1369 lines
43 KiB
Go
1369 lines
43 KiB
Go
package main
|
|
|
|
import (
|
|
"container/list"
|
|
"fmt"
|
|
"net"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/lightningnetwork/lnd/brontide"
|
|
|
|
"bytes"
|
|
|
|
"github.com/go-errors/errors"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/htlcswitch"
|
|
"github.com/lightningnetwork/lnd/lnrpc"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/roasbeef/btcd/btcec"
|
|
"github.com/roasbeef/btcd/chaincfg/chainhash"
|
|
"github.com/roasbeef/btcd/connmgr"
|
|
"github.com/roasbeef/btcd/txscript"
|
|
"github.com/roasbeef/btcd/wire"
|
|
)
|
|
|
|
var (
|
|
numNodes int32
|
|
)
|
|
|
|
const (
|
|
// pingInterval is the interval at which ping messages are sent.
|
|
pingInterval = 1 * time.Minute
|
|
|
|
// outgoingQueueLen is the buffer size of the channel which houses
|
|
// messages to be sent across the wire, requested by objects outside
|
|
// this struct.
|
|
outgoingQueueLen = 50
|
|
)
|
|
|
|
// outgoinMsg packages an lnwire.Message to be sent out on the wire, along with
|
|
// a buffered channel which will be sent upon once the write is complete. This
|
|
// buffered channel acts as a semaphore to be used for synchronization purposes.
|
|
type outgoinMsg struct {
|
|
msg lnwire.Message
|
|
sentChan chan struct{} // MUST be buffered.
|
|
}
|
|
|
|
// newChannelMsg packages a lnwallet.LightningChannel with a channel that
|
|
// allows the receiver of the request to report when the funding transaction
|
|
// has been confirmed and the channel creation process completed.
|
|
type newChannelMsg struct {
|
|
channel *lnwallet.LightningChannel
|
|
done chan struct{}
|
|
}
|
|
|
|
// chanSnapshotReq is a message sent by outside subsystems to a peer in order
|
|
// to gain a snapshot of the peer's currently active channels.
|
|
type chanSnapshotReq struct {
|
|
resp chan []*channeldb.ChannelSnapshot
|
|
}
|
|
|
|
// peer is an active peer on the Lightning Network. This struct is responsible
|
|
// for managing any channel state related to this peer. To do so, it has
|
|
// several helper goroutines to handle events such as HTLC timeouts, new
|
|
// funding workflow, and detecting an uncooperative closure of any active
|
|
// channels.
|
|
// TODO(roasbeef): proper reconnection logic
|
|
type peer struct {
|
|
// The following fields are only meant to be used *atomically*
|
|
bytesReceived uint64
|
|
bytesSent uint64
|
|
|
|
// pingTime is a rough estimate of the RTT (round-trip-time) between us
|
|
// and the connected peer. This time is expressed in micro seconds.
|
|
// TODO(roasbeef): also use a WMA or EMA?
|
|
pingTime int64
|
|
|
|
// pingLastSend is the Unix time expressed in nanoseconds when we sent
|
|
// our last ping message.
|
|
pingLastSend int64
|
|
|
|
// MUST be used atomically.
|
|
started int32
|
|
disconnect int32
|
|
|
|
connReq *connmgr.ConnReq
|
|
conn net.Conn
|
|
|
|
addr *lnwire.NetAddress
|
|
pubKeyBytes [33]byte
|
|
|
|
inbound bool
|
|
id int32
|
|
|
|
// This mutex protects all the stats below it.
|
|
sync.RWMutex
|
|
timeConnected time.Time
|
|
lastSend time.Time
|
|
lastRecv time.Time
|
|
|
|
// sendQueue is the channel which is used to queue outgoing to be
|
|
// written onto the wire. Note that this channel is unbuffered.
|
|
sendQueue chan outgoinMsg
|
|
|
|
// outgoingQueue is a buffered channel which allows second/third party
|
|
// objects to queue messages to be sent out on the wire.
|
|
outgoingQueue chan outgoinMsg
|
|
|
|
// sendQueueSync is used as a semaphore to synchronize writes between
|
|
// the writeHandler and the queueHandler.
|
|
sendQueueSync chan struct{}
|
|
|
|
// activeChannels is a map which stores the state machines of all
|
|
// active channels. Channels are indexed into the map by the txid of
|
|
// the funding transaction which opened the channel.
|
|
activeChanMtx sync.RWMutex
|
|
activeChannels map[lnwire.ChannelID]*lnwallet.LightningChannel
|
|
chanSnapshotReqs chan *chanSnapshotReq
|
|
|
|
// newChannels is used by the fundingManager to send fully opened
|
|
// channels to the source peer which handled the funding workflow.
|
|
newChannels chan *newChannelMsg
|
|
|
|
// localCloseChanReqs is a channel in which any local requests to close
|
|
// a particular channel are sent over.
|
|
localCloseChanReqs chan *htlcswitch.ChanClose
|
|
|
|
// shutdownChanReqs is used to send the Shutdown messages that initiate
|
|
// the cooperative close workflow.
|
|
shutdownChanReqs chan *lnwire.Shutdown
|
|
|
|
// closingSignedChanReqs is used to send signatures for proposed
|
|
// channel close transactions during the cooperative close workflow.
|
|
closingSignedChanReqs chan *lnwire.ClosingSigned
|
|
|
|
server *server
|
|
|
|
// localSharedFeatures is a product of comparison of our and their
|
|
// local features vectors which consist of features which are present
|
|
// on both sides.
|
|
localSharedFeatures *lnwire.SharedFeatures
|
|
|
|
// globalSharedFeatures is a product of comparison of our and their
|
|
// global features vectors which consist of features which are present
|
|
// on both sides.
|
|
globalSharedFeatures *lnwire.SharedFeatures
|
|
|
|
queueQuit chan struct{}
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
}
|
|
|
|
// newPeer creates a new peer from an establish connection object, and a
|
|
// pointer to the main server.
|
|
func newPeer(conn net.Conn, connReq *connmgr.ConnReq, server *server,
|
|
addr *lnwire.NetAddress, inbound bool) (*peer, error) {
|
|
|
|
nodePub := addr.IdentityKey
|
|
|
|
p := &peer{
|
|
conn: conn,
|
|
addr: addr,
|
|
|
|
id: atomic.AddInt32(&numNodes, 1),
|
|
inbound: inbound,
|
|
connReq: connReq,
|
|
|
|
server: server,
|
|
|
|
sendQueueSync: make(chan struct{}, 1),
|
|
sendQueue: make(chan outgoinMsg, 1),
|
|
outgoingQueue: make(chan outgoinMsg, outgoingQueueLen),
|
|
|
|
activeChannels: make(map[lnwire.ChannelID]*lnwallet.LightningChannel),
|
|
chanSnapshotReqs: make(chan *chanSnapshotReq),
|
|
newChannels: make(chan *newChannelMsg, 1),
|
|
|
|
localCloseChanReqs: make(chan *htlcswitch.ChanClose),
|
|
shutdownChanReqs: make(chan *lnwire.Shutdown),
|
|
closingSignedChanReqs: make(chan *lnwire.ClosingSigned),
|
|
|
|
localSharedFeatures: nil,
|
|
globalSharedFeatures: nil,
|
|
|
|
queueQuit: make(chan struct{}),
|
|
quit: make(chan struct{}),
|
|
}
|
|
copy(p.pubKeyBytes[:], nodePub.SerializeCompressed())
|
|
|
|
return p, nil
|
|
}
|
|
|
|
// Start starts all helper goroutines the peer needs for normal operations. In
|
|
// the case this peer has already been started, then this function is a loop.
|
|
func (p *peer) Start() error {
|
|
if atomic.AddInt32(&p.started, 1) != 1 {
|
|
return nil
|
|
}
|
|
|
|
peerLog.Tracef("peer %v starting", p)
|
|
|
|
// Exchange local and global features, the init message should be very
|
|
// first between two nodes.
|
|
if err := p.sendInitMsg(); err != nil {
|
|
return fmt.Errorf("unable to send init msg: %v", err)
|
|
}
|
|
|
|
// Before we launch any of the helper goroutines off the peer struct,
|
|
// we'll first ensure proper adherence to the p2p protocol. The init
|
|
// message MUST be sent before any other message.
|
|
readErr := make(chan error, 1)
|
|
msgChan := make(chan lnwire.Message, 1)
|
|
go func() {
|
|
msg, err := p.readNextMessage()
|
|
if err != nil {
|
|
readErr <- err
|
|
msgChan <- nil
|
|
}
|
|
readErr <- nil
|
|
msgChan <- msg
|
|
}()
|
|
|
|
select {
|
|
// In order to avoid blocking indefinitely, we'll give the other peer
|
|
// an upper timeout of 15 seconds to respond before we bail out early.
|
|
case <-time.After(time.Second * 15):
|
|
return fmt.Errorf("peer did not complete handshake within 5 " +
|
|
"seconds")
|
|
case err := <-readErr:
|
|
if err != nil {
|
|
return fmt.Errorf("unable to read init msg: %v", err)
|
|
}
|
|
}
|
|
|
|
// Once the init message arrives, we can parse it so we can figure out
|
|
// the negotiation of features for this session.
|
|
msg := <-msgChan
|
|
if msg, ok := msg.(*lnwire.Init); ok {
|
|
if err := p.handleInitMsg(msg); err != nil {
|
|
return err
|
|
}
|
|
} else {
|
|
return errors.New("very first message between nodes " +
|
|
"must be init message")
|
|
}
|
|
|
|
// Fetch and then load all the active channels we have with this remote
|
|
// peer from the database.
|
|
activeChans, err := p.server.chanDB.FetchOpenChannels(p.addr.IdentityKey)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to fetch active chans "+
|
|
"for peer %v: %v", p, err)
|
|
return err
|
|
}
|
|
|
|
// Next, load all the active channels we have with this peer,
|
|
// registering them with the switch and launching the necessary
|
|
// goroutines required to operate them.
|
|
peerLog.Debugf("Loaded %v active channels from database with "+
|
|
"peerID(%v)", len(activeChans), p.id)
|
|
if err := p.loadActiveChannels(activeChans); err != nil {
|
|
return fmt.Errorf("unable to load channels: %v", err)
|
|
}
|
|
|
|
p.wg.Add(5)
|
|
go p.queueHandler()
|
|
go p.writeHandler()
|
|
go p.readHandler()
|
|
go p.channelManager()
|
|
go p.pingHandler()
|
|
|
|
return nil
|
|
}
|
|
|
|
// loadActiveChannels creates indexes within the peer for tracking all active
|
|
// channels returned by the database.
|
|
func (p *peer) loadActiveChannels(chans []*channeldb.OpenChannel) error {
|
|
for _, dbChan := range chans {
|
|
// If the channel isn't yet open, then we don't need to process
|
|
// it any further.
|
|
if dbChan.IsPending {
|
|
continue
|
|
}
|
|
|
|
lnChan, err := lnwallet.NewLightningChannel(p.server.cc.signer,
|
|
p.server.cc.chainNotifier, p.server.cc.feeEstimator, dbChan)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
chanPoint := *dbChan.ChanID
|
|
chanID := lnwire.NewChanIDFromOutPoint(&chanPoint)
|
|
|
|
p.activeChanMtx.Lock()
|
|
p.activeChannels[chanID] = lnChan
|
|
p.activeChanMtx.Unlock()
|
|
|
|
peerLog.Infof("peerID(%v) loaded ChannelPoint(%v)", p.id, chanPoint)
|
|
|
|
p.server.breachArbiter.newContracts <- lnChan
|
|
|
|
// Register this new channel link with the HTLC Switch. This is
|
|
// necessary to properly route multi-hop payments, and forward
|
|
// new payments triggered by RPC clients.
|
|
sphinxDecoder := htlcswitch.NewSphinxDecoder(p.server.sphinx)
|
|
link := htlcswitch.NewChannelLink(
|
|
htlcswitch.ChannelLinkConfig{
|
|
Peer: p,
|
|
DecodeOnion: sphinxDecoder.Decode,
|
|
SettledContracts: p.server.breachArbiter.settledContracts,
|
|
DebugHTLC: cfg.DebugHTLC,
|
|
Registry: p.server.invoices,
|
|
Switch: p.server.htlcSwitch,
|
|
FwrdingPolicy: p.server.cc.routingPolicy,
|
|
},
|
|
lnChan,
|
|
)
|
|
|
|
if err := p.server.htlcSwitch.AddLink(link); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// WaitForDisconnect waits until the peer has disconnected. A peer may be
|
|
// disconnected if the local or remote side terminating the connection, or an
|
|
// irrecoverable protocol error has been encountered.
|
|
func (p *peer) WaitForDisconnect() {
|
|
<-p.quit
|
|
}
|
|
|
|
// Disconnect terminates the connection with the remote peer. Additionally, a
|
|
// signal is sent to the server and htlcSwitch indicating the resources
|
|
// allocated to the peer can now be cleaned up.
|
|
func (p *peer) Disconnect() {
|
|
if !atomic.CompareAndSwapInt32(&p.disconnect, 0, 1) {
|
|
return
|
|
}
|
|
|
|
peerLog.Tracef("Disconnecting %s", p)
|
|
|
|
// Ensure that the TCP connection is properly closed before continuing.
|
|
p.conn.Close()
|
|
|
|
close(p.quit)
|
|
}
|
|
|
|
// String returns the string representation of this peer.
|
|
func (p *peer) String() string {
|
|
return p.conn.RemoteAddr().String()
|
|
}
|
|
|
|
// readNextMessage reads, and returns the next message on the wire along with
|
|
// any additional raw payload.
|
|
func (p *peer) readNextMessage() (lnwire.Message, error) {
|
|
noiseConn, ok := p.conn.(*brontide.Conn)
|
|
if !ok {
|
|
return nil, fmt.Errorf("brontide.Conn required to read messages")
|
|
}
|
|
|
|
// First we'll read the next _full_ message. We do this rather than
|
|
// reading incrementally from the stream as the Lightning wire protocol
|
|
// is message oriented and allows nodes to pad on additional data to
|
|
// the message stream.
|
|
rawMsg, err := noiseConn.ReadNextMessage()
|
|
atomic.AddUint64(&p.bytesReceived, uint64(len(rawMsg)))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Next, create a new io.Reader implementation from the raw message,
|
|
// and use this to decode the message directly from.
|
|
msgReader := bytes.NewReader(rawMsg)
|
|
nextMsg, err := lnwire.ReadMessage(msgReader, 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// TODO(roasbeef): add message summaries
|
|
p.logWireMessage(nextMsg, true)
|
|
|
|
return nextMsg, nil
|
|
}
|
|
|
|
// readHandler is responsible for reading messages off the wire in series, then
|
|
// properly dispatching the handling of the message to the proper subsystem.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *peer) readHandler() {
|
|
var activeChanMtx sync.Mutex
|
|
activeChanStreams := make(map[lnwire.ChannelID]struct{})
|
|
|
|
out:
|
|
for atomic.LoadInt32(&p.disconnect) == 0 {
|
|
nextMsg, err := p.readNextMessage()
|
|
if err != nil {
|
|
peerLog.Infof("unable to read message from %v: %v",
|
|
p, err)
|
|
|
|
switch err.(type) {
|
|
// If this is just a message we don't yet recognize,
|
|
// we'll continue processing as normal as this allows
|
|
// us to introduce new messages in a forwards
|
|
// compatible manner.
|
|
case *lnwire.UnknownMessage:
|
|
continue
|
|
|
|
// If the error we encountered wasn't just a message we
|
|
// didn't recognize, then we'll stop all processing s
|
|
// this is a fatal error.
|
|
default:
|
|
break out
|
|
}
|
|
}
|
|
|
|
var (
|
|
isChanUpdate bool
|
|
targetChan lnwire.ChannelID
|
|
)
|
|
|
|
switch msg := nextMsg.(type) {
|
|
case *lnwire.Pong:
|
|
// When we receive a Pong message in response to our
|
|
// last ping message, we'll use the time in which we
|
|
// sent the ping message to measure a rough estimate of
|
|
// round trip time.
|
|
pingSendTime := atomic.LoadInt64(&p.pingLastSend)
|
|
delay := (time.Now().UnixNano() - pingSendTime) / 1000
|
|
atomic.StoreInt64(&p.pingTime, delay)
|
|
|
|
case *lnwire.Ping:
|
|
pongBytes := make([]byte, msg.NumPongBytes)
|
|
p.queueMsg(lnwire.NewPong(pongBytes), nil)
|
|
|
|
case *lnwire.SingleFundingRequest:
|
|
p.server.fundingMgr.processFundingRequest(msg, p.addr)
|
|
case *lnwire.SingleFundingResponse:
|
|
p.server.fundingMgr.processFundingResponse(msg, p.addr)
|
|
case *lnwire.SingleFundingComplete:
|
|
p.server.fundingMgr.processFundingComplete(msg, p.addr)
|
|
case *lnwire.SingleFundingSignComplete:
|
|
p.server.fundingMgr.processFundingSignComplete(msg, p.addr)
|
|
case *lnwire.FundingLocked:
|
|
p.server.fundingMgr.processFundingLocked(msg, p.addr)
|
|
|
|
case *lnwire.Shutdown:
|
|
p.shutdownChanReqs <- msg
|
|
case *lnwire.ClosingSigned:
|
|
p.closingSignedChanReqs <- msg
|
|
|
|
case *lnwire.Error:
|
|
p.server.fundingMgr.processFundingError(msg, p.addr)
|
|
|
|
// TODO(roasbeef): create ChanUpdater interface for the below
|
|
case *lnwire.UpdateAddHTLC:
|
|
isChanUpdate = true
|
|
targetChan = msg.ChanID
|
|
case *lnwire.UpdateFufillHTLC:
|
|
isChanUpdate = true
|
|
targetChan = msg.ChanID
|
|
case *lnwire.UpdateFailHTLC:
|
|
isChanUpdate = true
|
|
targetChan = msg.ChanID
|
|
case *lnwire.RevokeAndAck:
|
|
isChanUpdate = true
|
|
targetChan = msg.ChanID
|
|
case *lnwire.CommitSig:
|
|
isChanUpdate = true
|
|
targetChan = msg.ChanID
|
|
case *lnwire.UpdateFee:
|
|
isChanUpdate = true
|
|
targetChan = msg.ChanID
|
|
|
|
case *lnwire.ChannelUpdate,
|
|
*lnwire.ChannelAnnouncement,
|
|
*lnwire.NodeAnnouncement,
|
|
*lnwire.AnnounceSignatures:
|
|
|
|
p.server.discoverSrv.ProcessRemoteAnnouncement(msg,
|
|
p.addr.IdentityKey)
|
|
default:
|
|
peerLog.Errorf("unknown message received from peer "+
|
|
"%v", p)
|
|
}
|
|
|
|
if isChanUpdate {
|
|
sendUpdate := func() {
|
|
// Dispatch the commitment update message to the proper
|
|
// active goroutine dedicated to this channel.
|
|
link, err := p.server.htlcSwitch.GetLink(targetChan)
|
|
if err != nil {
|
|
peerLog.Errorf("recv'd update for unknown "+
|
|
"channel %v from %v", targetChan, p)
|
|
return
|
|
}
|
|
link.HandleChannelUpdate(nextMsg)
|
|
}
|
|
|
|
// Check the map of active channel streams, if this map
|
|
// has an entry, then this means the channel is fully
|
|
// open. In this case, we can send the channel update
|
|
// directly without any further waiting.
|
|
activeChanMtx.Lock()
|
|
_, ok := activeChanStreams[targetChan]
|
|
activeChanMtx.Unlock()
|
|
if ok {
|
|
sendUpdate()
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we'll launch a goroutine to synchronize
|
|
// the processing of this message, with the opening of
|
|
// the channel as marked by the funding manage.
|
|
go func() {
|
|
// Block until the channel is marked open.
|
|
p.server.fundingMgr.waitUntilChannelOpen(targetChan)
|
|
|
|
// Once the channel is open, we'll mark the
|
|
// stream as active and send the update to the
|
|
// channel. Marking the stream lets us take the
|
|
// fast path above, skipping the check to the
|
|
// funding manager.
|
|
activeChanMtx.Lock()
|
|
activeChanStreams[targetChan] = struct{}{}
|
|
sendUpdate()
|
|
activeChanMtx.Unlock()
|
|
}()
|
|
}
|
|
}
|
|
|
|
p.Disconnect()
|
|
|
|
p.wg.Done()
|
|
peerLog.Tracef("readHandler for peer %v done", p)
|
|
}
|
|
|
|
// logWireMessage logs the receipt or sending of particular wire message. This
|
|
// function is used rather than just logging the message in order to produce
|
|
// less spammy log messages in trace mode by setting the 'Curve" parameter to
|
|
// nil. Doing this avoids printing out each of the field elements in the curve
|
|
// parameters for secp256k1.
|
|
func (p *peer) logWireMessage(msg lnwire.Message, read bool) {
|
|
switch m := msg.(type) {
|
|
case *lnwire.RevokeAndAck:
|
|
m.NextRevocationKey.Curve = nil
|
|
case *lnwire.NodeAnnouncement:
|
|
m.NodeID.Curve = nil
|
|
case *lnwire.ChannelAnnouncement:
|
|
m.NodeID1.Curve = nil
|
|
m.NodeID2.Curve = nil
|
|
m.BitcoinKey1.Curve = nil
|
|
m.BitcoinKey2.Curve = nil
|
|
case *lnwire.SingleFundingComplete:
|
|
m.RevocationKey.Curve = nil
|
|
case *lnwire.SingleFundingRequest:
|
|
m.CommitmentKey.Curve = nil
|
|
m.ChannelDerivationPoint.Curve = nil
|
|
case *lnwire.SingleFundingResponse:
|
|
m.ChannelDerivationPoint.Curve = nil
|
|
m.CommitmentKey.Curve = nil
|
|
m.RevocationKey.Curve = nil
|
|
case *lnwire.FundingLocked:
|
|
m.NextPerCommitmentPoint.Curve = nil
|
|
}
|
|
|
|
prefix := "readMessage from"
|
|
if !read {
|
|
prefix = "writeMessage to"
|
|
}
|
|
|
|
peerLog.Tracef(prefix+" %v: %v", p, newLogClosure(func() string {
|
|
return spew.Sdump(msg)
|
|
}))
|
|
}
|
|
|
|
// writeMessage writes the target lnwire.Message to the remote peer.
|
|
func (p *peer) writeMessage(msg lnwire.Message) error {
|
|
// Simply exit if we're shutting down.
|
|
if atomic.LoadInt32(&p.disconnect) != 0 {
|
|
return nil
|
|
}
|
|
|
|
// TODO(roasbeef): add message summaries
|
|
p.logWireMessage(msg, false)
|
|
|
|
// As the Lightning wire protocol is fully message oriented, we only
|
|
// allows one wire message per outer encapsulated crypto message. So
|
|
// we'll create a temporary buffer to write the message directly to.
|
|
var msgPayload [lnwire.MaxMessagePayload]byte
|
|
b := bytes.NewBuffer(msgPayload[0:0:len(msgPayload)])
|
|
|
|
// With the temp buffer created and sliced properly (length zero, full
|
|
// capacity), we'll now encode the message directly into this buffer.
|
|
n, err := lnwire.WriteMessage(b, msg, 0)
|
|
atomic.AddUint64(&p.bytesSent, uint64(n))
|
|
|
|
// Finally, write the message itself in a single swoop.
|
|
_, err = p.conn.Write(b.Bytes())
|
|
return err
|
|
}
|
|
|
|
// writeHandler is a goroutine dedicated to reading messages off of an incoming
|
|
// queue, and writing them out to the wire. This goroutine coordinates with the
|
|
// queueHandler in order to ensure the incoming message queue is quickly drained.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *peer) writeHandler() {
|
|
defer func() {
|
|
p.wg.Done()
|
|
peerLog.Tracef("writeHandler for peer %v done", p)
|
|
}()
|
|
|
|
for {
|
|
select {
|
|
case outMsg := <-p.sendQueue:
|
|
switch outMsg.msg.(type) {
|
|
// If we're about to send a ping message, then log the
|
|
// exact time in which we send the message so we can
|
|
// use the delay as a rough estimate of latency to the
|
|
// remote peer.
|
|
case *lnwire.Ping:
|
|
// TODO(roasbeef): do this before the write?
|
|
// possibly account for processing within func?
|
|
now := time.Now().UnixNano()
|
|
atomic.StoreInt64(&p.pingLastSend, now)
|
|
}
|
|
|
|
// Write out the message to the socket, closing the
|
|
// 'sentChan' if it's non-nil, The 'sentChan' allows
|
|
// callers to optionally synchronize sends with the
|
|
// writeHandler.
|
|
err := p.writeMessage(outMsg.msg)
|
|
if outMsg.sentChan != nil {
|
|
close(outMsg.sentChan)
|
|
}
|
|
|
|
if err != nil {
|
|
peerLog.Errorf("unable to write message: %v",
|
|
err)
|
|
p.Disconnect()
|
|
return
|
|
}
|
|
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// queueHandler is responsible for accepting messages from outside subsystems
|
|
// to be eventually sent out on the wire by the writeHandler.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *peer) queueHandler() {
|
|
defer p.wg.Done()
|
|
|
|
pendingMsgs := list.New()
|
|
for {
|
|
// Before add a queue'd message our pending message queue,
|
|
// we'll first try to aggressively empty out our pending list of
|
|
// messaging.
|
|
for {
|
|
// Examine the front of the queue. If this message is
|
|
// nil, then we've emptied out the queue and can accept
|
|
// new messages from outside sub-systems.
|
|
elem := pendingMsgs.Front()
|
|
if elem == nil {
|
|
break
|
|
}
|
|
|
|
select {
|
|
case p.sendQueue <- elem.Value.(outgoinMsg):
|
|
pendingMsgs.Remove(elem)
|
|
case <-p.quit:
|
|
return
|
|
default:
|
|
break
|
|
}
|
|
}
|
|
|
|
// If there weren't any messages to send, or the writehandler
|
|
// is still blocked, then we'll accept a new message into the
|
|
// queue from outside sub-systems.
|
|
select {
|
|
case <-p.quit:
|
|
return
|
|
case msg := <-p.outgoingQueue:
|
|
pendingMsgs.PushBack(msg)
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// pingHandler is responsible for periodically sending ping messages to the
|
|
// remote peer in order to keep the connection alive and/or determine if the
|
|
// connection is still active.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *peer) pingHandler() {
|
|
pingTicker := time.NewTicker(pingInterval)
|
|
defer pingTicker.Stop()
|
|
|
|
// TODO(roasbeef): make dynamic in order to create fake cover traffic
|
|
const numPingBytes = 16
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case <-pingTicker.C:
|
|
p.queueMsg(lnwire.NewPing(numPingBytes), nil)
|
|
case <-p.quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
p.wg.Done()
|
|
}
|
|
|
|
// PingTime returns the estimated ping time to the peer in microseconds.
|
|
func (p *peer) PingTime() int64 {
|
|
return atomic.LoadInt64(&p.pingTime)
|
|
}
|
|
|
|
// queueMsg queues a new lnwire.Message to be eventually sent out on the
|
|
// wire.
|
|
func (p *peer) queueMsg(msg lnwire.Message, doneChan chan struct{}) {
|
|
select {
|
|
case p.outgoingQueue <- outgoinMsg{msg, doneChan}:
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
}
|
|
|
|
// ChannelSnapshots returns a slice of channel snapshots detailing all
|
|
// currently active channels maintained with the remote peer.
|
|
func (p *peer) ChannelSnapshots() []*channeldb.ChannelSnapshot {
|
|
resp := make(chan []*channeldb.ChannelSnapshot, 1)
|
|
p.chanSnapshotReqs <- &chanSnapshotReq{resp}
|
|
return <-resp
|
|
}
|
|
|
|
// channelManager is goroutine dedicated to handling all requests/signals
|
|
// pertaining to the opening, cooperative closing, and force closing of all
|
|
// channels maintained with the remote peer.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *peer) channelManager() {
|
|
// chanShutdowns is a map of channels for which our node has initiated
|
|
// a cooperative channel close. When an lnwire.Shutdown is received,
|
|
// this allows the node to determine the next step to be taken in the
|
|
// workflow.
|
|
chanShutdowns := make(map[lnwire.ChannelID]*htlcswitch.ChanClose)
|
|
|
|
// shutdownSigs is a map of signatures maintained by the responder in a
|
|
// cooperative channel close. This map enables us to respond to
|
|
// subsequent steps in the workflow without having to recalculate our
|
|
// signature for the channel close transaction.
|
|
shutdownSigs := make(map[lnwire.ChannelID][]byte)
|
|
out:
|
|
for {
|
|
select {
|
|
case req := <-p.chanSnapshotReqs:
|
|
p.activeChanMtx.RLock()
|
|
snapshots := make([]*channeldb.ChannelSnapshot, 0,
|
|
len(p.activeChannels))
|
|
for _, activeChan := range p.activeChannels {
|
|
snapshot := activeChan.StateSnapshot()
|
|
snapshots = append(snapshots, snapshot)
|
|
}
|
|
p.activeChanMtx.RUnlock()
|
|
req.resp <- snapshots
|
|
|
|
case newChanReq := <-p.newChannels:
|
|
chanPoint := newChanReq.channel.ChannelPoint()
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
p.activeChanMtx.Lock()
|
|
p.activeChannels[chanID] = newChanReq.channel
|
|
p.activeChanMtx.Unlock()
|
|
|
|
peerLog.Infof("New channel active ChannelPoint(%v) "+
|
|
"with peerId(%v)", chanPoint, p.id)
|
|
|
|
decoder := htlcswitch.NewSphinxDecoder(p.server.sphinx)
|
|
link := htlcswitch.NewChannelLink(
|
|
htlcswitch.ChannelLinkConfig{
|
|
Peer: p,
|
|
DecodeOnion: decoder.Decode,
|
|
SettledContracts: p.server.breachArbiter.settledContracts,
|
|
DebugHTLC: cfg.DebugHTLC,
|
|
Registry: p.server.invoices,
|
|
Switch: p.server.htlcSwitch,
|
|
FwrdingPolicy: p.server.cc.routingPolicy,
|
|
},
|
|
newChanReq.channel,
|
|
)
|
|
|
|
err := p.server.htlcSwitch.AddLink(link)
|
|
if err != nil {
|
|
peerLog.Errorf("can't register new channel "+
|
|
"link(%v) with peerId(%v)", chanPoint, p.id)
|
|
}
|
|
|
|
close(newChanReq.done)
|
|
|
|
// We've just received a local quest to close an active
|
|
// channel.
|
|
case req := <-p.localCloseChanReqs:
|
|
// So we'll first transition the channel to a state of
|
|
// pending shutdown.
|
|
chanID := lnwire.NewChanIDFromOutPoint(req.ChanPoint)
|
|
|
|
// We'll only track this shutdown request if this is a
|
|
// regular close request, and not in response to a
|
|
// channel breach.
|
|
if req.CloseType == htlcswitch.CloseRegular {
|
|
chanShutdowns[chanID] = req
|
|
}
|
|
|
|
// With the state marked as shutting down, we can now
|
|
// proceed with the channel close workflow. If this is
|
|
// regular close, we'll send a shutdown. Otherwise,
|
|
// we'll simply be clearing our indexes.
|
|
p.handleLocalClose(req)
|
|
|
|
// A receipt of a message over this channel indicates that
|
|
// either a shutdown proposal has been initiated, or a prior
|
|
// one has been completed, advancing to the next state of
|
|
// channel closure.
|
|
case req := <-p.shutdownChanReqs:
|
|
// We've just received a shutdown request. First, we'll
|
|
// check in the shutdown map to see if we're the
|
|
// initiator or not. If we don't have an entry for
|
|
// this channel, then this means that we're the
|
|
// responder to the workflow.
|
|
if _, ok := chanShutdowns[req.ChannelID]; !ok {
|
|
// In this case, we'll send a shutdown message,
|
|
// and also prep our closing signature for the
|
|
// case they fees are immediately agreed upon.
|
|
closeSig := p.handleShutdownResponse(req)
|
|
if closeSig != nil {
|
|
shutdownSigs[req.ChannelID] = closeSig
|
|
}
|
|
}
|
|
|
|
// TODO(roasbeef): should also save their delivery
|
|
// address within close request after funding change.
|
|
// * modify complete to include delivery address
|
|
|
|
// A receipt of a message over this channel indicates that the
|
|
// final stage of a channel shutdown workflow has been
|
|
// completed.
|
|
case req := <-p.closingSignedChanReqs:
|
|
// First we'll check if this has an entry in the local
|
|
// shutdown map.
|
|
localCloseReq, ok := chanShutdowns[req.ChannelID]
|
|
|
|
// If it does, then this means we were the initiator of
|
|
// the channel shutdown procedure.
|
|
if ok {
|
|
// To finalize this shtudown, we'll now send a
|
|
// matching close signed message to the other
|
|
// party, and broadcast the closing transaction
|
|
// to the network.
|
|
p.handleInitClosingSigned(localCloseReq, req)
|
|
|
|
delete(chanShutdowns, req.ChannelID)
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we're the responder to the channel
|
|
// shutdown procedure. In this case, we'll mark the
|
|
// channel as pending close, and watch the network for
|
|
// the ultimate confirmation of the closing
|
|
// transaction.
|
|
responderSig := append(shutdownSigs[req.ChannelID],
|
|
byte(txscript.SigHashAll))
|
|
p.handleResponseClosingSigned(req, responderSig)
|
|
delete(shutdownSigs, req.ChannelID)
|
|
|
|
case <-p.quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
p.wg.Done()
|
|
}
|
|
|
|
// handleLocalClose kicks-off the workflow to execute a cooperative or forced
|
|
// unilateral closure of the channel initiated by a local subsystem.
|
|
//
|
|
// TODO(roasbeef): if no more active channels with peer call Remove on connMgr
|
|
// with peerID
|
|
func (p *peer) handleLocalClose(req *htlcswitch.ChanClose) {
|
|
chanID := lnwire.NewChanIDFromOutPoint(req.ChanPoint)
|
|
|
|
p.activeChanMtx.RLock()
|
|
channel, ok := p.activeChannels[chanID]
|
|
p.activeChanMtx.RUnlock()
|
|
if !ok {
|
|
err := fmt.Errorf("unable to close channel, ChannelID(%v) is "+
|
|
"unknown", chanID)
|
|
peerLog.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
switch req.CloseType {
|
|
// A type of CloseRegular indicates that the user has opted to close
|
|
// out this channel on-chain, so we execute the cooperative channel
|
|
// closure workflow.
|
|
case htlcswitch.CloseRegular:
|
|
err := p.sendShutdown(channel)
|
|
if err != nil {
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// A type of CloseBreach indicates that the counterparty has breached
|
|
// the channel therefore we need to clean up our local state.
|
|
case htlcswitch.CloseBreach:
|
|
peerLog.Infof("ChannelPoint(%v) has been breached, wiping "+
|
|
"channel", req.ChanPoint)
|
|
if err := p.WipeChannel(channel); err != nil {
|
|
peerLog.Infof("Unable to wipe channel after detected "+
|
|
"breach: %v", err)
|
|
req.Err <- err
|
|
return
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
// handleShutdownResponse is called when a responder in a cooperative channel
|
|
// close workflow receives a Shutdown message. This is the second step in the
|
|
// cooperative close workflow. This function generates a close transaction with
|
|
// a proposed fee amount and sends the signed transaction to the initiator.
|
|
func (p *peer) handleShutdownResponse(msg *lnwire.Shutdown) []byte {
|
|
p.activeChanMtx.RLock()
|
|
channel, ok := p.activeChannels[msg.ChannelID]
|
|
p.activeChanMtx.RUnlock()
|
|
if !ok {
|
|
peerLog.Errorf("unable to close channel, ChannelPoint(%v) is "+
|
|
"unknown", msg.ChannelID)
|
|
return nil
|
|
}
|
|
|
|
// As we just received a shutdown message, we'll also send a shutdown
|
|
// message with our desired fee so we can start the negotiation.
|
|
if err := p.sendShutdown(channel); err != nil {
|
|
peerLog.Errorf("error while sending shutdown message: %v", err)
|
|
return nil
|
|
}
|
|
|
|
// Calculate an initial proposed fee rate for the close transaction.
|
|
feeRate := p.server.cc.feeEstimator.EstimateFeePerWeight(1) * 1000
|
|
|
|
// TODO(roasbeef): actually perform fee negotiation here, only send sig
|
|
// if we agree to fee
|
|
|
|
// Once both sides agree on a fee, we'll create a signature that closes
|
|
// the channel using the agree upon fee rate.
|
|
// TODO(roasbeef): remove encoding redundancy
|
|
closeSig, proposedFee, err := channel.CreateCloseProposal(feeRate)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to create close proposal: %v", err)
|
|
return nil
|
|
}
|
|
parsedSig, err := btcec.ParseSignature(closeSig, btcec.S256())
|
|
if err != nil {
|
|
peerLog.Errorf("unable to parse signature: %v", err)
|
|
return nil
|
|
}
|
|
|
|
// With the closing signature assembled, we'll send the matching close
|
|
// signed message to the other party so they can broadcast the closing
|
|
// transaction.
|
|
closingSigned := lnwire.NewClosingSigned(msg.ChannelID, proposedFee,
|
|
parsedSig)
|
|
p.queueMsg(closingSigned, nil)
|
|
|
|
return closeSig
|
|
}
|
|
|
|
// handleInitClosingSigned is called when the initiator in a cooperative
|
|
// channel close workflow receives a ClosingSigned message from the responder.
|
|
// This method completes the channel close transaction, sends back a
|
|
// corresponding ClosingSigned message, then broadcasts the channel close
|
|
// transaction. It also performs channel cleanup and reports status back to the
|
|
// caller. This is the initiator's final step in the channel close workflow.
|
|
//
|
|
// Following the broadcast, both the initiator and responder in the channel
|
|
// closure workflow should watch the blockchain for a confirmation of the
|
|
// closing transaction before considering the channel terminated. In the case
|
|
// of an unresponsive remote party, the initiator can either choose to execute
|
|
// a force closure, or backoff for a period of time, and retry the cooperative
|
|
// closure.
|
|
func (p *peer) handleInitClosingSigned(req *htlcswitch.ChanClose, msg *lnwire.ClosingSigned) {
|
|
chanID := lnwire.NewChanIDFromOutPoint(req.ChanPoint)
|
|
p.activeChanMtx.RLock()
|
|
channel, ok := p.activeChannels[chanID]
|
|
p.activeChanMtx.RUnlock()
|
|
if !ok {
|
|
err := fmt.Errorf("unable to close channel, ChannelID(%v) is "+
|
|
"unknown", chanID)
|
|
peerLog.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// Calculate a fee rate that we believe to be fair and will ensure a
|
|
// timely confirmation.
|
|
//
|
|
// TODO(bvu): with a dynamic fee implementation, we will compare this
|
|
// to the fee proposed by the responder in their ClosingSigned message.
|
|
feeRate := p.server.cc.feeEstimator.EstimateFeePerWeight(1) * 1000
|
|
|
|
// We agree with the proposed channel close transaction and fee rate,
|
|
// so generate our signature.
|
|
initiatorSig, proposedFee, err := channel.CreateCloseProposal(feeRate)
|
|
if err != nil {
|
|
req.Err <- err
|
|
return
|
|
}
|
|
initSig := append(initiatorSig, byte(txscript.SigHashAll))
|
|
|
|
// Complete coop close transaction with the signatures of the close
|
|
// initiator and responder.
|
|
responderSig := msg.Signature
|
|
respSig := append(responderSig.Serialize(), byte(txscript.SigHashAll))
|
|
closeTx, err := channel.CompleteCooperativeClose(initSig, respSig,
|
|
feeRate)
|
|
if err != nil {
|
|
req.Err <- err
|
|
// TODO(roasbeef): send ErrorGeneric to other side
|
|
return
|
|
}
|
|
|
|
// As we're the initiator of this channel shutdown procedure we'll now
|
|
// create a mirrored close signed message with our completed signature.
|
|
parsedSig, err := btcec.ParseSignature(initSig, btcec.S256())
|
|
if err != nil {
|
|
req.Err <- err
|
|
return
|
|
}
|
|
closingSigned := lnwire.NewClosingSigned(chanID, proposedFee, parsedSig)
|
|
p.queueMsg(closingSigned, nil)
|
|
|
|
// Finally, broadcast the closure transaction to the network.
|
|
peerLog.Infof("Broadcasting cooperative close tx: %v",
|
|
newLogClosure(func() string {
|
|
return spew.Sdump(closeTx)
|
|
}))
|
|
if err := p.server.cc.wallet.PublishTransaction(closeTx); err != nil {
|
|
peerLog.Errorf("channel close tx from "+
|
|
"ChannelPoint(%v) rejected: %v",
|
|
req.ChanPoint, err)
|
|
// TODO(roasbeef): send ErrorGeneric to other side
|
|
return
|
|
}
|
|
|
|
// Once we've completed the cooperative channel closure, we'll wipe the
|
|
// channel so we reject any incoming forward or payment requests via
|
|
// this channel.
|
|
p.server.breachArbiter.settledContracts <- req.ChanPoint
|
|
if err := p.WipeChannel(channel); err != nil {
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// TODO(roasbeef): also add closure height to summary
|
|
|
|
// Clear out the current channel state, marking the channel as being
|
|
// closed within the database.
|
|
closingTxid := closeTx.TxHash()
|
|
chanInfo := channel.StateSnapshot()
|
|
closeSummary := &channeldb.ChannelCloseSummary{
|
|
ChanPoint: *req.ChanPoint,
|
|
ClosingTXID: closingTxid,
|
|
RemotePub: &chanInfo.RemoteIdentity,
|
|
Capacity: chanInfo.Capacity,
|
|
SettledBalance: chanInfo.LocalBalance,
|
|
CloseType: channeldb.CooperativeClose,
|
|
IsPending: true,
|
|
}
|
|
if err := channel.DeleteState(closeSummary); err != nil {
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// Update the caller with a new event detailing the current pending
|
|
// state of this request.
|
|
req.Updates <- &lnrpc.CloseStatusUpdate{
|
|
Update: &lnrpc.CloseStatusUpdate_ClosePending{
|
|
ClosePending: &lnrpc.PendingUpdate{
|
|
Txid: closingTxid[:],
|
|
},
|
|
},
|
|
}
|
|
|
|
_, bestHeight, err := p.server.cc.chainIO.GetBestBlock()
|
|
if err != nil {
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// Finally, launch a goroutine which will request to be notified by the
|
|
// ChainNotifier once the closure transaction obtains a single
|
|
// confirmation.
|
|
notifier := p.server.cc.chainNotifier
|
|
go waitForChanToClose(uint32(bestHeight), notifier, req.Err,
|
|
req.ChanPoint, &closingTxid, func() {
|
|
|
|
// First, we'll mark the database as being fully closed
|
|
// so we'll no longer watch for its ultimate closure
|
|
// upon startup.
|
|
err := p.server.chanDB.MarkChanFullyClosed(req.ChanPoint)
|
|
if err != nil {
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// Respond to the local subsystem which requested the
|
|
// channel closure.
|
|
req.Updates <- &lnrpc.CloseStatusUpdate{
|
|
Update: &lnrpc.CloseStatusUpdate_ChanClose{
|
|
ChanClose: &lnrpc.ChannelCloseUpdate{
|
|
ClosingTxid: closingTxid[:],
|
|
Success: true,
|
|
},
|
|
},
|
|
}
|
|
})
|
|
}
|
|
|
|
// handleResponseClosingSigned is called when the responder in a cooperative
|
|
// close workflow receives a ClosingSigned message. This function handles the
|
|
// finalization of the cooperative close from the perspective of the responder.
|
|
func (p *peer) handleResponseClosingSigned(msg *lnwire.ClosingSigned,
|
|
respSig []byte) {
|
|
p.activeChanMtx.RLock()
|
|
channel, ok := p.activeChannels[msg.ChannelID]
|
|
p.activeChanMtx.RUnlock()
|
|
if !ok {
|
|
peerLog.Errorf("unable to close channel, ChannelID(%v) is "+
|
|
"unknown", msg.ChannelID)
|
|
return
|
|
}
|
|
|
|
// Now that we have the initiator's signature for the closure
|
|
// transaction, we can assemble the final closure transaction, complete
|
|
// with our signature.
|
|
initiatorSig := msg.Signature
|
|
initSig := append(initiatorSig.Serialize(), byte(txscript.SigHashAll))
|
|
chanPoint := channel.ChannelPoint()
|
|
|
|
// Calculate our expected fee rate.
|
|
// TODO(roasbeef): should instead use the fee within the message
|
|
feeRate := p.server.cc.feeEstimator.EstimateFeePerWeight(1) * 1000
|
|
closeTx, err := channel.CompleteCooperativeClose(respSig, initSig,
|
|
feeRate)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to complete cooperative "+
|
|
"close for ChannelPoint(%v): %v",
|
|
chanPoint, err)
|
|
// TODO(roasbeef): send ErrorGeneric to other side
|
|
return
|
|
}
|
|
closeTxid := closeTx.TxHash()
|
|
|
|
_, bestHeight, err := p.server.cc.chainIO.GetBestBlock()
|
|
if err != nil {
|
|
peerLog.Errorf("unable to get best height: %v", err)
|
|
}
|
|
|
|
// Once we've completed the cooperative channel closure, we'll wipe the
|
|
// channel so we reject any incoming forward or payment requests via
|
|
// this channel.
|
|
p.server.breachArbiter.settledContracts <- chanPoint
|
|
|
|
// We've just broadcast the transaction which closes the channel, so
|
|
// we'll wipe the channel from all our local indexes and also signal to
|
|
// the switch that this channel is now closed.
|
|
peerLog.Infof("ChannelPoint(%v) is now closed", chanPoint)
|
|
if err := p.WipeChannel(channel); err != nil {
|
|
peerLog.Errorf("unable to wipe channel: %v", err)
|
|
}
|
|
|
|
// Clear out the current channel state, marking the channel as being
|
|
// closed within the database.
|
|
chanInfo := channel.StateSnapshot()
|
|
closeSummary := &channeldb.ChannelCloseSummary{
|
|
ChanPoint: *chanPoint,
|
|
ClosingTXID: closeTxid,
|
|
RemotePub: &chanInfo.RemoteIdentity,
|
|
Capacity: chanInfo.Capacity,
|
|
SettledBalance: chanInfo.LocalBalance,
|
|
CloseType: channeldb.CooperativeClose,
|
|
IsPending: true,
|
|
}
|
|
if err := channel.DeleteState(closeSummary); err != nil {
|
|
peerLog.Errorf("unable to delete channel state: %v", err)
|
|
return
|
|
}
|
|
|
|
// Finally, we'll launch a goroutine to watch the network for the
|
|
// confirmation of the closing transaction, and mark the channel as
|
|
// such within the database (once it's confirmed").
|
|
notifier := p.server.cc.chainNotifier
|
|
go waitForChanToClose(uint32(bestHeight), notifier, nil, chanPoint,
|
|
&closeTxid, func() {
|
|
// Now that the closing transaction has been confirmed,
|
|
// we'll mark the database as being fully closed so now
|
|
// that we no longer watch for its ultimate closure
|
|
// upon startup.
|
|
err := p.server.chanDB.MarkChanFullyClosed(chanPoint)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to mark channel as closed: %v", err)
|
|
return
|
|
}
|
|
},
|
|
)
|
|
}
|
|
|
|
// waitForChanToClose uses the passed notifier to wait until the channel has
|
|
// been detected as closed on chain and then concludes by executing the
|
|
// following actions: the channel point will be sent over the settleChan, and
|
|
// finally the callback will be executed. If any error is encountered within
|
|
// the function, then it will be sent over the errChan.
|
|
func waitForChanToClose(bestHeight uint32, notifier chainntnfs.ChainNotifier,
|
|
errChan chan error, chanPoint *wire.OutPoint,
|
|
closingTxID *chainhash.Hash, cb func()) {
|
|
|
|
peerLog.Infof("Waiting for confirmation of cooperative close of "+
|
|
"ChannelPoint(%v) with txid: %v", chanPoint,
|
|
closingTxID)
|
|
|
|
// TODO(roasbeef): add param for num needed confs
|
|
confNtfn, err := notifier.RegisterConfirmationsNtfn(closingTxID, 1,
|
|
bestHeight)
|
|
if err != nil {
|
|
if errChan != nil {
|
|
errChan <- err
|
|
}
|
|
return
|
|
}
|
|
|
|
// In the case that the ChainNotifier is shutting down, all subscriber
|
|
// notification channels will be closed, generating a nil receive.
|
|
height, ok := <-confNtfn.Confirmed
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
// The channel has been closed, remove it from any active indexes, and
|
|
// the database state.
|
|
srvrLog.Infof("ChannelPoint(%v) is now closed at "+
|
|
"height %v", chanPoint, height.BlockHeight)
|
|
|
|
// Finally, execute the closure call back to mark the confirmation of
|
|
// the transaction closing the contract.
|
|
cb()
|
|
}
|
|
|
|
// sendShutdown handles the creation and sending of the Shutdown messages sent
|
|
// between peers to initiate the cooperative channel close workflow. In
|
|
// addition, sendShutdown also signals to the HTLC switch to stop accepting
|
|
// HTLCs for the specified channel.
|
|
func (p *peer) sendShutdown(channel *lnwallet.LightningChannel) error {
|
|
// In order to construct the shutdown message, we'll need to
|
|
// reconstruct the channelID, and the current set delivery script for
|
|
// the channel closure.
|
|
chanID := lnwire.NewChanIDFromOutPoint(channel.ChannelPoint())
|
|
addr := lnwire.DeliveryAddress(channel.LocalDeliveryScript)
|
|
|
|
// With both items constructed we'll now send the shutdown message for
|
|
// this particular channel, advertising a shutdown request to our
|
|
// desired closing script.
|
|
shutdown := lnwire.NewShutdown(chanID, addr)
|
|
p.queueMsg(shutdown, nil)
|
|
|
|
// Finally, we'll unregister the link from the switch in order to
|
|
// Prevent the HTLC switch from receiving additional HTLCs for this
|
|
// channel.
|
|
p.server.htlcSwitch.RemoveLink(chanID)
|
|
|
|
return nil
|
|
}
|
|
|
|
// WipeChannel removes the passed channel from all indexes associated with the
|
|
// peer, and deletes the channel from the database.
|
|
func (p *peer) WipeChannel(channel *lnwallet.LightningChannel) error {
|
|
channel.Stop()
|
|
|
|
chanID := lnwire.NewChanIDFromOutPoint(channel.ChannelPoint())
|
|
|
|
p.activeChanMtx.Lock()
|
|
delete(p.activeChannels, chanID)
|
|
p.activeChanMtx.Unlock()
|
|
|
|
// Instruct the Htlc Switch to close this link as the channel is no
|
|
// longer active.
|
|
|
|
if err := p.server.htlcSwitch.RemoveLink(chanID); err != nil {
|
|
if err == htlcswitch.ErrChannelLinkNotFound {
|
|
peerLog.Warnf("unable remove channel link with "+
|
|
"ChannelPoint(%v): %v", chanID, err)
|
|
return nil
|
|
}
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// handleInitMsg handles the incoming init message which contains global and
|
|
// local features vectors. If feature vectors are incompatible then disconnect.
|
|
func (p *peer) handleInitMsg(msg *lnwire.Init) error {
|
|
localSharedFeatures, err := p.server.localFeatures.Compare(msg.LocalFeatures)
|
|
if err != nil {
|
|
err := errors.Errorf("can't compare remote and local feature "+
|
|
"vectors: %v", err)
|
|
peerLog.Error(err)
|
|
return err
|
|
}
|
|
p.localSharedFeatures = localSharedFeatures
|
|
|
|
globalSharedFeatures, err := p.server.globalFeatures.Compare(msg.GlobalFeatures)
|
|
if err != nil {
|
|
err := errors.Errorf("can't compare remote and global feature "+
|
|
"vectors: %v", err)
|
|
peerLog.Error(err)
|
|
return err
|
|
}
|
|
p.globalSharedFeatures = globalSharedFeatures
|
|
|
|
return nil
|
|
}
|
|
|
|
// sendInitMsg sends init message to remote peer which contains our currently
|
|
// supported local and global features.
|
|
func (p *peer) sendInitMsg() error {
|
|
msg := lnwire.NewInitMessage(
|
|
p.server.globalFeatures,
|
|
p.server.localFeatures,
|
|
)
|
|
|
|
return p.writeMessage(msg)
|
|
}
|
|
|
|
// SendMessage queues a message for sending to the target peer.
|
|
func (p *peer) SendMessage(msg lnwire.Message) error {
|
|
p.queueMsg(msg, nil)
|
|
return nil
|
|
}
|
|
|
|
// PubKey returns the pubkey of the peer in compressed serialized format.
|
|
func (p *peer) PubKey() [33]byte {
|
|
return p.pubKeyBytes
|
|
}
|
|
|
|
// TODO(roasbeef): make all start/stop mutexes a CAS
|