lnd.xprv/sweep/sweeper_test.go
2020-03-19 21:36:38 +01:00

1295 lines
32 KiB
Go

package sweep
import (
"os"
"runtime/debug"
"runtime/pprof"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
)
var (
testLog = build.NewSubLogger("SWPR_TEST", nil)
testMaxSweepAttempts = 3
testMaxInputsPerTx = 3
defaultFeePref = Params{Fee: FeePreference{ConfTarget: 1}}
)
type sweeperTestContext struct {
t *testing.T
sweeper *UtxoSweeper
notifier *MockNotifier
estimator *mockFeeEstimator
backend *mockBackend
store *MockSweeperStore
timeoutChan chan chan time.Time
publishChan chan wire.MsgTx
}
var (
spendableInputs []*input.BaseInput
testInputCount int
testPubKey, _ = btcec.ParsePubKey([]byte{
0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
}, btcec.S256())
)
func createTestInput(value int64, witnessType input.WitnessType) input.BaseInput {
hash := chainhash.Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
byte(testInputCount)}
input := input.MakeBaseInput(
&wire.OutPoint{
Hash: hash,
},
witnessType,
&input.SignDescriptor{
Output: &wire.TxOut{
Value: value,
},
KeyDesc: keychain.KeyDescriptor{
PubKey: testPubKey,
},
},
0,
)
testInputCount++
return input
}
func init() {
// Create a set of test spendable inputs.
for i := 0; i < 5; i++ {
input := createTestInput(int64(10000+i*500),
input.CommitmentTimeLock)
spendableInputs = append(spendableInputs, &input)
}
}
func createSweeperTestContext(t *testing.T) *sweeperTestContext {
notifier := NewMockNotifier(t)
store := NewMockSweeperStore()
backend := newMockBackend(t, notifier)
backend.walletUtxos = []*lnwallet.Utxo{
{
Value: btcutil.Amount(10000),
AddressType: lnwallet.WitnessPubKey,
},
}
estimator := newMockFeeEstimator(10000, chainfee.FeePerKwFloor)
ctx := &sweeperTestContext{
notifier: notifier,
publishChan: backend.publishChan,
t: t,
estimator: estimator,
backend: backend,
store: store,
timeoutChan: make(chan chan time.Time, 1),
}
var outputScriptCount byte
ctx.sweeper = New(&UtxoSweeperConfig{
Notifier: notifier,
Wallet: backend,
NewBatchTimer: func() <-chan time.Time {
c := make(chan time.Time, 1)
ctx.timeoutChan <- c
return c
},
Store: store,
Signer: &mockSigner{},
GenSweepScript: func() ([]byte, error) {
script := []byte{outputScriptCount}
outputScriptCount++
return script, nil
},
FeeEstimator: estimator,
MaxInputsPerTx: testMaxInputsPerTx,
MaxSweepAttempts: testMaxSweepAttempts,
NextAttemptDeltaFunc: func(attempts int) int32 {
// Use delta func without random factor.
return 1 << uint(attempts-1)
},
MaxFeeRate: DefaultMaxFeeRate,
FeeRateBucketSize: DefaultFeeRateBucketSize,
})
ctx.sweeper.Start()
return ctx
}
func (ctx *sweeperTestContext) restartSweeper() {
ctx.t.Helper()
ctx.sweeper.Stop()
ctx.sweeper = New(ctx.sweeper.cfg)
ctx.sweeper.Start()
}
func (ctx *sweeperTestContext) tick() {
testLog.Trace("Waiting for tick to be consumed")
select {
case c := <-ctx.timeoutChan:
select {
case c <- time.Time{}:
testLog.Trace("Tick")
case <-time.After(defaultTestTimeout):
debug.PrintStack()
ctx.t.Fatal("tick timeout - tick not consumed")
}
case <-time.After(defaultTestTimeout):
debug.PrintStack()
ctx.t.Fatal("tick timeout - no new timer created")
}
}
func (ctx *sweeperTestContext) assertNoNewTimer() {
select {
case <-ctx.timeoutChan:
ctx.t.Fatal("no new timer expected")
default:
}
}
func (ctx *sweeperTestContext) finish(expectedGoroutineCount int) {
// We assume that when finish is called, sweeper has finished all its
// goroutines. This implies that the waitgroup is empty.
signalChan := make(chan struct{})
go func() {
ctx.sweeper.wg.Wait()
close(signalChan)
}()
// Simulate exits of the expected number of running goroutines.
for i := 0; i < expectedGoroutineCount; i++ {
ctx.sweeper.wg.Done()
}
// We now expect the Wait to succeed.
select {
case <-signalChan:
case <-time.After(time.Second):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
ctx.t.Fatalf("lingering goroutines detected after test " +
"is finished")
}
// Restore waitgroup state to what it was before.
ctx.sweeper.wg.Add(expectedGoroutineCount)
// Stop sweeper.
ctx.sweeper.Stop()
// We should have consumed and asserted all published transactions in
// our unit tests.
ctx.assertNoTx()
ctx.assertNoNewTimer()
if !ctx.backend.isDone() {
ctx.t.Fatal("unconfirmed txes remaining")
}
}
func (ctx *sweeperTestContext) assertNoTx() {
ctx.t.Helper()
select {
case <-ctx.publishChan:
ctx.t.Fatalf("unexpected transactions published")
default:
}
}
func (ctx *sweeperTestContext) receiveTx() wire.MsgTx {
ctx.t.Helper()
var tx wire.MsgTx
select {
case tx = <-ctx.publishChan:
return tx
case <-time.After(5 * time.Second):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
ctx.t.Fatalf("tx not published")
}
return tx
}
func (ctx *sweeperTestContext) expectResult(c chan Result, expected error) {
ctx.t.Helper()
select {
case result := <-c:
if result.Err != expected {
ctx.t.Fatalf("expected %v result, but got %v",
expected, result.Err,
)
}
case <-time.After(defaultTestTimeout):
ctx.t.Fatalf("no result received")
}
}
func (ctx *sweeperTestContext) assertPendingInputs(inputs ...input.Input) {
ctx.t.Helper()
inputSet := make(map[wire.OutPoint]struct{}, len(inputs))
for _, input := range inputs {
inputSet[*input.OutPoint()] = struct{}{}
}
pendingInputs, err := ctx.sweeper.PendingInputs()
if err != nil {
ctx.t.Fatal(err)
}
if len(pendingInputs) != len(inputSet) {
ctx.t.Fatalf("expected %d pending inputs, got %d",
len(inputSet), len(pendingInputs))
}
for input := range pendingInputs {
if _, ok := inputSet[input]; !ok {
ctx.t.Fatalf("found unexpected input %v", input)
}
}
}
// assertTxSweepsInputs ensures that the transaction returned within the value
// received from resultChan spends the given inputs.
func assertTxSweepsInputs(t *testing.T, sweepTx *wire.MsgTx,
inputs ...input.Input) {
t.Helper()
if len(sweepTx.TxIn) != len(inputs) {
t.Fatalf("expected sweep tx to contain %d inputs, got %d",
len(inputs), len(sweepTx.TxIn))
}
m := make(map[wire.OutPoint]struct{}, len(inputs))
for _, input := range inputs {
m[*input.OutPoint()] = struct{}{}
}
for _, txIn := range sweepTx.TxIn {
if _, ok := m[txIn.PreviousOutPoint]; !ok {
t.Fatalf("expected tx %v to spend input %v",
txIn.PreviousOutPoint, sweepTx.TxHash())
}
}
}
// assertTxFeeRate asserts that the transaction was created with the given
// inputs and fee rate.
//
// NOTE: This assumes that transactions only have one output, as this is the
// only type of transaction the UtxoSweeper can create at the moment.
func assertTxFeeRate(t *testing.T, tx *wire.MsgTx,
expectedFeeRate chainfee.SatPerKWeight, inputs ...input.Input) {
t.Helper()
if len(tx.TxIn) != len(inputs) {
t.Fatalf("expected %d inputs, got %d", len(tx.TxIn), len(inputs))
}
m := make(map[wire.OutPoint]input.Input, len(inputs))
for _, input := range inputs {
m[*input.OutPoint()] = input
}
var inputAmt int64
for _, txIn := range tx.TxIn {
input, ok := m[txIn.PreviousOutPoint]
if !ok {
t.Fatalf("expected input %v to be provided",
txIn.PreviousOutPoint)
}
inputAmt += input.SignDesc().Output.Value
}
outputAmt := tx.TxOut[0].Value
fee := btcutil.Amount(inputAmt - outputAmt)
_, txWeight := getWeightEstimate(inputs)
expectedFee := expectedFeeRate.FeeForWeight(txWeight)
if fee != expectedFee {
t.Fatalf("expected fee rate %v results in %v fee, got %v fee",
expectedFeeRate, expectedFee, fee)
}
}
// TestSuccess tests the sweeper happy flow.
func TestSuccess(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweeping an input without a fee preference should result in an error.
_, err := ctx.sweeper.SweepInput(spendableInputs[0], Params{})
if err != ErrNoFeePreference {
t.Fatalf("expected ErrNoFeePreference, got %v", err)
}
resultChan, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
ctx.backend.mine()
select {
case result := <-resultChan:
if result.Err != nil {
t.Fatalf("expected successful spend, but received "+
"error %v instead", result.Err)
}
if result.Tx.TxHash() != sweepTx.TxHash() {
t.Fatalf("expected sweep tx ")
}
case <-time.After(5 * time.Second):
t.Fatalf("no result received")
}
ctx.finish(1)
// Assert that last tx is stored in the database so we can republish
// on restart.
lastTx, err := ctx.store.GetLastPublishedTx()
if err != nil {
t.Fatal(err)
}
if lastTx == nil || sweepTx.TxHash() != lastTx.TxHash() {
t.Fatalf("last tx not stored")
}
}
// TestDust asserts that inputs that are not big enough to raise above the dust
// limit, are held back until the total set does surpass the limit.
func TestDust(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweeping a single output produces a tx of 486 weight units. With the
// test fee rate, the sweep tx will pay 4860 sat in fees.
//
// Create an input so that the output after paying fees is still
// positive (400 sat), but less than the dust limit (537 sat) for the
// sweep tx output script (P2WPKH).
dustInput := createTestInput(5260, input.CommitmentTimeLock)
_, err := ctx.sweeper.SweepInput(&dustInput, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// No sweep transaction is expected now. The sweeper should recognize
// that the sweep output will not be relayed and not generate the tx. It
// isn't possible to attach a wallet utxo either, because the added
// weight would create a negatively yielding transaction at this fee
// rate.
// Sweep another input that brings the tx output above the dust limit.
largeInput := createTestInput(100000, input.CommitmentTimeLock)
_, err = ctx.sweeper.SweepInput(&largeInput, defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// The second input brings the sweep output above the dust limit. We
// expect a sweep tx now.
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 2 {
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx.TxIn))
}
ctx.backend.mine()
ctx.finish(1)
}
// TestWalletUtxo asserts that inputs that are not big enough to raise above the
// dust limit are accompanied by a wallet utxo to make them sweepable.
func TestWalletUtxo(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweeping a single output produces a tx of 439 weight units. At the
// fee floor, the sweep tx will pay 439*253/1000 = 111 sat in fees.
//
// Create an input so that the output after paying fees is still
// positive (183 sat), but less than the dust limit (537 sat) for the
// sweep tx output script (P2WPKH).
//
// What we now expect is that the sweeper will attach a utxo from the
// wallet. This increases the tx weight to 712 units with a fee of 180
// sats. The tx yield becomes then 294-180 = 114 sats.
dustInput := createTestInput(294, input.WitnessKeyHash)
_, err := ctx.sweeper.SweepInput(
&dustInput,
Params{Fee: FeePreference{FeeRate: chainfee.FeePerKwFloor}},
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 2 {
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx.TxIn))
}
// Calculate expected output value based on wallet utxo of 10000 sats.
expectedOutputValue := int64(294 + 10000 - 180)
if sweepTx.TxOut[0].Value != expectedOutputValue {
t.Fatalf("Expected output value of %v, but got %v",
expectedOutputValue, sweepTx.TxOut[0].Value)
}
ctx.backend.mine()
ctx.finish(1)
}
// TestNegativeInput asserts that no inputs with a negative yield are swept.
// Negative yield means that the value minus the added fee is negative.
func TestNegativeInput(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep an input large enough to cover fees, so in any case the tx
// output will be above the dust limit.
largeInput := createTestInput(100000, input.CommitmentNoDelay)
largeInputResult, err := ctx.sweeper.SweepInput(
&largeInput, defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
// Sweep an additional input with a negative net yield. The weight of
// the HtlcAcceptedRemoteSuccess input type adds more in fees than its
// value at the current fee level.
negInput := createTestInput(2900, input.HtlcOfferedRemoteTimeout)
negInputResult, err := ctx.sweeper.SweepInput(&negInput, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Sweep a third input that has a smaller output than the previous one,
// but yields positively because of its lower weight.
positiveInput := createTestInput(2800, input.CommitmentNoDelay)
positiveInputResult, err := ctx.sweeper.SweepInput(
&positiveInput, defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect that a sweep tx is published now, but it should only
// contain the large input. The negative input should stay out of sweeps
// until fees come down to get a positive net yield.
sweepTx1 := ctx.receiveTx()
assertTxSweepsInputs(t, &sweepTx1, &largeInput, &positiveInput)
ctx.backend.mine()
ctx.expectResult(largeInputResult, nil)
ctx.expectResult(positiveInputResult, nil)
// Lower fee rate so that the negative input is no longer negative.
ctx.estimator.updateFees(1000, 1000)
// Create another large input.
secondLargeInput := createTestInput(100000, input.CommitmentNoDelay)
secondLargeInputResult, err := ctx.sweeper.SweepInput(
&secondLargeInput, defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx2 := ctx.receiveTx()
assertTxSweepsInputs(t, &sweepTx2, &secondLargeInput, &negInput)
ctx.backend.mine()
ctx.expectResult(secondLargeInputResult, nil)
ctx.expectResult(negInputResult, nil)
ctx.finish(1)
}
// TestChunks asserts that large sets of inputs are split into multiple txes.
func TestChunks(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep five inputs.
for _, input := range spendableInputs[:5] {
_, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
}
ctx.tick()
// We expect two txes to be published because of the max input count of
// three.
sweepTx1 := ctx.receiveTx()
if len(sweepTx1.TxIn) != 3 {
t.Fatalf("Expected first tx to sweep 3 inputs, but contains %v "+
"inputs instead", len(sweepTx1.TxIn))
}
sweepTx2 := ctx.receiveTx()
if len(sweepTx2.TxIn) != 2 {
t.Fatalf("Expected first tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx1.TxIn))
}
ctx.backend.mine()
ctx.finish(1)
}
// TestRemoteSpend asserts that remote spends are properly detected and handled
// both before the sweep is published as well as after.
func TestRemoteSpend(t *testing.T) {
t.Run("pre-sweep", func(t *testing.T) {
testRemoteSpend(t, false)
})
t.Run("post-sweep", func(t *testing.T) {
testRemoteSpend(t, true)
})
}
func testRemoteSpend(t *testing.T, postSweep bool) {
ctx := createSweeperTestContext(t)
resultChan1, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
resultChan2, err := ctx.sweeper.SweepInput(
spendableInputs[1], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
// Spend the input with an unknown tx.
remoteTx := &wire.MsgTx{
TxIn: []*wire.TxIn{
{
PreviousOutPoint: *(spendableInputs[0].OutPoint()),
},
},
}
err = ctx.backend.publishTransaction(remoteTx)
if err != nil {
t.Fatal(err)
}
if postSweep {
ctx.tick()
// Tx publication by sweeper returns ErrDoubleSpend. Sweeper
// will retry the inputs without reporting a result. It could be
// spent by the remote party.
ctx.receiveTx()
}
ctx.backend.mine()
select {
case result := <-resultChan1:
if result.Err != ErrRemoteSpend {
t.Fatalf("expected remote spend")
}
if result.Tx.TxHash() != remoteTx.TxHash() {
t.Fatalf("expected remote spend tx")
}
case <-time.After(5 * time.Second):
t.Fatalf("no result received")
}
if !postSweep {
// Assert that the sweeper sweeps the remaining input.
ctx.tick()
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 1 {
t.Fatal("expected sweep to only sweep the one remaining output")
}
ctx.backend.mine()
ctx.expectResult(resultChan2, nil)
ctx.finish(1)
} else {
// Expected sweeper to be still listening for spend of the
// error input.
ctx.finish(2)
select {
case <-resultChan2:
t.Fatalf("no result expected for error input")
default:
}
}
}
// TestIdempotency asserts that offering the same input multiple times is
// handled correctly.
func TestIdempotency(t *testing.T) {
ctx := createSweeperTestContext(t)
input := spendableInputs[0]
resultChan1, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
resultChan2, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
resultChan3, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Spend the input of the sweep tx.
ctx.backend.mine()
ctx.expectResult(resultChan1, nil)
ctx.expectResult(resultChan2, nil)
ctx.expectResult(resultChan3, nil)
// Offer the same input again. The sweeper will register a spend ntfn
// for this input. Because the input has already been spent, it will
// immediately receive the spend notification with a spending tx hash.
// Because the sweeper kept track of all of its sweep txes, it will
// recognize the spend as its own.
resultChan4, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.expectResult(resultChan4, nil)
// Timer is still running, but spend notification was delivered before
// it expired.
ctx.tick()
ctx.finish(1)
}
// TestNoInputs asserts that nothing happens if nothing happens.
func TestNoInputs(t *testing.T) {
ctx := createSweeperTestContext(t)
// No tx should appear. This is asserted in finish().
ctx.finish(1)
}
// TestRestart asserts that the sweeper picks up sweeping properly after
// a restart.
func TestRestart(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input and expect sweep tx.
input1 := spendableInputs[0]
if _, err := ctx.sweeper.SweepInput(input1, defaultFeePref); err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
// Restart sweeper.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
// Simulate other subsystem (e.g. contract resolver) re-offering inputs.
spendChan1, err := ctx.sweeper.SweepInput(input1, defaultFeePref)
if err != nil {
t.Fatal(err)
}
input2 := spendableInputs[1]
spendChan2, err := ctx.sweeper.SweepInput(input2, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Spend inputs of sweep txes and verify that spend channels signal
// spends.
ctx.backend.mine()
// Sweeper should recognize that its sweep tx of the previous run is
// spending the input.
select {
case result := <-spendChan1:
if result.Err != nil {
t.Fatalf("expected successful sweep")
}
case <-time.After(defaultTestTimeout):
t.Fatalf("no result received")
}
// Timer tick should trigger republishing a sweep for the remaining
// input.
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
select {
case result := <-spendChan2:
if result.Err != nil {
t.Fatalf("expected successful sweep")
}
case <-time.After(defaultTestTimeout):
t.Fatalf("no result received")
}
// Restart sweeper again. No action is expected.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
ctx.finish(1)
}
// TestRestartRemoteSpend asserts that the sweeper picks up sweeping properly after
// a restart with remote spend.
func TestRestartRemoteSpend(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input.
input1 := spendableInputs[0]
if _, err := ctx.sweeper.SweepInput(input1, defaultFeePref); err != nil {
t.Fatal(err)
}
// Sweep another input.
input2 := spendableInputs[1]
if _, err := ctx.sweeper.SweepInput(input2, defaultFeePref); err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
// Restart sweeper.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
// Replace the sweep tx with a remote tx spending input 1.
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
remoteTx := &wire.MsgTx{
TxIn: []*wire.TxIn{
{
PreviousOutPoint: *(input2.OutPoint()),
},
},
}
if err := ctx.backend.publishTransaction(remoteTx); err != nil {
t.Fatal(err)
}
// Mine remote spending tx.
ctx.backend.mine()
// Simulate other subsystem (e.g. contract resolver) re-offering input 0.
spendChan, err := ctx.sweeper.SweepInput(input1, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Expect sweeper to construct a new tx, because input 1 was spend
// remotely.
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(spendChan, nil)
ctx.finish(1)
}
// TestRestartConfirmed asserts that the sweeper picks up sweeping properly after
// a restart with a confirm of our own sweep tx.
func TestRestartConfirmed(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input.
input := spendableInputs[0]
if _, err := ctx.sweeper.SweepInput(input, defaultFeePref); err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
// Restart sweeper.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
// Mine the sweep tx.
ctx.backend.mine()
// Simulate other subsystem (e.g. contract resolver) re-offering input 0.
spendChan, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Here we expect again a successful sweep.
ctx.expectResult(spendChan, nil)
// Timer started but not needed because spend ntfn was sent.
ctx.tick()
ctx.finish(1)
}
// TestRestartRepublish asserts that sweeper republishes the last published
// tx on restart.
func TestRestartRepublish(t *testing.T) {
ctx := createSweeperTestContext(t)
_, err := ctx.sweeper.SweepInput(spendableInputs[0], defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
// Restart sweeper again. No action is expected.
ctx.restartSweeper()
republishedTx := ctx.receiveTx()
if sweepTx.TxHash() != republishedTx.TxHash() {
t.Fatalf("last tx not republished")
}
// Mine the tx to conclude the test properly.
ctx.backend.mine()
ctx.finish(1)
}
// TestRetry tests the sweeper retry flow.
func TestRetry(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan0, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect a sweep to be published.
ctx.receiveTx()
// New block arrives. This should trigger a new sweep attempt timer
// start.
ctx.notifier.NotifyEpoch(1000)
// Offer a fresh input.
resultChan1, err := ctx.sweeper.SweepInput(
spendableInputs[1], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// Two txes are expected to be published, because new and retry inputs
// are separated.
ctx.receiveTx()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(resultChan0, nil)
ctx.expectResult(resultChan1, nil)
ctx.finish(1)
}
// TestGiveUp asserts that the sweeper gives up on an input if it can't be swept
// after a configured number of attempts.a
func TestGiveUp(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan0, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect a sweep to be published at height 100 (mockChainIOHeight).
ctx.receiveTx()
// Because of MaxSweepAttemps, two more sweeps will be attempted. We
// configured exponential back-off without randomness for the test. The
// second attempt, we expect to happen at 101. The third attempt at 103.
// At that point, the input is expected to be failed.
// Second attempt
ctx.notifier.NotifyEpoch(101)
ctx.tick()
ctx.receiveTx()
// Third attempt
ctx.notifier.NotifyEpoch(103)
ctx.tick()
ctx.receiveTx()
ctx.expectResult(resultChan0, ErrTooManyAttempts)
ctx.backend.mine()
ctx.finish(1)
}
// TestDifferentFeePreferences ensures that the sweeper can have different
// transactions for different fee preferences. These transactions should be
// broadcast from highest to lowest fee rate.
func TestDifferentFeePreferences(t *testing.T) {
ctx := createSweeperTestContext(t)
// Throughout this test, we'll be attempting to sweep three inputs, two
// with the higher fee preference, and the last with the lower. We do
// this to ensure the sweeper can broadcast distinct transactions for
// each sweep with a different fee preference.
lowFeePref := FeePreference{ConfTarget: 12}
lowFeeRate := chainfee.SatPerKWeight(5000)
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
highFeePref := FeePreference{ConfTarget: 6}
highFeeRate := chainfee.SatPerKWeight(10000)
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
input1 := spendableInputs[0]
resultChan1, err := ctx.sweeper.SweepInput(
input1, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input2 := spendableInputs[1]
resultChan2, err := ctx.sweeper.SweepInput(
input2, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input3 := spendableInputs[2]
resultChan3, err := ctx.sweeper.SweepInput(
input3, Params{Fee: lowFeePref},
)
if err != nil {
t.Fatal(err)
}
// Start the sweeper's batch ticker, which should cause the sweep
// transactions to be broadcast in order of high to low fee preference.
ctx.tick()
// The first transaction broadcast should be the one spending the higher
// fee rate inputs.
sweepTx1 := ctx.receiveTx()
assertTxFeeRate(t, &sweepTx1, highFeeRate, input1, input2)
// The second should be the one spending the lower fee rate inputs.
sweepTx2 := ctx.receiveTx()
assertTxFeeRate(t, &sweepTx2, lowFeeRate, input3)
// With the transactions broadcast, we'll mine a block to so that the
// result is delivered to each respective client.
ctx.backend.mine()
resultChans := []chan Result{resultChan1, resultChan2, resultChan3}
for _, resultChan := range resultChans {
ctx.expectResult(resultChan, nil)
}
ctx.finish(1)
}
// TestPendingInputs ensures that the sweeper correctly determines the inputs
// pending to be swept.
func TestPendingInputs(t *testing.T) {
ctx := createSweeperTestContext(t)
// Throughout this test, we'll be attempting to sweep three inputs, two
// with the higher fee preference, and the last with the lower. We do
// this to ensure the sweeper can return all pending inputs, even those
// with different fee preferences.
const (
lowFeeRate = 5000
highFeeRate = 10000
)
lowFeePref := FeePreference{
ConfTarget: 12,
}
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
highFeePref := FeePreference{
ConfTarget: 6,
}
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
input1 := spendableInputs[0]
resultChan1, err := ctx.sweeper.SweepInput(
input1, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input2 := spendableInputs[1]
_, err = ctx.sweeper.SweepInput(
input2, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input3 := spendableInputs[2]
resultChan3, err := ctx.sweeper.SweepInput(
input3, Params{Fee: lowFeePref},
)
if err != nil {
t.Fatal(err)
}
// We should expect to see all inputs pending.
ctx.assertPendingInputs(input1, input2, input3)
// We should expect to see both sweep transactions broadcast. The higher
// fee rate sweep should be broadcast first. We'll remove the lower fee
// rate sweep to ensure we can detect pending inputs after a sweep.
// Once the higher fee rate sweep confirms, we should no longer see
// those inputs pending.
ctx.tick()
ctx.receiveTx()
lowFeeRateTx := ctx.receiveTx()
ctx.backend.deleteUnconfirmed(lowFeeRateTx.TxHash())
ctx.backend.mine()
ctx.expectResult(resultChan1, nil)
ctx.assertPendingInputs(input3)
// We'll then trigger a new block to rebroadcast the lower fee rate
// sweep. Once again we'll ensure those inputs are no longer pending
// once the sweep transaction confirms.
ctx.backend.notifier.NotifyEpoch(101)
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(resultChan3, nil)
ctx.assertPendingInputs()
ctx.finish(1)
}
// TestBumpFeeRBF ensures that the UtxoSweeper can properly handle a fee bump
// request for an input it is currently attempting to sweep. When sweeping the
// input with the higher fee rate, a replacement transaction is created.
func TestBumpFeeRBF(t *testing.T) {
ctx := createSweeperTestContext(t)
lowFeePref := FeePreference{ConfTarget: 144}
lowFeeRate := chainfee.FeePerKwFloor
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
// We'll first try to bump the fee of an output currently unknown to the
// UtxoSweeper. Doing so should result in a lnwallet.ErrNotMine error.
_, err := ctx.sweeper.UpdateParams(
wire.OutPoint{}, ParamsUpdate{Fee: lowFeePref},
)
if err != lnwallet.ErrNotMine {
t.Fatalf("expected error lnwallet.ErrNotMine, got \"%v\"", err)
}
// We'll then attempt to sweep an input, which we'll use to bump its fee
// later on.
input := createTestInput(
btcutil.SatoshiPerBitcoin, input.CommitmentTimeLock,
)
sweepResult, err := ctx.sweeper.SweepInput(
&input, Params{Fee: lowFeePref},
)
if err != nil {
t.Fatal(err)
}
// Ensure that a transaction is broadcast with the lower fee preference.
ctx.tick()
lowFeeTx := ctx.receiveTx()
assertTxFeeRate(t, &lowFeeTx, lowFeeRate, &input)
// We'll then attempt to bump its fee rate.
highFeePref := FeePreference{ConfTarget: 6}
highFeeRate := DefaultMaxFeeRate
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
// We should expect to see an error if a fee preference isn't provided.
_, err = ctx.sweeper.UpdateParams(*input.OutPoint(), ParamsUpdate{})
if err != ErrNoFeePreference {
t.Fatalf("expected ErrNoFeePreference, got %v", err)
}
bumpResult, err := ctx.sweeper.UpdateParams(
*input.OutPoint(), ParamsUpdate{Fee: highFeePref},
)
if err != nil {
t.Fatalf("unable to bump input's fee: %v", err)
}
// A higher fee rate transaction should be immediately broadcast.
ctx.tick()
highFeeTx := ctx.receiveTx()
assertTxFeeRate(t, &highFeeTx, highFeeRate, &input)
// We'll finish our test by mining the sweep transaction.
ctx.backend.mine()
ctx.expectResult(sweepResult, nil)
ctx.expectResult(bumpResult, nil)
ctx.finish(1)
}
// TestExclusiveGroup tests the sweeper exclusive group functionality.
func TestExclusiveGroup(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep three inputs in the same exclusive group.
var results []chan Result
for i := 0; i < 3; i++ {
exclusiveGroup := uint64(1)
result, err := ctx.sweeper.SweepInput(
spendableInputs[i], Params{
Fee: FeePreference{ConfTarget: 6},
ExclusiveGroup: &exclusiveGroup,
},
)
if err != nil {
t.Fatal(err)
}
results = append(results, result)
}
// We expect all inputs to be published in separate transactions, even
// though they share the same fee preference.
ctx.tick()
for i := 0; i < 3; i++ {
sweepTx := ctx.receiveTx()
if len(sweepTx.TxOut) != 1 {
t.Fatal("expected a single tx out in the sweep tx")
}
// Remove all txes except for the one that sweeps the first
// input. This simulates the sweeps being conflicting.
if sweepTx.TxIn[0].PreviousOutPoint !=
*spendableInputs[0].OutPoint() {
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
}
}
// Mine the first sweep tx.
ctx.backend.mine()
// Expect the first input to be swept by the confirmed sweep tx.
result0 := <-results[0]
if result0.Err != nil {
t.Fatal("expected first input to be swept")
}
// Expect the other two inputs to return an error. They have no chance
// of confirming.
result1 := <-results[1]
if result1.Err != ErrExclusiveGroupSpend {
t.Fatal("expected second input to be canceled")
}
result2 := <-results[2]
if result2.Err != ErrExclusiveGroupSpend {
t.Fatal("expected third input to be canceled")
}
}