lnd.xprv/lntest/harness.go
2019-09-28 15:43:42 -07:00

1379 lines
39 KiB
Go

package lntest
import (
"context"
"encoding/hex"
"errors"
"fmt"
"io"
"io/ioutil"
"net/http"
"os"
"strings"
"sync"
"time"
"google.golang.org/grpc/grpclog"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwire"
)
// DefaultCSV is the CSV delay (remotedelay) we will start our test nodes with.
const DefaultCSV = 4
// NetworkHarness is an integration testing harness for the lightning network.
// The harness by default is created with two active nodes on the network:
// Alice and Bob.
type NetworkHarness struct {
netParams *chaincfg.Params
// Miner is a reference to a running full node that can be used to create
// new blocks on the network.
Miner *rpctest.Harness
// BackendCfg houses the information necessary to use a node as LND
// chain backend, such as rpc configuration, P2P information etc.
BackendCfg BackendConfig
activeNodes map[int]*HarnessNode
nodesByPub map[string]*HarnessNode
// Alice and Bob are the initial seeder nodes that are automatically
// created to be the initial participants of the test network.
Alice *HarnessNode
Bob *HarnessNode
seenTxns chan *chainhash.Hash
bitcoinWatchRequests chan *txWatchRequest
// Channel for transmitting stderr output from failed lightning node
// to main process.
lndErrorChan chan error
quit chan struct{}
mtx sync.Mutex
}
// NewNetworkHarness creates a new network test harness.
// TODO(roasbeef): add option to use golang's build library to a binary of the
// current repo. This will save developers from having to manually `go install`
// within the repo each time before changes
func NewNetworkHarness(r *rpctest.Harness, b BackendConfig) (*NetworkHarness, error) {
n := NetworkHarness{
activeNodes: make(map[int]*HarnessNode),
nodesByPub: make(map[string]*HarnessNode),
seenTxns: make(chan *chainhash.Hash),
bitcoinWatchRequests: make(chan *txWatchRequest),
lndErrorChan: make(chan error),
netParams: r.ActiveNet,
Miner: r,
BackendCfg: b,
quit: make(chan struct{}),
}
go n.networkWatcher()
return &n, nil
}
// LookUpNodeByPub queries the set of active nodes to locate a node according
// to its public key. The second value will be true if the node was found, and
// false otherwise.
func (n *NetworkHarness) LookUpNodeByPub(pubStr string) (*HarnessNode, error) {
n.mtx.Lock()
defer n.mtx.Unlock()
node, ok := n.nodesByPub[pubStr]
if !ok {
return nil, fmt.Errorf("unable to find node")
}
return node, nil
}
// ProcessErrors returns a channel used for reporting any fatal process errors.
// If any of the active nodes within the harness' test network incur a fatal
// error, that error is sent over this channel.
func (n *NetworkHarness) ProcessErrors() <-chan error {
return n.lndErrorChan
}
// fakeLogger is a fake grpclog.Logger implementation. This is used to stop
// grpc's logger from printing directly to stdout.
type fakeLogger struct{}
func (f *fakeLogger) Fatal(args ...interface{}) {}
func (f *fakeLogger) Fatalf(format string, args ...interface{}) {}
func (f *fakeLogger) Fatalln(args ...interface{}) {}
func (f *fakeLogger) Print(args ...interface{}) {}
func (f *fakeLogger) Printf(format string, args ...interface{}) {}
func (f *fakeLogger) Println(args ...interface{}) {}
// SetUp starts the initial seeder nodes within the test harness. The initial
// node's wallets will be funded wallets with ten 1 BTC outputs each. Finally
// rpc clients capable of communicating with the initial seeder nodes are
// created. Nodes are initialized with the given extra command line flags, which
// should be formatted properly - "--arg=value".
func (n *NetworkHarness) SetUp(lndArgs []string) error {
// Swap out grpc's default logger with out fake logger which drops the
// statements on the floor.
grpclog.SetLogger(&fakeLogger{})
// Start the initial seeder nodes within the test network, then connect
// their respective RPC clients.
var wg sync.WaitGroup
errChan := make(chan error, 2)
wg.Add(2)
go func() {
defer wg.Done()
node, err := n.NewNode("Alice", lndArgs)
if err != nil {
errChan <- err
return
}
n.Alice = node
}()
go func() {
defer wg.Done()
node, err := n.NewNode("Bob", lndArgs)
if err != nil {
errChan <- err
return
}
n.Bob = node
}()
wg.Wait()
select {
case err := <-errChan:
return err
default:
}
// Load up the wallets of the seeder nodes with 10 outputs of 1 BTC
// each.
ctxb := context.Background()
addrReq := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
clients := []lnrpc.LightningClient{n.Alice, n.Bob}
for _, client := range clients {
for i := 0; i < 10; i++ {
resp, err := client.NewAddress(ctxb, addrReq)
if err != nil {
return err
}
addr, err := btcutil.DecodeAddress(resp.Address, n.netParams)
if err != nil {
return err
}
addrScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return err
}
output := &wire.TxOut{
PkScript: addrScript,
Value: btcutil.SatoshiPerBitcoin,
}
_, err = n.Miner.SendOutputs([]*wire.TxOut{output}, 7500)
if err != nil {
return err
}
}
}
// We generate several blocks in order to give the outputs created
// above a good number of confirmations.
if _, err := n.Miner.Node.Generate(10); err != nil {
return err
}
// Finally, make a connection between both of the nodes.
if err := n.ConnectNodes(ctxb, n.Alice, n.Bob); err != nil {
return err
}
// Now block until both wallets have fully synced up.
expectedBalance := int64(btcutil.SatoshiPerBitcoin * 10)
balReq := &lnrpc.WalletBalanceRequest{}
balanceTicker := time.Tick(time.Millisecond * 50)
balanceTimeout := time.After(time.Second * 30)
out:
for {
select {
case <-balanceTicker:
aliceResp, err := n.Alice.WalletBalance(ctxb, balReq)
if err != nil {
return err
}
bobResp, err := n.Bob.WalletBalance(ctxb, balReq)
if err != nil {
return err
}
if aliceResp.ConfirmedBalance == expectedBalance &&
bobResp.ConfirmedBalance == expectedBalance {
break out
}
case <-balanceTimeout:
return fmt.Errorf("balances not synced after deadline")
}
}
return nil
}
// TearDownAll tears down all active nodes within the test lightning network.
func (n *NetworkHarness) TearDownAll() error {
for _, node := range n.activeNodes {
if err := n.ShutdownNode(node); err != nil {
return err
}
}
close(n.lndErrorChan)
close(n.quit)
return nil
}
// NewNode fully initializes a returns a new HarnessNode bound to the
// current instance of the network harness. The created node is running, but
// not yet connected to other nodes within the network.
func (n *NetworkHarness) NewNode(name string, extraArgs []string) (*HarnessNode, error) {
return n.newNode(name, extraArgs, false, nil)
}
// NewNodeWithSeed fully initializes a new HarnessNode after creating a fresh
// aezeed. The provided password is used as both the aezeed password and the
// wallet password. The generated mnemonic is returned along with the
// initialized harness node.
func (n *NetworkHarness) NewNodeWithSeed(name string, extraArgs []string,
password []byte) (*HarnessNode, []string, error) {
node, err := n.newNode(name, extraArgs, true, password)
if err != nil {
return nil, nil, err
}
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
// Create a request to generate a new aezeed. The new seed will have the
// same password as the internal wallet.
genSeedReq := &lnrpc.GenSeedRequest{
AezeedPassphrase: password,
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
genSeedResp, err := node.GenSeed(ctxt, genSeedReq)
if err != nil {
return nil, nil, err
}
// With the seed created, construct the init request to the node,
// including the newly generated seed.
initReq := &lnrpc.InitWalletRequest{
WalletPassword: password,
CipherSeedMnemonic: genSeedResp.CipherSeedMnemonic,
AezeedPassphrase: password,
}
// Pass the init request via rpc to finish unlocking the node. This will
// also initialize the macaroon-authenticated LightningClient.
err = node.Init(ctxb, initReq)
if err != nil {
return nil, nil, err
}
// With the node started, we can now record its public key within the
// global mapping.
n.RegisterNode(node)
return node, genSeedResp.CipherSeedMnemonic, nil
}
// RestoreNodeWithSeed fully initializes a HarnessNode using a chosen mnemonic,
// password, recovery window, and optionally a set of static channel backups.
// After providing the initialization request to unlock the node, this method
// will finish initializing the LightningClient such that the HarnessNode can
// be used for regular rpc operations.
func (n *NetworkHarness) RestoreNodeWithSeed(name string, extraArgs []string,
password []byte, mnemonic []string, recoveryWindow int32,
chanBackups *lnrpc.ChanBackupSnapshot) (*HarnessNode, error) {
node, err := n.newNode(name, extraArgs, true, password)
if err != nil {
return nil, err
}
initReq := &lnrpc.InitWalletRequest{
WalletPassword: password,
CipherSeedMnemonic: mnemonic,
AezeedPassphrase: password,
RecoveryWindow: recoveryWindow,
ChannelBackups: chanBackups,
}
err = node.Init(context.Background(), initReq)
if err != nil {
return nil, err
}
// With the node started, we can now record its public key within the
// global mapping.
n.RegisterNode(node)
return node, nil
}
// newNode initializes a new HarnessNode, supporting the ability to initialize a
// wallet with or without a seed. If hasSeed is false, the returned harness node
// can be used immediately. Otherwise, the node will require an additional
// initialization phase where the wallet is either created or restored.
func (n *NetworkHarness) newNode(name string, extraArgs []string,
hasSeed bool, password []byte) (*HarnessNode, error) {
node, err := newNode(nodeConfig{
Name: name,
HasSeed: hasSeed,
Password: password,
BackendCfg: n.BackendCfg,
NetParams: n.netParams,
ExtraArgs: extraArgs,
})
if err != nil {
return nil, err
}
// Put node in activeNodes to ensure Shutdown is called even if Start
// returns an error.
n.mtx.Lock()
n.activeNodes[node.NodeID] = node
n.mtx.Unlock()
if err := node.start(n.lndErrorChan); err != nil {
return nil, err
}
// If this node is to have a seed, it will need to be unlocked or
// initialized via rpc. Delay registering it with the network until it
// can be driven via an unlocked rpc connection.
if node.cfg.HasSeed {
return node, nil
}
// With the node started, we can now record its public key within the
// global mapping.
n.RegisterNode(node)
return node, nil
}
// RegisterNode records a new HarnessNode in the NetworkHarnesses map of known
// nodes. This method should only be called with nodes that have successfully
// retrieved their public keys via FetchNodeInfo.
func (n *NetworkHarness) RegisterNode(node *HarnessNode) {
n.mtx.Lock()
n.nodesByPub[node.PubKeyStr] = node
n.mtx.Unlock()
}
func (n *NetworkHarness) connect(ctx context.Context,
req *lnrpc.ConnectPeerRequest, a *HarnessNode) error {
syncTimeout := time.After(15 * time.Second)
tryconnect:
if _, err := a.ConnectPeer(ctx, req); err != nil {
// If the chain backend is still syncing, retry.
if strings.Contains(err.Error(), "still syncing") {
select {
case <-time.After(100 * time.Millisecond):
goto tryconnect
case <-syncTimeout:
return fmt.Errorf("chain backend did not " +
"finish syncing")
}
}
return err
}
return nil
}
// EnsureConnected will try to connect to two nodes, returning no error if they
// are already connected. If the nodes were not connected previously, this will
// behave the same as ConnectNodes. If a pending connection request has already
// been made, the method will block until the two nodes appear in each other's
// peers list, or until the 15s timeout expires.
func (n *NetworkHarness) EnsureConnected(ctx context.Context, a, b *HarnessNode) error {
// errConnectionRequested is used to signal that a connection was
// requested successfully, which is distinct from already being
// connected to the peer.
errConnectionRequested := errors.New("connection request in progress")
tryConnect := func(a, b *HarnessNode) error {
ctxt, _ := context.WithTimeout(ctx, 15*time.Second)
bInfo, err := b.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
req := &lnrpc.ConnectPeerRequest{
Addr: &lnrpc.LightningAddress{
Pubkey: bInfo.IdentityPubkey,
Host: b.cfg.P2PAddr(),
},
}
ctxt, _ = context.WithTimeout(ctx, 15*time.Second)
err = n.connect(ctxt, req, a)
switch {
// Request was successful, wait for both to display the
// connection.
case err == nil:
return errConnectionRequested
// If the two are already connected, we return early with no
// error.
case strings.Contains(err.Error(), "already connected to peer"):
return nil
default:
return err
}
}
aErr := tryConnect(a, b)
bErr := tryConnect(b, a)
switch {
case aErr == nil && bErr == nil:
// If both reported already being connected to each other, we
// can exit early.
return nil
case aErr != nil && aErr != errConnectionRequested:
// Return any critical errors returned by either alice.
return aErr
case bErr != nil && bErr != errConnectionRequested:
// Return any critical errors returned by either bob.
return bErr
default:
// Otherwise one or both requested a connection, so we wait for
// the peers lists to reflect the connection.
}
findSelfInPeerList := func(a, b *HarnessNode) bool {
// If node B is seen in the ListPeers response from node A,
// then we can exit early as the connection has been fully
// established.
ctxt, _ := context.WithTimeout(ctx, 15*time.Second)
resp, err := b.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
return false
}
for _, peer := range resp.Peers {
if peer.PubKey == a.PubKeyStr {
return true
}
}
return false
}
err := wait.Predicate(func() bool {
return findSelfInPeerList(a, b) && findSelfInPeerList(b, a)
}, time.Second*15)
if err != nil {
return fmt.Errorf("peers not connected within 15 seconds")
}
return nil
}
// ConnectNodes establishes an encrypted+authenticated p2p connection from node
// a towards node b. The function will return a non-nil error if the connection
// was unable to be established.
//
// NOTE: This function may block for up to 15-seconds as it will not return
// until the new connection is detected as being known to both nodes.
func (n *NetworkHarness) ConnectNodes(ctx context.Context, a, b *HarnessNode) error {
bobInfo, err := b.GetInfo(ctx, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
req := &lnrpc.ConnectPeerRequest{
Addr: &lnrpc.LightningAddress{
Pubkey: bobInfo.IdentityPubkey,
Host: b.cfg.P2PAddr(),
},
}
if err := n.connect(ctx, req, a); err != nil {
return err
}
err = wait.Predicate(func() bool {
// If node B is seen in the ListPeers response from node A,
// then we can exit early as the connection has been fully
// established.
resp, err := a.ListPeers(ctx, &lnrpc.ListPeersRequest{})
if err != nil {
return false
}
for _, peer := range resp.Peers {
if peer.PubKey == b.PubKeyStr {
return true
}
}
return false
}, time.Second*15)
if err != nil {
return fmt.Errorf("peers not connected within 15 seconds")
}
return nil
}
// DisconnectNodes disconnects node a from node b by sending RPC message
// from a node to b node
func (n *NetworkHarness) DisconnectNodes(ctx context.Context, a, b *HarnessNode) error {
bobInfo, err := b.GetInfo(ctx, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
req := &lnrpc.DisconnectPeerRequest{
PubKey: bobInfo.IdentityPubkey,
}
if _, err := a.DisconnectPeer(ctx, req); err != nil {
return err
}
return nil
}
// RestartNode attempts to restart a lightning node by shutting it down
// cleanly, then restarting the process. This function is fully blocking. Upon
// restart, the RPC connection to the node will be re-attempted, continuing iff
// the connection attempt is successful. If the callback parameter is non-nil,
// then the function will be executed after the node shuts down, but *before*
// the process has been started up again.
//
// This method can be useful when testing edge cases such as a node broadcast
// and invalidated prior state, or persistent state recovery, simulating node
// crashes, etc. Additionally, each time the node is restarted, the caller can
// pass a set of SCBs to pass in via the Unlock method allowing them to restore
// channels during restart.
func (n *NetworkHarness) RestartNode(node *HarnessNode, callback func() error,
chanBackups ...*lnrpc.ChanBackupSnapshot) error {
if err := node.stop(); err != nil {
return err
}
if callback != nil {
if err := callback(); err != nil {
return err
}
}
if err := node.start(n.lndErrorChan); err != nil {
return err
}
// If the node doesn't have a password set, then we can exit here as we
// don't need to unlock it.
if len(node.cfg.Password) == 0 {
return nil
}
// Otherwise, we'll unlock the wallet, then complete the final steps
// for the node initialization process.
unlockReq := &lnrpc.UnlockWalletRequest{
WalletPassword: node.cfg.Password,
}
if len(chanBackups) != 0 {
unlockReq.ChannelBackups = chanBackups[0]
unlockReq.RecoveryWindow = 1000
}
return node.Unlock(context.Background(), unlockReq)
}
// SuspendNode stops the given node and returns a callback that can be used to
// start it again.
func (n *NetworkHarness) SuspendNode(node *HarnessNode) (func() error, error) {
if err := node.stop(); err != nil {
return nil, err
}
restart := func() error {
return node.start(n.lndErrorChan)
}
return restart, nil
}
// ShutdownNode stops an active lnd process and returns when the process has
// exited and any temporary directories have been cleaned up.
func (n *NetworkHarness) ShutdownNode(node *HarnessNode) error {
if err := node.shutdown(); err != nil {
return err
}
delete(n.activeNodes, node.NodeID)
return nil
}
// StopNode stops the target node, but doesn't yet clean up its directories.
// This can be used to temporarily bring a node down during a test, to be later
// started up again.
func (n *NetworkHarness) StopNode(node *HarnessNode) error {
return node.stop()
}
// SaveProfilesPages hits profiles pages of all active nodes and writes it to
// disk using a similar naming scheme as to the regular set of logs.
func (n *NetworkHarness) SaveProfilesPages() {
// Only write gorutine dumps if flag is active.
if !(*goroutineDump) {
return
}
for _, node := range n.activeNodes {
if err := saveProfilesPage(node); err != nil {
fmt.Println(err)
}
}
}
// saveProfilesPage saves the profiles page for the given node to file.
func saveProfilesPage(node *HarnessNode) error {
resp, err := http.Get(
fmt.Sprintf(
"http://localhost:%d/debug/pprof/goroutine?debug=1",
node.cfg.ProfilePort,
),
)
if err != nil {
return fmt.Errorf("Failed to get profile page "+
"(node_id=%d, name=%s): %v\n",
node.NodeID, node.cfg.Name, err)
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
return fmt.Errorf("Failed to read profile page "+
"(node_id=%d, name=%s): %v\n",
node.NodeID, node.cfg.Name, err)
}
fileName := fmt.Sprintf(
"pprof-%d-%s-%s.log", node.NodeID, node.cfg.Name,
hex.EncodeToString(node.PubKey[:logPubKeyBytes]),
)
logFile, err := os.Create(fileName)
if err != nil {
return fmt.Errorf("Failed to create file for profile page "+
"(node_id=%d, name=%s): %v\n",
node.NodeID, node.cfg.Name, err)
}
defer logFile.Close()
_, err = logFile.Write(body)
if err != nil {
return fmt.Errorf("Failed to save profile page "+
"(node_id=%d, name=%s): %v\n",
node.NodeID, node.cfg.Name, err)
}
return nil
}
// TODO(roasbeef): add a WithChannel higher-order function?
// * python-like context manager w.r.t using a channel within a test
// * possibly adds more funds to the target wallet if the funds are not
// enough
// txWatchRequest encapsulates a request to the harness' Bitcoin network
// watcher to dispatch a notification once a transaction with the target txid
// is seen within the test network.
type txWatchRequest struct {
txid chainhash.Hash
eventChan chan struct{}
}
// networkWatcher is a goroutine which accepts async notification
// requests for the broadcast of a target transaction, and then dispatches the
// transaction once its seen on the Bitcoin network.
func (n *NetworkHarness) networkWatcher() {
seenTxns := make(map[chainhash.Hash]struct{})
clients := make(map[chainhash.Hash][]chan struct{})
for {
select {
case <-n.quit:
return
case req := <-n.bitcoinWatchRequests:
// If we've already seen this transaction, then
// immediately dispatch the request. Otherwise, append
// to the list of clients who are watching for the
// broadcast of this transaction.
if _, ok := seenTxns[req.txid]; ok {
close(req.eventChan)
} else {
clients[req.txid] = append(clients[req.txid], req.eventChan)
}
case txid := <-n.seenTxns:
// Add this txid to our set of "seen" transactions. So
// we're able to dispatch any notifications for this
// txid which arrive *after* it's seen within the
// network.
seenTxns[*txid] = struct{}{}
// If there isn't a registered notification for this
// transaction then ignore it.
txClients, ok := clients[*txid]
if !ok {
continue
}
// Otherwise, dispatch the notification to all clients,
// cleaning up the now un-needed state.
for _, client := range txClients {
close(client)
}
delete(clients, *txid)
}
}
}
// OnTxAccepted is a callback to be called each time a new transaction has been
// broadcast on the network.
func (n *NetworkHarness) OnTxAccepted(hash *chainhash.Hash) {
select {
case n.seenTxns <- hash:
case <-n.quit:
return
}
}
// WaitForTxBroadcast blocks until the target txid is seen on the network. If
// the transaction isn't seen within the network before the passed timeout,
// then an error is returned.
// TODO(roasbeef): add another method which creates queue of all seen transactions
func (n *NetworkHarness) WaitForTxBroadcast(ctx context.Context, txid chainhash.Hash) error {
// Return immediately if harness has been torn down.
select {
case <-n.quit:
return fmt.Errorf("NetworkHarness has been torn down")
default:
}
eventChan := make(chan struct{})
n.bitcoinWatchRequests <- &txWatchRequest{
txid: txid,
eventChan: eventChan,
}
select {
case <-eventChan:
return nil
case <-n.quit:
return fmt.Errorf("NetworkHarness has been torn down")
case <-ctx.Done():
return fmt.Errorf("tx not seen before context timeout")
}
}
// OpenChannelParams houses the params to specify when opening a new channel.
type OpenChannelParams struct {
// Amt is the local amount being put into the channel.
Amt btcutil.Amount
// PushAmt is the amount that should be pushed to the remote when the
// channel is opened.
PushAmt btcutil.Amount
// Private is a boolan indicating whether the opened channel should be
// private.
Private bool
// SpendUnconfirmed is a boolean indicating whether we can utilize
// unconfirmed outputs to fund the channel.
SpendUnconfirmed bool
// MinHtlc is the htlc_minimum_msat value set when opening the channel.
MinHtlc lnwire.MilliSatoshi
}
// OpenChannel attempts to open a channel between srcNode and destNode with the
// passed channel funding parameters. If the passed context has a timeout, then
// if the timeout is reached before the channel pending notification is
// received, an error is returned. The confirmed boolean determines whether we
// should fund the channel with confirmed outputs or not.
func (n *NetworkHarness) OpenChannel(ctx context.Context,
srcNode, destNode *HarnessNode, p OpenChannelParams) (
lnrpc.Lightning_OpenChannelClient, error) {
// Wait until srcNode and destNode have the latest chain synced.
// Otherwise, we may run into a check within the funding manager that
// prevents any funding workflows from being kicked off if the chain
// isn't yet synced.
if err := srcNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("Unable to sync srcNode chain: %v", err)
}
if err := destNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("Unable to sync destNode chain: %v", err)
}
minConfs := int32(1)
if p.SpendUnconfirmed {
minConfs = 0
}
openReq := &lnrpc.OpenChannelRequest{
NodePubkey: destNode.PubKey[:],
LocalFundingAmount: int64(p.Amt),
PushSat: int64(p.PushAmt),
Private: p.Private,
MinConfs: minConfs,
SpendUnconfirmed: p.SpendUnconfirmed,
MinHtlcMsat: int64(p.MinHtlc),
}
respStream, err := srcNode.OpenChannel(ctx, openReq)
if err != nil {
return nil, fmt.Errorf("unable to open channel between "+
"alice and bob: %v", err)
}
chanOpen := make(chan struct{})
errChan := make(chan error)
go func() {
// Consume the "channel pending" update. This waits until the node
// notifies us that the final message in the channel funding workflow
// has been sent to the remote node.
resp, err := respStream.Recv()
if err != nil {
errChan <- err
return
}
if _, ok := resp.Update.(*lnrpc.OpenStatusUpdate_ChanPending); !ok {
errChan <- fmt.Errorf("expected channel pending update, "+
"instead got %v", resp)
return
}
close(chanOpen)
}()
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached before chan pending "+
"update sent: %v", err)
case err := <-errChan:
return nil, err
case <-chanOpen:
return respStream, nil
}
}
// OpenPendingChannel attempts to open a channel between srcNode and destNode with the
// passed channel funding parameters. If the passed context has a timeout, then
// if the timeout is reached before the channel pending notification is
// received, an error is returned.
func (n *NetworkHarness) OpenPendingChannel(ctx context.Context,
srcNode, destNode *HarnessNode, amt btcutil.Amount,
pushAmt btcutil.Amount) (*lnrpc.PendingUpdate, error) {
// Wait until srcNode and destNode have blockchain synced
if err := srcNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("Unable to sync srcNode chain: %v", err)
}
if err := destNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("Unable to sync destNode chain: %v", err)
}
openReq := &lnrpc.OpenChannelRequest{
NodePubkey: destNode.PubKey[:],
LocalFundingAmount: int64(amt),
PushSat: int64(pushAmt),
Private: false,
}
respStream, err := srcNode.OpenChannel(ctx, openReq)
if err != nil {
return nil, fmt.Errorf("unable to open channel between "+
"alice and bob: %v", err)
}
chanPending := make(chan *lnrpc.PendingUpdate)
errChan := make(chan error)
go func() {
// Consume the "channel pending" update. This waits until the node
// notifies us that the final message in the channel funding workflow
// has been sent to the remote node.
resp, err := respStream.Recv()
if err != nil {
errChan <- err
return
}
pendingResp, ok := resp.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
if !ok {
errChan <- fmt.Errorf("expected channel pending update, "+
"instead got %v", resp)
return
}
chanPending <- pendingResp.ChanPending
}()
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached before chan pending " +
"update sent")
case err := <-errChan:
return nil, err
case pendingChan := <-chanPending:
return pendingChan, nil
}
}
// WaitForChannelOpen waits for a notification that a channel is open by
// consuming a message from the past open channel stream. If the passed context
// has a timeout, then if the timeout is reached before the channel has been
// opened, then an error is returned.
func (n *NetworkHarness) WaitForChannelOpen(ctx context.Context,
openChanStream lnrpc.Lightning_OpenChannelClient) (*lnrpc.ChannelPoint, error) {
errChan := make(chan error)
respChan := make(chan *lnrpc.ChannelPoint)
go func() {
resp, err := openChanStream.Recv()
if err != nil {
errChan <- fmt.Errorf("unable to read rpc resp: %v", err)
return
}
fundingResp, ok := resp.Update.(*lnrpc.OpenStatusUpdate_ChanOpen)
if !ok {
errChan <- fmt.Errorf("expected channel open update, "+
"instead got %v", resp)
return
}
respChan <- fundingResp.ChanOpen.ChannelPoint
}()
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached while waiting for " +
"channel open")
case err := <-errChan:
return nil, err
case chanPoint := <-respChan:
return chanPoint, nil
}
}
// CloseChannel attempts to close the channel indicated by the
// passed channel point, initiated by the passed lnNode. If the passed context
// has a timeout, an error is returned if that timeout is reached before the
// channel close is pending.
func (n *NetworkHarness) CloseChannel(ctx context.Context,
lnNode *HarnessNode, cp *lnrpc.ChannelPoint,
force bool) (lnrpc.Lightning_CloseChannelClient, *chainhash.Hash, error) {
// Create a channel outpoint that we can use to compare to channels
// from the ListChannelsResponse.
txidHash, err := getChanPointFundingTxid(cp)
if err != nil {
return nil, nil, err
}
fundingTxID, err := chainhash.NewHash(txidHash)
if err != nil {
return nil, nil, err
}
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: cp.OutputIndex,
}
// We'll wait for *both* nodes to read the channel as active if we're
// performing a cooperative channel closure.
if !force {
timeout := time.Second * 15
listReq := &lnrpc.ListChannelsRequest{}
// We define two helper functions, one two locate a particular
// channel, and the other to check if a channel is active or
// not.
filterChannel := func(node *HarnessNode,
op wire.OutPoint) (*lnrpc.Channel, error) {
listResp, err := node.ListChannels(ctx, listReq)
if err != nil {
return nil, err
}
for _, c := range listResp.Channels {
if c.ChannelPoint == op.String() {
return c, nil
}
}
return nil, fmt.Errorf("unable to find channel")
}
activeChanPredicate := func(node *HarnessNode) func() bool {
return func() bool {
channel, err := filterChannel(node, chanPoint)
if err != nil {
return false
}
return channel.Active
}
}
// Next, we'll fetch the target channel in order to get the
// harness node that will be receiving the channel close request.
targetChan, err := filterChannel(lnNode, chanPoint)
if err != nil {
return nil, nil, err
}
receivingNode, err := n.LookUpNodeByPub(targetChan.RemotePubkey)
if err != nil {
return nil, nil, err
}
// Before proceeding, we'll ensure that the channel is active
// for both nodes.
err = wait.Predicate(activeChanPredicate(lnNode), timeout)
if err != nil {
return nil, nil, fmt.Errorf("channel of closing " +
"node not active in time")
}
err = wait.Predicate(activeChanPredicate(receivingNode), timeout)
if err != nil {
return nil, nil, fmt.Errorf("channel of receiving " +
"node not active in time")
}
}
closeReq := &lnrpc.CloseChannelRequest{
ChannelPoint: cp,
Force: force,
}
closeRespStream, err := lnNode.CloseChannel(ctx, closeReq)
if err != nil {
return nil, nil, fmt.Errorf("unable to close channel: %v", err)
}
errChan := make(chan error)
fin := make(chan *chainhash.Hash)
go func() {
// Consume the "channel close" update in order to wait for the closing
// transaction to be broadcast, then wait for the closing tx to be seen
// within the network.
closeResp, err := closeRespStream.Recv()
if err != nil {
errChan <- err
return
}
pendingClose, ok := closeResp.Update.(*lnrpc.CloseStatusUpdate_ClosePending)
if !ok {
errChan <- fmt.Errorf("expected channel close update, "+
"instead got %v", pendingClose)
return
}
closeTxid, err := chainhash.NewHash(pendingClose.ClosePending.Txid)
if err != nil {
errChan <- err
return
}
if err := n.WaitForTxBroadcast(ctx, *closeTxid); err != nil {
errChan <- err
return
}
fin <- closeTxid
}()
// Wait until either the deadline for the context expires, an error
// occurs, or the channel close update is received.
select {
case <-ctx.Done():
return nil, nil, fmt.Errorf("timeout reached before channel close " +
"initiated")
case err := <-errChan:
return nil, nil, err
case closeTxid := <-fin:
return closeRespStream, closeTxid, nil
}
}
// WaitForChannelClose waits for a notification from the passed channel close
// stream that the node has deemed the channel has been fully closed. If the
// passed context has a timeout, then if the timeout is reached before the
// notification is received then an error is returned.
func (n *NetworkHarness) WaitForChannelClose(ctx context.Context,
closeChanStream lnrpc.Lightning_CloseChannelClient) (*chainhash.Hash, error) {
errChan := make(chan error)
updateChan := make(chan *lnrpc.CloseStatusUpdate_ChanClose)
go func() {
closeResp, err := closeChanStream.Recv()
if err != nil {
errChan <- err
return
}
closeFin, ok := closeResp.Update.(*lnrpc.CloseStatusUpdate_ChanClose)
if !ok {
errChan <- fmt.Errorf("expected channel close update, "+
"instead got %v", closeFin)
return
}
updateChan <- closeFin
}()
// Wait until either the deadline for the context expires, an error
// occurs, or the channel close update is received.
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached before update sent")
case err := <-errChan:
return nil, err
case update := <-updateChan:
return chainhash.NewHash(update.ChanClose.ClosingTxid)
}
}
// AssertChannelExists asserts that an active channel identified by the
// specified channel point exists from the point-of-view of the node.
func (n *NetworkHarness) AssertChannelExists(ctx context.Context,
node *HarnessNode, chanPoint *wire.OutPoint) error {
req := &lnrpc.ListChannelsRequest{}
var predErr error
pred := func() bool {
resp, err := node.ListChannels(ctx, req)
if err != nil {
predErr = fmt.Errorf("unable fetch node's channels: %v", err)
return false
}
for _, channel := range resp.Channels {
if channel.ChannelPoint == chanPoint.String() {
return channel.Active
}
}
return false
}
if err := wait.Predicate(pred, time.Second*15); err != nil {
return fmt.Errorf("channel not found: %v", predErr)
}
return nil
}
// DumpLogs reads the current logs generated by the passed node, and returns
// the logs as a single string. This function is useful for examining the logs
// of a particular node in the case of a test failure.
// Logs from lightning node being generated with delay - you should
// add time.Sleep() in order to get all logs.
func (n *NetworkHarness) DumpLogs(node *HarnessNode) (string, error) {
logFile := fmt.Sprintf("%v/simnet/lnd.log", node.cfg.LogDir)
buf, err := ioutil.ReadFile(logFile)
if err != nil {
return "", err
}
return string(buf), nil
}
// SendCoins attempts to send amt satoshis from the internal mining node to the
// targeted lightning node using a P2WKH address. 6 blocks are mined after in
// order to confirm the transaction.
func (n *NetworkHarness) SendCoins(ctx context.Context, amt btcutil.Amount,
target *HarnessNode) error {
return n.sendCoins(
ctx, amt, target, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
true,
)
}
// SendCoinsUnconfirmed sends coins from the internal mining node to the target
// lightning node using a P2WPKH address. No blocks are mined after, so the
// transaction remains unconfirmed.
func (n *NetworkHarness) SendCoinsUnconfirmed(ctx context.Context,
amt btcutil.Amount, target *HarnessNode) error {
return n.sendCoins(
ctx, amt, target, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
false,
)
}
// SendCoinsNP2WKH attempts to send amt satoshis from the internal mining node
// to the targeted lightning node using a NP2WKH address.
func (n *NetworkHarness) SendCoinsNP2WKH(ctx context.Context,
amt btcutil.Amount, target *HarnessNode) error {
return n.sendCoins(
ctx, amt, target, lnrpc.AddressType_NESTED_PUBKEY_HASH,
true,
)
}
// sendCoins attempts to send amt satoshis from the internal mining node to the
// targeted lightning node. The confirmed boolean indicates whether the
// transaction that pays to the target should confirm.
func (n *NetworkHarness) sendCoins(ctx context.Context, amt btcutil.Amount,
target *HarnessNode, addrType lnrpc.AddressType,
confirmed bool) error {
balReq := &lnrpc.WalletBalanceRequest{}
initialBalance, err := target.WalletBalance(ctx, balReq)
if err != nil {
return err
}
// First, obtain an address from the target lightning node, preferring
// to receive a p2wkh address s.t the output can immediately be used as
// an input to a funding transaction.
addrReq := &lnrpc.NewAddressRequest{
Type: addrType,
}
resp, err := target.NewAddress(ctx, addrReq)
if err != nil {
return err
}
addr, err := btcutil.DecodeAddress(resp.Address, n.netParams)
if err != nil {
return err
}
addrScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return err
}
// Generate a transaction which creates an output to the target
// pkScript of the desired amount.
output := &wire.TxOut{
PkScript: addrScript,
Value: int64(amt),
}
_, err = n.Miner.SendOutputs([]*wire.TxOut{output}, 7500)
if err != nil {
return err
}
// Encode the pkScript in hex as this the format that it will be
// returned via rpc.
expPkScriptStr := hex.EncodeToString(addrScript)
// Now, wait for ListUnspent to show the unconfirmed transaction
// containing the correct pkscript.
err = wait.NoError(func() error {
// Since neutrino doesn't support unconfirmed outputs, skip
// this check.
if target.cfg.BackendCfg.Name() == "neutrino" {
return nil
}
req := &lnrpc.ListUnspentRequest{}
resp, err := target.ListUnspent(ctx, req)
if err != nil {
return err
}
// When using this method, there should only ever be on
// unconfirmed transaction.
if len(resp.Utxos) != 1 {
return fmt.Errorf("number of unconfirmed utxos "+
"should be 1, found %d", len(resp.Utxos))
}
// Assert that the lone unconfirmed utxo contains the same
// pkscript as the output generated above.
pkScriptStr := resp.Utxos[0].PkScript
if strings.Compare(pkScriptStr, expPkScriptStr) != 0 {
return fmt.Errorf("pkscript mismatch, want: %s, "+
"found: %s", expPkScriptStr, pkScriptStr)
}
return nil
}, 15*time.Second)
if err != nil {
return fmt.Errorf("unconfirmed utxo was not found in "+
"ListUnspent: %v", err)
}
// If the transaction should remain unconfirmed, then we'll wait until
// the target node's unconfirmed balance reflects the expected balance
// and exit.
if !confirmed {
expectedBalance := btcutil.Amount(initialBalance.UnconfirmedBalance) + amt
return target.WaitForBalance(expectedBalance, false)
}
// Otherwise, we'll generate 6 new blocks to ensure the output gains a
// sufficient number of confirmations and wait for the balance to
// reflect what's expected.
if _, err := n.Miner.Node.Generate(6); err != nil {
return err
}
expectedBalance := btcutil.Amount(initialBalance.ConfirmedBalance) + amt
return target.WaitForBalance(expectedBalance, true)
}
// CopyFile copies the file src to dest.
func CopyFile(dest, src string) error {
s, err := os.Open(src)
if err != nil {
return err
}
defer s.Close()
d, err := os.Create(dest)
if err != nil {
return err
}
if _, err := io.Copy(d, s); err != nil {
d.Close()
return err
}
return d.Close()
}