
}
// Otherwise, we'll check if the account already exists, if so, we can
// once again bail early.
_, err := scope.AccountName(addrmgrNs, uint32(keyFam))
if err == nil {
return nil
}
// If we reach this point, then the account hasn't yet been created, so
// we'll need to create it before we can proceed.
return scope.NewRawAccount(addrmgrNs, uint32(keyFam))
}
// DeriveNextKey attempts to derive the *next* key within the key family
// (account in BIP43) specified. This method should return the next external
// child within this branch.
//
// NOTE: This is part of the keychain.KeyRing interface.
func (b *BtcWalletKeyRing) DeriveNextKey(keyFam KeyFamily) (KeyDescriptor, error) {
var (
pubKey *btcec.PublicKey
keyLoc KeyLocator
)
db := b.wallet.Database()
err := walletdb.Update(db, func(tx walletdb.ReadWriteTx) error {
addrmgrNs := tx.ReadWriteBucket(waddrmgrNamespaceKey)
scope, err := b.keyScope()
if err != nil {
return err
}
// If the account doesn't exist, then we may need to create it
// for the first time in order to derive the keys that we
// require.
err = b.createAccountIfNotExists(addrmgrNs, keyFam, scope)
if err != nil {
return err
}
addrs, err := scope.NextExternalAddresses(
addrmgrNs, uint32(keyFam), 1,
)
if err != nil {
return err
}
// Extract the first address, ensuring that it is of the proper
// interface type, otherwise we can't manipulate it below.
addr, ok := addrs[0].(waddrmgr.ManagedPubKeyAddress)
if !ok {
return fmt.Errorf("address is not a managed pubkey " +
"addr")
}
pubKey = addr.PubKey()
_, pathInfo, _ := addr.DerivationInfo()
keyLoc = KeyLocator{
Family: keyFam,
Index: pathInfo.Index,
}
return nil
})
if err != nil {
return KeyDescriptor{}, err
}
return KeyDescriptor{
PubKey: pubKey,
KeyLocator: keyLoc,
}, nil
}
// DeriveKey attempts to derive an arbitrary key specified by the passed
// KeyLocator. This may be used in several recovery scenarios, or when manually
// rotating something like our current default node key.
//
// NOTE: This is part of the keychain.KeyRing interface.
func (b *BtcWalletKeyRing) DeriveKey(keyLoc KeyLocator) (KeyDescriptor, error) {
var keyDesc KeyDescriptor
db := b.wallet.Database()
err := walletdb.Update(db, func(tx walletdb.ReadWriteTx) error {
addrmgrNs := tx.ReadWriteBucket(waddrmgrNamespaceKey)
scope, err := b.keyScope()
if err != nil {
return err
}
// If the account doesn't exist, then we may need to create it
// for the first time in order to derive the keys that we
// require.
err = b.createAccountIfNotExists(addrmgrNs, keyLoc.Family, scope)
if err != nil {
return err
}
path := waddrmgr.DerivationPath{
Account: uint32(keyLoc.Family),
Branch: 0,
Index: uint32(keyLoc.Index),
}
addr, err := scope.DeriveFromKeyPath(addrmgrNs, path)
if err != nil {
return err
}
keyDesc.KeyLocator = keyLoc
keyDesc.PubKey = addr.(waddrmgr.ManagedPubKeyAddress).PubKey()
return nil
})
if err != nil {
return keyDesc, err
}
return keyDesc, nil
}
// DerivePrivKey attempts to derive the private key that corresponds to the
// passed key descriptor.
//
// NOTE: This is part of the keychain.SecretKeyRing interface.
func (b *BtcWalletKeyRing) DerivePrivKey(keyDesc KeyDescriptor) (*btcec.PrivateKey, error) {
var key *btcec.PrivateKey
db := b.wallet.Database()
err := walletdb.Update(db, func(tx walletdb.ReadWriteTx) error {
addrmgrNs := tx.ReadWriteBucket(waddrmgrNamespaceKey)
scope, err := b.keyScope()
if err != nil {
return err
}
// If the account doesn't exist, then we may need to create it
// for the first time in order to derive the keys that we
// require.
err = b.createAccountIfNotExists(
addrmgrNs, keyDesc.Family, scope,
)
if err != nil {
return err
}
// If the public key isn't set or they have a non-zero index,
// then we know that the caller instead knows the derivation
// path for a key.
if keyDesc.PubKey == nil || keyDesc.Index > 0 {
// Now that we know the account exists, we can safely
// derive the full private key from the given path.
path := waddrmgr.DerivationPath{
Account: uint32(keyDesc.Family),
Branch: 0,
Index: uint32(keyDesc.Index),
}
addr, err := scope.DeriveFromKeyPath(addrmgrNs, path)
if err != nil {
return err
}
key, err = addr.(waddrmgr.ManagedPubKeyAddress).PrivKey()
if err != nil {
return err
}
return nil
}
// If the public key isn't nil, then this indicates that we
// need to scan for the private key, assuming that we know the
// valid key family.
nextPath := waddrmgr.DerivationPath{
Account: uint32(keyDesc.Family),
Branch: 0,
Index: 0,
}
// We'll now iterate through our key range in an attempt to
// find the target public key.
//
// TODO(roasbeef): possibly move scanning into wallet to allow
// to be parallelized
for i := 0; i < MaxKeyRangeScan; i++ {
// Derive the next key in the range and fetch its
// managed address.
addr, err := scope.DeriveFromKeyPath(
addrmgrNs, nextPath,
)
if err != nil {
return err
}
managedAddr := addr.(waddrmgr.ManagedPubKeyAddress)
// If this is the target public key, then we'll return
// it directly back to the caller.
if managedAddr.PubKey().IsEqual(keyDesc.PubKey) {
key, err = managedAddr.PrivKey()
if err != nil {
return err
}
return nil
}
// This wasn't the target key, so roll forward and try
// the next one.
nextPath.Index++
}
// If we reach this point, then we we're unable to derive the
// private key, so return an error back to the user.
return ErrCannotDerivePrivKey
})
if err != nil {
return nil, err
}
return key, nil
}
// ScalarMult performs a scalar multiplication (ECDH-like operation) between
// the target key descriptor and remote public key. The output returned will be
// the sha256 of the resulting shared point serialized in compressed format. If
// k is our private key, and P is the public key, we perform the following
// operation:
//
// sx := k*P s := sha256(sx.SerializeCompressed())
//
// NOTE: This is part of the keychain.SecretKeyRing interface.
func (b *BtcWalletKeyRing) ScalarMult(keyDesc KeyDescriptor,
pub *btcec.PublicKey) ([]byte, error) {
privKey, err := b.DerivePrivKey(keyDesc)
if err != nil {
return nil, err
}
s := &btcec.PublicKey{}
x, y := btcec.S256().ScalarMult(pub.X, pub.Y, privKey.D.Bytes())
s.X = x
s.Y = y
h := sha256.Sum256(s.SerializeCompressed())
return h[:], nil
}