lnd.xprv/htlcswitch/decayedlog.go
2020-03-18 19:34:55 -07:00

409 lines
12 KiB
Go

package htlcswitch
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"sync"
"sync/atomic"
sphinx "github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb/kvdb"
)
const (
// defaultDbDirectory is the default directory where our decayed log
// will store our (sharedHash, CLTV) key-value pairs.
defaultDbDirectory = "sharedhashes"
// dbPermissions sets the database permissions to user write-and-readable.
dbPermissions = 0600
)
var (
// sharedHashBucket is a bucket which houses the first HashPrefixSize
// bytes of a received HTLC's hashed shared secret as the key and the HTLC's
// CLTV expiry as the value.
sharedHashBucket = []byte("shared-hash")
// batchReplayBucket is a bucket that maps batch identifiers to
// serialized ReplaySets. This is used to give idempotency in the event
// that a batch is processed more than once.
batchReplayBucket = []byte("batch-replay")
)
var (
// ErrDecayedLogInit is used to indicate a decayed log failed to create
// the proper bucketing structure on startup.
ErrDecayedLogInit = errors.New("unable to initialize decayed log")
// ErrDecayedLogCorrupted signals that the anticipated bucketing
// structure has diverged since initialization.
ErrDecayedLogCorrupted = errors.New("decayed log structure corrupted")
)
// DecayedLog implements the PersistLog interface. It stores the first
// HashPrefixSize bytes of a sha256-hashed shared secret along with a node's
// CLTV value. It is a decaying log meaning there will be a garbage collector
// to collect entries which are expired according to their stored CLTV value
// and the current block height. DecayedLog wraps boltdb for simplicity and
// batches writes to the database to decrease write contention.
type DecayedLog struct {
started int32 // To be used atomically.
stopped int32 // To be used atomically.
dbPath string
db kvdb.Backend
notifier chainntnfs.ChainNotifier
wg sync.WaitGroup
quit chan struct{}
}
// NewDecayedLog creates a new DecayedLog, which caches recently seen hash
// shared secrets. Entries are evicted as their cltv expires using block epochs
// from the given notifier.
func NewDecayedLog(dbPath string,
notifier chainntnfs.ChainNotifier) *DecayedLog {
// Use default path for log database
if dbPath == "" {
dbPath = defaultDbDirectory
}
return &DecayedLog{
dbPath: dbPath,
notifier: notifier,
quit: make(chan struct{}),
}
}
// Start opens the database we will be using to store hashed shared secrets.
// It also starts the garbage collector in a goroutine to remove stale
// database entries.
func (d *DecayedLog) Start() error {
if !atomic.CompareAndSwapInt32(&d.started, 0, 1) {
return nil
}
// Open the boltdb for use.
var err error
d.db, err = kvdb.Create(
kvdb.BoltBackendName, d.dbPath, true,
)
if err != nil {
return fmt.Errorf("Could not open boltdb: %v", err)
}
// Initialize the primary buckets used by the decayed log.
if err := d.initBuckets(); err != nil {
return err
}
// Start garbage collector.
if d.notifier != nil {
epochClient, err := d.notifier.RegisterBlockEpochNtfn(nil)
if err != nil {
return fmt.Errorf("Unable to register for epoch "+
"notifications: %v", err)
}
d.wg.Add(1)
go d.garbageCollector(epochClient)
}
return nil
}
// initBuckets initializes the primary buckets used by the decayed log, namely
// the shared hash bucket, and batch replay
func (d *DecayedLog) initBuckets() error {
return kvdb.Update(d.db, func(tx kvdb.RwTx) error {
_, err := tx.CreateTopLevelBucket(sharedHashBucket)
if err != nil {
return ErrDecayedLogInit
}
_, err = tx.CreateTopLevelBucket(batchReplayBucket)
if err != nil {
return ErrDecayedLogInit
}
return nil
})
}
// Stop halts the garbage collector and closes boltdb.
func (d *DecayedLog) Stop() error {
if !atomic.CompareAndSwapInt32(&d.stopped, 0, 1) {
return nil
}
// Stop garbage collector.
close(d.quit)
d.wg.Wait()
// Close boltdb.
d.db.Close()
return nil
}
// garbageCollector deletes entries from sharedHashBucket whose expiry height
// has already past. This function MUST be run as a goroutine.
func (d *DecayedLog) garbageCollector(epochClient *chainntnfs.BlockEpochEvent) {
defer d.wg.Done()
defer epochClient.Cancel()
for {
select {
case epoch, ok := <-epochClient.Epochs:
if !ok {
// Block epoch was canceled, shutting down.
log.Infof("Block epoch canceled, " +
"decaying hash log shutting down")
return
}
// Perform a bout of garbage collection using the
// epoch's block height.
height := uint32(epoch.Height)
numExpired, err := d.gcExpiredHashes(height)
if err != nil {
log.Errorf("unable to expire hashes at "+
"height=%d", height)
}
if numExpired > 0 {
log.Infof("Garbage collected %v shared "+
"secret hashes at height=%v",
numExpired, height)
}
case <-d.quit:
// Received shutdown request.
log.Infof("Decaying hash log received " +
"shutdown request")
return
}
}
}
// gcExpiredHashes purges the decaying log of all entries whose CLTV expires
// below the provided height.
func (d *DecayedLog) gcExpiredHashes(height uint32) (uint32, error) {
var numExpiredHashes uint32
err := kvdb.Batch(d.db, func(tx kvdb.RwTx) error {
numExpiredHashes = 0
// Grab the shared hash bucket
sharedHashes := tx.ReadWriteBucket(sharedHashBucket)
if sharedHashes == nil {
return fmt.Errorf("sharedHashBucket " +
"is nil")
}
var expiredCltv [][]byte
if err := sharedHashes.ForEach(func(k, v []byte) error {
// Deserialize the CLTV value for this entry.
cltv := uint32(binary.BigEndian.Uint32(v))
if cltv < height {
// This CLTV is expired. We must add it to an
// array which we'll loop over and delete every
// hash contained from the db.
expiredCltv = append(expiredCltv, k)
numExpiredHashes++
}
return nil
}); err != nil {
return err
}
// Delete every item in the array. This must
// be done explicitly outside of the ForEach
// function for safety reasons.
for _, hash := range expiredCltv {
err := sharedHashes.Delete(hash)
if err != nil {
return err
}
}
return nil
})
if err != nil {
return 0, err
}
return numExpiredHashes, nil
}
// Delete removes a <shared secret hash, CLTV> key-pair from the
// sharedHashBucket.
func (d *DecayedLog) Delete(hash *sphinx.HashPrefix) error {
return kvdb.Batch(d.db, func(tx kvdb.RwTx) error {
sharedHashes := tx.ReadWriteBucket(sharedHashBucket)
if sharedHashes == nil {
return ErrDecayedLogCorrupted
}
return sharedHashes.Delete(hash[:])
})
}
// Get retrieves the CLTV of a processed HTLC given the first 20 bytes of the
// Sha-256 hash of the shared secret.
func (d *DecayedLog) Get(hash *sphinx.HashPrefix) (uint32, error) {
var value uint32
err := kvdb.View(d.db, func(tx kvdb.ReadTx) error {
// Grab the shared hash bucket which stores the mapping from
// truncated sha-256 hashes of shared secrets to CLTV's.
sharedHashes := tx.ReadBucket(sharedHashBucket)
if sharedHashes == nil {
return fmt.Errorf("sharedHashes is nil, could " +
"not retrieve CLTV value")
}
// Retrieve the bytes which represents the CLTV
valueBytes := sharedHashes.Get(hash[:])
if valueBytes == nil {
return sphinx.ErrLogEntryNotFound
}
// The first 4 bytes represent the CLTV, store it in value.
value = uint32(binary.BigEndian.Uint32(valueBytes))
return nil
})
if err != nil {
return value, err
}
return value, nil
}
// Put stores a shared secret hash as the key and the CLTV as the value.
func (d *DecayedLog) Put(hash *sphinx.HashPrefix, cltv uint32) error {
// Optimisitically serialize the cltv value into the scratch buffer.
var scratch [4]byte
binary.BigEndian.PutUint32(scratch[:], cltv)
return kvdb.Batch(d.db, func(tx kvdb.RwTx) error {
sharedHashes := tx.ReadWriteBucket(sharedHashBucket)
if sharedHashes == nil {
return ErrDecayedLogCorrupted
}
// Check to see if this hash prefix has been recorded before. If
// a value is found, this packet is being replayed.
valueBytes := sharedHashes.Get(hash[:])
if valueBytes != nil {
return sphinx.ErrReplayedPacket
}
return sharedHashes.Put(hash[:], scratch[:])
})
}
// PutBatch accepts a pending batch of hashed secret entries to write to disk.
// Each hashed secret is inserted with a corresponding time value, dictating
// when the entry will be evicted from the log.
// NOTE: This method enforces idempotency by writing the replay set obtained
// from the first attempt for a particular batch ID, and decoding the return
// value to subsequent calls. For the indices of the replay set to be aligned
// properly, the batch MUST be constructed identically to the first attempt,
// pruning will cause the indices to become invalid.
func (d *DecayedLog) PutBatch(b *sphinx.Batch) (*sphinx.ReplaySet, error) {
// Since batched boltdb txns may be executed multiple times before
// succeeding, we will create a new replay set for each invocation to
// avoid any side-effects. If the txn is successful, this replay set
// will be merged with the replay set computed during batch construction
// to generate the complete replay set. If this batch was previously
// processed, the replay set will be deserialized from disk.
var replays *sphinx.ReplaySet
if err := kvdb.Batch(d.db, func(tx kvdb.RwTx) error {
sharedHashes := tx.ReadWriteBucket(sharedHashBucket)
if sharedHashes == nil {
return ErrDecayedLogCorrupted
}
// Load the batch replay bucket, which will be used to either
// retrieve the result of previously processing this batch, or
// to write the result of this operation.
batchReplayBkt := tx.ReadWriteBucket(batchReplayBucket)
if batchReplayBkt == nil {
return ErrDecayedLogCorrupted
}
// Check for the existence of this batch's id in the replay
// bucket. If a non-nil value is found, this indicates that we
// have already processed this batch before. We deserialize the
// resulting and return it to ensure calls to put batch are
// idempotent.
replayBytes := batchReplayBkt.Get(b.ID)
if replayBytes != nil {
replays = sphinx.NewReplaySet()
return replays.Decode(bytes.NewReader(replayBytes))
}
// The CLTV will be stored into scratch and then stored into the
// sharedHashBucket.
var scratch [4]byte
replays = sphinx.NewReplaySet()
err := b.ForEach(func(seqNum uint16, hashPrefix *sphinx.HashPrefix, cltv uint32) error {
// Retrieve the bytes which represents the CLTV
valueBytes := sharedHashes.Get(hashPrefix[:])
if valueBytes != nil {
replays.Add(seqNum)
return nil
}
// Serialize the cltv value and write an entry keyed by
// the hash prefix.
binary.BigEndian.PutUint32(scratch[:], cltv)
return sharedHashes.Put(hashPrefix[:], scratch[:])
})
if err != nil {
return err
}
// Merge the replay set computed from checking the on-disk
// entries with the in-batch replays computed during this
// batch's construction.
replays.Merge(b.ReplaySet)
// Write the replay set under the batch identifier to the batch
// replays bucket. This can be used during recovery to test (1)
// that a particular batch was successfully processed and (2)
// recover the indexes of the adds that were rejected as
// replays.
var replayBuf bytes.Buffer
if err := replays.Encode(&replayBuf); err != nil {
return err
}
return batchReplayBkt.Put(b.ID, replayBuf.Bytes())
}); err != nil {
return nil, err
}
b.ReplaySet = replays
b.IsCommitted = true
return replays, nil
}
// A compile time check to see if DecayedLog adheres to the PersistLog
// interface.
var _ sphinx.ReplayLog = (*DecayedLog)(nil)