17a6175e8b
Make field names consistent with the command line flag.
3064 lines
89 KiB
Go
3064 lines
89 KiB
Go
package routing
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"image/color"
|
|
"math"
|
|
"math/rand"
|
|
"sync/atomic"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/davecgh/go-spew/spew"
|
|
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/clock"
|
|
"github.com/lightningnetwork/lnd/htlcswitch"
|
|
"github.com/lightningnetwork/lnd/lntypes"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/record"
|
|
"github.com/lightningnetwork/lnd/routing/route"
|
|
)
|
|
|
|
var uniquePaymentID uint64 = 1 // to be used atomically
|
|
|
|
type testCtx struct {
|
|
router *ChannelRouter
|
|
|
|
graph *channeldb.ChannelGraph
|
|
|
|
aliases map[string]route.Vertex
|
|
|
|
chain *mockChain
|
|
|
|
chainView *mockChainView
|
|
}
|
|
|
|
func (c *testCtx) RestartRouter() error {
|
|
// First, we'll reset the chainView's state as it doesn't persist the
|
|
// filter between restarts.
|
|
c.chainView.Reset()
|
|
|
|
// With the chainView reset, we'll now re-create the router itself, and
|
|
// start it.
|
|
router, err := New(Config{
|
|
Graph: c.graph,
|
|
Chain: c.chain,
|
|
ChainView: c.chainView,
|
|
Payer: &mockPaymentAttemptDispatcher{},
|
|
Control: makeMockControlTower(),
|
|
ChannelPruneExpiry: time.Hour * 24,
|
|
GraphPruneInterval: time.Hour * 2,
|
|
})
|
|
if err != nil {
|
|
return fmt.Errorf("unable to create router %v", err)
|
|
}
|
|
if err := router.Start(); err != nil {
|
|
return fmt.Errorf("unable to start router: %v", err)
|
|
}
|
|
|
|
// Finally, we'll swap out the pointer in the testCtx with this fresh
|
|
// instance of the router.
|
|
c.router = router
|
|
return nil
|
|
}
|
|
|
|
func createTestCtxFromGraphInstance(startingHeight uint32, graphInstance *testGraphInstance) (
|
|
*testCtx, func(), error) {
|
|
|
|
// We'll initialize an instance of the channel router with mock
|
|
// versions of the chain and channel notifier. As we don't need to test
|
|
// any p2p functionality, the peer send and switch send messages won't
|
|
// be populated.
|
|
chain := newMockChain(startingHeight)
|
|
chainView := newMockChainView(chain)
|
|
|
|
pathFindingConfig := PathFindingConfig{
|
|
MinProbability: 0.01,
|
|
AttemptCost: 100,
|
|
}
|
|
|
|
mcConfig := &MissionControlConfig{
|
|
PenaltyHalfLife: time.Hour,
|
|
AprioriHopProbability: 0.9,
|
|
AprioriWeight: 0.5,
|
|
}
|
|
|
|
mc, err := NewMissionControl(
|
|
graphInstance.graph.Database(),
|
|
mcConfig,
|
|
)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
sessionSource := &SessionSource{
|
|
Graph: graphInstance.graph,
|
|
QueryBandwidth: func(e *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi {
|
|
return lnwire.NewMSatFromSatoshis(e.Capacity)
|
|
},
|
|
PathFindingConfig: pathFindingConfig,
|
|
MissionControl: mc,
|
|
}
|
|
|
|
router, err := New(Config{
|
|
Graph: graphInstance.graph,
|
|
Chain: chain,
|
|
ChainView: chainView,
|
|
Payer: &mockPaymentAttemptDispatcher{},
|
|
Control: makeMockControlTower(),
|
|
MissionControl: mc,
|
|
SessionSource: sessionSource,
|
|
ChannelPruneExpiry: time.Hour * 24,
|
|
GraphPruneInterval: time.Hour * 2,
|
|
QueryBandwidth: func(e *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi {
|
|
return lnwire.NewMSatFromSatoshis(e.Capacity)
|
|
},
|
|
NextPaymentID: func() (uint64, error) {
|
|
next := atomic.AddUint64(&uniquePaymentID, 1)
|
|
return next, nil
|
|
},
|
|
PathFindingConfig: pathFindingConfig,
|
|
Clock: clock.NewTestClock(time.Unix(1, 0)),
|
|
})
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("unable to create router %v", err)
|
|
}
|
|
if err := router.Start(); err != nil {
|
|
return nil, nil, fmt.Errorf("unable to start router: %v", err)
|
|
}
|
|
|
|
ctx := &testCtx{
|
|
router: router,
|
|
graph: graphInstance.graph,
|
|
aliases: graphInstance.aliasMap,
|
|
chain: chain,
|
|
chainView: chainView,
|
|
}
|
|
|
|
cleanUp := func() {
|
|
ctx.router.Stop()
|
|
graphInstance.cleanUp()
|
|
}
|
|
|
|
return ctx, cleanUp, nil
|
|
}
|
|
|
|
func createTestCtxSingleNode(startingHeight uint32) (*testCtx, func(), error) {
|
|
var (
|
|
graph *channeldb.ChannelGraph
|
|
sourceNode *channeldb.LightningNode
|
|
cleanup func()
|
|
err error
|
|
)
|
|
|
|
graph, cleanup, err = makeTestGraph()
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("unable to create test graph: %v", err)
|
|
}
|
|
|
|
sourceNode, err = createTestNode()
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("unable to create source node: %v", err)
|
|
}
|
|
if err = graph.SetSourceNode(sourceNode); err != nil {
|
|
return nil, nil, fmt.Errorf("unable to set source node: %v", err)
|
|
}
|
|
|
|
graphInstance := &testGraphInstance{
|
|
graph: graph,
|
|
cleanUp: cleanup,
|
|
}
|
|
|
|
return createTestCtxFromGraphInstance(startingHeight, graphInstance)
|
|
}
|
|
|
|
func createTestCtxFromFile(startingHeight uint32, testGraph string) (*testCtx, func(), error) {
|
|
// We'll attempt to locate and parse out the file
|
|
// that encodes the graph that our tests should be run against.
|
|
graphInstance, err := parseTestGraph(testGraph)
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("unable to create test graph: %v", err)
|
|
}
|
|
|
|
return createTestCtxFromGraphInstance(startingHeight, graphInstance)
|
|
}
|
|
|
|
// TestFindRoutesWithFeeLimit asserts that routes found by the FindRoutes method
|
|
// within the channel router contain a total fee less than or equal to the fee
|
|
// limit.
|
|
func TestFindRoutesWithFeeLimit(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(
|
|
startingBlockHeight, basicGraphFilePath,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// This test will attempt to find routes from roasbeef to sophon for 100
|
|
// satoshis with a fee limit of 10 satoshis. There are two routes from
|
|
// roasbeef to sophon:
|
|
// 1. roasbeef -> songoku -> sophon
|
|
// 2. roasbeef -> phamnuwen -> sophon
|
|
// The second route violates our fee limit, so we should only expect to
|
|
// see the first route.
|
|
target := ctx.aliases["sophon"]
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
restrictions := &RestrictParams{
|
|
FeeLimit: lnwire.NewMSatFromSatoshis(10),
|
|
ProbabilitySource: noProbabilitySource,
|
|
CltvLimit: math.MaxUint32,
|
|
}
|
|
|
|
route, err := ctx.router.FindRoute(
|
|
ctx.router.selfNode.PubKeyBytes,
|
|
target, paymentAmt, restrictions, nil, nil,
|
|
MinCLTVDelta,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find any routes: %v", err)
|
|
}
|
|
|
|
if route.TotalFees() > restrictions.FeeLimit {
|
|
t.Fatalf("route exceeded fee limit: %v", spew.Sdump(route))
|
|
}
|
|
|
|
hops := route.Hops
|
|
if len(hops) != 2 {
|
|
t.Fatalf("expected 2 hops, got %d", len(hops))
|
|
}
|
|
|
|
if hops[0].PubKeyBytes != ctx.aliases["songoku"] {
|
|
|
|
t.Fatalf("expected first hop through songoku, got %s",
|
|
getAliasFromPubKey(hops[0].PubKeyBytes,
|
|
ctx.aliases))
|
|
}
|
|
}
|
|
|
|
// TestSendPaymentRouteFailureFallback tests that when sending a payment, if
|
|
// one of the target routes is seen as unavailable, then the next route in the
|
|
// queue is used instead. This process should continue until either a payment
|
|
// succeeds, or all routes have been exhausted.
|
|
func TestSendPaymentRouteFailureFallback(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// Craft a LightningPayment struct that'll send a payment from roasbeef
|
|
// to luo ji for 1000 satoshis, with a maximum of 1000 satoshis in fees.
|
|
var payHash [32]byte
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(1000)
|
|
payment := LightningPayment{
|
|
Target: ctx.aliases["sophon"],
|
|
Amount: paymentAmt,
|
|
FeeLimit: noFeeLimit,
|
|
PaymentHash: payHash,
|
|
}
|
|
|
|
var preImage [32]byte
|
|
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
|
|
|
|
// We'll modify the SendToSwitch method that's been set within the
|
|
// router's configuration to ignore the path that has son goku as the
|
|
// first hop. This should force the router to instead take the
|
|
// the more costly path (through pham nuwen).
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
roasbeefSongoku := lnwire.NewShortChanIDFromInt(12345)
|
|
if firstHop == roasbeefSongoku {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
// TODO(roasbeef): temp node failure
|
|
// should be?
|
|
&lnwire.FailTemporaryChannelFailure{},
|
|
1,
|
|
)
|
|
}
|
|
|
|
return preImage, nil
|
|
})
|
|
|
|
// Send off the payment request to the router, route through pham nuwen
|
|
// should've been selected as a fall back and succeeded correctly.
|
|
paymentPreImage, route, err := ctx.router.SendPayment(&payment)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// The route selected should have two hops
|
|
if len(route.Hops) != 2 {
|
|
t.Fatalf("incorrect route length: expected %v got %v", 2,
|
|
len(route.Hops))
|
|
}
|
|
|
|
// The preimage should match up with the once created above.
|
|
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
|
|
t.Fatalf("incorrect preimage used: expected %x got %x",
|
|
preImage[:], paymentPreImage[:])
|
|
}
|
|
|
|
// The route should have pham nuwen as the first hop.
|
|
if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
|
|
|
|
t.Fatalf("route should go through phamnuwen as first hop, "+
|
|
"instead passes through: %v",
|
|
getAliasFromPubKey(route.Hops[0].PubKeyBytes,
|
|
ctx.aliases))
|
|
}
|
|
}
|
|
|
|
// TestChannelUpdateValidation tests that a failed payment with an associated
|
|
// channel update will only be applied to the graph when the update contains a
|
|
// valid signature.
|
|
func TestChannelUpdateValidation(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Setup a three node network.
|
|
chanCapSat := btcutil.Amount(100000)
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 1),
|
|
symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 2),
|
|
}
|
|
|
|
testGraph, err := createTestGraphFromChannels(testChannels, "a")
|
|
defer testGraph.cleanUp()
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
|
|
const startingBlockHeight = 101
|
|
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(startingBlockHeight,
|
|
testGraph)
|
|
|
|
defer cleanUp()
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
|
|
// Assert that the initially configured fee is retrieved correctly.
|
|
_, policy, _, err := ctx.router.GetChannelByID(
|
|
lnwire.NewShortChanIDFromInt(1))
|
|
if err != nil {
|
|
t.Fatalf("cannot retrieve channel")
|
|
}
|
|
|
|
if policy.FeeProportionalMillionths != 400 {
|
|
t.Fatalf("invalid fee")
|
|
}
|
|
|
|
// Setup a route from source a to destination c. The route will be used
|
|
// in a call to SendToRoute. SendToRoute also applies channel updates,
|
|
// but it saves us from including RequestRoute in the test scope too.
|
|
hop1 := ctx.aliases["b"]
|
|
|
|
hop2 := ctx.aliases["c"]
|
|
|
|
hops := []*route.Hop{
|
|
{
|
|
ChannelID: 1,
|
|
PubKeyBytes: hop1,
|
|
LegacyPayload: true,
|
|
},
|
|
{
|
|
ChannelID: 2,
|
|
PubKeyBytes: hop2,
|
|
LegacyPayload: true,
|
|
},
|
|
}
|
|
|
|
rt, err := route.NewRouteFromHops(
|
|
lnwire.MilliSatoshi(10000), 100,
|
|
ctx.aliases["a"], hops,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create route: %v", err)
|
|
}
|
|
|
|
// Set up a channel update message with an invalid signature to be
|
|
// returned to the sender.
|
|
var invalidSignature [64]byte
|
|
errChanUpdate := lnwire.ChannelUpdate{
|
|
Signature: invalidSignature,
|
|
FeeRate: 500,
|
|
ShortChannelID: lnwire.NewShortChanIDFromInt(1),
|
|
Timestamp: uint32(testTime.Add(time.Minute).Unix()),
|
|
}
|
|
|
|
// We'll modify the SendToSwitch method so that it simulates a failed
|
|
// payment with an error originating from the first hop of the route.
|
|
// The unsigned channel update is attached to the failure message.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailFeeInsufficient{
|
|
Update: errChanUpdate,
|
|
},
|
|
1,
|
|
)
|
|
})
|
|
|
|
// The payment parameter is mostly redundant in SendToRoute. Can be left
|
|
// empty for this test.
|
|
var payment lntypes.Hash
|
|
|
|
// Send off the payment request to the router. The specified route
|
|
// should be attempted and the channel update should be received by
|
|
// router and ignored because it is missing a valid signature.
|
|
_, err = ctx.router.SendToRoute(payment, rt)
|
|
if err == nil {
|
|
t.Fatalf("expected route to fail with channel update")
|
|
}
|
|
|
|
_, policy, _, err = ctx.router.GetChannelByID(
|
|
lnwire.NewShortChanIDFromInt(1))
|
|
if err != nil {
|
|
t.Fatalf("cannot retrieve channel")
|
|
}
|
|
|
|
if policy.FeeProportionalMillionths != 400 {
|
|
t.Fatalf("fee updated without valid signature")
|
|
}
|
|
|
|
// Next, add a signature to the channel update.
|
|
chanUpdateMsg, err := errChanUpdate.DataToSign()
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
digest := chainhash.DoubleHashB(chanUpdateMsg)
|
|
sig, err := testGraph.privKeyMap["b"].Sign(digest)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
errChanUpdate.Signature, err = lnwire.NewSigFromSignature(sig)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Retry the payment using the same route as before.
|
|
_, err = ctx.router.SendToRoute(payment, rt)
|
|
if err == nil {
|
|
t.Fatalf("expected route to fail with channel update")
|
|
}
|
|
|
|
// This time a valid signature was supplied and the policy change should
|
|
// have been applied to the graph.
|
|
_, policy, _, err = ctx.router.GetChannelByID(
|
|
lnwire.NewShortChanIDFromInt(1))
|
|
if err != nil {
|
|
t.Fatalf("cannot retrieve channel")
|
|
}
|
|
|
|
if policy.FeeProportionalMillionths != 500 {
|
|
t.Fatalf("fee not updated even though signature is valid")
|
|
}
|
|
}
|
|
|
|
// TestSendPaymentErrorRepeatedFeeInsufficient tests that if we receive
|
|
// multiple fee related errors from a channel that we're attempting to route
|
|
// through, then we'll prune the channel after the second attempt.
|
|
func TestSendPaymentErrorRepeatedFeeInsufficient(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// Craft a LightningPayment struct that'll send a payment from roasbeef
|
|
// to luo ji for 100 satoshis.
|
|
var payHash [32]byte
|
|
amt := lnwire.NewMSatFromSatoshis(1000)
|
|
payment := LightningPayment{
|
|
Target: ctx.aliases["sophon"],
|
|
Amount: amt,
|
|
FeeLimit: noFeeLimit,
|
|
PaymentHash: payHash,
|
|
}
|
|
|
|
var preImage [32]byte
|
|
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
|
|
|
|
// We'll also fetch the first outgoing channel edge from roasbeef to
|
|
// son goku. We'll obtain this as we'll need to to generate the
|
|
// FeeInsufficient error that we'll send back.
|
|
chanID := uint64(12345)
|
|
_, _, edgeUpdateToFail, err := ctx.graph.FetchChannelEdgesByID(chanID)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch chan id: %v", err)
|
|
}
|
|
|
|
errChanUpdate := lnwire.ChannelUpdate{
|
|
ShortChannelID: lnwire.NewShortChanIDFromInt(chanID),
|
|
Timestamp: uint32(edgeUpdateToFail.LastUpdate.Unix()),
|
|
MessageFlags: edgeUpdateToFail.MessageFlags,
|
|
ChannelFlags: edgeUpdateToFail.ChannelFlags,
|
|
TimeLockDelta: edgeUpdateToFail.TimeLockDelta,
|
|
HtlcMinimumMsat: edgeUpdateToFail.MinHTLC,
|
|
HtlcMaximumMsat: edgeUpdateToFail.MaxHTLC,
|
|
BaseFee: uint32(edgeUpdateToFail.FeeBaseMSat),
|
|
FeeRate: uint32(edgeUpdateToFail.FeeProportionalMillionths),
|
|
}
|
|
|
|
// We'll now modify the SendToSwitch method to return an error for the
|
|
// outgoing channel to Son goku. This will be a fee related error, so
|
|
// it should only cause the edge to be pruned after the second attempt.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
roasbeefSongoku := lnwire.NewShortChanIDFromInt(chanID)
|
|
if firstHop == roasbeefSongoku {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
// Within our error, we'll add a
|
|
// channel update which is meant to
|
|
// reflect the new fee schedule for the
|
|
// node/channel.
|
|
&lnwire.FailFeeInsufficient{
|
|
Update: errChanUpdate,
|
|
}, 1,
|
|
)
|
|
}
|
|
|
|
return preImage, nil
|
|
})
|
|
|
|
// Send off the payment request to the router, route through satoshi
|
|
// should've been selected as a fall back and succeeded correctly.
|
|
paymentPreImage, route, err := ctx.router.SendPayment(&payment)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// The route selected should have two hops
|
|
if len(route.Hops) != 2 {
|
|
t.Fatalf("incorrect route length: expected %v got %v", 2,
|
|
len(route.Hops))
|
|
}
|
|
|
|
// The preimage should match up with the once created above.
|
|
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
|
|
t.Fatalf("incorrect preimage used: expected %x got %x",
|
|
preImage[:], paymentPreImage[:])
|
|
}
|
|
|
|
// The route should have pham nuwen as the first hop.
|
|
if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
|
|
|
|
t.Fatalf("route should go through satoshi as first hop, "+
|
|
"instead passes through: %v",
|
|
getAliasFromPubKey(route.Hops[0].PubKeyBytes,
|
|
ctx.aliases))
|
|
}
|
|
}
|
|
|
|
// TestSendPaymentErrorNonFinalTimeLockErrors tests that if we receive either
|
|
// an ExpiryTooSoon or a IncorrectCltvExpiry error from a node, then we prune
|
|
// that node from the available graph witin a mission control session. This
|
|
// test ensures that we'll route around errors due to nodes not knowing the
|
|
// current block height.
|
|
func TestSendPaymentErrorNonFinalTimeLockErrors(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// Craft a LightningPayment struct that'll send a payment from roasbeef
|
|
// to sophon for 1k satoshis.
|
|
var payHash [32]byte
|
|
amt := lnwire.NewMSatFromSatoshis(1000)
|
|
payment := LightningPayment{
|
|
Target: ctx.aliases["sophon"],
|
|
Amount: amt,
|
|
FeeLimit: noFeeLimit,
|
|
PaymentHash: payHash,
|
|
}
|
|
|
|
var preImage [32]byte
|
|
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
|
|
|
|
// We'll also fetch the first outgoing channel edge from roasbeef to
|
|
// son goku. This edge will be included in the time lock related expiry
|
|
// errors that we'll get back due to disagrements in what the current
|
|
// block height is.
|
|
chanID := uint64(12345)
|
|
roasbeefSongoku := lnwire.NewShortChanIDFromInt(chanID)
|
|
_, _, edgeUpdateToFail, err := ctx.graph.FetchChannelEdgesByID(chanID)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch chan id: %v", err)
|
|
}
|
|
|
|
errChanUpdate := lnwire.ChannelUpdate{
|
|
ShortChannelID: lnwire.NewShortChanIDFromInt(chanID),
|
|
Timestamp: uint32(edgeUpdateToFail.LastUpdate.Unix()),
|
|
MessageFlags: edgeUpdateToFail.MessageFlags,
|
|
ChannelFlags: edgeUpdateToFail.ChannelFlags,
|
|
TimeLockDelta: edgeUpdateToFail.TimeLockDelta,
|
|
HtlcMinimumMsat: edgeUpdateToFail.MinHTLC,
|
|
HtlcMaximumMsat: edgeUpdateToFail.MaxHTLC,
|
|
BaseFee: uint32(edgeUpdateToFail.FeeBaseMSat),
|
|
FeeRate: uint32(edgeUpdateToFail.FeeProportionalMillionths),
|
|
}
|
|
|
|
// We'll now modify the SendToSwitch method to return an error for the
|
|
// outgoing channel to son goku. Since this is a time lock related
|
|
// error, we should fail the payment flow all together, as Goku is the
|
|
// only channel to Sophon.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
if firstHop == roasbeefSongoku {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailExpiryTooSoon{
|
|
Update: errChanUpdate,
|
|
}, 1,
|
|
)
|
|
}
|
|
|
|
return preImage, nil
|
|
})
|
|
|
|
// assertExpectedPath is a helper function that asserts the returned
|
|
// route properly routes around the failure we've introduced in the
|
|
// graph.
|
|
assertExpectedPath := func(retPreImage [32]byte, route *route.Route) {
|
|
// The route selected should have two hops
|
|
if len(route.Hops) != 2 {
|
|
t.Fatalf("incorrect route length: expected %v got %v", 2,
|
|
len(route.Hops))
|
|
}
|
|
|
|
// The preimage should match up with the once created above.
|
|
if !bytes.Equal(retPreImage[:], preImage[:]) {
|
|
t.Fatalf("incorrect preimage used: expected %x got %x",
|
|
preImage[:], retPreImage[:])
|
|
}
|
|
|
|
// The route should have satoshi as the first hop.
|
|
if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
|
|
|
|
t.Fatalf("route should go through phamnuwen as first hop, "+
|
|
"instead passes through: %v",
|
|
getAliasFromPubKey(route.Hops[0].PubKeyBytes,
|
|
ctx.aliases))
|
|
}
|
|
}
|
|
|
|
// Send off the payment request to the router, this payment should
|
|
// succeed as we should actually go through Pham Nuwen in order to get
|
|
// to Sophon, even though he has higher fees.
|
|
paymentPreImage, rt, err := ctx.router.SendPayment(&payment)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
assertExpectedPath(paymentPreImage, rt)
|
|
|
|
// We'll now modify the error return an IncorrectCltvExpiry error
|
|
// instead, this should result in the same behavior of roasbeef routing
|
|
// around the faulty Son Goku node.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
if firstHop == roasbeefSongoku {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailIncorrectCltvExpiry{
|
|
Update: errChanUpdate,
|
|
}, 1,
|
|
)
|
|
}
|
|
|
|
return preImage, nil
|
|
})
|
|
|
|
// Once again, Roasbeef should route around Goku since they disagree
|
|
// w.r.t to the block height, and instead go through Pham Nuwen. We
|
|
// flip a bit in the payment hash to allow resending this payment.
|
|
payment.PaymentHash[1] ^= 1
|
|
paymentPreImage, rt, err = ctx.router.SendPayment(&payment)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
assertExpectedPath(paymentPreImage, rt)
|
|
}
|
|
|
|
// TestSendPaymentErrorPathPruning tests that the send of candidate routes
|
|
// properly gets pruned in response to ForwardingError response from the
|
|
// underlying SendToSwitch function.
|
|
func TestSendPaymentErrorPathPruning(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// Craft a LightningPayment struct that'll send a payment from roasbeef
|
|
// to luo ji for 1000 satoshis, with a maximum of 1000 satoshis in fees.
|
|
var payHash [32]byte
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(1000)
|
|
payment := LightningPayment{
|
|
Target: ctx.aliases["sophon"],
|
|
Amount: paymentAmt,
|
|
FeeLimit: noFeeLimit,
|
|
PaymentHash: payHash,
|
|
}
|
|
|
|
var preImage [32]byte
|
|
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
|
|
|
|
roasbeefSongoku := lnwire.NewShortChanIDFromInt(12345)
|
|
roasbeefPhanNuwen := lnwire.NewShortChanIDFromInt(999991)
|
|
|
|
// First, we'll modify the SendToSwitch method to return an error
|
|
// indicating that the channel from roasbeef to son goku is not operable
|
|
// with an UnknownNextPeer.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
if firstHop == roasbeefSongoku {
|
|
// We'll first simulate an error from the first
|
|
// hop to simulate the channel from songoku to
|
|
// sophon not having enough capacity.
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailTemporaryChannelFailure{},
|
|
1,
|
|
)
|
|
}
|
|
|
|
// Next, we'll create an error from phan nuwen to
|
|
// indicate that the sophon node is not longer online,
|
|
// which should prune out the rest of the routes.
|
|
if firstHop == roasbeefPhanNuwen {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailUnknownNextPeer{}, 1,
|
|
)
|
|
}
|
|
|
|
return preImage, nil
|
|
})
|
|
|
|
ctx.router.cfg.MissionControl.(*MissionControl).ResetHistory()
|
|
|
|
// When we try to dispatch that payment, we should receive an error as
|
|
// both attempts should fail and cause both routes to be pruned.
|
|
_, _, err = ctx.router.SendPayment(&payment)
|
|
if err == nil {
|
|
t.Fatalf("payment didn't return error")
|
|
}
|
|
|
|
// The final error returned should also indicate that the peer wasn't
|
|
// online (the last error we returned).
|
|
if err != channeldb.FailureReasonNoRoute {
|
|
t.Fatalf("expected no route instead got: %v", err)
|
|
}
|
|
|
|
// Inspect the two attempts that were made before the payment failed.
|
|
p, err := ctx.router.cfg.Control.FetchPayment(payHash)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
if len(p.HTLCs) != 2 {
|
|
t.Fatalf("expected two attempts got %v", len(p.HTLCs))
|
|
}
|
|
|
|
// We expect the first attempt to have failed with a
|
|
// TemporaryChannelFailure, the second with UnknownNextPeer.
|
|
msg := p.HTLCs[0].Failure.Message
|
|
if _, ok := msg.(*lnwire.FailTemporaryChannelFailure); !ok {
|
|
t.Fatalf("unexpected fail message: %T", msg)
|
|
}
|
|
|
|
msg = p.HTLCs[1].Failure.Message
|
|
if _, ok := msg.(*lnwire.FailUnknownNextPeer); !ok {
|
|
t.Fatalf("unexpected fail message: %T", msg)
|
|
}
|
|
|
|
ctx.router.cfg.MissionControl.(*MissionControl).ResetHistory()
|
|
|
|
// Next, we'll modify the SendToSwitch method to indicate that the
|
|
// connection between songoku and isn't up.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
if firstHop == roasbeefSongoku {
|
|
failure := htlcswitch.NewForwardingError(
|
|
&lnwire.FailUnknownNextPeer{}, 1,
|
|
)
|
|
return [32]byte{}, failure
|
|
}
|
|
|
|
return preImage, nil
|
|
})
|
|
|
|
// This shouldn't return an error, as we'll make a payment attempt via
|
|
// the pham nuwen channel based on the assumption that there might be an
|
|
// intermittent issue with the songoku <-> sophon channel.
|
|
paymentPreImage, rt, err := ctx.router.SendPayment(&payment)
|
|
if err != nil {
|
|
t.Fatalf("unable send payment: %v", err)
|
|
}
|
|
|
|
// This path should go: roasbeef -> pham nuwen -> sophon
|
|
if len(rt.Hops) != 2 {
|
|
t.Fatalf("incorrect route length: expected %v got %v", 2,
|
|
len(rt.Hops))
|
|
}
|
|
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
|
|
t.Fatalf("incorrect preimage used: expected %x got %x",
|
|
preImage[:], paymentPreImage[:])
|
|
}
|
|
if rt.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
|
|
|
|
t.Fatalf("route should go through phamnuwen as first hop, "+
|
|
"instead passes through: %v",
|
|
getAliasFromPubKey(rt.Hops[0].PubKeyBytes,
|
|
ctx.aliases))
|
|
}
|
|
|
|
ctx.router.cfg.MissionControl.(*MissionControl).ResetHistory()
|
|
|
|
// Finally, we'll modify the SendToSwitch function to indicate that the
|
|
// roasbeef -> luoji channel has insufficient capacity. This should
|
|
// again cause us to instead go via the satoshi route.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
if firstHop == roasbeefSongoku {
|
|
// We'll first simulate an error from the first
|
|
// outgoing link to simulate the channel from luo ji to
|
|
// roasbeef not having enough capacity.
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailTemporaryChannelFailure{},
|
|
1,
|
|
)
|
|
}
|
|
return preImage, nil
|
|
})
|
|
|
|
// We flip a bit in the payment hash to allow resending this payment.
|
|
payment.PaymentHash[1] ^= 1
|
|
paymentPreImage, rt, err = ctx.router.SendPayment(&payment)
|
|
if err != nil {
|
|
t.Fatalf("unable to send payment: %v", err)
|
|
}
|
|
|
|
// This should succeed finally. The route selected should have two
|
|
// hops.
|
|
if len(rt.Hops) != 2 {
|
|
t.Fatalf("incorrect route length: expected %v got %v", 2,
|
|
len(rt.Hops))
|
|
}
|
|
|
|
// The preimage should match up with the once created above.
|
|
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
|
|
t.Fatalf("incorrect preimage used: expected %x got %x",
|
|
preImage[:], paymentPreImage[:])
|
|
}
|
|
|
|
// The route should have satoshi as the first hop.
|
|
if rt.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
|
|
|
|
t.Fatalf("route should go through phamnuwen as first hop, "+
|
|
"instead passes through: %v",
|
|
getAliasFromPubKey(rt.Hops[0].PubKeyBytes,
|
|
ctx.aliases))
|
|
}
|
|
}
|
|
|
|
// TestAddProof checks that we can update the channel proof after channel
|
|
// info was added to the database.
|
|
func TestAddProof(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
ctx, cleanup, err := createTestCtxSingleNode(0)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer cleanup()
|
|
|
|
// Before creating out edge, we'll create two new nodes within the
|
|
// network that the channel will connect.
|
|
node1, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
node2, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// In order to be able to add the edge we should have a valid funding
|
|
// UTXO within the blockchain.
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(),
|
|
100, 0)
|
|
if err != nil {
|
|
t.Fatalf("unable create channel edge: %v", err)
|
|
}
|
|
fundingBlock := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{fundingTx},
|
|
}
|
|
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
|
|
|
|
// After utxo was recreated adding the edge without the proof.
|
|
edge := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID.ToUint64(),
|
|
NodeKey1Bytes: node1.PubKeyBytes,
|
|
NodeKey2Bytes: node2.PubKeyBytes,
|
|
AuthProof: nil,
|
|
}
|
|
copy(edge.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
|
|
copy(edge.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
|
|
|
|
if err := ctx.router.AddEdge(edge); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
// Now we'll attempt to update the proof and check that it has been
|
|
// properly updated.
|
|
if err := ctx.router.AddProof(*chanID, &testAuthProof); err != nil {
|
|
t.Fatalf("unable to add proof: %v", err)
|
|
}
|
|
|
|
info, _, _, err := ctx.router.GetChannelByID(*chanID)
|
|
if err != nil {
|
|
t.Fatalf("unable to get channel: %v", err)
|
|
}
|
|
if info.AuthProof == nil {
|
|
t.Fatal("proof have been updated")
|
|
}
|
|
}
|
|
|
|
// TestIgnoreNodeAnnouncement tests that adding a node to the router that is
|
|
// not known from any channel announcement, leads to the announcement being
|
|
// ignored.
|
|
func TestIgnoreNodeAnnouncement(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight,
|
|
basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
pub := priv1.PubKey()
|
|
node := &channeldb.LightningNode{
|
|
HaveNodeAnnouncement: true,
|
|
LastUpdate: time.Unix(123, 0),
|
|
Addresses: testAddrs,
|
|
Color: color.RGBA{1, 2, 3, 0},
|
|
Alias: "node11",
|
|
AuthSigBytes: testSig.Serialize(),
|
|
Features: testFeatures,
|
|
}
|
|
copy(node.PubKeyBytes[:], pub.SerializeCompressed())
|
|
|
|
err = ctx.router.AddNode(node)
|
|
if !IsError(err, ErrIgnored) {
|
|
t.Fatalf("expected to get ErrIgnore, instead got: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestIgnoreChannelEdgePolicyForUnknownChannel checks that a router will
|
|
// ignore a channel policy for a channel not in the graph.
|
|
func TestIgnoreChannelEdgePolicyForUnknownChannel(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
|
|
// Setup an initially empty network.
|
|
testChannels := []*testChannel{}
|
|
testGraph, err := createTestGraphFromChannels(
|
|
testChannels, "roasbeef",
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer testGraph.cleanUp()
|
|
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(
|
|
startingBlockHeight, testGraph,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
var pub1 [33]byte
|
|
copy(pub1[:], priv1.PubKey().SerializeCompressed())
|
|
|
|
var pub2 [33]byte
|
|
copy(pub2[:], priv2.PubKey().SerializeCompressed())
|
|
|
|
// Add the edge between the two unknown nodes to the graph, and check
|
|
// that the nodes are found after the fact.
|
|
fundingTx, _, chanID, err := createChannelEdge(
|
|
ctx, bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(), 10000, 500,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel edge: %v", err)
|
|
}
|
|
fundingBlock := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{fundingTx},
|
|
}
|
|
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
|
|
|
|
edge := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID.ToUint64(),
|
|
NodeKey1Bytes: pub1,
|
|
NodeKey2Bytes: pub2,
|
|
BitcoinKey1Bytes: pub1,
|
|
BitcoinKey2Bytes: pub2,
|
|
AuthProof: nil,
|
|
}
|
|
edgePolicy := &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: testTime,
|
|
TimeLockDelta: 10,
|
|
MinHTLC: 1,
|
|
FeeBaseMSat: 10,
|
|
FeeProportionalMillionths: 10000,
|
|
}
|
|
|
|
// Attempt to update the edge. This should be ignored, since the edge
|
|
// is not yet added to the router.
|
|
err = ctx.router.UpdateEdge(edgePolicy)
|
|
if !IsError(err, ErrIgnored) {
|
|
t.Fatalf("expected to get ErrIgnore, instead got: %v", err)
|
|
}
|
|
|
|
// Add the edge.
|
|
if err := ctx.router.AddEdge(edge); err != nil {
|
|
t.Fatalf("expected to be able to add edge to the channel graph,"+
|
|
" even though the vertexes were unknown: %v.", err)
|
|
}
|
|
|
|
// Now updating the edge policy should succeed.
|
|
if err := ctx.router.UpdateEdge(edgePolicy); err != nil {
|
|
t.Fatalf("unable to update edge policy: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestAddEdgeUnknownVertexes tests that if an edge is added that contains two
|
|
// vertexes which we don't know of, the edge should be available for use
|
|
// regardless. This is due to the fact that we don't actually need node
|
|
// announcements for the channel vertexes to be able to use the channel.
|
|
func TestAddEdgeUnknownVertexes(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(
|
|
startingBlockHeight, basicGraphFilePath,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
var pub1 [33]byte
|
|
copy(pub1[:], priv1.PubKey().SerializeCompressed())
|
|
|
|
var pub2 [33]byte
|
|
copy(pub2[:], priv2.PubKey().SerializeCompressed())
|
|
|
|
// The two nodes we are about to add should not exist yet.
|
|
_, exists1, err := ctx.graph.HasLightningNode(pub1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query graph: %v", err)
|
|
}
|
|
if exists1 {
|
|
t.Fatalf("node already existed")
|
|
}
|
|
_, exists2, err := ctx.graph.HasLightningNode(pub2)
|
|
if err != nil {
|
|
t.Fatalf("unable to query graph: %v", err)
|
|
}
|
|
if exists2 {
|
|
t.Fatalf("node already existed")
|
|
}
|
|
|
|
// Add the edge between the two unknown nodes to the graph, and check
|
|
// that the nodes are found after the fact.
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
10000, 500,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel edge: %v", err)
|
|
}
|
|
fundingBlock := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{fundingTx},
|
|
}
|
|
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
|
|
|
|
edge := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID.ToUint64(),
|
|
NodeKey1Bytes: pub1,
|
|
NodeKey2Bytes: pub2,
|
|
BitcoinKey1Bytes: pub1,
|
|
BitcoinKey2Bytes: pub2,
|
|
AuthProof: nil,
|
|
}
|
|
if err := ctx.router.AddEdge(edge); err != nil {
|
|
t.Fatalf("expected to be able to add edge to the channel graph,"+
|
|
" even though the vertexes were unknown: %v.", err)
|
|
}
|
|
|
|
// We must add the edge policy to be able to use the edge for route
|
|
// finding.
|
|
edgePolicy := &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: testTime,
|
|
TimeLockDelta: 10,
|
|
MinHTLC: 1,
|
|
FeeBaseMSat: 10,
|
|
FeeProportionalMillionths: 10000,
|
|
}
|
|
edgePolicy.ChannelFlags = 0
|
|
|
|
if err := ctx.router.UpdateEdge(edgePolicy); err != nil {
|
|
t.Fatalf("unable to update edge policy: %v", err)
|
|
}
|
|
|
|
// Create edge in the other direction as well.
|
|
edgePolicy = &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: testTime,
|
|
TimeLockDelta: 10,
|
|
MinHTLC: 1,
|
|
FeeBaseMSat: 10,
|
|
FeeProportionalMillionths: 10000,
|
|
}
|
|
edgePolicy.ChannelFlags = 1
|
|
|
|
if err := ctx.router.UpdateEdge(edgePolicy); err != nil {
|
|
t.Fatalf("unable to update edge policy: %v", err)
|
|
}
|
|
|
|
// After adding the edge between the two previously unknown nodes, they
|
|
// should have been added to the graph.
|
|
_, exists1, err = ctx.graph.HasLightningNode(pub1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query graph: %v", err)
|
|
}
|
|
if !exists1 {
|
|
t.Fatalf("node1 was not added to the graph")
|
|
}
|
|
_, exists2, err = ctx.graph.HasLightningNode(pub2)
|
|
if err != nil {
|
|
t.Fatalf("unable to query graph: %v", err)
|
|
}
|
|
if !exists2 {
|
|
t.Fatalf("node2 was not added to the graph")
|
|
}
|
|
|
|
// We will connect node1 to the rest of the test graph, and make sure
|
|
// we can find a route to node2, which will use the just added channel
|
|
// edge.
|
|
|
|
// We will connect node 1 to "sophon"
|
|
connectNode := ctx.aliases["sophon"]
|
|
connectNodeKey, err := btcec.ParsePubKey(connectNode[:], btcec.S256())
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
var (
|
|
pubKey1 *btcec.PublicKey
|
|
pubKey2 *btcec.PublicKey
|
|
)
|
|
node1Bytes := priv1.PubKey().SerializeCompressed()
|
|
node2Bytes := connectNode
|
|
if bytes.Compare(node1Bytes[:], node2Bytes[:]) == -1 {
|
|
pubKey1 = priv1.PubKey()
|
|
pubKey2 = connectNodeKey
|
|
} else {
|
|
pubKey1 = connectNodeKey
|
|
pubKey2 = priv1.PubKey()
|
|
}
|
|
|
|
fundingTx, _, chanID, err = createChannelEdge(ctx,
|
|
pubKey1.SerializeCompressed(), pubKey2.SerializeCompressed(),
|
|
10000, 510)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel edge: %v", err)
|
|
}
|
|
fundingBlock = &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{fundingTx},
|
|
}
|
|
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
|
|
|
|
edge = &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID.ToUint64(),
|
|
AuthProof: nil,
|
|
}
|
|
copy(edge.NodeKey1Bytes[:], node1Bytes)
|
|
edge.NodeKey2Bytes = node2Bytes
|
|
copy(edge.BitcoinKey1Bytes[:], node1Bytes)
|
|
edge.BitcoinKey2Bytes = node2Bytes
|
|
|
|
if err := ctx.router.AddEdge(edge); err != nil {
|
|
t.Fatalf("unable to add edge to the channel graph: %v.", err)
|
|
}
|
|
|
|
edgePolicy = &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: testTime,
|
|
TimeLockDelta: 10,
|
|
MinHTLC: 1,
|
|
FeeBaseMSat: 10,
|
|
FeeProportionalMillionths: 10000,
|
|
}
|
|
edgePolicy.ChannelFlags = 0
|
|
|
|
if err := ctx.router.UpdateEdge(edgePolicy); err != nil {
|
|
t.Fatalf("unable to update edge policy: %v", err)
|
|
}
|
|
|
|
edgePolicy = &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: testTime,
|
|
TimeLockDelta: 10,
|
|
MinHTLC: 1,
|
|
FeeBaseMSat: 10,
|
|
FeeProportionalMillionths: 10000,
|
|
}
|
|
edgePolicy.ChannelFlags = 1
|
|
|
|
if err := ctx.router.UpdateEdge(edgePolicy); err != nil {
|
|
t.Fatalf("unable to update edge policy: %v", err)
|
|
}
|
|
|
|
// We should now be able to find a route to node 2.
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
targetNode := priv2.PubKey()
|
|
var targetPubKeyBytes route.Vertex
|
|
copy(targetPubKeyBytes[:], targetNode.SerializeCompressed())
|
|
_, err = ctx.router.FindRoute(
|
|
ctx.router.selfNode.PubKeyBytes,
|
|
targetPubKeyBytes, paymentAmt, noRestrictions, nil, nil,
|
|
MinCLTVDelta,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find any routes: %v", err)
|
|
}
|
|
|
|
// Now check that we can update the node info for the partial node
|
|
// without messing up the channel graph.
|
|
n1 := &channeldb.LightningNode{
|
|
HaveNodeAnnouncement: true,
|
|
LastUpdate: time.Unix(123, 0),
|
|
Addresses: testAddrs,
|
|
Color: color.RGBA{1, 2, 3, 0},
|
|
Alias: "node11",
|
|
AuthSigBytes: testSig.Serialize(),
|
|
Features: testFeatures,
|
|
}
|
|
copy(n1.PubKeyBytes[:], priv1.PubKey().SerializeCompressed())
|
|
|
|
if err := ctx.router.AddNode(n1); err != nil {
|
|
t.Fatalf("could not add node: %v", err)
|
|
}
|
|
|
|
n2 := &channeldb.LightningNode{
|
|
HaveNodeAnnouncement: true,
|
|
LastUpdate: time.Unix(123, 0),
|
|
Addresses: testAddrs,
|
|
Color: color.RGBA{1, 2, 3, 0},
|
|
Alias: "node22",
|
|
AuthSigBytes: testSig.Serialize(),
|
|
Features: testFeatures,
|
|
}
|
|
copy(n2.PubKeyBytes[:], priv2.PubKey().SerializeCompressed())
|
|
|
|
if err := ctx.router.AddNode(n2); err != nil {
|
|
t.Fatalf("could not add node: %v", err)
|
|
}
|
|
|
|
// Should still be able to find the route, and the info should be
|
|
// updated.
|
|
_, err = ctx.router.FindRoute(
|
|
ctx.router.selfNode.PubKeyBytes,
|
|
targetPubKeyBytes, paymentAmt, noRestrictions, nil, nil,
|
|
MinCLTVDelta,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find any routes: %v", err)
|
|
}
|
|
|
|
copy1, err := ctx.graph.FetchLightningNode(nil, pub1)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch node: %v", err)
|
|
}
|
|
|
|
if copy1.Alias != n1.Alias {
|
|
t.Fatalf("fetched node not equal to original")
|
|
}
|
|
|
|
copy2, err := ctx.graph.FetchLightningNode(nil, pub2)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch node: %v", err)
|
|
}
|
|
|
|
if copy2.Alias != n2.Alias {
|
|
t.Fatalf("fetched node not equal to original")
|
|
}
|
|
}
|
|
|
|
// TestWakeUpOnStaleBranch tests that upon startup of the ChannelRouter, if the
|
|
// the chain previously reflected in the channel graph is stale (overtaken by a
|
|
// longer chain), the channel router will prune the graph for any channels
|
|
// confirmed on the stale chain, and resync to the main chain.
|
|
func TestWakeUpOnStaleBranch(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
const chanValue = 10000
|
|
|
|
// chanID1 will not be reorged out.
|
|
var chanID1 uint64
|
|
|
|
// chanID2 will be reorged out.
|
|
var chanID2 uint64
|
|
|
|
// Create 10 common blocks, confirming chanID1.
|
|
for i := uint32(1); i <= 10; i++ {
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
height := startingBlockHeight + i
|
|
if i == 5 {
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
chanValue, height)
|
|
if err != nil {
|
|
t.Fatalf("unable create channel edge: %v", err)
|
|
}
|
|
block.Transactions = append(block.Transactions,
|
|
fundingTx)
|
|
chanID1 = chanID.ToUint64()
|
|
|
|
}
|
|
ctx.chain.addBlock(block, height, rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(height))
|
|
ctx.chainView.notifyBlock(block.BlockHash(), height,
|
|
[]*wire.MsgTx{})
|
|
}
|
|
|
|
// Give time to process new blocks
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
_, forkHeight, err := ctx.chain.GetBestBlock()
|
|
if err != nil {
|
|
t.Fatalf("unable to ge best block: %v", err)
|
|
}
|
|
|
|
// Create 10 blocks on the minority chain, confirming chanID2.
|
|
for i := uint32(1); i <= 10; i++ {
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
height := uint32(forkHeight) + i
|
|
if i == 5 {
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
chanValue, height)
|
|
if err != nil {
|
|
t.Fatalf("unable create channel edge: %v", err)
|
|
}
|
|
block.Transactions = append(block.Transactions,
|
|
fundingTx)
|
|
chanID2 = chanID.ToUint64()
|
|
}
|
|
ctx.chain.addBlock(block, height, rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(height))
|
|
ctx.chainView.notifyBlock(block.BlockHash(), height,
|
|
[]*wire.MsgTx{})
|
|
}
|
|
// Give time to process new blocks
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Now add the two edges to the channel graph, and check that they
|
|
// correctly show up in the database.
|
|
node1, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to create test node: %v", err)
|
|
}
|
|
node2, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to create test node: %v", err)
|
|
}
|
|
|
|
edge1 := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID1,
|
|
NodeKey1Bytes: node1.PubKeyBytes,
|
|
NodeKey2Bytes: node2.PubKeyBytes,
|
|
AuthProof: &channeldb.ChannelAuthProof{
|
|
NodeSig1Bytes: testSig.Serialize(),
|
|
NodeSig2Bytes: testSig.Serialize(),
|
|
BitcoinSig1Bytes: testSig.Serialize(),
|
|
BitcoinSig2Bytes: testSig.Serialize(),
|
|
},
|
|
}
|
|
copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
|
|
copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
|
|
|
|
if err := ctx.router.AddEdge(edge1); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
edge2 := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID2,
|
|
NodeKey1Bytes: node1.PubKeyBytes,
|
|
NodeKey2Bytes: node2.PubKeyBytes,
|
|
AuthProof: &channeldb.ChannelAuthProof{
|
|
NodeSig1Bytes: testSig.Serialize(),
|
|
NodeSig2Bytes: testSig.Serialize(),
|
|
BitcoinSig1Bytes: testSig.Serialize(),
|
|
BitcoinSig2Bytes: testSig.Serialize(),
|
|
},
|
|
}
|
|
copy(edge2.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
|
|
copy(edge2.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
|
|
|
|
if err := ctx.router.AddEdge(edge2); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
// Check that the fundingTxs are in the graph db.
|
|
_, _, has, isZombie, err := ctx.graph.HasChannelEdge(chanID1)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID1)
|
|
}
|
|
if !has {
|
|
t.Fatalf("could not find edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("edge was marked as zombie")
|
|
}
|
|
|
|
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID2)
|
|
}
|
|
if !has {
|
|
t.Fatalf("could not find edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("edge was marked as zombie")
|
|
}
|
|
|
|
// Stop the router, so we can reorg the chain while its offline.
|
|
if err := ctx.router.Stop(); err != nil {
|
|
t.Fatalf("unable to stop router: %v", err)
|
|
}
|
|
|
|
// Create a 15 block fork.
|
|
for i := uint32(1); i <= 15; i++ {
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
height := uint32(forkHeight) + i
|
|
ctx.chain.addBlock(block, height, rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(height))
|
|
}
|
|
|
|
// Give time to process new blocks.
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Create new router with same graph database.
|
|
router, err := New(Config{
|
|
Graph: ctx.graph,
|
|
Chain: ctx.chain,
|
|
ChainView: ctx.chainView,
|
|
Payer: &mockPaymentAttemptDispatcher{},
|
|
Control: makeMockControlTower(),
|
|
ChannelPruneExpiry: time.Hour * 24,
|
|
GraphPruneInterval: time.Hour * 2,
|
|
})
|
|
if err != nil {
|
|
t.Fatalf("unable to create router %v", err)
|
|
}
|
|
|
|
// It should resync to the longer chain on startup.
|
|
if err := router.Start(); err != nil {
|
|
t.Fatalf("unable to start router: %v", err)
|
|
}
|
|
|
|
// The channel with chanID2 should not be in the database anymore,
|
|
// since it is not confirmed on the longest chain. chanID1 should
|
|
// still be.
|
|
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID1)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID1)
|
|
}
|
|
if !has {
|
|
t.Fatalf("did not find edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("edge was marked as zombie")
|
|
}
|
|
|
|
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID2)
|
|
}
|
|
if has {
|
|
t.Fatalf("found edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("reorged edge should not be marked as zombie")
|
|
}
|
|
}
|
|
|
|
// TestDisconnectedBlocks checks that the router handles a reorg happening when
|
|
// it is active.
|
|
func TestDisconnectedBlocks(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
const chanValue = 10000
|
|
|
|
// chanID1 will not be reorged out, while chanID2 will be reorged out.
|
|
var chanID1, chanID2 uint64
|
|
|
|
// Create 10 common blocks, confirming chanID1.
|
|
for i := uint32(1); i <= 10; i++ {
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
height := startingBlockHeight + i
|
|
if i == 5 {
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
chanValue, height)
|
|
if err != nil {
|
|
t.Fatalf("unable create channel edge: %v", err)
|
|
}
|
|
block.Transactions = append(block.Transactions,
|
|
fundingTx)
|
|
chanID1 = chanID.ToUint64()
|
|
|
|
}
|
|
ctx.chain.addBlock(block, height, rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(height))
|
|
ctx.chainView.notifyBlock(block.BlockHash(), height,
|
|
[]*wire.MsgTx{})
|
|
}
|
|
|
|
// Give time to process new blocks
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
_, forkHeight, err := ctx.chain.GetBestBlock()
|
|
if err != nil {
|
|
t.Fatalf("unable to get best block: %v", err)
|
|
}
|
|
|
|
// Create 10 blocks on the minority chain, confirming chanID2.
|
|
var minorityChain []*wire.MsgBlock
|
|
for i := uint32(1); i <= 10; i++ {
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
height := uint32(forkHeight) + i
|
|
if i == 5 {
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
chanValue, height)
|
|
if err != nil {
|
|
t.Fatalf("unable create channel edge: %v", err)
|
|
}
|
|
block.Transactions = append(block.Transactions,
|
|
fundingTx)
|
|
chanID2 = chanID.ToUint64()
|
|
}
|
|
minorityChain = append(minorityChain, block)
|
|
ctx.chain.addBlock(block, height, rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(height))
|
|
ctx.chainView.notifyBlock(block.BlockHash(), height,
|
|
[]*wire.MsgTx{})
|
|
}
|
|
// Give time to process new blocks
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// Now add the two edges to the channel graph, and check that they
|
|
// correctly show up in the database.
|
|
node1, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to create test node: %v", err)
|
|
}
|
|
node2, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to create test node: %v", err)
|
|
}
|
|
|
|
edge1 := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID1,
|
|
NodeKey1Bytes: node1.PubKeyBytes,
|
|
NodeKey2Bytes: node2.PubKeyBytes,
|
|
BitcoinKey1Bytes: node1.PubKeyBytes,
|
|
BitcoinKey2Bytes: node2.PubKeyBytes,
|
|
AuthProof: &channeldb.ChannelAuthProof{
|
|
NodeSig1Bytes: testSig.Serialize(),
|
|
NodeSig2Bytes: testSig.Serialize(),
|
|
BitcoinSig1Bytes: testSig.Serialize(),
|
|
BitcoinSig2Bytes: testSig.Serialize(),
|
|
},
|
|
}
|
|
copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
|
|
copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
|
|
|
|
if err := ctx.router.AddEdge(edge1); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
edge2 := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID2,
|
|
NodeKey1Bytes: node1.PubKeyBytes,
|
|
NodeKey2Bytes: node2.PubKeyBytes,
|
|
BitcoinKey1Bytes: node1.PubKeyBytes,
|
|
BitcoinKey2Bytes: node2.PubKeyBytes,
|
|
AuthProof: &channeldb.ChannelAuthProof{
|
|
NodeSig1Bytes: testSig.Serialize(),
|
|
NodeSig2Bytes: testSig.Serialize(),
|
|
BitcoinSig1Bytes: testSig.Serialize(),
|
|
BitcoinSig2Bytes: testSig.Serialize(),
|
|
},
|
|
}
|
|
copy(edge2.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
|
|
copy(edge2.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
|
|
|
|
if err := ctx.router.AddEdge(edge2); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
// Check that the fundingTxs are in the graph db.
|
|
_, _, has, isZombie, err := ctx.graph.HasChannelEdge(chanID1)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID1)
|
|
}
|
|
if !has {
|
|
t.Fatalf("could not find edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("edge was marked as zombie")
|
|
}
|
|
|
|
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID2)
|
|
}
|
|
if !has {
|
|
t.Fatalf("could not find edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("edge was marked as zombie")
|
|
}
|
|
|
|
// Create a 15 block fork. We first let the chainView notify the router
|
|
// about stale blocks, before sending the now connected blocks. We do
|
|
// this because we expect this order from the chainview.
|
|
for i := len(minorityChain) - 1; i >= 0; i-- {
|
|
block := minorityChain[i]
|
|
height := uint32(forkHeight) + uint32(i) + 1
|
|
ctx.chainView.notifyStaleBlock(block.BlockHash(), height,
|
|
block.Transactions)
|
|
}
|
|
for i := uint32(1); i <= 15; i++ {
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
height := uint32(forkHeight) + i
|
|
ctx.chain.addBlock(block, height, rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(height))
|
|
ctx.chainView.notifyBlock(block.BlockHash(), height,
|
|
block.Transactions)
|
|
}
|
|
|
|
// Give time to process new blocks
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
// chanID2 should not be in the database anymore, since it is not
|
|
// confirmed on the longest chain. chanID1 should still be.
|
|
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID1)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID1)
|
|
}
|
|
if !has {
|
|
t.Fatalf("did not find edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("edge was marked as zombie")
|
|
}
|
|
|
|
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID2)
|
|
}
|
|
if has {
|
|
t.Fatalf("found edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("reorged edge should not be marked as zombie")
|
|
}
|
|
}
|
|
|
|
// TestChansClosedOfflinePruneGraph tests that if channels we know of are
|
|
// closed while we're offline, then once we resume operation of the
|
|
// ChannelRouter, then the channels are properly pruned.
|
|
func TestRouterChansClosedOfflinePruneGraph(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
const chanValue = 10000
|
|
|
|
// First, we'll create a channel, to be mined shortly at height 102.
|
|
block102 := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
nextHeight := startingBlockHeight + 1
|
|
fundingTx1, chanUTXO, chanID1, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
chanValue, uint32(nextHeight))
|
|
if err != nil {
|
|
t.Fatalf("unable create channel edge: %v", err)
|
|
}
|
|
block102.Transactions = append(block102.Transactions, fundingTx1)
|
|
ctx.chain.addBlock(block102, uint32(nextHeight), rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(nextHeight))
|
|
ctx.chainView.notifyBlock(block102.BlockHash(), uint32(nextHeight),
|
|
[]*wire.MsgTx{})
|
|
|
|
// We'll now create the edges and nodes within the database required
|
|
// for the ChannelRouter to properly recognize the channel we added
|
|
// above.
|
|
node1, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to create test node: %v", err)
|
|
}
|
|
node2, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to create test node: %v", err)
|
|
}
|
|
edge1 := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID1.ToUint64(),
|
|
NodeKey1Bytes: node1.PubKeyBytes,
|
|
NodeKey2Bytes: node2.PubKeyBytes,
|
|
AuthProof: &channeldb.ChannelAuthProof{
|
|
NodeSig1Bytes: testSig.Serialize(),
|
|
NodeSig2Bytes: testSig.Serialize(),
|
|
BitcoinSig1Bytes: testSig.Serialize(),
|
|
BitcoinSig2Bytes: testSig.Serialize(),
|
|
},
|
|
}
|
|
copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
|
|
copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
|
|
if err := ctx.router.AddEdge(edge1); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
// The router should now be aware of the channel we created above.
|
|
_, _, hasChan, isZombie, err := ctx.graph.HasChannelEdge(chanID1.ToUint64())
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID1)
|
|
}
|
|
if !hasChan {
|
|
t.Fatalf("could not find edge in graph")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("edge was marked as zombie")
|
|
}
|
|
|
|
// With the transaction included, and the router's database state
|
|
// updated, we'll now mine 5 additional blocks on top of it.
|
|
for i := 0; i < 5; i++ {
|
|
nextHeight++
|
|
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
ctx.chain.addBlock(block, uint32(nextHeight), rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(nextHeight))
|
|
ctx.chainView.notifyBlock(block.BlockHash(), uint32(nextHeight),
|
|
[]*wire.MsgTx{})
|
|
}
|
|
|
|
// At this point, our starting height should be 107.
|
|
_, chainHeight, err := ctx.chain.GetBestBlock()
|
|
if err != nil {
|
|
t.Fatalf("unable to get best block: %v", err)
|
|
}
|
|
if chainHeight != 107 {
|
|
t.Fatalf("incorrect chain height: expected %v, got %v",
|
|
107, chainHeight)
|
|
}
|
|
|
|
// Next, we'll "shut down" the router in order to simulate downtime.
|
|
if err := ctx.router.Stop(); err != nil {
|
|
t.Fatalf("unable to shutdown router: %v", err)
|
|
}
|
|
|
|
// While the router is "offline" we'll mine 5 additional blocks, with
|
|
// the second block closing the channel we created above.
|
|
for i := 0; i < 5; i++ {
|
|
nextHeight++
|
|
|
|
block := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{},
|
|
}
|
|
|
|
if i == 2 {
|
|
// For the second block, we'll add a transaction that
|
|
// closes the channel we created above by spending the
|
|
// output.
|
|
closingTx := wire.NewMsgTx(2)
|
|
closingTx.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: *chanUTXO,
|
|
})
|
|
block.Transactions = append(block.Transactions,
|
|
closingTx)
|
|
}
|
|
|
|
ctx.chain.addBlock(block, uint32(nextHeight), rand.Uint32())
|
|
ctx.chain.setBestBlock(int32(nextHeight))
|
|
ctx.chainView.notifyBlock(block.BlockHash(), uint32(nextHeight),
|
|
[]*wire.MsgTx{})
|
|
}
|
|
|
|
// At this point, our starting height should be 112.
|
|
_, chainHeight, err = ctx.chain.GetBestBlock()
|
|
if err != nil {
|
|
t.Fatalf("unable to get best block: %v", err)
|
|
}
|
|
if chainHeight != 112 {
|
|
t.Fatalf("incorrect chain height: expected %v, got %v",
|
|
112, chainHeight)
|
|
}
|
|
|
|
// Now we'll re-start the ChannelRouter. It should recognize that it's
|
|
// behind the main chain and prune all the blocks that it missed while
|
|
// it was down.
|
|
ctx.RestartRouter()
|
|
|
|
// At this point, the channel that was pruned should no longer be known
|
|
// by the router.
|
|
_, _, hasChan, isZombie, err = ctx.graph.HasChannelEdge(chanID1.ToUint64())
|
|
if err != nil {
|
|
t.Fatalf("error looking for edge: %v", chanID1)
|
|
}
|
|
if hasChan {
|
|
t.Fatalf("channel was found in graph but shouldn't have been")
|
|
}
|
|
if isZombie {
|
|
t.Fatal("closed channel should not be marked as zombie")
|
|
}
|
|
}
|
|
|
|
// TestPruneChannelGraphStaleEdges ensures that we properly prune stale edges
|
|
// from the channel graph.
|
|
func TestPruneChannelGraphStaleEdges(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
freshTimestamp := time.Now()
|
|
staleTimestamp := time.Unix(0, 0)
|
|
|
|
// We'll create the following test graph so that only the last channel
|
|
// is pruned.
|
|
testChannels := []*testChannel{
|
|
// No edges.
|
|
{
|
|
Node1: &testChannelEnd{Alias: "a"},
|
|
Node2: &testChannelEnd{Alias: "b"},
|
|
Capacity: 100000,
|
|
ChannelID: 1,
|
|
},
|
|
|
|
// Only one edge with a stale timestamp.
|
|
{
|
|
Node1: &testChannelEnd{
|
|
Alias: "a",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: staleTimestamp,
|
|
},
|
|
},
|
|
Node2: &testChannelEnd{Alias: "b"},
|
|
Capacity: 100000,
|
|
ChannelID: 2,
|
|
},
|
|
|
|
// Only one edge with a fresh timestamp.
|
|
{
|
|
Node1: &testChannelEnd{
|
|
Alias: "a",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: freshTimestamp,
|
|
},
|
|
},
|
|
Node2: &testChannelEnd{Alias: "b"},
|
|
Capacity: 100000,
|
|
ChannelID: 3,
|
|
},
|
|
|
|
// One edge fresh, one edge stale.
|
|
{
|
|
Node1: &testChannelEnd{
|
|
Alias: "c",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: freshTimestamp,
|
|
},
|
|
},
|
|
Node2: &testChannelEnd{
|
|
Alias: "d",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: staleTimestamp,
|
|
},
|
|
},
|
|
Capacity: 100000,
|
|
ChannelID: 4,
|
|
},
|
|
|
|
// Both edges fresh.
|
|
symmetricTestChannel("g", "h", 100000, &testChannelPolicy{
|
|
LastUpdate: freshTimestamp,
|
|
}, 5),
|
|
|
|
// Both edges stale, only one pruned.
|
|
symmetricTestChannel("e", "f", 100000, &testChannelPolicy{
|
|
LastUpdate: staleTimestamp,
|
|
}, 6),
|
|
}
|
|
|
|
// We'll create our test graph and router backed with these test
|
|
// channels we've created.
|
|
testGraph, err := createTestGraphFromChannels(testChannels, "a")
|
|
if err != nil {
|
|
t.Fatalf("unable to create test graph: %v", err)
|
|
}
|
|
defer testGraph.cleanUp()
|
|
|
|
const startingHeight = 100
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(
|
|
startingHeight, testGraph,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create test context: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// All of the channels should exist before pruning them.
|
|
assertChannelsPruned(t, ctx.graph, testChannels)
|
|
|
|
// Proceed to prune the channels - only the last one should be pruned.
|
|
if err := ctx.router.pruneZombieChans(); err != nil {
|
|
t.Fatalf("unable to prune zombie channels: %v", err)
|
|
}
|
|
|
|
prunedChannel := testChannels[len(testChannels)-1].ChannelID
|
|
assertChannelsPruned(t, ctx.graph, testChannels, prunedChannel)
|
|
}
|
|
|
|
// TestPruneChannelGraphDoubleDisabled test that we can properly prune channels
|
|
// with both edges disabled from our channel graph.
|
|
func TestPruneChannelGraphDoubleDisabled(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// We'll create the following test graph so that only the last channel
|
|
// is pruned. We'll use a fresh timestamp to ensure they're not pruned
|
|
// according to that heuristic.
|
|
timestamp := time.Now()
|
|
testChannels := []*testChannel{
|
|
// Channel from self shouldn't be pruned.
|
|
symmetricTestChannel(
|
|
"self", "a", 100000, &testChannelPolicy{
|
|
LastUpdate: timestamp,
|
|
Disabled: true,
|
|
}, 99,
|
|
),
|
|
|
|
// No edges.
|
|
{
|
|
Node1: &testChannelEnd{Alias: "a"},
|
|
Node2: &testChannelEnd{Alias: "b"},
|
|
Capacity: 100000,
|
|
ChannelID: 1,
|
|
},
|
|
|
|
// Only one edge disabled.
|
|
{
|
|
Node1: &testChannelEnd{
|
|
Alias: "a",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: timestamp,
|
|
Disabled: true,
|
|
},
|
|
},
|
|
Node2: &testChannelEnd{Alias: "b"},
|
|
Capacity: 100000,
|
|
ChannelID: 2,
|
|
},
|
|
|
|
// Only one edge enabled.
|
|
{
|
|
Node1: &testChannelEnd{
|
|
Alias: "a",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: timestamp,
|
|
Disabled: false,
|
|
},
|
|
},
|
|
Node2: &testChannelEnd{Alias: "b"},
|
|
Capacity: 100000,
|
|
ChannelID: 3,
|
|
},
|
|
|
|
// One edge disabled, one edge enabled.
|
|
{
|
|
Node1: &testChannelEnd{
|
|
Alias: "a",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: timestamp,
|
|
Disabled: true,
|
|
},
|
|
},
|
|
Node2: &testChannelEnd{
|
|
Alias: "b",
|
|
testChannelPolicy: &testChannelPolicy{
|
|
LastUpdate: timestamp,
|
|
Disabled: false,
|
|
},
|
|
},
|
|
Capacity: 100000,
|
|
ChannelID: 1,
|
|
},
|
|
|
|
// Both edges enabled.
|
|
symmetricTestChannel("c", "d", 100000, &testChannelPolicy{
|
|
LastUpdate: timestamp,
|
|
Disabled: false,
|
|
}, 2),
|
|
|
|
// Both edges disabled, only one pruned.
|
|
symmetricTestChannel("e", "f", 100000, &testChannelPolicy{
|
|
LastUpdate: timestamp,
|
|
Disabled: true,
|
|
}, 3),
|
|
}
|
|
|
|
// We'll create our test graph and router backed with these test
|
|
// channels we've created.
|
|
testGraph, err := createTestGraphFromChannels(testChannels, "self")
|
|
if err != nil {
|
|
t.Fatalf("unable to create test graph: %v", err)
|
|
}
|
|
defer testGraph.cleanUp()
|
|
|
|
const startingHeight = 100
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(
|
|
startingHeight, testGraph,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create test context: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// All the channels should exist within the graph before pruning them.
|
|
assertChannelsPruned(t, ctx.graph, testChannels)
|
|
|
|
// If we attempt to prune them without AssumeChannelValid being set,
|
|
// none should be pruned.
|
|
if err := ctx.router.pruneZombieChans(); err != nil {
|
|
t.Fatalf("unable to prune zombie channels: %v", err)
|
|
}
|
|
|
|
assertChannelsPruned(t, ctx.graph, testChannels)
|
|
|
|
// Now that AssumeChannelValid is set, we'll prune the graph again and
|
|
// the last channel should be the only one pruned.
|
|
ctx.router.cfg.AssumeChannelValid = true
|
|
if err := ctx.router.pruneZombieChans(); err != nil {
|
|
t.Fatalf("unable to prune zombie channels: %v", err)
|
|
}
|
|
|
|
prunedChannel := testChannels[len(testChannels)-1].ChannelID
|
|
assertChannelsPruned(t, ctx.graph, testChannels, prunedChannel)
|
|
}
|
|
|
|
// TestFindPathFeeWeighting tests that the findPath method will properly prefer
|
|
// routes with lower fees over routes with lower time lock values. This is
|
|
// meant to exercise the fact that the internal findPath method ranks edges
|
|
// with the square of the total fee in order bias towards lower fees.
|
|
func TestFindPathFeeWeighting(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
var preImage [32]byte
|
|
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
|
|
|
|
sourceNode, err := ctx.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
amt := lnwire.MilliSatoshi(100)
|
|
|
|
target := ctx.aliases["luoji"]
|
|
|
|
// We'll now attempt a path finding attempt using this set up. Due to
|
|
// the edge weighting, we should select the direct path over the 2 hop
|
|
// path even though the direct path has a higher potential time lock.
|
|
path, err := dbFindPath(
|
|
ctx.graph, nil, nil,
|
|
noRestrictions,
|
|
testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, amt, 0,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
|
|
// The route that was chosen should be exactly one hop, and should be
|
|
// directly to luoji.
|
|
if len(path) != 1 {
|
|
t.Fatalf("expected path length of 1, instead was: %v", len(path))
|
|
}
|
|
if path[0].Node.Alias != "luoji" {
|
|
t.Fatalf("wrong node: %v", path[0].Node.Alias)
|
|
}
|
|
}
|
|
|
|
// TestIsStaleNode tests that the IsStaleNode method properly detects stale
|
|
// node announcements.
|
|
func TestIsStaleNode(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// Before we can insert a node in to the database, we need to create a
|
|
// channel that it's linked to.
|
|
var (
|
|
pub1 [33]byte
|
|
pub2 [33]byte
|
|
)
|
|
copy(pub1[:], priv1.PubKey().SerializeCompressed())
|
|
copy(pub2[:], priv2.PubKey().SerializeCompressed())
|
|
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
10000, 500)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel edge: %v", err)
|
|
}
|
|
fundingBlock := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{fundingTx},
|
|
}
|
|
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
|
|
|
|
edge := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID.ToUint64(),
|
|
NodeKey1Bytes: pub1,
|
|
NodeKey2Bytes: pub2,
|
|
BitcoinKey1Bytes: pub1,
|
|
BitcoinKey2Bytes: pub2,
|
|
AuthProof: nil,
|
|
}
|
|
if err := ctx.router.AddEdge(edge); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
// Before we add the node, if we query for staleness, we should get
|
|
// false, as we haven't added the full node.
|
|
updateTimeStamp := time.Unix(123, 0)
|
|
if ctx.router.IsStaleNode(pub1, updateTimeStamp) {
|
|
t.Fatalf("incorrectly detected node as stale")
|
|
}
|
|
|
|
// With the node stub in the database, we'll add the fully node
|
|
// announcement to the database.
|
|
n1 := &channeldb.LightningNode{
|
|
HaveNodeAnnouncement: true,
|
|
LastUpdate: updateTimeStamp,
|
|
Addresses: testAddrs,
|
|
Color: color.RGBA{1, 2, 3, 0},
|
|
Alias: "node11",
|
|
AuthSigBytes: testSig.Serialize(),
|
|
Features: testFeatures,
|
|
}
|
|
copy(n1.PubKeyBytes[:], priv1.PubKey().SerializeCompressed())
|
|
if err := ctx.router.AddNode(n1); err != nil {
|
|
t.Fatalf("could not add node: %v", err)
|
|
}
|
|
|
|
// If we use the same timestamp and query for staleness, we should get
|
|
// true.
|
|
if !ctx.router.IsStaleNode(pub1, updateTimeStamp) {
|
|
t.Fatalf("failure to detect stale node update")
|
|
}
|
|
|
|
// If we update the timestamp and once again query for staleness, it
|
|
// should report false.
|
|
newTimeStamp := time.Unix(1234, 0)
|
|
if ctx.router.IsStaleNode(pub1, newTimeStamp) {
|
|
t.Fatalf("incorrectly detected node as stale")
|
|
}
|
|
}
|
|
|
|
// TestIsKnownEdge tests that the IsKnownEdge method properly detects stale
|
|
// channel announcements.
|
|
func TestIsKnownEdge(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// First, we'll create a new channel edge (just the info) and insert it
|
|
// into the database.
|
|
var (
|
|
pub1 [33]byte
|
|
pub2 [33]byte
|
|
)
|
|
copy(pub1[:], priv1.PubKey().SerializeCompressed())
|
|
copy(pub2[:], priv2.PubKey().SerializeCompressed())
|
|
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
10000, 500)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel edge: %v", err)
|
|
}
|
|
fundingBlock := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{fundingTx},
|
|
}
|
|
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
|
|
|
|
edge := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID.ToUint64(),
|
|
NodeKey1Bytes: pub1,
|
|
NodeKey2Bytes: pub2,
|
|
BitcoinKey1Bytes: pub1,
|
|
BitcoinKey2Bytes: pub2,
|
|
AuthProof: nil,
|
|
}
|
|
if err := ctx.router.AddEdge(edge); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
// Now that the edge has been inserted, query is the router already
|
|
// knows of the edge should return true.
|
|
if !ctx.router.IsKnownEdge(*chanID) {
|
|
t.Fatalf("router should detect edge as known")
|
|
}
|
|
}
|
|
|
|
// TestIsStaleEdgePolicy tests that the IsStaleEdgePolicy properly detects
|
|
// stale channel edge update announcements.
|
|
func TestIsStaleEdgePolicy(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const startingBlockHeight = 101
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight,
|
|
basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// First, we'll create a new channel edge (just the info) and insert it
|
|
// into the database.
|
|
var (
|
|
pub1 [33]byte
|
|
pub2 [33]byte
|
|
)
|
|
copy(pub1[:], priv1.PubKey().SerializeCompressed())
|
|
copy(pub2[:], priv2.PubKey().SerializeCompressed())
|
|
|
|
fundingTx, _, chanID, err := createChannelEdge(ctx,
|
|
bitcoinKey1.SerializeCompressed(),
|
|
bitcoinKey2.SerializeCompressed(),
|
|
10000, 500)
|
|
if err != nil {
|
|
t.Fatalf("unable to create channel edge: %v", err)
|
|
}
|
|
fundingBlock := &wire.MsgBlock{
|
|
Transactions: []*wire.MsgTx{fundingTx},
|
|
}
|
|
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
|
|
|
|
// If we query for staleness before adding the edge, we should get
|
|
// false.
|
|
updateTimeStamp := time.Unix(123, 0)
|
|
if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) {
|
|
t.Fatalf("router failed to detect fresh edge policy")
|
|
}
|
|
if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) {
|
|
t.Fatalf("router failed to detect fresh edge policy")
|
|
}
|
|
|
|
edge := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: chanID.ToUint64(),
|
|
NodeKey1Bytes: pub1,
|
|
NodeKey2Bytes: pub2,
|
|
BitcoinKey1Bytes: pub1,
|
|
BitcoinKey2Bytes: pub2,
|
|
AuthProof: nil,
|
|
}
|
|
if err := ctx.router.AddEdge(edge); err != nil {
|
|
t.Fatalf("unable to add edge: %v", err)
|
|
}
|
|
|
|
// We'll also add two edge policies, one for each direction.
|
|
edgePolicy := &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: updateTimeStamp,
|
|
TimeLockDelta: 10,
|
|
MinHTLC: 1,
|
|
FeeBaseMSat: 10,
|
|
FeeProportionalMillionths: 10000,
|
|
}
|
|
edgePolicy.ChannelFlags = 0
|
|
if err := ctx.router.UpdateEdge(edgePolicy); err != nil {
|
|
t.Fatalf("unable to update edge policy: %v", err)
|
|
}
|
|
|
|
edgePolicy = &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: updateTimeStamp,
|
|
TimeLockDelta: 10,
|
|
MinHTLC: 1,
|
|
FeeBaseMSat: 10,
|
|
FeeProportionalMillionths: 10000,
|
|
}
|
|
edgePolicy.ChannelFlags = 1
|
|
if err := ctx.router.UpdateEdge(edgePolicy); err != nil {
|
|
t.Fatalf("unable to update edge policy: %v", err)
|
|
}
|
|
|
|
// Now that the edges have been added, an identical (chanID, flag,
|
|
// timestamp) tuple for each edge should be detected as a stale edge.
|
|
if !ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) {
|
|
t.Fatalf("router failed to detect stale edge policy")
|
|
}
|
|
if !ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) {
|
|
t.Fatalf("router failed to detect stale edge policy")
|
|
}
|
|
|
|
// If we now update the timestamp for both edges, the router should
|
|
// detect that this tuple represents a fresh edge.
|
|
updateTimeStamp = time.Unix(9999, 0)
|
|
if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) {
|
|
t.Fatalf("router failed to detect fresh edge policy")
|
|
}
|
|
if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) {
|
|
t.Fatalf("router failed to detect fresh edge policy")
|
|
}
|
|
}
|
|
|
|
// TestEmptyRoutesGenerateSphinxPacket tests that the generateSphinxPacket
|
|
// function is able to gracefully handle being passed a nil set of hops for the
|
|
// route by the caller.
|
|
func TestEmptyRoutesGenerateSphinxPacket(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
sessionKey, _ := btcec.NewPrivateKey(btcec.S256())
|
|
emptyRoute := &route.Route{}
|
|
_, _, err := generateSphinxPacket(emptyRoute, testHash[:], sessionKey)
|
|
if err != route.ErrNoRouteHopsProvided {
|
|
t.Fatalf("expected empty hops error: instead got: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestUnknownErrorSource tests that if the source of an error is unknown, all
|
|
// edges along the route will be pruned.
|
|
func TestUnknownErrorSource(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Setup a network. It contains two paths to c: a->b->c and an
|
|
// alternative a->d->c.
|
|
chanCapSat := btcutil.Amount(100000)
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 1),
|
|
symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 3),
|
|
symmetricTestChannel("a", "d", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
FeeBaseMsat: 100000,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 2),
|
|
symmetricTestChannel("d", "c", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
FeeBaseMsat: 100000,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 4),
|
|
}
|
|
|
|
testGraph, err := createTestGraphFromChannels(testChannels, "a")
|
|
defer testGraph.cleanUp()
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
|
|
const startingBlockHeight = 101
|
|
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(startingBlockHeight,
|
|
testGraph)
|
|
|
|
defer cleanUp()
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
|
|
// Create a payment to node c.
|
|
payment := LightningPayment{
|
|
Target: ctx.aliases["c"],
|
|
Amount: lnwire.NewMSatFromSatoshis(1000),
|
|
FeeLimit: noFeeLimit,
|
|
PaymentHash: lntypes.Hash{},
|
|
}
|
|
|
|
// We'll modify the SendToSwitch method so that it simulates hop b as a
|
|
// node that returns an unparsable failure if approached via the a->b
|
|
// channel.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
// If channel a->b is used, return an error without
|
|
// source and message. The sender won't know the origin
|
|
// of the error.
|
|
if firstHop.ToUint64() == 1 {
|
|
return [32]byte{},
|
|
htlcswitch.ErrUnreadableFailureMessage
|
|
}
|
|
|
|
// Otherwise the payment succeeds.
|
|
return lntypes.Preimage{}, nil
|
|
})
|
|
|
|
// Send off the payment request to the router. The expectation is that
|
|
// the route a->b->c is tried first. An unreadable faiure is returned
|
|
// which should pruning the channel a->b. We expect the payment to
|
|
// succeed via a->d.
|
|
_, _, err = ctx.router.SendPayment(&payment)
|
|
if err != nil {
|
|
t.Fatalf("expected payment to succeed, but got: %v", err)
|
|
}
|
|
|
|
// Next we modify payment result to return an unknown failure.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
// If channel a->b is used, simulate that the failure
|
|
// couldn't be decoded (FailureMessage is nil).
|
|
if firstHop.ToUint64() == 2 {
|
|
return [32]byte{},
|
|
htlcswitch.NewUnknownForwardingError(1)
|
|
}
|
|
|
|
// Otherwise the payment succeeds.
|
|
return lntypes.Preimage{}, nil
|
|
})
|
|
|
|
// Send off the payment request to the router. We expect the payment to
|
|
// fail because both routes have been pruned.
|
|
payment.PaymentHash = lntypes.Hash{1}
|
|
_, _, err = ctx.router.SendPayment(&payment)
|
|
if err == nil {
|
|
t.Fatalf("expected payment to fail")
|
|
}
|
|
}
|
|
|
|
// assertChannelsPruned ensures that only the given channels are pruned from the
|
|
// graph out of the set of all channels.
|
|
func assertChannelsPruned(t *testing.T, graph *channeldb.ChannelGraph,
|
|
channels []*testChannel, prunedChanIDs ...uint64) {
|
|
|
|
t.Helper()
|
|
|
|
pruned := make(map[uint64]struct{}, len(channels))
|
|
for _, chanID := range prunedChanIDs {
|
|
pruned[chanID] = struct{}{}
|
|
}
|
|
|
|
for _, channel := range channels {
|
|
_, shouldPrune := pruned[channel.ChannelID]
|
|
_, _, exists, isZombie, err := graph.HasChannelEdge(
|
|
channel.ChannelID,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to determine existence of "+
|
|
"channel=%v in the graph: %v",
|
|
channel.ChannelID, err)
|
|
}
|
|
if !shouldPrune && !exists {
|
|
t.Fatalf("expected channel=%v to exist within "+
|
|
"the graph", channel.ChannelID)
|
|
}
|
|
if shouldPrune && exists {
|
|
t.Fatalf("expected channel=%v to not exist "+
|
|
"within the graph", channel.ChannelID)
|
|
}
|
|
if !shouldPrune && isZombie {
|
|
t.Fatalf("expected channel=%v to not be marked "+
|
|
"as zombie", channel.ChannelID)
|
|
}
|
|
if shouldPrune && !isZombie {
|
|
t.Fatalf("expected channel=%v to be marked as "+
|
|
"zombie", channel.ChannelID)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestSendToRouteStructuredError asserts that SendToRoute returns a structured
|
|
// error.
|
|
func TestSendToRouteStructuredError(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Setup a three node network.
|
|
chanCapSat := btcutil.Amount(100000)
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 1),
|
|
symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 2),
|
|
}
|
|
|
|
testGraph, err := createTestGraphFromChannels(testChannels, "a")
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer testGraph.cleanUp()
|
|
|
|
const startingBlockHeight = 101
|
|
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(
|
|
startingBlockHeight, testGraph,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// Set up an init channel for the control tower, such that we can make
|
|
// sure the payment is initiated correctly.
|
|
init := make(chan initArgs, 1)
|
|
ctx.router.cfg.Control.(*mockControlTower).init = init
|
|
|
|
// Setup a route from source a to destination c. The route will be used
|
|
// in a call to SendToRoute. SendToRoute also applies channel updates,
|
|
// but it saves us from including RequestRoute in the test scope too.
|
|
const payAmt = lnwire.MilliSatoshi(10000)
|
|
hop1 := ctx.aliases["b"]
|
|
hop2 := ctx.aliases["c"]
|
|
hops := []*route.Hop{
|
|
{
|
|
ChannelID: 1,
|
|
PubKeyBytes: hop1,
|
|
AmtToForward: payAmt,
|
|
LegacyPayload: true,
|
|
},
|
|
{
|
|
ChannelID: 2,
|
|
PubKeyBytes: hop2,
|
|
AmtToForward: payAmt,
|
|
LegacyPayload: true,
|
|
},
|
|
}
|
|
|
|
rt, err := route.NewRouteFromHops(payAmt, 100, ctx.aliases["a"], hops)
|
|
if err != nil {
|
|
t.Fatalf("unable to create route: %v", err)
|
|
}
|
|
|
|
// We'll modify the SendToSwitch method so that it simulates a failed
|
|
// payment with an error originating from the first hop of the route.
|
|
// The unsigned channel update is attached to the failure message.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailFeeInsufficient{
|
|
Update: lnwire.ChannelUpdate{},
|
|
}, 1,
|
|
)
|
|
})
|
|
|
|
// The payment parameter is mostly redundant in SendToRoute. Can be left
|
|
// empty for this test.
|
|
var payment lntypes.Hash
|
|
|
|
// Send off the payment request to the router. The specified route
|
|
// should be attempted and the channel update should be received by
|
|
// router and ignored because it is missing a valid signature.
|
|
_, err = ctx.router.SendToRoute(payment, rt)
|
|
|
|
fErr, ok := err.(*htlcswitch.ForwardingError)
|
|
if !ok {
|
|
t.Fatalf("expected forwarding error")
|
|
}
|
|
|
|
if _, ok := fErr.WireMessage().(*lnwire.FailFeeInsufficient); !ok {
|
|
t.Fatalf("expected fee insufficient error")
|
|
}
|
|
|
|
// Check that the correct values were used when initiating the payment.
|
|
select {
|
|
case initVal := <-init:
|
|
if initVal.c.Value != payAmt {
|
|
t.Fatalf("expected %v, got %v", payAmt, initVal.c.Value)
|
|
}
|
|
case <-time.After(100 * time.Millisecond):
|
|
t.Fatalf("initPayment not called")
|
|
}
|
|
}
|
|
|
|
// TestSendToRouteMultiShardSend checks that a 3-shard payment can be executed
|
|
// using SendToRoute.
|
|
func TestSendToRouteMultiShardSend(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
ctx, cleanup, err := createTestCtxSingleNode(0)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
defer cleanup()
|
|
|
|
const numShards = 3
|
|
const payAmt = lnwire.MilliSatoshi(numShards * 10000)
|
|
node, err := createTestNode()
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Create a simple 1-hop route that we will use for all three shards.
|
|
hops := []*route.Hop{
|
|
{
|
|
ChannelID: 1,
|
|
PubKeyBytes: node.PubKeyBytes,
|
|
AmtToForward: payAmt / numShards,
|
|
MPP: record.NewMPP(payAmt, [32]byte{}),
|
|
},
|
|
}
|
|
|
|
sourceNode, err := ctx.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
rt, err := route.NewRouteFromHops(
|
|
payAmt, 100, sourceNode.PubKeyBytes, hops,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create route: %v", err)
|
|
}
|
|
|
|
// The first shard we send we'll fail immediately, to check that we are
|
|
// still allowed to retry with other shards after a failed one.
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
return [32]byte{}, htlcswitch.NewForwardingError(
|
|
&lnwire.FailFeeInsufficient{
|
|
Update: lnwire.ChannelUpdate{},
|
|
}, 1,
|
|
)
|
|
})
|
|
|
|
// The payment parameter is mostly redundant in SendToRoute. Can be left
|
|
// empty for this test.
|
|
var payment lntypes.Hash
|
|
|
|
// Send the shard using the created route, and expect an error to be
|
|
// returned.
|
|
_, err = ctx.router.SendToRoute(payment, rt)
|
|
if err == nil {
|
|
t.Fatalf("expected forwarding error")
|
|
}
|
|
|
|
// Now we'll modify the SendToSwitch method again to wait until all
|
|
// three shards are initiated before returning a result. We do this by
|
|
// signalling when the method has been called, and then stop to wait
|
|
// for the test to deliver the final result on the channel below.
|
|
waitForResultSignal := make(chan struct{}, numShards)
|
|
results := make(chan lntypes.Preimage, numShards)
|
|
|
|
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
|
|
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
|
|
|
|
// Signal that the shard has been initiated and is
|
|
// waiting for a result.
|
|
waitForResultSignal <- struct{}{}
|
|
|
|
// Wait for a result before returning it.
|
|
res, ok := <-results
|
|
if !ok {
|
|
return [32]byte{}, fmt.Errorf("failure")
|
|
}
|
|
return res, nil
|
|
})
|
|
|
|
// Launch three shards by calling SendToRoute in three goroutines,
|
|
// returning their final error on the channel.
|
|
errChan := make(chan error)
|
|
successes := make(chan lntypes.Preimage)
|
|
|
|
for i := 0; i < numShards; i++ {
|
|
go func() {
|
|
attempt, err := ctx.router.SendToRoute(payment, rt)
|
|
if err != nil {
|
|
errChan <- err
|
|
return
|
|
}
|
|
|
|
successes <- attempt.Settle.Preimage
|
|
}()
|
|
}
|
|
|
|
// Wait for all shards to signal they have been initiated.
|
|
for i := 0; i < numShards; i++ {
|
|
select {
|
|
case <-waitForResultSignal:
|
|
case <-time.After(5 * time.Second):
|
|
t.Fatalf("not waiting for results")
|
|
}
|
|
}
|
|
|
|
// Deliver a dummy preimage to all the shard handlers.
|
|
preimage := lntypes.Preimage{}
|
|
preimage[4] = 42
|
|
for i := 0; i < numShards; i++ {
|
|
results <- preimage
|
|
}
|
|
|
|
// Finally expect all shards to return with the above preimage.
|
|
for i := 0; i < numShards; i++ {
|
|
select {
|
|
case p := <-successes:
|
|
if p != preimage {
|
|
t.Fatalf("preimage mismatch")
|
|
}
|
|
case err := <-errChan:
|
|
t.Fatalf("unexpected error from SendToRoute: %v", err)
|
|
case <-time.After(5 * time.Second):
|
|
t.Fatalf("result not received")
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestSendToRouteMaxHops asserts that SendToRoute fails when using a route that
|
|
// exceeds the maximum number of hops.
|
|
func TestSendToRouteMaxHops(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Setup a two node network.
|
|
chanCapSat := btcutil.Amount(100000)
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 1),
|
|
}
|
|
|
|
testGraph, err := createTestGraphFromChannels(testChannels, "a")
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer testGraph.cleanUp()
|
|
|
|
const startingBlockHeight = 101
|
|
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(
|
|
startingBlockHeight, testGraph,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// Create a 30 hop route that exceeds the maximum hop limit.
|
|
const payAmt = lnwire.MilliSatoshi(10000)
|
|
hopA := ctx.aliases["a"]
|
|
hopB := ctx.aliases["b"]
|
|
|
|
var hops []*route.Hop
|
|
for i := 0; i < 15; i++ {
|
|
hops = append(hops, &route.Hop{
|
|
ChannelID: 1,
|
|
PubKeyBytes: hopB,
|
|
AmtToForward: payAmt,
|
|
LegacyPayload: true,
|
|
})
|
|
|
|
hops = append(hops, &route.Hop{
|
|
ChannelID: 1,
|
|
PubKeyBytes: hopA,
|
|
AmtToForward: payAmt,
|
|
LegacyPayload: true,
|
|
})
|
|
}
|
|
|
|
rt, err := route.NewRouteFromHops(payAmt, 100, ctx.aliases["a"], hops)
|
|
if err != nil {
|
|
t.Fatalf("unable to create route: %v", err)
|
|
}
|
|
|
|
// Send off the payment request to the router. We expect an error back
|
|
// indicating that the route is too long.
|
|
var payment lntypes.Hash
|
|
_, err = ctx.router.SendToRoute(payment, rt)
|
|
if err != route.ErrMaxRouteHopsExceeded {
|
|
t.Fatalf("expected ErrMaxRouteHopsExceeded, but got %v", err)
|
|
}
|
|
}
|
|
|
|
// TestBuildRoute tests whether correct routes are built.
|
|
func TestBuildRoute(t *testing.T) {
|
|
// Setup a three node network.
|
|
chanCapSat := btcutil.Amount(100000)
|
|
testChannels := []*testChannel{
|
|
// Create two local channels from a. The bandwidth is estimated
|
|
// in this test as the channel capacity. For building routes, we
|
|
// expected the channel with the largest estimated bandwidth to
|
|
// be selected.
|
|
symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 20000,
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(5),
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 1),
|
|
symmetricTestChannel("a", "b", chanCapSat/2, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 20000,
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(5),
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat / 2),
|
|
}, 6),
|
|
|
|
// Create two channels from b to c. For building routes, we
|
|
// expect the lowest cost channel to be selected. Note that this
|
|
// isn't a situation that we are expecting in reality. Routing
|
|
// nodes are recommended to keep their channel policies towards
|
|
// the same peer identical.
|
|
symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 50000,
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(20),
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(120),
|
|
}, 2),
|
|
symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 60000,
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(20),
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(120),
|
|
}, 7),
|
|
|
|
symmetricTestChannel("a", "e", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 80000,
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(5),
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(10),
|
|
}, 5),
|
|
symmetricTestChannel("e", "c", chanCapSat, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 100000,
|
|
MinHTLC: lnwire.NewMSatFromSatoshis(20),
|
|
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
|
|
}, 4),
|
|
}
|
|
|
|
testGraph, err := createTestGraphFromChannels(testChannels, "a")
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer testGraph.cleanUp()
|
|
|
|
const startingBlockHeight = 101
|
|
|
|
ctx, cleanUp, err := createTestCtxFromGraphInstance(
|
|
startingBlockHeight, testGraph,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
checkHops := func(rt *route.Route, expected []uint64) {
|
|
t.Helper()
|
|
|
|
if len(rt.Hops) != len(expected) {
|
|
t.Fatal("hop count mismatch")
|
|
}
|
|
for i, hop := range rt.Hops {
|
|
if hop.ChannelID != expected[i] {
|
|
t.Fatalf("expected channel %v at pos %v, but "+
|
|
"got channel %v",
|
|
expected[i], i, hop.ChannelID)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create hop list from the route node pubkeys.
|
|
hops := []route.Vertex{
|
|
ctx.aliases["b"], ctx.aliases["c"],
|
|
}
|
|
amt := lnwire.NewMSatFromSatoshis(100)
|
|
|
|
// Build the route for the given amount.
|
|
rt, err := ctx.router.BuildRoute(
|
|
&amt, hops, nil, 40,
|
|
)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Check that we get the expected route back. The total amount should be
|
|
// the amount to deliver to hop c (100 sats) plus the max fee for the
|
|
// connection b->c (6 sats).
|
|
checkHops(rt, []uint64{1, 7})
|
|
if rt.TotalAmount != 106000 {
|
|
t.Fatalf("unexpected total amount %v", rt.TotalAmount)
|
|
}
|
|
|
|
// Build the route for the minimum amount.
|
|
rt, err = ctx.router.BuildRoute(
|
|
nil, hops, nil, 40,
|
|
)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Check that we get the expected route back. The minimum that we can
|
|
// send from b to c is 20 sats. Hop b charges 1200 msat for the
|
|
// forwarding. The channel between hop a and b can carry amounts in the
|
|
// range [5, 100], so 21200 msats is the minimum amount for this route.
|
|
checkHops(rt, []uint64{1, 7})
|
|
if rt.TotalAmount != 21200 {
|
|
t.Fatalf("unexpected total amount %v", rt.TotalAmount)
|
|
}
|
|
|
|
// Test a route that contains incompatible channel htlc constraints.
|
|
// There is no amount that can pass through both channel 5 and 4.
|
|
hops = []route.Vertex{
|
|
ctx.aliases["e"], ctx.aliases["c"],
|
|
}
|
|
_, err = ctx.router.BuildRoute(
|
|
nil, hops, nil, 40,
|
|
)
|
|
errNoChannel, ok := err.(ErrNoChannel)
|
|
if !ok {
|
|
t.Fatalf("expected incompatible policies error, but got %v",
|
|
err)
|
|
}
|
|
if errNoChannel.position != 0 {
|
|
t.Fatalf("unexpected no channel error position")
|
|
}
|
|
if errNoChannel.fromNode != ctx.aliases["a"] {
|
|
t.Fatalf("unexpected no channel error node")
|
|
}
|
|
}
|