lnd.xprv/lnwallet/channel_test.go
bryanvu 4ac7cc719f lnwallet: replace hard-coded fees and adjust tests accordingly
This commit replaces the hard-coded 5000 satoshi fees with calls to the
FeeEstimator interface. This should provide a way to cleanly plug in
additional fee calculation algorithms in the future. This change
affected quite a few tests. When possible, the tests were changed to
assert amounts sent rather than balances so that fees wouldn't need to
be taken into account. There were several tests for which this wasn't
possible, so calls to the static fee calculator were made.
2017-05-15 20:26:11 -07:00

1656 lines
57 KiB
Go

package lnwallet
import (
"bytes"
"crypto/sha256"
"io/ioutil"
"os"
"testing"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/shachain"
"github.com/roasbeef/btcd/blockchain"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
var (
privPass = []byte("private-test")
// For simplicity a single priv key controls all of our test outputs.
testWalletPrivKey = []byte{
0x2b, 0xd8, 0x06, 0xc9, 0x7f, 0x0e, 0x00, 0xaf,
0x1a, 0x1f, 0xc3, 0x32, 0x8f, 0xa7, 0x63, 0xa9,
0x26, 0x97, 0x23, 0xc8, 0xdb, 0x8f, 0xac, 0x4f,
0x93, 0xaf, 0x71, 0xdb, 0x18, 0x6d, 0x6e, 0x90,
}
// We're alice :)
bobsPrivKey = []byte{
0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
}
// Use a hard-coded HD seed.
testHdSeed = [32]byte{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
// The number of confirmations required to consider any created channel
// open.
numReqConfs = uint16(1)
)
type mockSigner struct {
key *btcec.PrivateKey
}
func (m *mockSigner) SignOutputRaw(tx *wire.MsgTx, signDesc *SignDescriptor) ([]byte, error) {
amt := signDesc.Output.Value
witnessScript := signDesc.WitnessScript
privKey := m.key
sig, err := txscript.RawTxInWitnessSignature(tx, signDesc.SigHashes,
signDesc.InputIndex, amt, witnessScript, txscript.SigHashAll, privKey)
if err != nil {
return nil, err
}
return sig[:len(sig)-1], nil
}
func (m *mockSigner) ComputeInputScript(tx *wire.MsgTx, signDesc *SignDescriptor) (*InputScript, error) {
witnessScript, err := txscript.WitnessScript(tx, signDesc.SigHashes,
signDesc.InputIndex, signDesc.Output.Value, signDesc.Output.PkScript,
txscript.SigHashAll, m.key, true)
if err != nil {
return nil, err
}
return &InputScript{
Witness: witnessScript,
}, nil
}
type mockNotfier struct {
}
func (m *mockNotfier) RegisterConfirmationsNtfn(txid *chainhash.Hash, numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent, error) {
return nil, nil
}
func (m *mockNotfier) RegisterBlockEpochNtfn() (*chainntnfs.BlockEpochEvent, error) {
return nil, nil
}
func (m *mockNotfier) Start() error {
return nil
}
func (m *mockNotfier) Stop() error {
return nil
}
func (m *mockNotfier) RegisterSpendNtfn(outpoint *wire.OutPoint, heightHint uint32) (*chainntnfs.SpendEvent, error) {
return &chainntnfs.SpendEvent{
Spend: make(chan *chainntnfs.SpendDetail),
}, nil
}
// initRevocationWindows simulates a new channel being opened within the p2p
// network by populating the initial revocation windows of the passed
// commitment state machines.
func initRevocationWindows(chanA, chanB *LightningChannel, windowSize int) error {
for i := 0; i < windowSize; i++ {
aliceNextRevoke, err := chanA.ExtendRevocationWindow()
if err != nil {
return err
}
if htlcs, err := chanB.ReceiveRevocation(aliceNextRevoke); err != nil {
return err
} else if htlcs != nil {
return err
}
bobNextRevoke, err := chanB.ExtendRevocationWindow()
if err != nil {
return err
}
if htlcs, err := chanA.ReceiveRevocation(bobNextRevoke); err != nil {
return err
} else if htlcs != nil {
return err
}
}
return nil
}
// forceStateTransition executes the necessary interaction between the two
// commitment state machines to transition to a new state locking in any
// pending updates.
func forceStateTransition(chanA, chanB *LightningChannel) error {
aliceSig, err := chanA.SignNextCommitment()
if err != nil {
return err
}
if err := chanB.ReceiveNewCommitment(aliceSig); err != nil {
return err
}
bobRevocation, err := chanB.RevokeCurrentCommitment()
if err != nil {
return err
}
bobSig, err := chanB.SignNextCommitment()
if err != nil {
return err
}
if _, err := chanA.ReceiveRevocation(bobRevocation); err != nil {
return err
}
if err := chanA.ReceiveNewCommitment(bobSig); err != nil {
return err
}
aliceRevocation, err := chanA.RevokeCurrentCommitment()
if err != nil {
return err
}
if _, err := chanB.ReceiveRevocation(aliceRevocation); err != nil {
return err
}
return nil
}
// createTestChannels creates two test channels funded with 10 BTC, with 5 BTC
// allocated to each side. Within the channel, Alice is the initiator.
func createTestChannels(revocationWindow int) (*LightningChannel, *LightningChannel, func(), error) {
aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
testWalletPrivKey)
bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
bobsPrivKey)
channelCapacity := btcutil.Amount(10 * 1e8)
channelBal := channelCapacity / 2
aliceDustLimit := btcutil.Amount(200)
bobDustLimit := btcutil.Amount(800)
csvTimeoutAlice := uint32(5)
csvTimeoutBob := uint32(4)
witnessScript, _, err := GenFundingPkScript(aliceKeyPub.SerializeCompressed(),
bobKeyPub.SerializeCompressed(), int64(channelCapacity))
if err != nil {
return nil, nil, nil, err
}
prevOut := &wire.OutPoint{
Hash: chainhash.Hash(testHdSeed),
Index: 0,
}
fundingTxIn := wire.NewTxIn(prevOut, nil, nil)
bobRoot := deriveRevocationRoot(bobKeyPriv, bobKeyPub, aliceKeyPub)
bobPreimageProducer := shachain.NewRevocationProducer(*bobRoot)
bobFirstRevoke, err := bobPreimageProducer.AtIndex(0)
if err != nil {
return nil, nil, nil, err
}
bobRevokeKey := DeriveRevocationPubkey(aliceKeyPub, bobFirstRevoke[:])
aliceRoot := deriveRevocationRoot(aliceKeyPriv, aliceKeyPub, bobKeyPub)
alicePreimageProducer := shachain.NewRevocationProducer(*aliceRoot)
aliceFirstRevoke, err := alicePreimageProducer.AtIndex(0)
if err != nil {
return nil, nil, nil, err
}
aliceRevokeKey := DeriveRevocationPubkey(bobKeyPub, aliceFirstRevoke[:])
aliceCommitTx, err := CreateCommitTx(fundingTxIn, aliceKeyPub,
bobKeyPub, aliceRevokeKey, csvTimeoutAlice, channelBal, channelBal, aliceDustLimit)
if err != nil {
return nil, nil, nil, err
}
bobCommitTx, err := CreateCommitTx(fundingTxIn, bobKeyPub,
aliceKeyPub, bobRevokeKey, csvTimeoutBob, channelBal, channelBal, bobDustLimit)
if err != nil {
return nil, nil, nil, err
}
alicePath, err := ioutil.TempDir("", "alicedb")
dbAlice, err := channeldb.Open(alicePath)
if err != nil {
return nil, nil, nil, err
}
bobPath, err := ioutil.TempDir("", "bobdb")
dbBob, err := channeldb.Open(bobPath)
if err != nil {
return nil, nil, nil, err
}
var obsfucator [StateHintSize]byte
copy(obsfucator[:], aliceFirstRevoke[:])
aliceChannelState := &channeldb.OpenChannel{
IdentityPub: aliceKeyPub,
ChanID: prevOut,
ChanType: channeldb.SingleFunder,
IsInitiator: true,
StateHintObsfucator: obsfucator,
OurCommitKey: aliceKeyPub,
TheirCommitKey: bobKeyPub,
Capacity: channelCapacity,
OurBalance: channelBal,
TheirBalance: channelBal,
OurCommitTx: aliceCommitTx,
OurCommitSig: bytes.Repeat([]byte{1}, 71),
FundingOutpoint: prevOut,
OurMultiSigKey: aliceKeyPub,
TheirMultiSigKey: bobKeyPub,
FundingWitnessScript: witnessScript,
LocalCsvDelay: csvTimeoutAlice,
RemoteCsvDelay: csvTimeoutBob,
TheirCurrentRevocation: bobRevokeKey,
RevocationProducer: alicePreimageProducer,
RevocationStore: shachain.NewRevocationStore(),
TheirDustLimit: bobDustLimit,
OurDustLimit: aliceDustLimit,
Db: dbAlice,
}
bobChannelState := &channeldb.OpenChannel{
IdentityPub: bobKeyPub,
ChanID: prevOut,
ChanType: channeldb.SingleFunder,
IsInitiator: false,
StateHintObsfucator: obsfucator,
OurCommitKey: bobKeyPub,
TheirCommitKey: aliceKeyPub,
Capacity: channelCapacity,
OurBalance: channelBal,
TheirBalance: channelBal,
OurCommitTx: bobCommitTx,
OurCommitSig: bytes.Repeat([]byte{1}, 71),
FundingOutpoint: prevOut,
OurMultiSigKey: bobKeyPub,
TheirMultiSigKey: aliceKeyPub,
FundingWitnessScript: witnessScript,
LocalCsvDelay: csvTimeoutBob,
RemoteCsvDelay: csvTimeoutAlice,
TheirCurrentRevocation: aliceRevokeKey,
RevocationProducer: bobPreimageProducer,
RevocationStore: shachain.NewRevocationStore(),
TheirDustLimit: aliceDustLimit,
OurDustLimit: bobDustLimit,
Db: dbBob,
}
cleanUpFunc := func() {
os.RemoveAll(bobPath)
os.RemoveAll(alicePath)
}
aliceSigner := &mockSigner{aliceKeyPriv}
bobSigner := &mockSigner{bobKeyPriv}
notifier := &mockNotfier{}
estimator := &StaticFeeEstimator{50, 6}
channelAlice, err := NewLightningChannel(aliceSigner, notifier,
estimator, aliceChannelState)
if err != nil {
return nil, nil, nil, err
}
channelBob, err := NewLightningChannel(bobSigner, notifier,
estimator, bobChannelState)
if err != nil {
return nil, nil, nil, err
}
// Now that the channel are open, simulate the start of a session by
// having Alice and Bob extend their revocation windows to each other.
err = initRevocationWindows(channelAlice, channelBob, revocationWindow)
if err != nil {
return nil, nil, nil, err
}
return channelAlice, channelBob, cleanUpFunc, nil
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
// TODO(bvu): Refactor when dynamic fee estimation is added.
func calcStaticFee(numHTLCs int) btcutil.Amount {
const (
commitWeight = btcutil.Amount(724)
htlcWeight = 172
feePerByte = btcutil.Amount(50 * 4)
)
return feePerByte * (commitWeight +
btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}
// TestSimpleAddSettleWorkflow tests a simple channel scenario wherein the
// local node (Alice in this case) creates a new outgoing HTLC to bob, commits
// this change, then bob immediately commits a settlement of the HTLC after the
// initial add is fully committed in both commit chains.
//
// TODO(roasbeef): write higher level framework to exercise various states of
// the state machine
// * DSL language perhaps?
// * constructed via input/output files
func TestSimpleAddSettleWorkflow(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(1)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// The edge of the revocation window for both sides should be 1 at this
// point.
if aliceChannel.revocationWindowEdge != 1 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
aliceChannel.revocationWindowEdge, 1)
}
if bobChannel.revocationWindowEdge != 1 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
bobChannel.revocationWindowEdge, 1)
}
paymentPreimage := bytes.Repeat([]byte{1}, 32)
paymentHash := sha256.Sum256(paymentPreimage)
htlc := &lnwire.UpdateAddHTLC{
PaymentHash: paymentHash,
Amount: btcutil.SatoshiPerBitcoin,
Expiry: uint32(5),
}
// First Alice adds the outgoing HTLC to her local channel's state
// update log. Then Alice sends this wire message over to Bob who also
// adds this htlc to his local state update log.
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("unable to recv htlc: %v", err)
}
// Next alice commits this change by sending a signature message.
aliceSig, err := aliceChannel.SignNextCommitment()
if err != nil {
t.Fatalf("alice unable to sign commitment: %v", err)
}
// Bob receives this signature message, revokes his prior commitment
// given to him by Alice,a nd then finally send a signature for Alice's
// commitment transaction.
if err := bobChannel.ReceiveNewCommitment(aliceSig); err != nil {
t.Fatalf("bob unable to process alice's new commitment: %v", err)
}
bobRevocation, err := bobChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("unable to generate bob revocation: %v", err)
}
bobSig, err := bobChannel.SignNextCommitment()
if err != nil {
t.Fatalf("bob unable to sign alice's commitment: %v", err)
}
// Alice then processes this revocation, sending her own recovation for
// her prior commitment transaction. Alice shouldn't have any HTLCs to
// forward since she's sending an outgoing HTLC.
if htlcs, err := aliceChannel.ReceiveRevocation(bobRevocation); err != nil {
t.Fatalf("alice unable to rocess bob's revocation: %v", err)
} else if len(htlcs) != 0 {
t.Fatalf("alice forwards %v htlcs, should forward none: ", len(htlcs))
}
// Alice then processes bob's signature, and generates a revocation for
// bob.
if err := aliceChannel.ReceiveNewCommitment(bobSig); err != nil {
t.Fatalf("alice unable to process bob's new commitment: %v", err)
}
aliceRevocation, err := aliceChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("unable to revoke alice channel: %v", err)
}
// Finally Bob processes Alice's revocation, at this point the new HTLC
// is fully locked in within both commitment transactions. Bob should
// also be able to forward an HTLC now that the HTLC has been locked
// into both commitment transactions.
if htlcs, err := bobChannel.ReceiveRevocation(aliceRevocation); err != nil {
t.Fatalf("bob unable to process alive's revocation: %v", err)
} else if len(htlcs) != 1 {
t.Fatalf("bob should be able to forward an HTLC, instead can "+
"forward %v", len(htlcs))
}
// At this point, both sides should have the proper number of satoshis
// sent, and commitment height updated within their local channel
// state.
aliceSent := uint64(0)
bobSent := uint64(0)
if aliceChannel.channelState.TotalSatoshisSent != aliceSent {
t.Fatalf("alice has incorrect satoshis sent: %v vs %v",
aliceChannel.channelState.TotalSatoshisSent, aliceSent)
}
if aliceChannel.channelState.TotalSatoshisReceived != bobSent {
t.Fatalf("alice has incorrect satoshis received %v vs %v",
aliceChannel.channelState.TotalSatoshisReceived, bobSent)
}
if bobChannel.channelState.TotalSatoshisSent != bobSent {
t.Fatalf("bob has incorrect satoshis sent %v vs %v",
bobChannel.channelState.TotalSatoshisSent, bobSent)
}
if bobChannel.channelState.TotalSatoshisReceived != aliceSent {
t.Fatalf("bob has incorrect satoshis received %v vs %v",
bobChannel.channelState.TotalSatoshisReceived, aliceSent)
}
if bobChannel.currentHeight != 1 {
t.Fatalf("bob has incorrect commitment height, %v vs %v",
bobChannel.currentHeight, 1)
}
if aliceChannel.currentHeight != 1 {
t.Fatalf("alice has incorrect commitment height, %v vs %v",
aliceChannel.currentHeight, 1)
}
// Alice's revocation window should now be one beyond the size of the
// initial window. Same goes for Bob.
if aliceChannel.revocationWindowEdge != 2 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
aliceChannel.revocationWindowEdge, 2)
}
if bobChannel.revocationWindowEdge != 2 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
bobChannel.revocationWindowEdge, 2)
}
// Now we'll repeat a similar exchange, this time with Bob settling the
// HTLC once he learns of the preimage.
var preimage [32]byte
copy(preimage[:], paymentPreimage)
settleIndex, err := bobChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
if err := aliceChannel.ReceiveHTLCSettle(preimage, settleIndex); err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
bobSig2, err := bobChannel.SignNextCommitment()
if err != nil {
t.Fatalf("bob unable to sign settle commitment: %v", err)
}
if err := aliceChannel.ReceiveNewCommitment(bobSig2); err != nil {
t.Fatalf("alice unable to process bob's new commitment: %v", err)
}
aliceRevocation2, err := aliceChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("alice unable to generate revocation: %v", err)
}
aliceSig2, err := aliceChannel.SignNextCommitment()
if err != nil {
t.Fatalf("alice unable to sign new commitment: %v", err)
}
if htlcs, err := bobChannel.ReceiveRevocation(aliceRevocation2); err != nil {
t.Fatalf("bob unable to process alice's revocation: %v", err)
} else if len(htlcs) != 0 {
t.Fatalf("bob shouldn't forward any HTLCs after outgoing settle, "+
"instead can forward: %v", spew.Sdump(htlcs))
}
if err := bobChannel.ReceiveNewCommitment(aliceSig2); err != nil {
t.Fatalf("bob unable to process alice's new commitment: %v", err)
}
bobRevocation2, err := bobChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("bob unable to revoke commitment: %v", err)
}
if htlcs, err := aliceChannel.ReceiveRevocation(bobRevocation2); err != nil {
t.Fatalf("alice unable to process bob's revocation: %v", err)
} else if len(htlcs) != 1 {
// Alice should now be able to forward the settlement HTLC to
// any down stream peers.
t.Fatalf("alice should be able to forward a single HTLC, "+
"instead can forward %v: %v", len(htlcs), spew.Sdump(htlcs))
}
// At this point, Bob should have 6 BTC settled, with Alice still having
// 4 BTC. Alice's channel should show 1 BTC sent and Bob's channel should
// show 1 BTC received. They should also be at commitment height two,
// with the revocation window extended by by 1 (5).
satoshisTransferred := uint64(100000000)
if aliceChannel.channelState.TotalSatoshisSent != satoshisTransferred {
t.Fatalf("alice satoshis sent incorrect %v vs %v expected",
aliceChannel.channelState.TotalSatoshisSent,
satoshisTransferred)
}
if aliceChannel.channelState.TotalSatoshisReceived != 0 {
t.Fatalf("alice satoshis received incorrect %v vs %v expected",
aliceChannel.channelState.TotalSatoshisSent, 0)
}
if bobChannel.channelState.TotalSatoshisReceived != satoshisTransferred {
t.Fatalf("bob satoshis received incorrect %v vs %v expected",
bobChannel.channelState.TotalSatoshisReceived,
satoshisTransferred)
}
if bobChannel.channelState.TotalSatoshisSent != 0 {
t.Fatalf("bob satoshis sent incorrect %v vs %v expected",
bobChannel.channelState.TotalSatoshisReceived, 0)
}
if bobChannel.currentHeight != 2 {
t.Fatalf("bob has incorrect commitment height, %v vs %v",
bobChannel.currentHeight, 2)
}
if aliceChannel.currentHeight != 2 {
t.Fatalf("alice has incorrect commitment height, %v vs %v",
aliceChannel.currentHeight, 2)
}
if aliceChannel.revocationWindowEdge != 3 {
t.Fatalf("alice revocation window not incremented, is %v "+
"should be %v", aliceChannel.revocationWindowEdge, 3)
}
if bobChannel.revocationWindowEdge != 3 {
t.Fatalf("alice revocation window not incremented, is %v "+
"should be %v", bobChannel.revocationWindowEdge, 3)
}
// The logs of both sides should now be cleared since the entry adding
// the HTLC should have been removed once both sides receive the
// revocation.
if aliceChannel.localUpdateLog.Len() != 0 {
t.Fatalf("alice's local not updated, should be empty, has %v "+
"entries instead", aliceChannel.localUpdateLog.Len())
}
if aliceChannel.remoteUpdateLog.Len() != 0 {
t.Fatalf("alice's remote not updated, should be empty, has %v "+
"entries instead", aliceChannel.remoteUpdateLog.Len())
}
if len(aliceChannel.localUpdateLog.updateIndex) != 0 {
t.Fatalf("alice's local log index not cleared, should be empty but "+
"has %v entries", len(aliceChannel.localUpdateLog.updateIndex))
}
if len(aliceChannel.remoteUpdateLog.updateIndex) != 0 {
t.Fatalf("alice's remote log index not cleared, should be empty but "+
"has %v entries", len(aliceChannel.remoteUpdateLog.updateIndex))
}
}
// TestCheckCommitTxSize checks that estimation size of commitment
// transaction with some degree of error corresponds to the actual size.
func TestCheckCommitTxSize(t *testing.T) {
checkSize := func(channel *LightningChannel, count int) {
// Due to variable size of the signatures (70-73) in
// witness script actual size of commitment transaction might
// be lower on 6 weight.
BaseCommitmentTxSizeEstimationError := 6
commitTx, err := channel.getSignedCommitTx()
if err != nil {
t.Fatalf("unable to initiate alice force close: %v", err)
}
actualCost := blockchain.GetTransactionWeight(btcutil.NewTx(commitTx))
estimatedCost := estimateCommitTxCost(count, false)
diff := int(estimatedCost - actualCost)
if 0 > diff || BaseCommitmentTxSizeEstimationError < diff {
t.Fatalf("estimation is wrong, diff: %v", diff)
}
}
createHTLC := func(i int) (*lnwire.UpdateAddHTLC, [32]byte) {
preimage := bytes.Repeat([]byte{byte(i)}, 32)
paymentHash := sha256.Sum256(preimage)
var returnPreimage [32]byte
copy(returnPreimage[:], preimage)
return &lnwire.UpdateAddHTLC{
PaymentHash: paymentHash,
Amount: btcutil.Amount(1e7),
Expiry: uint32(5),
}, returnPreimage
}
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(1)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// Check that weight estimation of the commitment transaction without
// HTLCs is right.
checkSize(aliceChannel, 0)
checkSize(bobChannel, 0)
// Adding HTLCs and check that size stays in allowable estimation
// error window.
for i := 1; i <= 10; i++ {
htlc, _ := createHTLC(i)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("unable to complete state update: %v", err)
}
checkSize(aliceChannel, i)
checkSize(bobChannel, i)
}
// Settle HTLCs and check that estimation is counting cost of settle
// HTLCs properly.
for i := 10; i >= 1; i-- {
_, preimage := createHTLC(i)
settleIndex, err := bobChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
err = aliceChannel.ReceiveHTLCSettle(preimage, settleIndex)
if err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
if err := forceStateTransition(bobChannel, aliceChannel); err != nil {
t.Fatalf("unable to complete state update: %v", err)
}
checkSize(aliceChannel, i-1)
checkSize(bobChannel, i-1)
}
}
func TestCooperativeChannelClosure(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(1)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// First we test the channel initiator requesting a cooperative close.
sig, txid, err := aliceChannel.InitCooperativeClose()
if err != nil {
t.Fatalf("unable to initiate alice cooperative close: %v", err)
}
finalSig := append(sig, byte(txscript.SigHashAll))
closeTx, err := bobChannel.CompleteCooperativeClose(finalSig)
if err != nil {
t.Fatalf("unable to complete alice cooperative close: %v", err)
}
bobCloseSha := closeTx.TxHash()
if !bobCloseSha.IsEqual(txid) {
t.Fatalf("alice's transactions doesn't match: %x vs %x",
bobCloseSha[:], txid[:])
}
aliceChannel.status = channelOpen
bobChannel.status = channelOpen
// Next we test the channel recipient requesting a cooperative closure.
// First we test the channel initiator requesting a cooperative close.
sig, txid, err = bobChannel.InitCooperativeClose()
if err != nil {
t.Fatalf("unable to initiate bob cooperative close: %v", err)
}
finalSig = append(sig, byte(txscript.SigHashAll))
closeTx, err = aliceChannel.CompleteCooperativeClose(finalSig)
if err != nil {
t.Fatalf("unable to complete bob cooperative close: %v", err)
}
aliceCloseSha := closeTx.TxHash()
if !aliceCloseSha.IsEqual(txid) {
t.Fatalf("bob's closure transactions don't match: %x vs %x",
aliceCloseSha[:], txid[:])
}
}
// TestCheckHTLCNumberConstraint checks that we can't add HTLC or receive
// HTLC if number of HTLCs exceed maximum available number, also this test
// checks that if for some reason max number of HTLCs was exceeded and not
// caught before, the creation of new commitment will not be possible because
// of validation error.
func TestCheckHTLCNumberConstraint(t *testing.T) {
createHTLC := func(i int) *lnwire.UpdateAddHTLC {
preimage := bytes.Repeat([]byte{byte(i)}, 32)
paymentHash := sha256.Sum256(preimage)
return &lnwire.UpdateAddHTLC{
PaymentHash: paymentHash,
Amount: btcutil.Amount(1e7),
Expiry: uint32(5),
}
}
checkError := func(err error) error {
if err == nil {
return errors.New("Exceed max htlc count error was " +
"not received")
} else if err != ErrMaxHTLCNumber {
return errors.Errorf("Unexpected error occured: %v", err)
}
return nil
}
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(1)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// Add max available number of HTLCs.
for i := 0; i < MaxHTLCNumber; i++ {
htlc := createHTLC(i)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
}
// Next addition should cause HTLC max number validation error.
htlc := createHTLC(0)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
if _, err := bobChannel.AddHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
if _, err := aliceChannel.ReceiveHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
// Manually add HTLC to check SignNextCommitment validation error.
aliceChannel.localUpdateLog.appendUpdate(
&PaymentDescriptor{
Index: aliceChannel.localUpdateLog.logIndex,
},
)
_, err = aliceChannel.SignNextCommitment()
if err := checkError(err); err != nil {
t.Fatal(err)
}
// Manually add HTLC to check ReceiveNewCommitment validation error.
bobChannel.remoteUpdateLog.appendUpdate(
&PaymentDescriptor{
Index: bobChannel.remoteUpdateLog.logIndex,
},
)
// And on this stage we should receive the weight error.
someSig := []byte("somesig")
err = bobChannel.ReceiveNewCommitment(someSig)
if err := checkError(err); err != nil {
t.Fatal(err)
}
}
// TestForceClose checks that the resulting ForceCloseSummary is correct when
// a peer is ForceClosing the channel. Will check outputs both above and below
// the dust limit.
// TODO(cjamthagen): Check HTLCs when implemented.
func TestForceClose(t *testing.T) {
createHTLC := func(data, amount btcutil.Amount) (*lnwire.UpdateAddHTLC,
[32]byte) {
preimage := bytes.Repeat([]byte{byte(data)}, 32)
paymentHash := sha256.Sum256(preimage)
var returnPreimage [32]byte
copy(returnPreimage[:], preimage)
return &lnwire.UpdateAddHTLC{
PaymentHash: paymentHash,
Amount: amount,
Expiry: uint32(5),
}, returnPreimage
}
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
htlcAmount := btcutil.Amount(500)
aliceAmount := aliceChannel.channelState.OurBalance
bobAmount := bobChannel.channelState.OurBalance
closeSummary, err := aliceChannel.ForceClose()
if err != nil {
t.Fatalf("unable to force close channel: %v", err)
}
// The SelfOutputSignDesc should be non-nil since the outout to-self is non-dust.
if closeSummary.SelfOutputSignDesc == nil {
t.Fatalf("alice fails to include to-self output in ForceCloseSummary")
} else {
if closeSummary.SelfOutputSignDesc.PubKey !=
aliceChannel.channelState.OurCommitKey {
t.Fatalf("alice incorrect pubkey in SelfOutputSignDesc")
}
if closeSummary.SelfOutputSignDesc.Output.Value != int64(aliceAmount) {
t.Fatalf("alice incorrect output value in SelfOutputSignDesc, "+
"expected %v, got %v",
aliceChannel.channelState.OurBalance,
closeSummary.SelfOutputSignDesc.Output.Value)
}
}
if closeSummary.SelfOutputMaturity != aliceChannel.channelState.LocalCsvDelay {
t.Fatalf("alice: incorrect local CSV delay in ForceCloseSummary, "+
"expected %v, got %v", aliceChannel.channelState.LocalCsvDelay,
closeSummary.SelfOutputMaturity)
}
closeTxHash := closeSummary.CloseTx.TxHash()
commitTxHash := aliceChannel.channelState.OurCommitTx.TxHash()
if !bytes.Equal(closeTxHash[:], commitTxHash[:]) {
t.Fatalf("alice: incorrect close transaction txid")
}
// Check the same for Bobs' ForceCloseSummary
closeSummary, err = bobChannel.ForceClose()
if err != nil {
t.Fatalf("unable to force close channel: %v", err)
}
if closeSummary.SelfOutputSignDesc == nil {
t.Fatalf("bob fails to include to-self output in ForceCloseSummary")
} else {
if closeSummary.SelfOutputSignDesc.PubKey !=
bobChannel.channelState.OurCommitKey {
t.Fatalf("bob incorrect pubkey in SelfOutputSignDesc")
}
if closeSummary.SelfOutputSignDesc.Output.Value != int64(bobAmount) {
t.Fatalf("bob incorrect output value in SelfOutputSignDesc, "+
"expected %v, got %v",
bobChannel.channelState.OurBalance,
closeSummary.SelfOutputSignDesc.Output.Value)
}
}
if closeSummary.SelfOutputMaturity != bobChannel.channelState.LocalCsvDelay {
t.Fatalf("bob: incorrect local CSV delay in ForceCloseSummary, "+
"expected %v, got %v", bobChannel.channelState.LocalCsvDelay,
closeSummary.SelfOutputMaturity)
}
closeTxHash = closeSummary.CloseTx.TxHash()
commitTxHash = bobChannel.channelState.OurCommitTx.TxHash()
if !bytes.Equal(closeTxHash[:], commitTxHash[:]) {
t.Fatalf("bob: incorrect close transaction txid")
}
// "re-open" channels
aliceChannel.status = channelOpen
bobChannel.status = channelOpen
aliceChannel.ForceCloseSignal = make(chan struct{})
bobChannel.ForceCloseSignal = make(chan struct{})
// Have Bobs' to-self output be below her dust limit and check
// ForceCloseSummary again on both peers.
htlc, preimage := createHTLC(0, bobAmount-htlcAmount)
if _, err := bobChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := aliceChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
if err := forceStateTransition(bobChannel, aliceChannel); err != nil {
t.Fatalf("Can't update the channel state: %v", err)
}
// Settle HTLC and sign new commitment.
settleIndex, err := aliceChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
err = bobChannel.ReceiveHTLCSettle(preimage, settleIndex)
if err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("Can't update the channel state: %v", err)
}
aliceAmount = aliceChannel.channelState.OurBalance
bobAmount = bobChannel.channelState.OurBalance
closeSummary, err = aliceChannel.ForceClose()
if err != nil {
t.Fatalf("unable to force close channel: %v", err)
}
// Alices' to-self output should still be in the commitment transaction.
if closeSummary.SelfOutputSignDesc == nil {
t.Fatalf("alice fails to include to-self output in ForceCloseSummary")
} else {
if closeSummary.SelfOutputSignDesc.PubKey !=
aliceChannel.channelState.OurCommitKey {
t.Fatalf("alice incorrect pubkey in SelfOutputSignDesc")
}
if closeSummary.SelfOutputSignDesc.Output.Value !=
int64(aliceAmount) {
t.Fatalf("alice incorrect output value in SelfOutputSignDesc, "+
"expected %v, got %v",
aliceChannel.channelState.OurBalance,
closeSummary.SelfOutputSignDesc.Output.Value)
}
}
if closeSummary.SelfOutputMaturity != aliceChannel.channelState.LocalCsvDelay {
t.Fatalf("alice: incorrect local CSV delay in ForceCloseSummary, "+
"expected %v, got %v", aliceChannel.channelState.LocalCsvDelay,
closeSummary.SelfOutputMaturity)
}
closeTxHash = closeSummary.CloseTx.TxHash()
commitTxHash = aliceChannel.channelState.OurCommitTx.TxHash()
if !bytes.Equal(closeTxHash[:], commitTxHash[:]) {
t.Fatalf("alice: incorrect close transaction txid")
}
closeSummary, err = bobChannel.ForceClose()
if err != nil {
t.Fatalf("unable to force close channel: %v", err)
}
// Bob's to-self output is below Bob's dust value and should be
// reflected in the ForceCloseSummary.
if closeSummary.SelfOutputSignDesc != nil {
t.Fatalf("bob incorrectly includes to-self output in ForceCloseSummary")
}
closeTxHash = closeSummary.CloseTx.TxHash()
commitTxHash = bobChannel.channelState.OurCommitTx.TxHash()
if !bytes.Equal(closeTxHash[:], commitTxHash[:]) {
t.Fatalf("bob: incorrect close transaction txid")
}
}
// TestCheckDustLimit checks that unsettled HTLC with dust limit not included in
// commitment transaction as output, but sender balance is decreased (thereby all
// unsettled dust HTLCs will go to miners fee).
func TestCheckDustLimit(t *testing.T) {
createHTLC := func(data, amount btcutil.Amount) (*lnwire.UpdateAddHTLC,
[32]byte) {
preimage := bytes.Repeat([]byte{byte(data)}, 32)
paymentHash := sha256.Sum256(preimage)
var returnPreimage [32]byte
copy(returnPreimage[:], preimage)
return &lnwire.UpdateAddHTLC{
PaymentHash: paymentHash,
Amount: amount,
Expiry: uint32(5),
}, returnPreimage
}
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
assertChannelState := func(chanA, chanB *LightningChannel, numOutsA,
numOutsB int, amountSentA, amountSentB uint64) {
commitment := chanA.localCommitChain.tip()
if len(commitment.txn.TxOut) != numOutsA {
t.Fatalf("incorrect # of outputs: expected %v, got %v",
numOutsA, len(commitment.txn.TxOut))
}
commitment = chanB.localCommitChain.tip()
if len(commitment.txn.TxOut) != numOutsB {
t.Fatalf("Incorrect # of outputs: expected %v, got %v",
numOutsB, len(commitment.txn.TxOut))
}
if chanA.channelState.TotalSatoshisSent != amountSentA {
t.Fatalf("alice satoshis sent incorrect: expected %v, "+
"got %v", amountSentA,
chanA.channelState.TotalSatoshisSent)
}
if chanA.channelState.TotalSatoshisReceived != amountSentB {
t.Fatalf("alice satoshis received incorrect: expected"+
"%v, got %v", amountSentB,
chanA.channelState.TotalSatoshisReceived)
}
if chanB.channelState.TotalSatoshisSent != amountSentB {
t.Fatalf("bob satoshis sent incorrect: expected %v, "+
" got %v", amountSentB,
chanB.channelState.TotalSatoshisSent)
}
if chanB.channelState.TotalSatoshisReceived != amountSentA {
t.Fatalf("bob satoshis received incorrect: expected "+
"%v, got %v", amountSentA,
chanB.channelState.TotalSatoshisReceived)
}
}
aliceDustLimit := aliceChannel.channelState.OurDustLimit
bobDustLimit := bobChannel.channelState.OurDustLimit
htlcAmount := btcutil.Amount(500)
if !((htlcAmount > aliceDustLimit) && (bobDustLimit > htlcAmount)) {
t.Fatalf("htlc amount (%v) should be above Alice's dust limit (%v),"+
"and below Bob's dust limit (%v).", htlcAmount, aliceDustLimit,
bobDustLimit)
}
htlc, preimage := createHTLC(0, htlcAmount)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("Can't update the channel state: %v", err)
}
// First two outputs are payment to them and to us. If we encounter
// third output it means that dust HTLC was included. Their channel
// balance shouldn't change because, it will be changed only after HTLC
// will be settled.
// From Alice point of view HTLC's amount is bigger than dust limit.
// From Bob point of view HTLC's amount is lower then dust limit.
assertChannelState(aliceChannel, bobChannel, 3, 2, 0, 0)
// Settle HTLC and sign new commitment.
settleIndex, err := bobChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
err = aliceChannel.ReceiveHTLCSettle(preimage, settleIndex)
if err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
if err := forceStateTransition(bobChannel, aliceChannel); err != nil {
t.Fatalf("state transition error: %v", err)
}
assertChannelState(aliceChannel, bobChannel, 2, 2, uint64(htlcAmount), 0)
// Next we will test when a non-HTLC output in the commitment
// transaction is below the dust limit. We create an HTLC that will
// only leave a small enough amount to Alice such that Bob will
// consider it a dust output.
aliceAmount := btcutil.Amount(5e8)
htlcAmount2 := aliceAmount - btcutil.Amount(1000)
htlc, preimage = createHTLC(0, htlcAmount2)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("state transition error: %v", err)
}
// From Alice's point of view, her output is bigger than the dust limit
// From Bob's point of view, Alice's output is lower than the dust limit
assertChannelState(aliceChannel, bobChannel, 3, 2, uint64(htlcAmount), 0)
// Settle HTLC and sign new commitment.
settleIndex, err = bobChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
err = aliceChannel.ReceiveHTLCSettle(preimage, settleIndex)
if err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
if err := forceStateTransition(bobChannel, aliceChannel); err != nil {
t.Fatalf("state transition error: %v", err)
}
assertChannelState(aliceChannel, bobChannel, 2, 1,
uint64(htlcAmount+htlcAmount2), 0)
}
func TestStateUpdatePersistence(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(1)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
if err := aliceChannel.channelState.FullSync(); err != nil {
t.Fatalf("unable to sync alice's channel: %v", err)
}
if err := bobChannel.channelState.FullSync(); err != nil {
t.Fatalf("unable to sync bob's channel: %v", err)
}
const numHtlcs = 4
// Alice adds 3 HTLCs to the update log, while Bob adds a single HTLC.
var alicePreimage [32]byte
copy(alicePreimage[:], bytes.Repeat([]byte{0xaa}, 32))
var bobPreimage [32]byte
copy(bobPreimage[:], bytes.Repeat([]byte{0xbb}, 32))
for i := 0; i < 3; i++ {
rHash := sha256.Sum256(alicePreimage[:])
h := &lnwire.UpdateAddHTLC{
PaymentHash: rHash,
Amount: btcutil.Amount(5000),
Expiry: uint32(10),
}
if _, err := aliceChannel.AddHTLC(h); err != nil {
t.Fatalf("unable to add alice's htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(h); err != nil {
t.Fatalf("unable to recv alice's htlc: %v", err)
}
}
rHash := sha256.Sum256(bobPreimage[:])
bobh := &lnwire.UpdateAddHTLC{
PaymentHash: rHash,
Amount: btcutil.Amount(5000),
Expiry: uint32(10),
}
if _, err := bobChannel.AddHTLC(bobh); err != nil {
t.Fatalf("unable to add bob's htlc: %v", err)
}
if _, err := aliceChannel.ReceiveHTLC(bobh); err != nil {
t.Fatalf("unable to recv bob's htlc: %v", err)
}
// Next, Alice initiates a state transition to include the HTLC's she
// added above in a new commitment state.
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("unable to complete alice's state transition: %v", err)
}
// Since the HTLC Bob sent wasn't included in Bob's version of the
// commitment transaction (but it was in Alice's, as he ACK'd her
// changes before creating a new state), Bob needs to trigger another
// state update in order to re-sync their states.
if err := forceStateTransition(bobChannel, aliceChannel); err != nil {
t.Fatalf("unable to complete bob's state transition: %v", err)
}
// The latest commitment from both sides should have all the HTLCs.
numAliceOutgoing := aliceChannel.localCommitChain.tail().outgoingHTLCs
numAliceIncoming := aliceChannel.localCommitChain.tail().incomingHTLCs
if len(numAliceOutgoing) != 3 {
t.Fatalf("expected %v htlcs, instead got %v", 3, numAliceOutgoing)
}
if len(numAliceIncoming) != 1 {
t.Fatalf("expected %v htlcs, instead got %v", 1, numAliceIncoming)
}
numBobOutgoing := bobChannel.localCommitChain.tail().outgoingHTLCs
numBobIncoming := bobChannel.localCommitChain.tail().incomingHTLCs
if len(numBobOutgoing) != 1 {
t.Fatalf("expected %v htlcs, instead got %v", 1, numBobOutgoing)
}
if len(numBobIncoming) != 3 {
t.Fatalf("expected %v htlcs, instead got %v", 3, numBobIncoming)
}
// Now fetch both of the channels created above from disk to simulate a
// node restart with persistence.
alicePub := aliceChannel.channelState.IdentityPub
aliceChannels, err := aliceChannel.channelState.Db.FetchOpenChannels(alicePub)
if err != nil {
t.Fatalf("unable to fetch channel: %v", err)
}
bobPub := bobChannel.channelState.IdentityPub
bobChannels, err := bobChannel.channelState.Db.FetchOpenChannels(bobPub)
if err != nil {
t.Fatalf("unable to fetch channel: %v", err)
}
notifier := aliceChannel.channelEvents
aliceChannelNew, err := NewLightningChannel(aliceChannel.signer,
notifier, aliceChannel.feeEstimator, aliceChannels[0])
if err != nil {
t.Fatalf("unable to create new channel: %v", err)
}
bobChannelNew, err := NewLightningChannel(bobChannel.signer, notifier,
bobChannel.feeEstimator, bobChannels[0])
if err != nil {
t.Fatalf("unable to create new channel: %v", err)
}
if err := initRevocationWindows(aliceChannelNew, bobChannelNew, 3); err != nil {
t.Fatalf("unable to init revocation windows: %v", err)
}
// The state update logs of the new channels and the old channels
// should now be identical other than the height the HTLCs were added.
if aliceChannel.localUpdateLog.logIndex !=
aliceChannelNew.localUpdateLog.logIndex {
t.Fatalf("alice log counter: expected %v, got %v",
aliceChannel.localUpdateLog.logIndex,
aliceChannelNew.localUpdateLog.logIndex)
}
if aliceChannel.remoteUpdateLog.logIndex !=
aliceChannelNew.remoteUpdateLog.logIndex {
t.Fatalf("alice log counter: expected %v, got %v",
aliceChannel.remoteUpdateLog.logIndex,
aliceChannelNew.remoteUpdateLog.logIndex)
}
if aliceChannel.localUpdateLog.Len() !=
aliceChannelNew.localUpdateLog.Len() {
t.Fatalf("alice log len: expected %v, got %v",
aliceChannel.localUpdateLog.Len(),
aliceChannelNew.localUpdateLog.Len())
}
if aliceChannel.remoteUpdateLog.Len() !=
aliceChannelNew.remoteUpdateLog.Len() {
t.Fatalf("alice log len: expected %v, got %v",
aliceChannel.remoteUpdateLog.Len(),
aliceChannelNew.remoteUpdateLog.Len())
}
if bobChannel.localUpdateLog.logIndex !=
bobChannelNew.localUpdateLog.logIndex {
t.Fatalf("bob log counter: expected %v, got %v",
bobChannel.localUpdateLog.logIndex,
bobChannelNew.localUpdateLog.logIndex)
}
if bobChannel.remoteUpdateLog.logIndex !=
bobChannelNew.remoteUpdateLog.logIndex {
t.Fatalf("bob log counter: expected %v, got %v",
bobChannel.remoteUpdateLog.logIndex,
bobChannelNew.remoteUpdateLog.logIndex)
}
if bobChannel.localUpdateLog.Len() !=
bobChannelNew.localUpdateLog.Len() {
t.Fatalf("bob log len: expected %v, got %v",
bobChannel.localUpdateLog.Len(),
bobChannelNew.localUpdateLog.Len())
}
if bobChannel.remoteUpdateLog.Len() !=
bobChannelNew.remoteUpdateLog.Len() {
t.Fatalf("bob log len: expected %v, got %v",
bobChannel.remoteUpdateLog.Len(),
bobChannelNew.remoteUpdateLog.Len())
}
// Newly generated pkScripts for HTLCs should be the same as in the old channel.
for _, entry := range aliceChannel.localUpdateLog.updateIndex {
htlc := entry.Value.(*PaymentDescriptor)
restoredHtlc := aliceChannelNew.localUpdateLog.lookup(htlc.Index)
if !bytes.Equal(htlc.ourPkScript, restoredHtlc.ourPkScript) {
t.Fatalf("alice ourPkScript in ourLog: expected %X, got %X",
htlc.ourPkScript[:5], restoredHtlc.ourPkScript[:5])
}
if !bytes.Equal(htlc.theirPkScript, restoredHtlc.theirPkScript) {
t.Fatalf("alice theirPkScript in ourLog: expected %X, got %X",
htlc.theirPkScript[:5], restoredHtlc.theirPkScript[:5])
}
}
for _, entry := range aliceChannel.remoteUpdateLog.updateIndex {
htlc := entry.Value.(*PaymentDescriptor)
restoredHtlc := aliceChannelNew.remoteUpdateLog.lookup(htlc.Index)
if !bytes.Equal(htlc.ourPkScript, restoredHtlc.ourPkScript) {
t.Fatalf("alice ourPkScript in theirLog: expected %X, got %X",
htlc.ourPkScript[:5], restoredHtlc.ourPkScript[:5])
}
if !bytes.Equal(htlc.theirPkScript, restoredHtlc.theirPkScript) {
t.Fatalf("alice theirPkScript in theirLog: expected %X, got %X",
htlc.theirPkScript[:5], restoredHtlc.theirPkScript[:5])
}
}
for _, entry := range bobChannel.localUpdateLog.updateIndex {
htlc := entry.Value.(*PaymentDescriptor)
restoredHtlc := bobChannelNew.localUpdateLog.lookup(htlc.Index)
if !bytes.Equal(htlc.ourPkScript, restoredHtlc.ourPkScript) {
t.Fatalf("bob ourPkScript in ourLog: expected %X, got %X",
htlc.ourPkScript[:5], restoredHtlc.ourPkScript[:5])
}
if !bytes.Equal(htlc.theirPkScript, restoredHtlc.theirPkScript) {
t.Fatalf("bob theirPkScript in ourLog: expected %X, got %X",
htlc.theirPkScript[:5], restoredHtlc.theirPkScript[:5])
}
}
for _, entry := range bobChannel.remoteUpdateLog.updateIndex {
htlc := entry.Value.(*PaymentDescriptor)
restoredHtlc := bobChannelNew.remoteUpdateLog.lookup(htlc.Index)
if !bytes.Equal(htlc.ourPkScript, restoredHtlc.ourPkScript) {
t.Fatalf("bob ourPkScript in theirLog: expected %X, got %X",
htlc.ourPkScript[:5], restoredHtlc.ourPkScript[:5])
}
if !bytes.Equal(htlc.theirPkScript, restoredHtlc.theirPkScript) {
t.Fatalf("bob theirPkScript in theirLog: expected %X, got %X",
htlc.theirPkScript[:5], restoredHtlc.theirPkScript[:5])
}
}
// Now settle all the HTLCs, then force a state update. The state
// update should suceed as both sides have identical.
for i := 0; i < 3; i++ {
settleIndex, err := bobChannelNew.SettleHTLC(alicePreimage)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
err = aliceChannelNew.ReceiveHTLCSettle(alicePreimage, settleIndex)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
}
settleIndex, err := aliceChannelNew.SettleHTLC(bobPreimage)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
err = bobChannelNew.ReceiveHTLCSettle(bobPreimage, settleIndex)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
// Similar to the two transitions above, as both Bob and Alice added
// entries to the update log before a state transition was initiated by
// either side, both sides are required to trigger an update in order
// to lock in their changes.
if err := forceStateTransition(aliceChannelNew, bobChannelNew); err != nil {
t.Fatalf("unable to update commitments: %v", err)
}
if err := forceStateTransition(bobChannelNew, aliceChannelNew); err != nil {
t.Fatalf("unable to update commitments: %v", err)
}
// The amounts transferred should been updated as per the amounts in
// the HTLCs
if aliceChannelNew.channelState.TotalSatoshisSent != 15000 {
t.Fatalf("expected %v alice satoshis sent, got %v",
15000, aliceChannelNew.channelState.TotalSatoshisSent)
}
if aliceChannelNew.channelState.TotalSatoshisReceived != 5000 {
t.Fatalf("expected %v alice satoshis received, got %v",
5000, aliceChannelNew.channelState.TotalSatoshisReceived)
}
if bobChannelNew.channelState.TotalSatoshisSent != 5000 {
t.Fatalf("expected %v bob satoshis sent, got %v",
5000, bobChannel.channelState.TotalSatoshisSent)
}
if bobChannelNew.channelState.TotalSatoshisReceived != 15000 {
t.Fatalf("expected %v bob satoshis sent, got %v",
15000, bobChannel.channelState.TotalSatoshisSent)
}
}
func TestCancelHTLC(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(5)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// Add a new HTLC from Alice to Bob, then trigger a new state
// transition in order to include it in the latest state.
const htlcAmt = btcutil.SatoshiPerBitcoin
var preImage [32]byte
copy(preImage[:], bytes.Repeat([]byte{0xaa}, 32))
htlc := &lnwire.UpdateAddHTLC{
PaymentHash: sha256.Sum256(preImage[:]),
Amount: htlcAmt,
Expiry: 10,
}
paymentHash := htlc.PaymentHash
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("unable to add alice htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("unable to add bob htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("unable to create new commitment state: %v", err)
}
// With the HTLC committed, Alice's balance should reflect the clearing
// of the new HTLC.
aliceExpectedBalance := btcutil.Amount(btcutil.SatoshiPerBitcoin*4) -
calcStaticFee(1)
if aliceChannel.channelState.OurBalance != aliceExpectedBalance {
t.Fatalf("Alice's balance is wrong: expected %v, got %v",
aliceExpectedBalance, aliceChannel.channelState.OurBalance)
}
// Now, with the HTLC committed on both sides, trigger a cancellation
// from Bob to Alice, removing the HTLC.
htlcCancelIndex, err := bobChannel.FailHTLC(paymentHash)
if err != nil {
t.Fatalf("unable to cancel HTLC: %v", err)
}
if err := aliceChannel.ReceiveFailHTLC(htlcCancelIndex); err != nil {
t.Fatalf("unable to recv htlc cancel: %v", err)
}
// Now trigger another state transition, the HTLC should now be removed
// from both sides, with balances reflected.
if err := forceStateTransition(bobChannel, aliceChannel); err != nil {
t.Fatalf("unable to create new commitment: %v", err)
}
// Now HTLCs should be present on the commitment transaction for
// either side.
if len(aliceChannel.localCommitChain.tip().outgoingHTLCs) != 0 ||
len(aliceChannel.remoteCommitChain.tip().outgoingHTLCs) != 0 {
t.Fatalf("htlc's still active from alice's POV")
}
if len(aliceChannel.localCommitChain.tip().incomingHTLCs) != 0 ||
len(aliceChannel.remoteCommitChain.tip().incomingHTLCs) != 0 {
t.Fatalf("htlc's still active from alice's POV")
}
if len(bobChannel.localCommitChain.tip().outgoingHTLCs) != 0 ||
len(bobChannel.remoteCommitChain.tip().outgoingHTLCs) != 0 {
t.Fatalf("htlc's still active from bob's POV")
}
if len(bobChannel.localCommitChain.tip().incomingHTLCs) != 0 ||
len(bobChannel.remoteCommitChain.tip().incomingHTLCs) != 0 {
t.Fatalf("htlc's still active from bob's POV")
}
expectedBalance := btcutil.Amount(btcutil.SatoshiPerBitcoin * 5)
if aliceChannel.channelState.OurBalance != expectedBalance-calcStaticFee(0) {
t.Fatalf("balance is wrong: expected %v, got %v",
aliceChannel.channelState.OurBalance, expectedBalance-
calcStaticFee(0))
}
if aliceChannel.channelState.TheirBalance != expectedBalance {
t.Fatalf("balance is wrong: expected %v, got %v",
aliceChannel.channelState.TheirBalance, expectedBalance)
}
if bobChannel.channelState.OurBalance != expectedBalance {
t.Fatalf("balance is wrong: expected %v, got %v",
bobChannel.channelState.OurBalance, expectedBalance)
}
if bobChannel.channelState.TheirBalance != expectedBalance-calcStaticFee(0) {
t.Fatalf("balance is wrong: expected %v, got %v",
bobChannel.channelState.TheirBalance,
expectedBalance-calcStaticFee(0))
}
}
func TestCooperativeCloseDustAdherence(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(5)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
setDustLimit := func(dustVal btcutil.Amount) {
aliceChannel.channelState.OurDustLimit = dustVal
aliceChannel.channelState.TheirDustLimit = dustVal
aliceChannel.channelState.OurDustLimit = dustVal
aliceChannel.channelState.TheirDustLimit = dustVal
}
resetChannelState := func() {
aliceChannel.status = channelOpen
bobChannel.status = channelOpen
}
setBalances := func(aliceBalance, bobBalance btcutil.Amount) {
aliceChannel.channelState.OurBalance = aliceBalance
aliceChannel.channelState.TheirBalance = bobBalance
bobChannel.channelState.OurBalance = bobBalance
bobChannel.channelState.TheirBalance = aliceBalance
}
// We'll start be initializing the limit of both Alice and Bob to 10k
// satoshis.
dustLimit := btcutil.Amount(10000)
setDustLimit(dustLimit)
// Both sides currently have over 1 BTC settled as part of their
// balances. As a result, performing a cooperative closure now result
// in both sides having an output within the closure transaction.
closeSig, _, err := aliceChannel.InitCooperativeClose()
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
closeSig = append(closeSig, byte(txscript.SigHashAll))
closeTx, err := bobChannel.CompleteCooperativeClose(closeSig)
if err != nil {
t.Fatalf("unable to accept channel close: %v", err)
}
// The closure transaction should have exactly two outputs.
if len(closeTx.TxOut) != 2 {
t.Fatalf("close tx has wrong number of outputs: expected %v "+
"got %v", 2, len(closeTx.TxOut))
}
// We'll reset the channel states before proceeding to our nest test.
resetChannelState()
// Next we'll modify the current balances and dust limits such that
// Bob's current balance is above _below_ his dust limit.
aliceBal := btcutil.Amount(btcutil.SatoshiPerBitcoin)
bobBal := btcutil.Amount(250)
setBalances(aliceBal, bobBal)
// Attempt another cooperative channel closure. It should succeed
// without any issues.
closeSig, _, err = aliceChannel.InitCooperativeClose()
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
closeSig = append(closeSig, byte(txscript.SigHashAll))
closeTx, err = bobChannel.CompleteCooperativeClose(closeSig)
if err != nil {
t.Fatalf("unable to accept channel close: %v", err)
}
// The closure transaction should only have a single output, and that
// output should be Alice's balance.
if len(closeTx.TxOut) != 1 {
t.Fatalf("close tx has wrong number of outputs: expected %v "+
"got %v", 1, len(closeTx.TxOut))
}
if closeTx.TxOut[0].Value != int64(aliceBal-calcStaticFee(0)) {
t.Fatalf("alice's balance is incorrect: expected %v, got %v",
aliceBal-calcStaticFee(0), closeTx.TxOut[0].Value)
}
// Finally, we'll modify the current balances and dust limits such that
// Alice's current balance is _below_ his her limit.
setBalances(bobBal, aliceBal)
resetChannelState()
// Our final attempt at another cooperative channel closure. It should
// succeed without any issues.
closeSig, _, err = aliceChannel.InitCooperativeClose()
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
closeSig = append(closeSig, byte(txscript.SigHashAll))
closeTx, err = bobChannel.CompleteCooperativeClose(closeSig)
if err != nil {
t.Fatalf("unable to accept channel close: %v", err)
}
// The closure transaction should only have a single output, and that
// output should be Bob's balance.
if len(closeTx.TxOut) != 1 {
t.Fatalf("close tx has wrong number of outputs: expected %v "+
"got %v", 1, len(closeTx.TxOut))
}
if closeTx.TxOut[0].Value != int64(aliceBal) {
t.Fatalf("bob's balance is incorrect: expected %v, got %v",
aliceBal, closeTx.TxOut[0].Value)
}
}