lnd.xprv/htlcswitch/iterator.go
Olaoluwa Osuntokun 23cc8389f2
multi: add TLV awareness to htlcswitch, pass extra EOB to the invoice registry
In this commit, we update the `HopIterator` to gain awareness of the new
TLV hop payload. The default `HopIterator` will now hide the details of
the TLV from the caller, and return the same `ForwardingInfo` struct in
a uniform manner. We also add a new method: `ExtraOnionBlob` to allow
the caller to obtain the raw EOB (the serialized TLV stream) to pass
around.

Within the link, we'll now pass the EOB information into the invoice
registry. This allows the registry to parse out any additional
information from the EOB that it needs to settle the payment, such as a
preimage shard in the AMP case.
2019-08-22 18:53:05 -07:00

491 lines
16 KiB
Go

package htlcswitch
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"github.com/btcsuite/btcd/btcec"
"github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/tlv"
)
// NetworkHop indicates the blockchain network that is intended to be the next
// hop for a forwarded HTLC. The existence of this field within the
// ForwardingInfo struct enables the ability for HTLC to cross chain-boundaries
// at will.
type NetworkHop uint8
const (
// BitcoinHop denotes that an HTLC is to be forwarded along the Bitcoin
// link with the specified short channel ID.
BitcoinHop NetworkHop = iota
// LitecoinHop denotes that an HTLC is to be forwarded along the
// Litecoin link with the specified short channel ID.
LitecoinHop
)
// String returns the string representation of the target NetworkHop.
func (c NetworkHop) String() string {
switch c {
case BitcoinHop:
return "Bitcoin"
case LitecoinHop:
return "Litecoin"
default:
return "Kekcoin"
}
}
var (
// exitHop is a special "hop" which denotes that an incoming HTLC is
// meant to pay finally to the receiving node.
exitHop lnwire.ShortChannelID
// sourceHop is a sentinel value denoting that an incoming HTLC is
// initiated by our own switch.
sourceHop lnwire.ShortChannelID
)
// ForwardingInfo contains all the information that is necessary to forward and
// incoming HTLC to the next hop encoded within a valid HopIterator instance.
// Forwarding links are to use this information to authenticate the information
// received within the incoming HTLC, to ensure that the prior hop didn't
// tamper with the end-to-end routing information at all.
type ForwardingInfo struct {
// Network is the target blockchain network that the HTLC will travel
// over next.
Network NetworkHop
// NextHop is the channel ID of the next hop. The received HTLC should
// be forwarded to this particular channel in order to continue the
// end-to-end route.
NextHop lnwire.ShortChannelID
// AmountToForward is the amount of milli-satoshis that the receiving
// node should forward to the next hop.
AmountToForward lnwire.MilliSatoshi
// OutgoingCTLV is the specified value of the CTLV timelock to be used
// in the outgoing HTLC.
OutgoingCTLV uint32
// TODO(roasbeef): modify sphinx logic to not just discard the
// remaining bytes, instead should include the rest as excess
}
// HopIterator is an interface that abstracts away the routing information
// included in HTLC's which includes the entirety of the payment path of an
// HTLC. This interface provides two basic method which carry out: how to
// interpret the forwarding information encoded within the HTLC packet, and hop
// to encode the forwarding information for the _next_ hop.
type HopIterator interface {
// ForwardingInstructions returns the set of fields that detail exactly
// _how_ this hop should forward the HTLC to the next hop.
// Additionally, the information encoded within the returned
// ForwardingInfo is to be used by each hop to authenticate the
// information given to it by the prior hop.
ForwardingInstructions() (ForwardingInfo, error)
// ExtraOnionBlob returns the additional EOB data (if available).
ExtraOnionBlob() []byte
// EncodeNextHop encodes the onion packet destined for the next hop
// into the passed io.Writer.
EncodeNextHop(w io.Writer) error
// ExtractErrorEncrypter returns the ErrorEncrypter needed for this hop,
// along with a failure code to signal if the decoding was successful.
ExtractErrorEncrypter(ErrorEncrypterExtracter) (ErrorEncrypter,
lnwire.FailCode)
}
// sphinxHopIterator is the Sphinx implementation of hop iterator which uses
// onion routing to encode the payment route in such a way so that node might
// see only the next hop in the route..
type sphinxHopIterator struct {
// ogPacket is the original packet from which the processed packet is
// derived.
ogPacket *sphinx.OnionPacket
// processedPacket is the outcome of processing an onion packet. It
// includes the information required to properly forward the packet to
// the next hop.
processedPacket *sphinx.ProcessedPacket
}
// makeSphinxHopIterator converts a processed packet returned from a sphinx
// router and converts it into an hop iterator for usage in the link.
func makeSphinxHopIterator(ogPacket *sphinx.OnionPacket,
packet *sphinx.ProcessedPacket) *sphinxHopIterator {
return &sphinxHopIterator{
ogPacket: ogPacket,
processedPacket: packet,
}
}
// A compile time check to ensure sphinxHopIterator implements the HopIterator
// interface.
var _ HopIterator = (*sphinxHopIterator)(nil)
// Encode encodes iterator and writes it to the writer.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) EncodeNextHop(w io.Writer) error {
return r.processedPacket.NextPacket.Encode(w)
}
// ForwardingInstructions returns the set of fields that detail exactly _how_
// this hop should forward the HTLC to the next hop. Additionally, the
// information encoded within the returned ForwardingInfo is to be used by each
// hop to authenticate the information given to it by the prior hop.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) ForwardingInstructions() (ForwardingInfo, error) {
var (
nextHop lnwire.ShortChannelID
amt uint64
cltv uint32
)
switch r.processedPacket.Payload.Type {
// If this is the legacy payload, then we'll extract the information
// directly from the pre-populated ForwardingInstructions field.
case sphinx.PayloadLegacy:
fwdInst := r.processedPacket.ForwardingInstructions
switch r.processedPacket.Action {
case sphinx.ExitNode:
nextHop = exitHop
case sphinx.MoreHops:
s := binary.BigEndian.Uint64(fwdInst.NextAddress[:])
nextHop = lnwire.NewShortChanIDFromInt(s)
}
amt = fwdInst.ForwardAmount
cltv = fwdInst.OutgoingCltv
// Otherwise, if this is the TLV payload, then we'll make a new stream
// to decode only what we need to make routing decisions.
case sphinx.PayloadTLV:
var cid uint64
tlvStream, err := tlv.NewStream(
tlv.MakeDynamicRecord(
tlv.AmtOnionType, &amt, nil,
tlv.ETUint64, tlv.DTUint64,
),
tlv.MakeDynamicRecord(
tlv.LockTimeOnionType, &cltv, nil,
tlv.ETUint32, tlv.DTUint32,
),
tlv.MakePrimitiveRecord(tlv.NextHopOnionType, &cid),
)
if err != nil {
return ForwardingInfo{}, err
}
err = tlvStream.Decode(bytes.NewReader(
r.processedPacket.Payload.Payload,
))
if err != nil {
return ForwardingInfo{}, err
}
nextHop = lnwire.NewShortChanIDFromInt(cid)
default:
return ForwardingInfo{}, fmt.Errorf("unknown sphinx payload "+
"type: %v", r.processedPacket.Payload.Type)
}
return ForwardingInfo{
Network: BitcoinHop,
NextHop: nextHop,
AmountToForward: lnwire.MilliSatoshi(amt),
OutgoingCTLV: cltv,
}, nil
}
// ExtraOnionBlob returns the additional EOB data (if available).
func (r *sphinxHopIterator) ExtraOnionBlob() []byte {
if r.processedPacket.Payload.Type == sphinx.PayloadLegacy {
return nil
}
return r.processedPacket.Payload.Payload
}
// ExtractErrorEncrypter decodes and returns the ErrorEncrypter for this hop,
// along with a failure code to signal if the decoding was successful. The
// ErrorEncrypter is used to encrypt errors back to the sender in the event that
// a payment fails.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) ExtractErrorEncrypter(
extracter ErrorEncrypterExtracter) (ErrorEncrypter, lnwire.FailCode) {
return extracter(r.ogPacket.EphemeralKey)
}
// OnionProcessor is responsible for keeping all sphinx dependent parts inside
// and expose only decoding function. With such approach we give freedom for
// subsystems which wants to decode sphinx path to not be dependable from
// sphinx at all.
//
// NOTE: The reason for keeping decoder separated from hop iterator is too
// maintain the hop iterator abstraction. Without it the structures which using
// the hop iterator should contain sphinx router which makes their creations in
// tests dependent from the sphinx internal parts.
type OnionProcessor struct {
router *sphinx.Router
}
// NewOnionProcessor creates new instance of decoder.
func NewOnionProcessor(router *sphinx.Router) *OnionProcessor {
return &OnionProcessor{router}
}
// Start spins up the onion processor's sphinx router.
func (p *OnionProcessor) Start() error {
return p.router.Start()
}
// Stop shutsdown the onion processor's sphinx router.
func (p *OnionProcessor) Stop() error {
p.router.Stop()
return nil
}
// DecodeHopIterator attempts to decode a valid sphinx packet from the passed io.Reader
// instance using the rHash as the associated data when checking the relevant
// MACs during the decoding process.
func (p *OnionProcessor) DecodeHopIterator(r io.Reader, rHash []byte,
incomingCltv uint32) (HopIterator, lnwire.FailCode) {
onionPkt := &sphinx.OnionPacket{}
if err := onionPkt.Decode(r); err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to decode onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
// Attempt to process the Sphinx packet. We include the payment hash of
// the HTLC as it's authenticated within the Sphinx packet itself as
// associated data in order to thwart attempts a replay attacks. In the
// case of a replay, an attacker is *forced* to use the same payment
// hash twice, thereby losing their money entirely.
sphinxPacket, err := p.router.ProcessOnionPacket(
onionPkt, rHash, incomingCltv,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return makeSphinxHopIterator(onionPkt, sphinxPacket), lnwire.CodeNone
}
// DecodeHopIteratorRequest encapsulates all date necessary to process an onion
// packet, perform sphinx replay detection, and schedule the entry for garbage
// collection.
type DecodeHopIteratorRequest struct {
OnionReader io.Reader
RHash []byte
IncomingCltv uint32
}
// DecodeHopIteratorResponse encapsulates the outcome of a batched sphinx onion
// processing.
type DecodeHopIteratorResponse struct {
HopIterator HopIterator
FailCode lnwire.FailCode
}
// Result returns the (HopIterator, lnwire.FailCode) tuple, which should
// correspond to the index of a particular DecodeHopIteratorRequest.
//
// NOTE: The HopIterator should be considered invalid if the fail code is
// anything but lnwire.CodeNone.
func (r *DecodeHopIteratorResponse) Result() (HopIterator, lnwire.FailCode) {
return r.HopIterator, r.FailCode
}
// DecodeHopIterators performs batched decoding and validation of incoming
// sphinx packets. For the same `id`, this method will return the same iterators
// and failcodes upon subsequent invocations.
//
// NOTE: In order for the responses to be valid, the caller must guarantee that
// the presented readers and rhashes *NEVER* deviate across invocations for the
// same id.
func (p *OnionProcessor) DecodeHopIterators(id []byte,
reqs []DecodeHopIteratorRequest) ([]DecodeHopIteratorResponse, error) {
var (
batchSize = len(reqs)
onionPkts = make([]sphinx.OnionPacket, batchSize)
resps = make([]DecodeHopIteratorResponse, batchSize)
)
tx := p.router.BeginTxn(id, batchSize)
for i, req := range reqs {
onionPkt := &onionPkts[i]
resp := &resps[i]
err := onionPkt.Decode(req.OnionReader)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to decode onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
err = tx.ProcessOnionPacket(
uint16(i), onionPkt, req.RHash, req.IncomingCltv,
)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionHMAC:
resp.FailCode = lnwire.CodeInvalidOnionHmac
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to process onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
}
// With that batch created, we will now attempt to write the shared
// secrets to disk. This operation will returns the set of indices that
// were detected as replays, and the computed sphinx packets for all
// indices that did not fail the above loop. Only indices that are not
// in the replay set should be considered valid, as they are
// opportunistically computed.
packets, replays, err := tx.Commit()
if err != nil {
log.Errorf("unable to process onion packet batch %x: %v",
id, err)
// If we failed to commit the batch to the secret share log, we
// will mark all not-yet-failed channels with a temporary
// channel failure and exit since we cannot proceed.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
log.Errorf("unable to process onion packet %x-%v",
id, i)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
}
// TODO(conner): return real errors to caller so link can fail?
return resps, err
}
// Otherwise, the commit was successful. Now we will post process any
// remaining packets, additionally failing any that were included in the
// replay set.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
// If this index is contained in the replay set, mark it with a
// temporary channel failure error code. We infer that the
// offending error was due to a replayed packet because this
// index was found in the replay set.
if replays.Contains(uint16(i)) {
log.Errorf("unable to process onion packet: %v",
sphinx.ErrReplayedPacket)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
continue
}
// Finally, construct a hop iterator from our processed sphinx
// packet, simultaneously caching the original onion packet.
resp.HopIterator = makeSphinxHopIterator(&onionPkts[i], &packets[i])
}
return resps, nil
}
// ExtractErrorEncrypter takes an io.Reader which should contain the onion
// packet as original received by a forwarding node and creates an
// ErrorEncrypter instance using the derived shared secret. In the case that en
// error occurs, a lnwire failure code detailing the parsing failure will be
// returned.
func (p *OnionProcessor) ExtractErrorEncrypter(ephemeralKey *btcec.PublicKey) (
ErrorEncrypter, lnwire.FailCode) {
onionObfuscator, err := sphinx.NewOnionErrorEncrypter(
p.router, ephemeralKey,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return &SphinxErrorEncrypter{
OnionErrorEncrypter: onionObfuscator,
EphemeralKey: ephemeralKey,
}, lnwire.CodeNone
}