lnd.xprv/htlcswitch/link_test.go

5122 lines
166 KiB
Go

package htlcswitch
import (
"bytes"
"crypto/rand"
"encoding/binary"
"fmt"
"io"
"math"
"net"
"reflect"
"runtime"
"strings"
"sync"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/coreos/bbolt"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/contractcourt"
"github.com/lightningnetwork/lnd/htlcswitch/hodl"
"github.com/lightningnetwork/lnd/lnpeer"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/ticker"
)
const (
testStartingHeight = 100
)
// concurrentTester is a thread-safe wrapper around the Fatalf method of a
// *testing.T instance. With this wrapper multiple goroutines can safely
// attempt to fail a test concurrently.
type concurrentTester struct {
mtx sync.Mutex
*testing.T
}
func newConcurrentTester(t *testing.T) *concurrentTester {
return &concurrentTester{
T: t,
}
}
func (c *concurrentTester) Fatalf(format string, args ...interface{}) {
c.mtx.Lock()
defer c.mtx.Unlock()
c.T.Fatalf(format, args)
}
// messageToString is used to produce less spammy log messages in trace mode by
// setting the 'Curve" parameter to nil. Doing this avoids printing out each of
// the field elements in the curve parameters for secp256k1.
func messageToString(msg lnwire.Message) string {
switch m := msg.(type) {
case *lnwire.RevokeAndAck:
m.NextRevocationKey.Curve = nil
case *lnwire.AcceptChannel:
m.FundingKey.Curve = nil
m.RevocationPoint.Curve = nil
m.PaymentPoint.Curve = nil
m.DelayedPaymentPoint.Curve = nil
m.FirstCommitmentPoint.Curve = nil
case *lnwire.OpenChannel:
m.FundingKey.Curve = nil
m.RevocationPoint.Curve = nil
m.PaymentPoint.Curve = nil
m.DelayedPaymentPoint.Curve = nil
m.FirstCommitmentPoint.Curve = nil
case *lnwire.FundingLocked:
m.NextPerCommitmentPoint.Curve = nil
}
return spew.Sdump(msg)
}
// expectedMessage struct holds the message which travels from one peer to
// another, and additional information like, should this message we skipped for
// handling.
type expectedMessage struct {
from string
to string
message lnwire.Message
skip bool
}
// createLogFunc is a helper function which returns the function which will be
// used for logging message are received from another peer.
func createLogFunc(name string, channelID lnwire.ChannelID) messageInterceptor {
return func(m lnwire.Message) (bool, error) {
chanID, err := getChanID(m)
if err != nil {
return false, err
}
if chanID == channelID {
fmt.Printf("---------------------- \n %v received: "+
"%v", name, messageToString(m))
}
return false, nil
}
}
// createInterceptorFunc creates the function by the given set of messages
// which, checks the order of the messages and skip the ones which were
// indicated to be intercepted.
func createInterceptorFunc(prefix, receiver string, messages []expectedMessage,
chanID lnwire.ChannelID, debug bool) messageInterceptor {
// Filter message which should be received with given peer name.
var expectToReceive []expectedMessage
for _, message := range messages {
if message.to == receiver {
expectToReceive = append(expectToReceive, message)
}
}
// Return function which checks the message order and skip the
// messages.
return func(m lnwire.Message) (bool, error) {
messageChanID, err := getChanID(m)
if err != nil {
return false, err
}
if messageChanID == chanID {
if len(expectToReceive) == 0 {
return false, errors.Errorf("%v received "+
"unexpected message out of range: %v",
receiver, m.MsgType())
}
expectedMessage := expectToReceive[0]
expectToReceive = expectToReceive[1:]
if expectedMessage.message.MsgType() != m.MsgType() {
return false, errors.Errorf("%v received wrong message: \n"+
"real: %v\nexpected: %v", receiver, m.MsgType(),
expectedMessage.message.MsgType())
}
if debug {
var postfix string
if revocation, ok := m.(*lnwire.RevokeAndAck); ok {
var zeroHash chainhash.Hash
if bytes.Equal(zeroHash[:], revocation.Revocation[:]) {
postfix = "- empty revocation"
}
}
if expectedMessage.skip {
fmt.Printf("skipped: %v: %v %v \n", prefix,
m.MsgType(), postfix)
} else {
fmt.Printf("%v: %v %v \n", prefix, m.MsgType(), postfix)
}
}
return expectedMessage.skip, nil
}
return false, nil
}
}
// TestChannelLinkSingleHopPayment in this test we checks the interaction
// between Alice and Bob within scope of one channel.
func TestChannelLinkSingleHopPayment(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
bobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
debug := false
if debug {
// Log message that alice receives.
n.aliceServer.intersect(createLogFunc("alice",
n.aliceChannelLink.ChanID()))
// Log message that bob receives.
n.bobServer.intersect(createLogFunc("bob",
n.firstBobChannelLink.ChanID()))
}
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink)
// Wait for:
// * HTLC add request to be sent to bob.
// * alice<->bob commitment state to be updated.
// * settle request to be sent back from bob to alice.
// * alice<->bob commitment state to be updated.
// * user notification to be sent.
receiver := n.bobServer
firstHop := n.firstBobChannelLink.ShortChanID()
rhash, err := n.makePayment(
n.aliceServer, receiver, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
if err != nil {
t.Fatalf("unable to make the payment: %v", err)
}
// Wait for Bob to receive the revocation.
//
// TODO(roasbeef); replace with select over returned err chan
time.Sleep(100 * time.Millisecond)
// Check that alice invoice was settled and bandwidth of HTLC
// links was changed.
invoice, _, err := receiver.registry.LookupInvoice(rhash)
if err != nil {
t.Fatalf("unable to get invoice: %v", err)
}
if !invoice.Terms.Settled {
t.Fatal("alice invoice wasn't settled")
}
if aliceBandwidthBefore-amount != n.aliceChannelLink.Bandwidth() {
t.Fatal("alice bandwidth should have decrease on payment " +
"amount")
}
if bobBandwidthBefore+amount != n.firstBobChannelLink.Bandwidth() {
t.Fatalf("bob bandwidth isn't match: expected %v, got %v",
bobBandwidthBefore+amount,
n.firstBobChannelLink.Bandwidth())
}
}
// TestChannelLinkBidirectionalOneHopPayments tests the ability of channel
// link to cope with bigger number of payment updates that commitment
// transaction may consist.
func TestChannelLinkBidirectionalOneHopPayments(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
bobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
debug := false
if debug {
// Log message that alice receives.
n.aliceServer.intersect(createLogFunc("alice",
n.aliceChannelLink.ChanID()))
// Log message that bob receives.
n.bobServer.intersect(createLogFunc("bob",
n.firstBobChannelLink.ChanID()))
}
amt := lnwire.NewMSatFromSatoshis(20000)
htlcAmt, totalTimelock, hopsForwards := generateHops(amt,
testStartingHeight, n.firstBobChannelLink)
_, _, hopsBackwards := generateHops(amt,
testStartingHeight, n.aliceChannelLink)
type result struct {
err error
start time.Time
number int
sender string
}
// Send max available payment number in both sides, thereby testing
// the property of channel link to cope with overflowing.
count := 2 * lnwallet.MaxHTLCNumber
resultChan := make(chan *result, count)
for i := 0; i < count/2; i++ {
go func(i int) {
r := &result{
start: time.Now(),
number: i,
sender: "alice",
}
firstHop := n.firstBobChannelLink.ShortChanID()
_, r.err = n.makePayment(
n.aliceServer, n.bobServer, firstHop,
hopsForwards, amt, htlcAmt, totalTimelock,
).Wait(5 * time.Minute)
resultChan <- r
}(i)
}
for i := 0; i < count/2; i++ {
go func(i int) {
r := &result{
start: time.Now(),
number: i,
sender: "bob",
}
firstHop := n.aliceChannelLink.ShortChanID()
_, r.err = n.makePayment(
n.bobServer, n.aliceServer, firstHop,
hopsBackwards, amt, htlcAmt, totalTimelock,
).Wait(5 * time.Minute)
resultChan <- r
}(i)
}
maxDelay := time.Duration(0)
minDelay := time.Duration(math.MaxInt64)
averageDelay := time.Duration(0)
// Check that alice invoice was settled and bandwidth of HTLC
// links was changed.
for i := 0; i < count; i++ {
select {
case r := <-resultChan:
if r.err != nil {
t.Fatalf("unable to make payment: %v", r.err)
}
delay := time.Since(r.start)
if delay > maxDelay {
maxDelay = delay
}
if delay < minDelay {
minDelay = delay
}
averageDelay += delay
case <-time.After(5 * time.Minute):
t.Fatalf("timeout: (%v/%v)", i+1, count)
}
}
// TODO(roasbeef): should instead consume async notifications from both
// links
time.Sleep(time.Second * 2)
// At the end Bob and Alice balances should be the same as previous,
// because they sent the equal amount of money to each other.
if aliceBandwidthBefore != n.aliceChannelLink.Bandwidth() {
t.Fatalf("alice bandwidth shouldn't have changed: expected %v, got %x",
aliceBandwidthBefore, n.aliceChannelLink.Bandwidth())
}
if bobBandwidthBefore != n.firstBobChannelLink.Bandwidth() {
t.Fatalf("bob bandwidth shouldn't have changed: expected %v, got %v",
bobBandwidthBefore, n.firstBobChannelLink.Bandwidth())
}
t.Logf("Max waiting: %v", maxDelay)
t.Logf("Min waiting: %v", minDelay)
t.Logf("Average waiting: %v", time.Duration(int(averageDelay)/count))
}
// TestChannelLinkMultiHopPayment checks the ability to send payment over two
// hops. In this test we send the payment from Carol to Alice over Bob peer.
// (Carol -> Bob -> Alice) and checking that HTLC was settled properly and
// balances were changed in two channels.
func TestChannelLinkMultiHopPayment(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
debug := false
if debug {
// Log messages that alice receives from bob.
n.aliceServer.intersect(createLogFunc("[alice]<-bob<-carol: ",
n.aliceChannelLink.ChanID()))
// Log messages that bob receives from alice.
n.bobServer.intersect(createLogFunc("alice->[bob]->carol: ",
n.firstBobChannelLink.ChanID()))
// Log messages that bob receives from carol.
n.bobServer.intersect(createLogFunc("alice<-[bob]<-carol: ",
n.secondBobChannelLink.ChanID()))
// Log messages that carol receives from bob.
n.carolServer.intersect(createLogFunc("alice->bob->[carol]",
n.carolChannelLink.ChanID()))
}
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount,
testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
// Wait for:
// * HTLC add request to be sent from Alice to Bob.
// * Alice<->Bob commitment states to be updated.
// * HTLC add request to be propagated to Carol.
// * Bob<->Carol commitment state to be updated.
// * settle request to be sent back from Carol to Bob.
// * Alice<->Bob commitment state to be updated.
// * settle request to be sent back from Bob to Alice.
// * Alice<->Bob commitment states to be updated.
// * user notification to be sent.
receiver := n.carolServer
firstHop := n.firstBobChannelLink.ShortChanID()
rhash, err := n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Wait for Bob to receive the revocation.
time.Sleep(100 * time.Millisecond)
// Check that Carol invoice was settled and bandwidth of HTLC
// links were changed.
invoice, _, err := receiver.registry.LookupInvoice(rhash)
if err != nil {
t.Fatalf("unable to get invoice: %v", err)
}
if !invoice.Terms.Settled {
t.Fatal("carol invoice haven't been settled")
}
expectedAliceBandwidth := aliceBandwidthBefore - htlcAmt
if expectedAliceBandwidth != n.aliceChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedAliceBandwidth, n.aliceChannelLink.Bandwidth())
}
expectedBobBandwidth1 := firstBobBandwidthBefore + htlcAmt
if expectedBobBandwidth1 != n.firstBobChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedBobBandwidth1, n.firstBobChannelLink.Bandwidth())
}
expectedBobBandwidth2 := secondBobBandwidthBefore - amount
if expectedBobBandwidth2 != n.secondBobChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedBobBandwidth2, n.secondBobChannelLink.Bandwidth())
}
expectedCarolBandwidth := carolBandwidthBefore + amount
if expectedCarolBandwidth != n.carolChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedCarolBandwidth, n.carolChannelLink.Bandwidth())
}
}
// TestExitNodeTimelockPayloadMismatch tests that when an exit node receives an
// incoming HTLC, if the time lock encoded in the payload of the forwarded HTLC
// doesn't match the expected payment value, then the HTLC will be rejected
// with the appropriate error.
func TestExitNodeTimelockPayloadMismatch(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
const amount = btcutil.SatoshiPerBitcoin
htlcAmt, htlcExpiry, hops := generateHops(amount,
testStartingHeight, n.firstBobChannelLink)
// In order to exercise this case, we'll now _manually_ modify the
// per-hop payload for outgoing time lock to be the incorrect value.
// The proper value of the outgoing CLTV should be the policy set by
// the receiving node, instead we set it to be a random value.
hops[0].OutgoingCTLV = 500
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.bobServer, firstHop, hops, amount, htlcAmt,
htlcExpiry,
).Wait(30 * time.Second)
if err == nil {
t.Fatalf("payment should have failed but didn't")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got: %T", err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailFinalIncorrectCltvExpiry:
default:
t.Fatalf("incorrect error, expected incorrect cltv expiry, "+
"instead have: %v", err)
}
}
// TestExitNodeAmountPayloadMismatch tests that when an exit node receives an
// incoming HTLC, if the amount encoded in the onion payload of the forwarded
// HTLC doesn't match the expected payment value, then the HTLC will be
// rejected.
func TestExitNodeAmountPayloadMismatch(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
const amount = btcutil.SatoshiPerBitcoin
htlcAmt, htlcExpiry, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink)
// In order to exercise this case, we'll now _manually_ modify the
// per-hop payload for amount to be the incorrect value. The proper
// value of the amount to forward should be the amount that the
// receiving node expects to receive.
hops[0].AmountToForward = 1
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.bobServer, firstHop, hops, amount, htlcAmt,
htlcExpiry,
).Wait(30 * time.Second)
if err == nil {
t.Fatalf("payment should have failed but didn't")
} else if err.Error() != lnwire.CodeIncorrectPaymentAmount.String() {
// TODO(roasbeef): use proper error after error propagation is
// in
t.Fatalf("incorrect error, expected insufficient value, "+
"instead have: %v", err)
}
}
// TestLinkForwardTimelockPolicyMismatch tests that if a node is an
// intermediate node in a multi-hop payment, and receives an HTLC which
// violates its specified multi-hop policy, then the HTLC is rejected.
func TestLinkForwardTimelockPolicyMismatch(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
// We'll be sending 1 BTC over a 2-hop (3 vertex) route.
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
// Generate the route over two hops, ignoring the total time lock that
// we'll need to use for the first HTLC in order to have a sufficient
// time-lock value to account for the decrements over the entire route.
htlcAmt, htlcExpiry, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
htlcExpiry -= 2
// Next, we'll make the payment which'll send an HTLC with our
// specified parameters to the first hop in the route.
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amount, htlcAmt,
htlcExpiry,
).Wait(30 * time.Second)
// We should get an error, and that error should indicate that the HTLC
// should be rejected due to a policy violation.
if err == nil {
t.Fatalf("payment should have failed but didn't")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got: %T", err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailIncorrectCltvExpiry:
default:
t.Fatalf("incorrect error, expected incorrect cltv expiry, "+
"instead have: %v", err)
}
}
// TestLinkForwardFeePolicyMismatch tests that if a node is an intermediate
// node in a multi-hop payment and receives an HTLC that violates its current
// fee policy, then the HTLC is rejected with the proper error.
func TestLinkForwardFeePolicyMismatch(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
// We'll be sending 1 BTC over a 2-hop (3 vertex) route. Given the
// current default fee of 1 SAT, if we just send a single BTC over in
// an HTLC, it should be rejected.
amountNoFee := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
// Generate the route over two hops, ignoring the amount we _should_
// actually send in order to be able to cover fees.
_, htlcExpiry, hops := generateHops(amountNoFee, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
// Next, we'll make the payment which'll send an HTLC with our
// specified parameters to the first hop in the route.
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.bobServer, firstHop, hops, amountNoFee,
amountNoFee, htlcExpiry,
).Wait(30 * time.Second)
// We should get an error, and that error should indicate that the HTLC
// should be rejected due to a policy violation.
if err == nil {
t.Fatalf("payment should have failed but didn't")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got: %T", err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailFeeInsufficient:
default:
t.Fatalf("incorrect error, expected fee insufficient, "+
"instead have: %T", err)
}
}
// TestLinkForwardFeePolicyMismatch tests that if a node is an intermediate
// node and receives an HTLC which is _below_ its min HTLC policy, then the
// HTLC will be rejected.
func TestLinkForwardMinHTLCPolicyMismatch(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
// The current default global min HTLC policy set in the default config
// for the three-hop-network is 5 SAT. So in order to trigger this
// failure mode, we'll create an HTLC with 1 satoshi.
amountNoFee := lnwire.NewMSatFromSatoshis(1)
// With the amount set, we'll generate a route over 2 hops within the
// network that attempts to pay out our specified amount.
htlcAmt, htlcExpiry, hops := generateHops(amountNoFee, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
// Next, we'll make the payment which'll send an HTLC with our
// specified parameters to the first hop in the route.
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.bobServer, firstHop, hops, amountNoFee,
htlcAmt, htlcExpiry,
).Wait(30 * time.Second)
// We should get an error, and that error should indicate that the HTLC
// should be rejected due to a policy violation (below min HTLC).
if err == nil {
t.Fatalf("payment should have failed but didn't")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got: %T", err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailAmountBelowMinimum:
default:
t.Fatalf("incorrect error, expected amount below minimum, "+
"instead have: %v", err)
}
}
// TestUpdateForwardingPolicy tests that the forwarding policy for a link is
// able to be updated properly. We'll first create an HTLC that meets the
// specified policy, assert that it succeeds, update the policy (to invalidate
// the prior HTLC), and then ensure that the HTLC is rejected.
func TestUpdateForwardingPolicy(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
amountNoFee := lnwire.NewMSatFromSatoshis(10)
htlcAmt, htlcExpiry, hops := generateHops(amountNoFee,
testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
// First, send this 10 mSAT payment over the three hops, the payment
// should succeed, and all balances should be updated accordingly.
firstHop := n.firstBobChannelLink.ShortChanID()
payResp, err := n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amountNoFee,
htlcAmt, htlcExpiry,
).Wait(30 * time.Second)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Carol's invoice should now be shown as settled as the payment
// succeeded.
invoice, _, err := n.carolServer.registry.LookupInvoice(payResp)
if err != nil {
t.Fatalf("unable to get invoice: %v", err)
}
if !invoice.Terms.Settled {
t.Fatal("carol invoice haven't been settled")
}
expectedAliceBandwidth := aliceBandwidthBefore - htlcAmt
if expectedAliceBandwidth != n.aliceChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedAliceBandwidth, n.aliceChannelLink.Bandwidth())
}
expectedBobBandwidth1 := firstBobBandwidthBefore + htlcAmt
if expectedBobBandwidth1 != n.firstBobChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedBobBandwidth1, n.firstBobChannelLink.Bandwidth())
}
expectedBobBandwidth2 := secondBobBandwidthBefore - amountNoFee
if expectedBobBandwidth2 != n.secondBobChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedBobBandwidth2, n.secondBobChannelLink.Bandwidth())
}
expectedCarolBandwidth := carolBandwidthBefore + amountNoFee
if expectedCarolBandwidth != n.carolChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedCarolBandwidth, n.carolChannelLink.Bandwidth())
}
// Now we'll update Bob's policy to jack up his free rate to an extent
// that'll cause him to reject the same HTLC that we just sent.
//
// TODO(roasbeef): should implement grace period within link policy
// update logic
newPolicy := n.globalPolicy
newPolicy.BaseFee = lnwire.NewMSatFromSatoshis(1000)
n.secondBobChannelLink.UpdateForwardingPolicy(newPolicy)
// Next, we'll send the payment again, using the exact same per-hop
// payload for each node. This payment should fail as it won't factor
// in Bob's new fee policy.
_, err = n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amountNoFee,
htlcAmt, htlcExpiry,
).Wait(30 * time.Second)
if err == nil {
t.Fatalf("payment should've been rejected")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got (%T): %v", err, err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailFeeInsufficient:
default:
t.Fatalf("expected FailFeeInsufficient instead got: %v", err)
}
}
// TestChannelLinkMultiHopInsufficientPayment checks that we receive error if
// bob<->alice channel has insufficient BTC capacity/bandwidth. In this test we
// send the payment from Carol to Alice over Bob peer. (Carol -> Bob -> Alice)
func TestChannelLinkMultiHopInsufficientPayment(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
// We'll attempt to send 4 BTC although the alice-to-bob channel only
// has 3 BTC total capacity. As a result, this payment should be
// rejected.
amount := lnwire.NewMSatFromSatoshis(4 * btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
// Wait for:
// * HTLC add request to be sent to from Alice to Bob.
// * Alice<->Bob commitment states to be updated.
// * Bob trying to add HTLC add request in Bob<->Carol channel.
// * Cancel HTLC request to be sent back from Bob to Alice.
// * user notification to be sent.
receiver := n.carolServer
firstHop := n.firstBobChannelLink.ShortChanID()
rhash, err := n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
if err == nil {
t.Fatal("error haven't been received")
} else if !strings.Contains(err.Error(), "insufficient capacity") {
t.Fatalf("wrong error has been received: %v", err)
}
// Wait for Alice to receive the revocation.
//
// TODO(roasbeef): add in ntfn hook for state transition completion
time.Sleep(100 * time.Millisecond)
// Check that alice invoice wasn't settled and bandwidth of htlc
// links hasn't been changed.
invoice, _, err := receiver.registry.LookupInvoice(rhash)
if err != nil {
t.Fatalf("unable to get invoice: %v", err)
}
if invoice.Terms.Settled {
t.Fatal("carol invoice have been settled")
}
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
t.Fatal("the bandwidth of alice channel link which handles " +
"alice->bob channel should be the same")
}
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"alice->bob channel should be the same")
}
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"bob->carol channel should be the same")
}
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
t.Fatal("the bandwidth of carol channel link which handles " +
"bob->carol channel should be the same")
}
}
// TestChannelLinkMultiHopUnknownPaymentHash checks that we receive remote error
// from Alice if she received not suitable payment hash for htlc.
func TestChannelLinkMultiHopUnknownPaymentHash(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
blob, err := generateRoute(hops...)
if err != nil {
t.Fatal(err)
}
// Generate payment: invoice and htlc.
invoice, htlc, err := generatePayment(amount, htlcAmt, totalTimelock,
blob)
if err != nil {
t.Fatal(err)
}
// We need to have wrong rhash for that reason we should change the
// preimage. Inverse first byte by xoring with 0xff.
invoice.Terms.PaymentPreimage[0] ^= byte(255)
// Check who is last in the route and add invoice to server registry.
if err := n.carolServer.registry.AddInvoice(*invoice); err != nil {
t.Fatalf("unable to add invoice in carol registry: %v", err)
}
// Send payment and expose err channel.
_, err = n.aliceServer.htlcSwitch.SendHTLC(
n.firstBobChannelLink.ShortChanID(), htlc,
newMockDeobfuscator(),
)
if err.Error() != lnwire.CodeUnknownPaymentHash.String() {
t.Fatal("error haven't been received")
}
// Wait for Alice to receive the revocation.
time.Sleep(100 * time.Millisecond)
// Check that alice invoice wasn't settled and bandwidth of htlc
// links hasn't been changed.
if invoice.Terms.Settled {
t.Fatal("alice invoice was settled")
}
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
t.Fatal("the bandwidth of alice channel link which handles " +
"alice->bob channel should be the same")
}
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"alice->bob channel should be the same")
}
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"bob->carol channel should be the same")
}
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
t.Fatal("the bandwidth of carol channel link which handles " +
"bob->carol channel should be the same")
}
}
// TestChannelLinkMultiHopUnknownNextHop construct the chain of hops
// Carol<->Bob<->Alice and checks that we receive remote error from Bob if he
// has no idea about next hop (hop might goes down and routing info not updated
// yet).
func TestChannelLinkMultiHopUnknownNextHop(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
// Remove bob's outgoing link with Carol. This will cause him to fail
// back the payment to Alice since he is unaware of Carol when the
// payment comes across.
bobChanID := lnwire.NewChanIDFromOutPoint(
&channels.bobToCarol.State().FundingOutpoint,
)
n.bobServer.htlcSwitch.RemoveLink(bobChanID)
firstHop := n.firstBobChannelLink.ShortChanID()
receiver := n.carolServer
rhash, err := n.makePayment(
n.aliceServer, receiver, firstHop, hops, amount, htlcAmt,
totalTimelock).Wait(30 * time.Second)
if err == nil {
t.Fatal("error haven't been received")
} else if err.Error() != lnwire.CodeUnknownNextPeer.String() {
t.Fatalf("wrong error have been received: %v", err)
}
// Wait for Alice to receive the revocation.
//
// TODO(roasbeef): add in ntfn hook for state transition completion
time.Sleep(100 * time.Millisecond)
// Check that alice invoice wasn't settled and bandwidth of htlc
// links hasn't been changed.
invoice, _, err := receiver.registry.LookupInvoice(rhash)
if err != nil {
t.Fatalf("unable to get invoice: %v", err)
}
if invoice.Terms.Settled {
t.Fatal("carol invoice have been settled")
}
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
t.Fatal("the bandwidth of alice channel link which handles " +
"alice->bob channel should be the same")
}
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"alice->bob channel should be the same")
}
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"bob->carol channel should be the same")
}
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
t.Fatal("the bandwidth of carol channel link which handles " +
"bob->carol channel should be the same")
}
// Load the forwarding packages for Bob's incoming link. The payment
// should have been rejected by the switch, and the AddRef in this link
// should be acked by the failed payment.
bobInFwdPkgs, err := channels.bobToAlice.State().LoadFwdPkgs()
if err != nil {
t.Fatalf("unable to load bob's fwd pkgs: %v", err)
}
// There should be exactly two forward packages, as a full state
// transition requires two commitment dances.
if len(bobInFwdPkgs) != 2 {
t.Fatalf("bob should have exactly 2 fwdpkgs, has %d",
len(bobInFwdPkgs))
}
// Only one of the forwarding package should have an Add in it, the
// other will be empty. Either way, both AckFilters should be fully
// acked.
for _, fwdPkg := range bobInFwdPkgs {
if !fwdPkg.AckFilter.IsFull() {
t.Fatalf("fwdpkg chanid=%v height=%d AckFilter is not "+
"fully acked", fwdPkg.Source, fwdPkg.Height)
}
}
}
// TestChannelLinkMultiHopDecodeError checks that we send HTLC cancel if
// decoding of onion blob failed.
func TestChannelLinkMultiHopDecodeError(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
// Replace decode function with another which throws an error.
n.carolChannelLink.cfg.ExtractErrorEncrypter = func(
*btcec.PublicKey) (ErrorEncrypter, lnwire.FailCode) {
return nil, lnwire.CodeInvalidOnionVersion
}
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
receiver := n.carolServer
firstHop := n.firstBobChannelLink.ShortChanID()
rhash, err := n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
if err == nil {
t.Fatal("error haven't been received")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got: %T", err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailInvalidOnionVersion:
default:
t.Fatalf("wrong error have been received: %v", err)
}
// Wait for Bob to receive the revocation.
time.Sleep(100 * time.Millisecond)
// Check that alice invoice wasn't settled and bandwidth of htlc
// links hasn't been changed.
invoice, _, err := receiver.registry.LookupInvoice(rhash)
if err != nil {
t.Fatalf("unable to get invoice: %v", err)
}
if invoice.Terms.Settled {
t.Fatal("carol invoice have been settled")
}
if n.aliceChannelLink.Bandwidth() != aliceBandwidthBefore {
t.Fatal("the bandwidth of alice channel link which handles " +
"alice->bob channel should be the same")
}
if n.firstBobChannelLink.Bandwidth() != firstBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"alice->bob channel should be the same")
}
if n.secondBobChannelLink.Bandwidth() != secondBobBandwidthBefore {
t.Fatal("the bandwidth of bob channel link which handles " +
"bob->carol channel should be the same")
}
if n.carolChannelLink.Bandwidth() != carolBandwidthBefore {
t.Fatal("the bandwidth of carol channel link which handles " +
"bob->carol channel should be the same")
}
}
// TestChannelLinkExpiryTooSoonExitNode tests that if we send an HTLC to a node
// with an expiry that is already expired, or too close to the current block
// height, then it will cancel the HTLC.
func TestChannelLinkExpiryTooSoonExitNode(t *testing.T) {
t.Parallel()
// The starting height for this test will be 200. So we'll base all
// HTLC starting points off of that.
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
const startingHeight = 200
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, startingHeight)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
// We'll craft an HTLC packet, but set the starting height to 10 blocks
// before the current true height.
htlcAmt, totalTimelock, hops := generateHops(amount,
startingHeight-10, n.firstBobChannelLink)
// Now we'll send out the payment from Alice to Bob.
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.bobServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
// The payment should've failed as the time lock value was in the
// _past_.
if err == nil {
t.Fatalf("payment should have failed due to a too early " +
"time lock value")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got: %T %v",
err, err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailFinalExpiryTooSoon:
default:
t.Fatalf("incorrect error, expected final time lock too "+
"early, instead have: %v", err)
}
}
// TestChannelLinkExpiryTooSoonExitNode tests that if we send a multi-hop HTLC,
// and the time lock is too early for an intermediate node, then they cancel
// the HTLC back to the sender.
func TestChannelLinkExpiryTooSoonMidNode(t *testing.T) {
t.Parallel()
// The starting height for this test will be 200. So we'll base all
// HTLC starting points off of that.
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
const startingHeight = 200
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, startingHeight)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
// We'll craft an HTLC packet, but set the starting height to 10 blocks
// before the current true height. The final route will be three hops,
// so the middle hop should detect the issue.
htlcAmt, totalTimelock, hops := generateHops(amount,
startingHeight-10, n.firstBobChannelLink, n.carolChannelLink)
// Now we'll send out the payment from Alice to Bob.
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.bobServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
// The payment should've failed as the time lock value was in the
// _past_.
if err == nil {
t.Fatalf("payment should have failed due to a too early " +
"time lock value")
}
ferr, ok := err.(*ForwardingError)
if !ok {
t.Fatalf("expected a ForwardingError, instead got: %T: %v", err, err)
}
switch ferr.FailureMessage.(type) {
case *lnwire.FailExpiryTooSoon:
default:
t.Fatalf("incorrect error, expected final time lock too "+
"early, instead have: %v", err)
}
}
// TestChannelLinkSingleHopMessageOrdering test checks ordering of message which
// flying around between Alice and Bob are correct when Bob sends payments to
// Alice.
func TestChannelLinkSingleHopMessageOrdering(t *testing.T) {
t.Parallel()
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
chanID := n.aliceChannelLink.ChanID()
messages := []expectedMessage{
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
{"alice", "bob", &lnwire.FundingLocked{}, false},
{"bob", "alice", &lnwire.FundingLocked{}, false},
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
}
debug := false
if debug {
// Log message that alice receives.
n.aliceServer.intersect(createLogFunc("alice",
n.aliceChannelLink.ChanID()))
// Log message that bob receives.
n.bobServer.intersect(createLogFunc("bob",
n.firstBobChannelLink.ChanID()))
}
// Check that alice receives messages in right order.
n.aliceServer.intersect(createInterceptorFunc("[alice] <-- [bob]",
"alice", messages, chanID, false))
// Check that bob receives messages in right order.
n.bobServer.intersect(createInterceptorFunc("[alice] --> [bob]",
"bob", messages, chanID, false))
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink)
// Wait for:
// * HTLC add request to be sent to bob.
// * alice<->bob commitment state to be updated.
// * settle request to be sent back from bob to alice.
// * alice<->bob commitment state to be updated.
// * user notification to be sent.
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.bobServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
if err != nil {
t.Fatalf("unable to make the payment: %v", err)
}
}
type mockPeer struct {
sync.Mutex
disconnected bool
sentMsgs chan lnwire.Message
quit chan struct{}
}
func (m *mockPeer) QuitSignal() <-chan struct{} {
return m.quit
}
var _ lnpeer.Peer = (*mockPeer)(nil)
func (m *mockPeer) SendMessage(sync bool, msgs ...lnwire.Message) error {
if m.disconnected {
return fmt.Errorf("disconnected")
}
select {
case m.sentMsgs <- msgs[0]:
case <-m.quit:
return fmt.Errorf("mockPeer shutting down")
}
return nil
}
func (m *mockPeer) AddNewChannel(_ *channeldb.OpenChannel,
_ <-chan struct{}) error {
return nil
}
func (m *mockPeer) WipeChannel(*wire.OutPoint) error {
return nil
}
func (m *mockPeer) PubKey() [33]byte {
return [33]byte{}
}
func (m *mockPeer) IdentityKey() *btcec.PublicKey {
return nil
}
func (m *mockPeer) Address() net.Addr {
return nil
}
func newSingleLinkTestHarness(chanAmt, chanReserve btcutil.Amount) (
ChannelLink, *lnwallet.LightningChannel, chan time.Time, func() error,
func(), chanRestoreFunc, error) {
var chanIDBytes [8]byte
if _, err := io.ReadFull(rand.Reader, chanIDBytes[:]); err != nil {
return nil, nil, nil, nil, nil, nil, err
}
chanID := lnwire.NewShortChanIDFromInt(
binary.BigEndian.Uint64(chanIDBytes[:]))
aliceChannel, bobChannel, fCleanUp, restore, err := createTestChannel(
alicePrivKey, bobPrivKey, chanAmt, chanAmt,
chanReserve, chanReserve, chanID,
)
if err != nil {
return nil, nil, nil, nil, nil, nil, err
}
var (
decoder = newMockIteratorDecoder()
obfuscator = NewMockObfuscator()
alicePeer = &mockPeer{
sentMsgs: make(chan lnwire.Message, 2000),
quit: make(chan struct{}),
}
globalPolicy = ForwardingPolicy{
MinHTLC: lnwire.NewMSatFromSatoshis(5),
BaseFee: lnwire.NewMSatFromSatoshis(1),
TimeLockDelta: 6,
}
invoiceRegistry = newMockRegistry(globalPolicy.TimeLockDelta)
)
pCache := &mockPreimageCache{
// hash -> preimage
preimageMap: make(map[[32]byte][]byte),
}
aliceDb := aliceChannel.State().Db
aliceSwitch, err := initSwitchWithDB(testStartingHeight, aliceDb)
if err != nil {
return nil, nil, nil, nil, nil, nil, err
}
// Instantiate with a long interval, so that we can precisely control
// the firing via force feeding.
bticker := ticker.MockNew(time.Hour)
aliceCfg := ChannelLinkConfig{
FwrdingPolicy: globalPolicy,
Peer: alicePeer,
Switch: aliceSwitch,
Circuits: aliceSwitch.CircuitModifier(),
ForwardPackets: aliceSwitch.ForwardPackets,
DecodeHopIterators: decoder.DecodeHopIterators,
ExtractErrorEncrypter: func(*btcec.PublicKey) (
ErrorEncrypter, lnwire.FailCode) {
return obfuscator, lnwire.CodeNone
},
FetchLastChannelUpdate: mockGetChanUpdateMessage,
PreimageCache: pCache,
OnChannelFailure: func(lnwire.ChannelID,
lnwire.ShortChannelID, LinkFailureError) {
},
UpdateContractSignals: func(*contractcourt.ContractSignals) error {
return nil
},
Registry: invoiceRegistry,
ChainEvents: &contractcourt.ChainEventSubscription{},
BatchTicker: bticker,
FwdPkgGCTicker: ticker.MockNew(15 * time.Second),
// Make the BatchSize and Min/MaxFeeUpdateTimeout large enough
// to not trigger commit updates automatically during tests.
BatchSize: 10000,
MinFeeUpdateTimeout: 30 * time.Minute,
MaxFeeUpdateTimeout: 40 * time.Minute,
}
const startingHeight = 100
aliceLink := NewChannelLink(aliceCfg, aliceChannel)
start := func() error {
return aliceSwitch.AddLink(aliceLink)
}
go func() {
for {
select {
case <-aliceLink.(*channelLink).htlcUpdates:
case <-aliceLink.(*channelLink).quit:
return
}
}
}()
cleanUp := func() {
close(alicePeer.quit)
defer fCleanUp()
defer aliceLink.Stop()
defer bobChannel.Stop()
}
return aliceLink, bobChannel, bticker.Force, start, cleanUp, restore, nil
}
func assertLinkBandwidth(t *testing.T, link ChannelLink,
expected lnwire.MilliSatoshi) {
currentBandwidth := link.Bandwidth()
_, _, line, _ := runtime.Caller(1)
if currentBandwidth != expected {
t.Fatalf("line %v: alice's link bandwidth is incorrect: "+
"expected %v, got %v", line, expected, currentBandwidth)
}
}
// handleStateUpdate handles the messages sent from the link after
// the batch ticker has triggered a state update.
func handleStateUpdate(link *channelLink,
remoteChannel *lnwallet.LightningChannel) error {
sentMsgs := link.cfg.Peer.(*mockPeer).sentMsgs
var msg lnwire.Message
select {
case msg = <-sentMsgs:
case <-time.After(60 * time.Second):
return fmt.Errorf("did not receive CommitSig from Alice")
}
// The link should be sending a commit sig at this point.
commitSig, ok := msg.(*lnwire.CommitSig)
if !ok {
return fmt.Errorf("expected CommitSig, got %T", msg)
}
// Let the remote channel receive the commit sig, and
// respond with a revocation + commitsig.
err := remoteChannel.ReceiveNewCommitment(
commitSig.CommitSig, commitSig.HtlcSigs)
if err != nil {
return err
}
remoteRev, _, err := remoteChannel.RevokeCurrentCommitment()
if err != nil {
return err
}
link.HandleChannelUpdate(remoteRev)
remoteSig, remoteHtlcSigs, err := remoteChannel.SignNextCommitment()
if err != nil {
return err
}
commitSig = &lnwire.CommitSig{
CommitSig: remoteSig,
HtlcSigs: remoteHtlcSigs,
}
link.HandleChannelUpdate(commitSig)
// This should make the link respond with a revocation.
select {
case msg = <-sentMsgs:
case <-time.After(60 * time.Second):
return fmt.Errorf("did not receive RevokeAndAck from Alice")
}
revoke, ok := msg.(*lnwire.RevokeAndAck)
if !ok {
return fmt.Errorf("expected RevokeAndAck got %T", msg)
}
_, _, _, err = remoteChannel.ReceiveRevocation(revoke)
if err != nil {
return fmt.Errorf("unable to receive "+
"revocation: %v", err)
}
return nil
}
// updateState is used exchange the messages necessary to do a full state
// transition. If initiateUpdate=true, then this call will make the link
// trigger an update by sending on the batchTick channel, if not, it will
// make the remoteChannel initiate the state update.
func updateState(batchTick chan time.Time, link *channelLink,
remoteChannel *lnwallet.LightningChannel,
initiateUpdate bool) error {
sentMsgs := link.cfg.Peer.(*mockPeer).sentMsgs
if initiateUpdate {
// Trigger update by ticking the batchTicker.
select {
case batchTick <- time.Now():
case <-link.quit:
return fmt.Errorf("link shutting down")
}
return handleStateUpdate(link, remoteChannel)
}
// The remote is triggering the state update, emulate this by
// signing and sending CommitSig to the link.
remoteSig, remoteHtlcSigs, err := remoteChannel.SignNextCommitment()
if err != nil {
return err
}
commitSig := &lnwire.CommitSig{
CommitSig: remoteSig,
HtlcSigs: remoteHtlcSigs,
}
link.HandleChannelUpdate(commitSig)
// The link should respond with a revocation + commit sig.
var msg lnwire.Message
select {
case msg = <-sentMsgs:
case <-time.After(60 * time.Second):
return fmt.Errorf("did not receive RevokeAndAck from Alice")
}
revoke, ok := msg.(*lnwire.RevokeAndAck)
if !ok {
return fmt.Errorf("expected RevokeAndAck got %T",
msg)
}
_, _, _, err = remoteChannel.ReceiveRevocation(revoke)
if err != nil {
return fmt.Errorf("unable to receive "+
"revocation: %v", err)
}
select {
case msg = <-sentMsgs:
case <-time.After(60 * time.Second):
return fmt.Errorf("did not receive CommitSig from Alice")
}
commitSig, ok = msg.(*lnwire.CommitSig)
if !ok {
return fmt.Errorf("expected CommitSig, got %T", msg)
}
err = remoteChannel.ReceiveNewCommitment(
commitSig.CommitSig, commitSig.HtlcSigs)
if err != nil {
return err
}
// Lastly, send a revocation back to the link.
remoteRev, _, err := remoteChannel.RevokeCurrentCommitment()
if err != nil {
return err
}
link.HandleChannelUpdate(remoteRev)
// Sleep to make sure Alice has handled the remote revocation.
time.Sleep(500 * time.Millisecond)
return nil
}
// TestChannelLinkBandwidthConsistency ensures that the reported bandwidth of a
// given ChannelLink is properly updated in response to downstream messages
// from the switch, and upstream messages from its channel peer.
//
// TODO(roasbeef): add sync hook into packet processing so can eliminate all
// sleep in this test and the one below
func TestChannelLinkBandwidthConsistency(t *testing.T) {
t.Parallel()
// TODO(roasbeef): replace manual bit twiddling with concept of
// resource cost for packets?
// * or also able to consult link
// We'll start the test by creating a single instance of
const chanAmt = btcutil.SatoshiPerBitcoin * 5
aliceLink, bobChannel, tmr, start, cleanUp, _, err :=
newSingleLinkTestHarness(chanAmt, 0)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
var (
carolChanID = lnwire.NewShortChanIDFromInt(3)
mockBlob [lnwire.OnionPacketSize]byte
coreChan = aliceLink.(*channelLink).channel
coreLink = aliceLink.(*channelLink)
defaultCommitFee = coreChan.StateSnapshot().CommitFee
aliceStartingBandwidth = aliceLink.Bandwidth()
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
)
// We put Alice into hodl.ExitSettle mode, such that she won't settle
// incoming HTLCs automatically.
coreLink.cfg.HodlMask = hodl.MaskFromFlags(hodl.ExitSettle)
coreLink.cfg.DebugHTLC = true
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000}
feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
htlcFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(lnwallet.HtlcWeight),
)
// The starting bandwidth of the channel should be exactly the amount
// that we created the channel between her and Bob.
expectedBandwidth := lnwire.NewMSatFromSatoshis(chanAmt - defaultCommitFee)
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
// Next, we'll create an HTLC worth 1 BTC, and send it into the link as
// a switch initiated payment. The resulting bandwidth should
// now be decremented to reflect the new HTLC.
htlcAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
invoice, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
addPkt := htlcPacket{
htlc: htlc,
incomingChanID: sourceHop,
incomingHTLCID: 0,
obfuscator: NewMockObfuscator(),
}
circuit := makePaymentCircuit(&htlc.PaymentHash, &addPkt)
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
if err != nil {
t.Fatalf("unable to commit circuit: %v", err)
}
addPkt.circuit = &circuit
if err := aliceLink.HandleSwitchPacket(&addPkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
time.Sleep(time.Millisecond * 500)
// The resulting bandwidth should reflect that Alice is paying the
// htlc amount in addition to the htlc fee.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
// Alice should send the HTLC to Bob.
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
if !ok {
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
}
bobIndex, err := bobChannel.ReceiveHTLC(addHtlc)
if err != nil {
t.Fatalf("bob failed receiving htlc: %v", err)
}
// Lock in the HTLC.
if err := updateState(tmr, coreLink, bobChannel, true); err != nil {
t.Fatalf("unable to update state: %v", err)
}
// Locking in the HTLC should not change Alice's bandwidth.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
// If we now send in a valid HTLC settle for the prior HTLC we added,
// then the bandwidth should remain unchanged as the remote party will
// gain additional channel balance.
err = bobChannel.SettleHTLC(invoice.Terms.PaymentPreimage, bobIndex, nil, nil, nil)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
htlcSettle := &lnwire.UpdateFulfillHTLC{
ID: 0,
PaymentPreimage: invoice.Terms.PaymentPreimage,
}
aliceLink.HandleChannelUpdate(htlcSettle)
time.Sleep(time.Millisecond * 500)
// Since the settle is not locked in yet, Alice's bandwidth should still
// reflect that she has to pay the fee.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
// Lock in the settle.
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
t.Fatalf("unable to update state: %v", err)
}
// Now that it is settled, Alice should have gotten the htlc fee back.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
// Next, we'll add another HTLC initiated by the switch (of the same
// amount as the prior one).
invoice, htlc, err = generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
addPkt = htlcPacket{
htlc: htlc,
incomingChanID: sourceHop,
incomingHTLCID: 1,
obfuscator: NewMockObfuscator(),
}
circuit = makePaymentCircuit(&htlc.PaymentHash, &addPkt)
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
if err != nil {
t.Fatalf("unable to commit circuit: %v", err)
}
addPkt.circuit = &circuit
if err := aliceLink.HandleSwitchPacket(&addPkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
time.Sleep(time.Millisecond * 500)
// Again, Alice's bandwidth decreases by htlcAmt+htlcFee.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-2*htlcAmt-htlcFee)
// Alice will send the HTLC to Bob.
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
addHtlc, ok = msg.(*lnwire.UpdateAddHTLC)
if !ok {
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
}
bobIndex, err = bobChannel.ReceiveHTLC(addHtlc)
if err != nil {
t.Fatalf("bob failed receiving htlc: %v", err)
}
// Lock in the HTLC, which should not affect the bandwidth.
if err := updateState(tmr, coreLink, bobChannel, true); err != nil {
t.Fatalf("unable to update state: %v", err)
}
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt*2-htlcFee)
// With that processed, we'll now generate an HTLC fail (sent by the
// remote peer) to cancel the HTLC we just added. This should return us
// back to the bandwidth of the link right before the HTLC was sent.
err = bobChannel.FailHTLC(bobIndex, []byte("nop"), nil, nil, nil)
if err != nil {
t.Fatalf("unable to fail htlc: %v", err)
}
failMsg := &lnwire.UpdateFailHTLC{
ID: 1,
Reason: lnwire.OpaqueReason([]byte("nop")),
}
aliceLink.HandleChannelUpdate(failMsg)
time.Sleep(time.Millisecond * 500)
// Before the Fail gets locked in, the bandwidth should remain unchanged.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt*2-htlcFee)
// Lock in the Fail.
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
t.Fatalf("unable to update state: %v", err)
}
// Now the bandwidth should reflect the failed HTLC.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
// Moving along, we'll now receive a new HTLC from the remote peer,
// with an ID of 0 as this is their first HTLC. The bandwidth should
// remain unchanged (but Alice will need to pay the fee for the extra
// HTLC).
htlcAmt, totalTimelock, hops := generateHops(htlcAmt, testStartingHeight,
coreLink)
blob, err := generateRoute(hops...)
if err != nil {
t.Fatalf("unable to gen route: %v", err)
}
invoice, htlc, err = generatePayment(htlcAmt, htlcAmt,
totalTimelock, blob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
// We must add the invoice to the registry, such that Alice expects
// this payment.
err = coreLink.cfg.Registry.(*mockInvoiceRegistry).AddInvoice(*invoice)
if err != nil {
t.Fatalf("unable to add invoice to registry: %v", err)
}
htlc.ID = 0
bobIndex, err = bobChannel.AddHTLC(htlc, nil)
if err != nil {
t.Fatalf("unable to add htlc: %v", err)
}
aliceLink.HandleChannelUpdate(htlc)
// Alice's balance remains unchanged until this HTLC is locked in.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
// Lock in the HTLC.
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
t.Fatalf("unable to update state: %v", err)
}
// Since Bob is adding this HTLC, Alice only needs to pay the fee.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
time.Sleep(time.Millisecond * 500)
addPkt = htlcPacket{
htlc: htlc,
incomingChanID: aliceLink.ShortChanID(),
incomingHTLCID: 0,
obfuscator: NewMockObfuscator(),
}
circuit = makePaymentCircuit(&htlc.PaymentHash, &addPkt)
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
if err != nil {
t.Fatalf("unable to commit circuit: %v", err)
}
addPkt.outgoingChanID = carolChanID
addPkt.outgoingHTLCID = 0
err = coreLink.cfg.Switch.openCircuits(addPkt.keystone())
if err != nil {
t.Fatalf("unable to set keystone: %v", err)
}
// Next, we'll settle the HTLC with our knowledge of the pre-image that
// we eventually learn (simulating a multi-hop payment). The bandwidth
// of the channel should now be re-balanced to the starting point.
settlePkt := htlcPacket{
incomingChanID: aliceLink.ShortChanID(),
incomingHTLCID: 0,
circuit: &circuit,
outgoingChanID: addPkt.outgoingChanID,
outgoingHTLCID: addPkt.outgoingHTLCID,
htlc: &lnwire.UpdateFulfillHTLC{
ID: 0,
PaymentPreimage: invoice.Terms.PaymentPreimage,
},
obfuscator: NewMockObfuscator(),
}
if err := aliceLink.HandleSwitchPacket(&settlePkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
time.Sleep(time.Millisecond * 500)
// Settling this HTLC gives Alice all her original bandwidth back.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
settleMsg, ok := msg.(*lnwire.UpdateFulfillHTLC)
if !ok {
t.Fatalf("expected UpdateFulfillHTLC, got %T", msg)
}
err = bobChannel.ReceiveHTLCSettle(settleMsg.PaymentPreimage, settleMsg.ID)
if err != nil {
t.Fatalf("failed receiving fail htlc: %v", err)
}
// After failing an HTLC, the link will automatically trigger
// a state update.
if err := handleStateUpdate(coreLink, bobChannel); err != nil {
t.Fatalf("unable to update state: %v", err)
}
// Finally, we'll test the scenario of failing an HTLC received by the
// remote node. This should result in no perceived bandwidth changes.
htlcAmt, totalTimelock, hops = generateHops(htlcAmt, testStartingHeight,
coreLink)
blob, err = generateRoute(hops...)
if err != nil {
t.Fatalf("unable to gen route: %v", err)
}
invoice, htlc, err = generatePayment(htlcAmt, htlcAmt, totalTimelock, blob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
err = coreLink.cfg.Registry.(*mockInvoiceRegistry).AddInvoice(*invoice)
if err != nil {
t.Fatalf("unable to add invoice to registry: %v", err)
}
// Since we are not using the link to handle HTLC IDs for the
// remote channel, we must set this manually. This is the second
// HTLC we add, hence it should have an ID of 1 (Alice's channel
// link will set this automatically for her side).
htlc.ID = 1
bobIndex, err = bobChannel.AddHTLC(htlc, nil)
if err != nil {
t.Fatalf("unable to add htlc: %v", err)
}
aliceLink.HandleChannelUpdate(htlc)
time.Sleep(time.Millisecond * 500)
// No changes before the HTLC is locked in.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
if err := updateState(tmr, coreLink, bobChannel, false); err != nil {
t.Fatalf("unable to update state: %v", err)
}
// After lock-in, Alice will have to pay the htlc fee.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcFee)
addPkt = htlcPacket{
htlc: htlc,
incomingChanID: aliceLink.ShortChanID(),
incomingHTLCID: 1,
obfuscator: NewMockObfuscator(),
}
circuit = makePaymentCircuit(&htlc.PaymentHash, &addPkt)
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
if err != nil {
t.Fatalf("unable to commit circuit: %v", err)
}
addPkt.outgoingChanID = carolChanID
addPkt.outgoingHTLCID = 1
err = coreLink.cfg.Switch.openCircuits(addPkt.keystone())
if err != nil {
t.Fatalf("unable to set keystone: %v", err)
}
failPkt := htlcPacket{
incomingChanID: aliceLink.ShortChanID(),
incomingHTLCID: 1,
circuit: &circuit,
outgoingChanID: addPkt.outgoingChanID,
outgoingHTLCID: addPkt.outgoingHTLCID,
htlc: &lnwire.UpdateFailHTLC{
ID: 1,
},
obfuscator: NewMockObfuscator(),
}
if err := aliceLink.HandleSwitchPacket(&failPkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
time.Sleep(time.Millisecond * 500)
// Alice should get all her bandwidth back.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
// Message should be sent to Bob.
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
failMsg, ok = msg.(*lnwire.UpdateFailHTLC)
if !ok {
t.Fatalf("expected UpdateFailHTLC, got %T", msg)
}
err = bobChannel.ReceiveFailHTLC(failMsg.ID, []byte("fail"))
if err != nil {
t.Fatalf("failed receiving fail htlc: %v", err)
}
// After failing an HTLC, the link will automatically trigger
// a state update.
if err := handleStateUpdate(coreLink, bobChannel); err != nil {
t.Fatalf("unable to update state: %v", err)
}
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth)
}
// TestChannelLinkBandwidthConsistencyOverflow tests that in the case of a
// commitment overflow (no more space for new HTLC's), the bandwidth is updated
// properly as items are being added and removed from the overflow queue.
func TestChannelLinkBandwidthConsistencyOverflow(t *testing.T) {
t.Parallel()
var mockBlob [lnwire.OnionPacketSize]byte
const chanAmt = btcutil.SatoshiPerBitcoin * 5
aliceLink, bobChannel, batchTick, start, cleanUp, _, err :=
newSingleLinkTestHarness(chanAmt, 0)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
var (
coreLink = aliceLink.(*channelLink)
defaultCommitFee = coreLink.channel.StateSnapshot().CommitFee
aliceStartingBandwidth = aliceLink.Bandwidth()
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
)
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000}
feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
var htlcID uint64
addLinkHTLC := func(id uint64, amt lnwire.MilliSatoshi) [32]byte {
invoice, htlc, err := generatePayment(amt, amt, 5, mockBlob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
addPkt := &htlcPacket{
htlc: htlc,
incomingHTLCID: id,
amount: amt,
obfuscator: NewMockObfuscator(),
}
circuit := makePaymentCircuit(&htlc.PaymentHash, addPkt)
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
if err != nil {
t.Fatalf("unable to commit circuit: %v", err)
}
addPkt.circuit = &circuit
aliceLink.HandleSwitchPacket(addPkt)
return invoice.Terms.PaymentPreimage
}
// We'll first start by adding enough HTLC's to overflow the commitment
// transaction, checking the reported link bandwidth for proper
// consistency along the way
htlcAmt := lnwire.NewMSatFromSatoshis(100000)
totalHtlcAmt := lnwire.MilliSatoshi(0)
const numHTLCs = lnwallet.MaxHTLCNumber / 2
var preImages [][32]byte
for i := 0; i < numHTLCs; i++ {
preImage := addLinkHTLC(htlcID, htlcAmt)
preImages = append(preImages, preImage)
totalHtlcAmt += htlcAmt
htlcID++
}
// The HTLCs should all be sent to the remote.
var msg lnwire.Message
for i := 0; i < numHTLCs; i++ {
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message %d", i)
}
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
if !ok {
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
}
_, err := bobChannel.ReceiveHTLC(addHtlc)
if err != nil {
t.Fatalf("bob failed receiving htlc: %v", err)
}
}
select {
case msg = <-aliceMsgs:
t.Fatalf("unexpected message: %T", msg)
case <-time.After(20 * time.Millisecond):
}
// TODO(roasbeef): increase sleep
time.Sleep(time.Second * 1)
commitWeight := lnwallet.CommitWeight + lnwallet.HtlcWeight*numHTLCs
htlcFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(commitWeight),
)
expectedBandwidth := aliceStartingBandwidth - totalHtlcAmt - htlcFee
expectedBandwidth += lnwire.NewMSatFromSatoshis(defaultCommitFee)
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
// The overflow queue should be empty at this point, as the commitment
// transaction should be full, but not yet overflown.
if coreLink.overflowQueue.Length() != 0 {
t.Fatalf("wrong overflow queue length: expected %v, got %v", 0,
coreLink.overflowQueue.Length())
}
// At this point, the commitment transaction should now be fully
// saturated. We'll continue adding HTLC's, and asserting that the
// bandwidth accounting is done properly.
const numOverFlowHTLCs = 20
for i := 0; i < numOverFlowHTLCs; i++ {
preImage := addLinkHTLC(htlcID, htlcAmt)
preImages = append(preImages, preImage)
totalHtlcAmt += htlcAmt
htlcID++
}
// No messages should be sent to the remote at this point.
select {
case msg = <-aliceMsgs:
t.Fatalf("unexpected message: %T", msg)
case <-time.After(20 * time.Millisecond):
}
time.Sleep(time.Second * 2)
expectedBandwidth -= (numOverFlowHTLCs * htlcAmt)
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
// With the extra HTLC's added, the overflow queue should now be
// populated with our 20 additional HTLC's.
if coreLink.overflowQueue.Length() != numOverFlowHTLCs {
t.Fatalf("wrong overflow queue length: expected %v, got %v",
numOverFlowHTLCs,
coreLink.overflowQueue.Length())
}
// We trigger a state update to lock in the HTLCs. This should
// not change Alice's bandwidth.
if err := updateState(batchTick, coreLink, bobChannel, true); err != nil {
t.Fatalf("unable to update state: %v", err)
}
time.Sleep(time.Millisecond * 500)
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
// At this point, we'll now settle enough HTLCs to empty the overflow
// queue. The resulting bandwidth change should be non-existent as this
// will simply transfer over funds to the remote party. However, the
// size of the overflow queue should be decreasing
for i := 0; i < numOverFlowHTLCs; i++ {
err = bobChannel.SettleHTLC(preImages[i], uint64(i), nil, nil, nil)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
htlcSettle := &lnwire.UpdateFulfillHTLC{
ID: uint64(i),
PaymentPreimage: preImages[i],
}
aliceLink.HandleChannelUpdate(htlcSettle)
time.Sleep(time.Millisecond * 50)
}
time.Sleep(time.Millisecond * 500)
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
// We trigger a state update to lock in the Settles.
if err := updateState(batchTick, coreLink, bobChannel, false); err != nil {
t.Fatalf("unable to update state: %v", err)
}
// After the state update is done, Alice should start sending
// HTLCs from the overflow queue.
for i := 0; i < numOverFlowHTLCs; i++ {
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
if !ok {
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
}
_, err := bobChannel.ReceiveHTLC(addHtlc)
if err != nil {
t.Fatalf("bob failed receiving htlc: %v", err)
}
}
select {
case msg = <-aliceMsgs:
t.Fatalf("unexpected message: %T", msg)
case <-time.After(20 * time.Millisecond):
}
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
// Finally, at this point, the queue itself should be fully empty. As
// enough slots have been drained from the commitment transaction to
// allocate the queue items to.
time.Sleep(time.Millisecond * 500)
if coreLink.overflowQueue.Length() != 0 {
t.Fatalf("wrong overflow queue length: expected %v, got %v", 0,
coreLink.overflowQueue.Length())
}
}
// genAddsAndCircuits creates `numHtlcs` sequential ADD packets and there
// corresponding circuits. The provided `htlc` is used in all test packets.
func genAddsAndCircuits(numHtlcs int, htlc *lnwire.UpdateAddHTLC) (
[]*htlcPacket, []*PaymentCircuit) {
addPkts := make([]*htlcPacket, 0, numHtlcs)
circuits := make([]*PaymentCircuit, 0, numHtlcs)
for i := 0; i < numHtlcs; i++ {
addPkt := htlcPacket{
htlc: htlc,
incomingChanID: sourceHop,
incomingHTLCID: uint64(i),
obfuscator: NewMockObfuscator(),
}
circuit := makePaymentCircuit(&htlc.PaymentHash, &addPkt)
addPkt.circuit = &circuit
addPkts = append(addPkts, &addPkt)
circuits = append(circuits, &circuit)
}
return addPkts, circuits
}
// TestChannelLinkTrimCircuitsPending checks that the switch and link properly
// trim circuits if there are open circuits corresponding to ADDs on a pending
// commmitment transaction.
func TestChannelLinkTrimCircuitsPending(t *testing.T) {
t.Parallel()
const (
chanAmt = btcutil.SatoshiPerBitcoin * 5
numHtlcs = 4
halfHtlcs = numHtlcs / 2
)
// We'll start by creating a new link with our chanAmt (5 BTC). We will
// only be testing Alice's behavior, so the reference to Bob's channel
// state is unnecessary.
aliceLink, _, batchTicker, start, cleanUp, restore, err :=
newSingleLinkTestHarness(chanAmt, 0)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
alice := newPersistentLinkHarness(t, aliceLink, batchTicker, restore)
// Compute the static fees that will be used to determine the
// correctness of Alice's bandwidth when forwarding HTLCs.
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000}
feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
defaultCommitFee := alice.channel.StateSnapshot().CommitFee
htlcFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(lnwallet.HtlcWeight),
)
// The starting bandwidth of the channel should be exactly the amount
// that we created the channel between her and Bob, minus the commitment
// fee.
expectedBandwidth := lnwire.NewMSatFromSatoshis(chanAmt - defaultCommitFee)
assertLinkBandwidth(t, alice.link, expectedBandwidth)
// Capture Alice's starting bandwidth to perform later, relative
// bandwidth assertions.
aliceStartingBandwidth := alice.link.Bandwidth()
// Next, we'll create an HTLC worth 1 BTC that will be used as a dummy
// message for the test.
var mockBlob [lnwire.OnionPacketSize]byte
htlcAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
_, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
// Create `numHtlc` htlcPackets and payment circuits that will be used
// to drive the test. All of the packets will use the same dummy HTLC.
addPkts, circuits := genAddsAndCircuits(numHtlcs, htlc)
// To begin the test, start by committing the circuits belong to our
// first two HTLCs.
fwdActions := alice.commitCircuits(circuits[:halfHtlcs])
// Both of these circuits should have successfully added, as this is the
// first attempt to send them.
if len(fwdActions.Adds) != halfHtlcs {
t.Fatalf("expected %d circuits to be added", halfHtlcs)
}
alice.assertNumPendingNumOpenCircuits(2, 0)
// Since both were committed successfully, we will now deliver them to
// Alice's link.
for _, addPkt := range addPkts[:halfHtlcs] {
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
}
// Wait until Alice's link has sent both HTLCs via the peer.
alice.checkSent(addPkts[:halfHtlcs])
// The resulting bandwidth should reflect that Alice is paying both
// htlc amounts, in addition to both htlc fees.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
)
// Now, initiate a state transition by Alice so that the pending HTLCs
// are locked in. This will *not* involve any participation by Bob,
// which ensures the commitment will remain in a pending state.
alice.trySignNextCommitment()
alice.assertNumPendingNumOpenCircuits(2, 2)
// Restart Alice's link, which simulates a disconnection with the remote
// peer.
cleanUp = alice.restart(false)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(2, 2)
// Make a second attempt to commit the first two circuits. This can
// happen if the incoming link flaps, but also allows us to verify that
// the circuits were trimmed properly.
fwdActions = alice.commitCircuits(circuits[:halfHtlcs])
// Since Alice has a pending commitment with the first two HTLCs, the
// restart should not have trimmed them from the circuit map.
// Therefore, we expect both of these circuits to be dropped by the
// switch, as keystones should still be set.
if len(fwdActions.Drops) != halfHtlcs {
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
}
// The resulting bandwidth should remain unchanged from before,
// reflecting that Alice is paying both htlc amounts, in addition to
// both htlc fees.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
)
// Now, restart Alice's link *and* the entire switch. This will ensure
// that entire circuit map is reloaded from disk, and we can now test
// against the behavioral differences of committing circuits that
// conflict with duplicate circuits after a restart.
cleanUp = alice.restart(true)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(2, 2)
// Alice should not send out any messages. Even though Alice has a
// pending commitment transaction, channel reestablishment is not
// enabled in this test.
select {
case <-alice.msgs:
t.Fatalf("message should not have been sent by Alice")
case <-time.After(time.Second):
}
// We will now try to commit the circuits for all of our HTLCs. The
// first two are already on the pending commitment transaction, the
// latter two are new HTLCs.
fwdActions = alice.commitCircuits(circuits)
// The first two circuits should have been dropped, as they are still on
// the pending commitment transaction, and the restart should not have
// trimmed the circuits for these valid HTLCs.
if len(fwdActions.Drops) != halfHtlcs {
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
}
// The latter two circuits are unknown the circuit map, and should
// report being added.
if len(fwdActions.Adds) != halfHtlcs {
t.Fatalf("expected %d packets to be added", halfHtlcs)
}
// Deliver the latter two HTLCs to Alice's links so that they can be
// processed and added to the in-memory commitment state.
for _, addPkt := range addPkts[halfHtlcs:] {
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
}
// Wait for Alice to send the two latter HTLCs via the peer.
alice.checkSent(addPkts[halfHtlcs:])
// With two HTLCs on the pending commit, and two added to the in-memory
// commitment state, the resulting bandwidth should reflect that Alice
// is paying the all htlc amounts in addition to all htlc fees.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-numHtlcs*(htlcAmt+htlcFee),
)
// We will try to initiate a state transition for Alice, which will
// ensure the circuits for the two in-memory HTLCs are opened. However,
// since we have a pending commitment, these HTLCs will not actually be
// included in a commitment.
alice.trySignNextCommitment()
alice.assertNumPendingNumOpenCircuits(4, 4)
// Restart Alice's link to simulate a disconnect. Since the switch
// remains up throughout, the two latter HTLCs will remain in the link's
// mailbox, and will reprocessed upon being reattached to the link.
cleanUp = alice.restart(false)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(4, 2)
// Again, try to recommit all of our circuits.
fwdActions = alice.commitCircuits(circuits)
// It is expected that all of these will get dropped by the switch.
// The first two circuits are still open as a result of being on the
// commitment transaction. The latter two should have had their open
// circuits trimmed, *but* since the HTLCs are still in Alice's mailbox,
// the switch knows not to fail them as a result of the latter two
// circuits never having been loaded from disk.
if len(fwdActions.Drops) != numHtlcs {
t.Fatalf("expected %d packets to be dropped", numHtlcs)
}
// Wait for the latter two htlcs to be pulled from the mailbox, added to
// the in-memory channel state, and sent out via the peer.
alice.checkSent(addPkts[halfHtlcs:])
// This should result in reconstructing the same bandwidth as our last
// assertion. There are two HTLCs on the pending commit, and two added
// to the in-memory commitment state, the resulting bandwidth should
// reflect that Alice is paying the all htlc amounts in addition to all
// htlc fees.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-numHtlcs*(htlcAmt+htlcFee),
)
// Again, we will try to initiate a state transition for Alice, which
// will ensure the circuits for the two in-memory HTLCs are opened.
// As before, these HTLCs will not actually be included in a commitment
// since we have a pending commitment.
alice.trySignNextCommitment()
alice.assertNumPendingNumOpenCircuits(4, 4)
// As a final persistence check, we will restart the link and switch,
// wiping the latter two HTLCs from memory, and forcing their circuits
// to be reloaded from disk.
cleanUp = alice.restart(true)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(4, 2)
// Alice's mailbox will be empty after the restart, and no channel
// reestablishment is configured, so no messages will be sent upon
// restart.
select {
case <-alice.msgs:
t.Fatalf("message should not have been sent by Alice")
case <-time.After(time.Second):
}
// Finally, make one last attempt to commit all circuits.
fwdActions = alice.commitCircuits(circuits)
// The first two HTLCs should still be dropped by the htlcswitch. Their
// existence on the pending commitment transaction should prevent their
// open circuits from being trimmed.
if len(fwdActions.Drops) != halfHtlcs {
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
}
// The latter two HTLCs should now be failed by the switch. These will
// have been trimmed by the link or switch restarting, and since the
// HTLCs are known to be lost from memory (since their circuits were
// loaded from disk), it is safe fail them back as they won't ever be
// delivered to the outgoing link.
if len(fwdActions.Fails) != halfHtlcs {
t.Fatalf("expected %d packets to be dropped", halfHtlcs)
}
// Since the latter two HTLCs have been completely dropped from memory,
// only the first two HTLCs we added should still be reflected in the
// channel bandwidth.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
)
}
// TestChannelLinkTrimCircuitsNoCommit checks that the switch and link properly trim
// circuits if the ADDs corresponding to open circuits are never committed.
func TestChannelLinkTrimCircuitsNoCommit(t *testing.T) {
t.Parallel()
const (
chanAmt = btcutil.SatoshiPerBitcoin * 5
numHtlcs = 4
halfHtlcs = numHtlcs / 2
)
// We'll start by creating a new link with our chanAmt (5 BTC). We will
// only be testing Alice's behavior, so the reference to Bob's channel
// state is unnecessary.
aliceLink, _, batchTicker, start, cleanUp, restore, err :=
newSingleLinkTestHarness(chanAmt, 0)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
alice := newPersistentLinkHarness(t, aliceLink, batchTicker, restore)
// We'll put Alice into hodl.Commit mode, such that the circuits for any
// outgoing ADDs are opened, but the changes are not committed in the
// channel state.
alice.coreLink.cfg.HodlMask = hodl.Commit.Mask()
alice.coreLink.cfg.DebugHTLC = true
// Compute the static fees that will be used to determine the
// correctness of Alice's bandwidth when forwarding HTLCs.
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000}
feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
defaultCommitFee := alice.channel.StateSnapshot().CommitFee
htlcFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(lnwallet.HtlcWeight),
)
// The starting bandwidth of the channel should be exactly the amount
// that we created the channel between her and Bob, minus the commitment
// fee.
expectedBandwidth := lnwire.NewMSatFromSatoshis(chanAmt - defaultCommitFee)
assertLinkBandwidth(t, alice.link, expectedBandwidth)
// Capture Alice's starting bandwidth to perform later, relative
// bandwidth assertions.
aliceStartingBandwidth := alice.link.Bandwidth()
// Next, we'll create an HTLC worth 1 BTC that will be used as a dummy
// message for the test.
var mockBlob [lnwire.OnionPacketSize]byte
htlcAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
_, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
// Create `numHtlc` htlcPackets and payment circuits that will be used
// to drive the test. All of the packets will use the same dummy HTLC.
addPkts, circuits := genAddsAndCircuits(numHtlcs, htlc)
// To begin the test, start by committing the circuits belong to our
// first two HTLCs.
fwdActions := alice.commitCircuits(circuits[:halfHtlcs])
// Both of these circuits should have successfully added, as this is the
// first attempt to send them.
if len(fwdActions.Adds) != halfHtlcs {
t.Fatalf("expected %d circuits to be added", halfHtlcs)
}
// Since both were committed successfully, we will now deliver them to
// Alice's link.
for _, addPkt := range addPkts[:halfHtlcs] {
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
}
// Wait until Alice's link has sent both HTLCs via the peer.
alice.checkSent(addPkts[:halfHtlcs])
// The resulting bandwidth should reflect that Alice is paying both
// htlc amounts, in addition to both htlc fees.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
)
alice.assertNumPendingNumOpenCircuits(2, 0)
// Now, init a state transition by Alice to try and commit the HTLCs.
// Since she is in hodl.Commit mode, this will fail, but the circuits
// will be opened persistently.
alice.trySignNextCommitment()
alice.assertNumPendingNumOpenCircuits(2, 2)
// Restart Alice's link, which simulates a disconnection with the remote
// peer. Alice's link and switch should trim the circuits that were
// opened but not committed.
cleanUp = alice.restart(false, hodl.Commit)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(2, 0)
// The first two HTLCs should have been reset in Alice's mailbox since
// the switch was not shutdown. Knowing this the switch should drop the
// two circuits, even if the circuits were trimmed.
fwdActions = alice.commitCircuits(circuits[:halfHtlcs])
if len(fwdActions.Drops) != halfHtlcs {
t.Fatalf("expected %d packets to be dropped since "+
"the switch has not been restarted", halfHtlcs)
}
// Wait for alice to process the first two HTLCs resend them via the
// peer.
alice.checkSent(addPkts[:halfHtlcs])
// The resulting bandwidth should reflect that Alice is paying both htlc
// amounts, in addition to both htlc fees.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
)
// Again, initiate another state transition by Alice to try and commit
// the HTLCs. Since she is in hodl.Commit mode, this will fail, but the
// circuits will be opened persistently.
alice.trySignNextCommitment()
alice.assertNumPendingNumOpenCircuits(2, 2)
// Now, we we will do a full restart of the link and switch, configuring
// Alice again in hodl.Commit mode. Since none of the HTLCs were
// actually committed, the previously opened circuits should be trimmed
// by both the link and switch.
cleanUp = alice.restart(true, hodl.Commit)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(2, 0)
// Attempt another commit of our first two circuits. Both should fail,
// as the opened circuits should have been trimmed, and circuit map
// recognizes that these HTLCs were lost during the restart.
fwdActions = alice.commitCircuits(circuits[:halfHtlcs])
if len(fwdActions.Fails) != halfHtlcs {
t.Fatalf("expected %d packets to be failed", halfHtlcs)
}
// Bob should not receive any HTLCs from Alice, since Alice's mailbox is
// empty and there is no pending commitment.
select {
case <-alice.msgs:
t.Fatalf("received unexpected message from Alice")
case <-time.After(time.Second):
}
// Alice's bandwidth should have reverted back to her starting value.
assertLinkBandwidth(t, alice.link, aliceStartingBandwidth)
// Now, try to commit the last two payment circuits, which are unused
// thus far. These should succeed without hesitation.
fwdActions = alice.commitCircuits(circuits[halfHtlcs:])
if len(fwdActions.Adds) != halfHtlcs {
t.Fatalf("expected %d packets to be added", halfHtlcs)
}
// Deliver the last two HTLCs to the link via Alice's mailbox.
for _, addPkt := range addPkts[halfHtlcs:] {
if err := alice.link.HandleSwitchPacket(addPkt); err != nil {
t.Fatalf("unable to handle switch packet: %v", err)
}
}
// Verify that Alice processed and sent out the ADD packets via the
// peer.
alice.checkSent(addPkts[halfHtlcs:])
// The resulting bandwidth should reflect that Alice is paying both htlc
// amounts, in addition to both htlc fees.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
)
// Now, initiate a state transition for Alice. Since we are hodl.Commit
// mode, this will only open the circuits that were added to the
// in-memory channel state.
alice.trySignNextCommitment()
alice.assertNumPendingNumOpenCircuits(4, 2)
// Restart Alice's link, and place her back in hodl.Commit mode. On
// restart, all previously opened circuits should be trimmed by both the
// link and the switch.
cleanUp = alice.restart(false, hodl.Commit)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(4, 0)
// Now, try to commit all of known circuits.
fwdActions = alice.commitCircuits(circuits)
// The first two HTLCs will fail to commit for the same reason as
// before, the circuits have been trimmed.
if len(fwdActions.Fails) != halfHtlcs {
t.Fatalf("expected %d packet to be failed", halfHtlcs)
}
// The last two HTLCs will be dropped, as thought the circuits are
// trimmed, the switch is aware that the HTLCs are still in Alice's
// mailbox.
if len(fwdActions.Drops) != halfHtlcs {
t.Fatalf("expected %d packet to be dropped", halfHtlcs)
}
// Wait until Alice reprocesses the last two HTLCs and sends them via
// the peer.
alice.checkSent(addPkts[halfHtlcs:])
// Her bandwidth should now reflect having sent only those two HTLCs.
assertLinkBandwidth(t, alice.link,
aliceStartingBandwidth-halfHtlcs*(htlcAmt+htlcFee),
)
// Now, initiate a state transition for Alice. Since we are hodl.Commit
// mode, this will only open the circuits that were added to the
// in-memory channel state.
alice.trySignNextCommitment()
alice.assertNumPendingNumOpenCircuits(4, 2)
// Finally, do one last restart of both the link and switch. This will
// flush the HTLCs from the mailbox. The circuits should now be trimmed
// for all of the HTLCs.
cleanUp = alice.restart(true, hodl.Commit)
defer cleanUp()
alice.assertNumPendingNumOpenCircuits(4, 0)
// Bob should not receive any HTLCs from Alice, as none of the HTLCs are
// in Alice's mailbox, and channel reestablishment is disabled.
select {
case <-alice.msgs:
t.Fatalf("received unexpected message from Alice")
case <-time.After(time.Second):
}
// Attempt to commit the last two circuits, both should now fail since
// though they were opened before shutting down, the circuits have been
// properly trimmed.
fwdActions = alice.commitCircuits(circuits[halfHtlcs:])
if len(fwdActions.Fails) != halfHtlcs {
t.Fatalf("expected %d packet to be failed", halfHtlcs)
}
// Alice balance should not have changed since the start.
assertLinkBandwidth(t, alice.link, aliceStartingBandwidth)
}
// TestChannelLinkBandwidthChanReserve checks that the bandwidth available
// on the channel link reflects the channel reserve that must be kept
// at all times.
func TestChannelLinkBandwidthChanReserve(t *testing.T) {
t.Parallel()
// First start a link that has a balance greater than it's
// channel reserve.
const chanAmt = btcutil.SatoshiPerBitcoin * 5
const chanReserve = btcutil.SatoshiPerBitcoin * 1
aliceLink, bobChannel, batchTimer, start, cleanUp, _, err :=
newSingleLinkTestHarness(chanAmt, chanReserve)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
var (
mockBlob [lnwire.OnionPacketSize]byte
coreLink = aliceLink.(*channelLink)
coreChan = coreLink.channel
defaultCommitFee = coreChan.StateSnapshot().CommitFee
aliceStartingBandwidth = aliceLink.Bandwidth()
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
)
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000}
feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
htlcFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(lnwallet.HtlcWeight),
)
// The starting bandwidth of the channel should be exactly the amount
// that we created the channel between her and Bob, minus the channel
// reserve.
expectedBandwidth := lnwire.NewMSatFromSatoshis(
chanAmt - defaultCommitFee - chanReserve)
assertLinkBandwidth(t, aliceLink, expectedBandwidth)
// Next, we'll create an HTLC worth 3 BTC, and send it into the link as
// a switch initiated payment. The resulting bandwidth should
// now be decremented to reflect the new HTLC.
htlcAmt := lnwire.NewMSatFromSatoshis(3 * btcutil.SatoshiPerBitcoin)
invoice, htlc, err := generatePayment(htlcAmt, htlcAmt, 5, mockBlob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
addPkt := &htlcPacket{
htlc: htlc,
obfuscator: NewMockObfuscator(),
}
circuit := makePaymentCircuit(&htlc.PaymentHash, addPkt)
_, err = coreLink.cfg.Switch.commitCircuits(&circuit)
if err != nil {
t.Fatalf("unable to commit circuit: %v", err)
}
aliceLink.HandleSwitchPacket(addPkt)
time.Sleep(time.Millisecond * 100)
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
// Alice should send the HTLC to Bob.
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
addHtlc, ok := msg.(*lnwire.UpdateAddHTLC)
if !ok {
t.Fatalf("expected UpdateAddHTLC, got %T", msg)
}
bobIndex, err := bobChannel.ReceiveHTLC(addHtlc)
if err != nil {
t.Fatalf("bob failed receiving htlc: %v", err)
}
// Lock in the HTLC.
if err := updateState(batchTimer, coreLink, bobChannel, true); err != nil {
t.Fatalf("unable to update state: %v", err)
}
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
// If we now send in a valid HTLC settle for the prior HTLC we added,
// then the bandwidth should remain unchanged as the remote party will
// gain additional channel balance.
err = bobChannel.SettleHTLC(invoice.Terms.PaymentPreimage, bobIndex, nil, nil, nil)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
htlcSettle := &lnwire.UpdateFulfillHTLC{
ID: bobIndex,
PaymentPreimage: invoice.Terms.PaymentPreimage,
}
aliceLink.HandleChannelUpdate(htlcSettle)
time.Sleep(time.Millisecond * 500)
// Since the settle is not locked in yet, Alice's bandwidth should still
// reflect that she has to pay the fee.
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt-htlcFee)
// Lock in the settle.
if err := updateState(batchTimer, coreLink, bobChannel, false); err != nil {
t.Fatalf("unable to update state: %v", err)
}
time.Sleep(time.Millisecond * 100)
assertLinkBandwidth(t, aliceLink, aliceStartingBandwidth-htlcAmt)
// Now we create a channel that has a channel reserve that is
// greater than it's balance. In these case only payments can
// be received on this channel, not sent. The available bandwidth
// should therefore be 0.
const bobChanAmt = btcutil.SatoshiPerBitcoin * 1
const bobChanReserve = btcutil.SatoshiPerBitcoin * 1.5
bobLink, _, _, start, bobCleanUp, _, err :=
newSingleLinkTestHarness(bobChanAmt, bobChanReserve)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer bobCleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
// Make sure bandwidth is reported as 0.
assertLinkBandwidth(t, bobLink, 0)
}
// TestChannelRetransmission tests the ability of the channel links to
// synchronize theirs states after abrupt disconnect.
func TestChannelRetransmission(t *testing.T) {
t.Parallel()
retransmissionTests := []struct {
name string
messages []expectedMessage
}{
{
// Tests the ability of the channel links states to be
// synchronized after remote node haven't receive
// revoke and ack message.
name: "intercept last alice revoke_and_ack",
messages: []expectedMessage{
// First initialization of the channel.
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
{"alice", "bob", &lnwire.FundingLocked{}, false},
{"bob", "alice", &lnwire.FundingLocked{}, false},
// Send payment from Alice to Bob and intercept
// the last revocation message, in this case
// Bob should not proceed the payment farther.
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, true},
// Reestablish messages exchange on nodes restart.
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
// Alice should resend the revoke_and_ack
// message to Bob because Bob claimed it in the
// re-establish message.
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
// Proceed the payment farther by sending the
// fulfilment message and trigger the state
// update.
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
},
},
{
// Tests the ability of the channel links states to be
// synchronized after remote node haven't receive
// revoke and ack message.
name: "intercept bob revoke_and_ack commit_sig messages",
messages: []expectedMessage{
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
{"alice", "bob", &lnwire.FundingLocked{}, false},
{"bob", "alice", &lnwire.FundingLocked{}, false},
// Send payment from Alice to Bob and intercept
// the last revocation message, in this case
// Bob should not proceed the payment farther.
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
// Intercept bob commit sig and revoke and ack
// messages.
{"bob", "alice", &lnwire.RevokeAndAck{}, true},
{"bob", "alice", &lnwire.CommitSig{}, true},
// Reestablish messages exchange on nodes restart.
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
// Bob should resend previously intercepted messages.
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
// Proceed the payment farther by sending the
// fulfilment message and trigger the state
// update.
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
},
},
{
// Tests the ability of the channel links states to be
// synchronized after remote node haven't receive
// update and commit sig messages.
name: "intercept update add htlc and commit sig messages",
messages: []expectedMessage{
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
{"alice", "bob", &lnwire.FundingLocked{}, false},
{"bob", "alice", &lnwire.FundingLocked{}, false},
// Attempt make a payment from Alice to Bob,
// which is intercepted, emulating the Bob
// server abrupt stop.
{"alice", "bob", &lnwire.UpdateAddHTLC{}, true},
{"alice", "bob", &lnwire.CommitSig{}, true},
// Restart of the nodes, and after that nodes
// should exchange the reestablish messages.
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
{"alice", "bob", &lnwire.FundingLocked{}, false},
{"bob", "alice", &lnwire.FundingLocked{}, false},
// After Bob has notified Alice that he didn't
// receive updates Alice should re-send them.
{"alice", "bob", &lnwire.UpdateAddHTLC{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.UpdateFulfillHTLC{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
},
},
}
paymentWithRestart := func(t *testing.T, messages []expectedMessage) {
channels, cleanUp, restoreChannelsFromDb, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*5,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
chanID := lnwire.NewChanIDFromOutPoint(channels.aliceToBob.ChannelPoint())
serverErr := make(chan error, 4)
aliceInterceptor := createInterceptorFunc("[alice] <-- [bob]",
"alice", messages, chanID, false)
bobInterceptor := createInterceptorFunc("[alice] --> [bob]",
"bob", messages, chanID, false)
ct := newConcurrentTester(t)
// Add interceptor to check the order of Bob and Alice
// messages.
n := newThreeHopNetwork(ct,
channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob,
testStartingHeight,
)
n.aliceServer.intersect(aliceInterceptor)
n.bobServer.intersect(bobInterceptor)
if err := n.start(); err != nil {
ct.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
bobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink)
// Send payment which should fail because we intercept the
// update and commit messages.
//
// TODO(roasbeef); increase timeout?
receiver := n.bobServer
firstHop := n.firstBobChannelLink.ShortChanID()
rhash, err := n.makePayment(
n.aliceServer, receiver, firstHop, hops, amount,
htlcAmt, totalTimelock,
).Wait(time.Second * 5)
if err == nil {
ct.Fatalf("payment shouldn't haven been finished")
}
// Stop network cluster and create new one, with the old
// channels states. Also do the *hack* - save the payment
// receiver to pass it in new channel link, otherwise payment
// will be failed because of the unknown payment hash. Hack
// will be removed with sphinx payment.
bobRegistry := n.bobServer.registry
n.stop()
channels, err = restoreChannelsFromDb()
if err != nil {
ct.Fatalf("unable to restore channels from database: %v", err)
}
n = newThreeHopNetwork(ct, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
n.firstBobChannelLink.cfg.Registry = bobRegistry
n.aliceServer.intersect(aliceInterceptor)
n.bobServer.intersect(bobInterceptor)
if err := n.start(); err != nil {
ct.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
// Wait for reestablishment to be proceeded and invoice to be settled.
// TODO(andrew.shvv) Will be removed if we move the notification center
// to the channel link itself.
var invoice channeldb.Invoice
for i := 0; i < 20; i++ {
select {
case <-time.After(time.Millisecond * 200):
case serverErr := <-serverErr:
ct.Fatalf("server error: %v", serverErr)
}
// Check that alice invoice wasn't settled and
// bandwidth of htlc links hasn't been changed.
invoice, _, err = receiver.registry.LookupInvoice(rhash)
if err != nil {
err = errors.Errorf("unable to get invoice: %v", err)
continue
}
if !invoice.Terms.Settled {
err = errors.Errorf("alice invoice haven't been settled")
continue
}
aliceExpectedBandwidth := aliceBandwidthBefore - htlcAmt
if aliceExpectedBandwidth != n.aliceChannelLink.Bandwidth() {
err = errors.Errorf("expected alice to have %v, instead has %v",
aliceExpectedBandwidth, n.aliceChannelLink.Bandwidth())
continue
}
bobExpectedBandwidth := bobBandwidthBefore + htlcAmt
if bobExpectedBandwidth != n.firstBobChannelLink.Bandwidth() {
err = errors.Errorf("expected bob to have %v, instead has %v",
bobExpectedBandwidth, n.firstBobChannelLink.Bandwidth())
continue
}
break
}
if err != nil {
ct.Fatal(err)
}
}
for _, test := range retransmissionTests {
passed := t.Run(test.name, func(t *testing.T) {
paymentWithRestart(t, test.messages)
})
if !passed {
break
}
}
}
// TestShouldAdjustCommitFee tests the shouldAdjustCommitFee pivot function to
// ensure that ie behaves properly. We should only update the fee if it
// deviates from our current fee by more 10% or more.
func TestShouldAdjustCommitFee(t *testing.T) {
tests := []struct {
netFee lnwallet.SatPerKWeight
chanFee lnwallet.SatPerKWeight
shouldAdjust bool
}{
// The network fee is 3x lower than the current commitment
// transaction. As a result, we should adjust our fee to match
// it.
{
netFee: 100,
chanFee: 3000,
shouldAdjust: true,
},
// The network fee is lower than the current commitment fee,
// but only slightly so, so we won't update the commitment fee.
{
netFee: 2999,
chanFee: 3000,
shouldAdjust: false,
},
// The network fee is lower than the commitment fee, but only
// right before it crosses our current threshold.
{
netFee: 1000,
chanFee: 1099,
shouldAdjust: false,
},
// The network fee is lower than the commitment fee, and within
// our range of adjustment, so we should adjust.
{
netFee: 1000,
chanFee: 1100,
shouldAdjust: true,
},
// The network fee is 2x higher than our commitment fee, so we
// should adjust upwards.
{
netFee: 2000,
chanFee: 1000,
shouldAdjust: true,
},
// The network fee is higher than our commitment fee, but only
// slightly so, so we won't update.
{
netFee: 1001,
chanFee: 1000,
shouldAdjust: false,
},
// The network fee is higher than our commitment fee, but
// hasn't yet crossed our activation threshold.
{
netFee: 1100,
chanFee: 1099,
shouldAdjust: false,
},
// The network fee is higher than our commitment fee, and
// within our activation threshold, so we should update our
// fee.
{
netFee: 1100,
chanFee: 1000,
shouldAdjust: true,
},
// Our fees match exactly, so we shouldn't update it at all.
{
netFee: 1000,
chanFee: 1000,
shouldAdjust: false,
},
}
for i, test := range tests {
adjustedFee := shouldAdjustCommitFee(
test.netFee, test.chanFee,
)
if adjustedFee && !test.shouldAdjust {
t.Fatalf("test #%v failed: net_fee=%v, "+
"chan_fee=%v, adjust_expect=%v, adjust_returned=%v",
i, test.netFee, test.chanFee, test.shouldAdjust,
adjustedFee)
}
}
}
// TestChannelLinkShutdownDuringForward asserts that a link can be fully
// stopped when it is trying to send synchronously through the switch. The
// specific case this can occur is when a link forwards incoming Adds. We test
// this by forcing the switch into a state where it will not accept new packets,
// and then killing the link, which can only succeed if forwarding can be
// canceled by a call to Stop.
func TestChannelLinkShutdownDuringForward(t *testing.T) {
t.Parallel()
// First, we'll create our traditional three hop network. We're
// interested in testing the ability to stop the link when it is
// synchronously forwarding to the switch, which happens when an
// incoming link forwards Adds. Thus, the test will be performed
// against Bob's first link.
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
defer n.feeEstimator.Stop()
// Define a helper method that strobes the switch's log ticker, and
// unblocks after nothing has been pulled for two seconds.
waitForBobsSwitchToBlock := func() {
bobSwitch := n.firstBobChannelLink.cfg.Switch
ticker := bobSwitch.cfg.LogEventTicker.(*ticker.Mock)
timeout := time.After(15 * time.Second)
for {
time.Sleep(50 * time.Millisecond)
select {
case ticker.Force <- time.Now():
case <-time.After(2 * time.Second):
return
case <-timeout:
t.Fatalf("switch did not block")
}
}
}
// Define a helper method that strobes the link's batch ticker, and
// unblocks after nothing has been pulled for two seconds.
waitForBobsIncomingLinkToBlock := func() {
ticker := n.firstBobChannelLink.cfg.BatchTicker.(*ticker.Mock)
timeout := time.After(15 * time.Second)
for {
time.Sleep(50 * time.Millisecond)
select {
case ticker.Force <- time.Now():
case <-time.After(2 * time.Second):
// We'll give a little extra time here, to
// ensure that the packet is being pressed
// against the htlcPlex.
time.Sleep(50 * time.Millisecond)
return
case <-timeout:
t.Fatalf("link did not block")
}
}
}
// To test that the cancellation is happening properly, we will set the
// switch's htlcPlex to nil, so that calls to routeAsync block, and can
// only exit if the link (or switch) is exiting. We will only be testing
// the link here.
//
// In order to avoid data races, we need to ensure the switch isn't
// selecting on that channel in the meantime. We'll prevent this by
// first acquiring the index mutex and forcing a log event so that the
// htlcForwarder is blocked inside the logTicker case, which also needs
// the indexMtx.
n.firstBobChannelLink.cfg.Switch.indexMtx.Lock()
// Strobe the log ticker, and wait for switch to stop accepting any more
// log ticks.
waitForBobsSwitchToBlock()
// While the htlcForwarder is blocked, swap out the htlcPlex with a nil
// channel, and unlock the indexMtx to allow return to the
// htlcForwarder's main select. After this, any attempt to forward
// through the switch will block.
n.firstBobChannelLink.cfg.Switch.htlcPlex = nil
n.firstBobChannelLink.cfg.Switch.indexMtx.Unlock()
// Now, make a payment from Alice to Carol, which should cause Bob's
// incoming link to block when it tries to submit the packet to the nil
// htlcPlex.
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(
amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink,
)
firstHop := n.firstBobChannelLink.ShortChanID()
n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
)
// Strobe the batch ticker of Bob's incoming link, waiting for it to
// become fully blocked.
waitForBobsIncomingLinkToBlock()
// Finally, stop the link to test that it can exit while synchronously
// forwarding Adds to the switch.
done := make(chan struct{})
go func() {
n.firstBobChannelLink.Stop()
close(done)
}()
select {
case <-time.After(3 * time.Second):
t.Fatalf("unable to shutdown link while fwding incoming Adds")
case <-done:
}
}
// TestChannelLinkUpdateCommitFee tests that when a new block comes in, the
// channel link properly checks to see if it should update the commitment fee.
func TestChannelLinkUpdateCommitFee(t *testing.T) {
t.Parallel()
// First, we'll create our traditional three hop network. We'll only be
// interacting with and asserting the state of two of the end points
// for this test.
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
// First, we'll set up some message interceptors to ensure that the
// proper messages are sent when updating fees.
chanID := n.aliceChannelLink.ChanID()
messages := []expectedMessage{
{"alice", "bob", &lnwire.ChannelReestablish{}, false},
{"bob", "alice", &lnwire.ChannelReestablish{}, false},
{"alice", "bob", &lnwire.FundingLocked{}, false},
{"bob", "alice", &lnwire.FundingLocked{}, false},
{"alice", "bob", &lnwire.UpdateFee{}, false},
{"alice", "bob", &lnwire.CommitSig{}, false},
{"bob", "alice", &lnwire.RevokeAndAck{}, false},
{"bob", "alice", &lnwire.CommitSig{}, false},
{"alice", "bob", &lnwire.RevokeAndAck{}, false},
}
n.aliceServer.intersect(createInterceptorFunc("[alice] <-- [bob]",
"alice", messages, chanID, false))
n.bobServer.intersect(createInterceptorFunc("[alice] --> [bob]",
"bob", messages, chanID, false))
if err := n.start(); err != nil {
t.Fatal(err)
}
defer n.stop()
defer n.feeEstimator.Stop()
// For the sake of this test, we'll reset the timer to fire in a second
// so that Alice's link queries for a new network fee.
n.aliceChannelLink.updateFeeTimer.Reset(time.Millisecond)
startingFeeRate := channels.aliceToBob.CommitFeeRate()
// Next, we'll send the first fee rate response to Alice.
select {
case n.feeEstimator.byteFeeIn <- startingFeeRate:
case <-time.After(time.Second * 5):
t.Fatalf("alice didn't query for the new network fee")
}
time.Sleep(time.Second)
// The fee rate on the alice <-> bob channel should still be the same
// on both sides.
aliceFeeRate := channels.aliceToBob.CommitFeeRate()
bobFeeRate := channels.bobToAlice.CommitFeeRate()
if aliceFeeRate != startingFeeRate {
t.Fatalf("alice's fee rate shouldn't have changed: "+
"expected %v, got %v", aliceFeeRate, startingFeeRate)
}
if bobFeeRate != startingFeeRate {
t.Fatalf("bob's fee rate shouldn't have changed: "+
"expected %v, got %v", bobFeeRate, startingFeeRate)
}
// We'll reset the timer once again to ensure Alice's link queries for a
// new network fee.
n.aliceChannelLink.updateFeeTimer.Reset(time.Millisecond)
// Next, we'll set up a deliver a fee rate that's triple the current
// fee rate. This should cause the Alice (the initiator) to trigger a
// fee update.
newFeeRate := startingFeeRate * 3
select {
case n.feeEstimator.byteFeeIn <- newFeeRate:
case <-time.After(time.Second * 5):
t.Fatalf("alice didn't query for the new network fee")
}
time.Sleep(time.Second)
// At this point, Alice should've triggered a new fee update that
// increased the fee rate to match the new rate.
aliceFeeRate = channels.aliceToBob.CommitFeeRate()
bobFeeRate = channels.bobToAlice.CommitFeeRate()
if aliceFeeRate != newFeeRate {
t.Fatalf("alice's fee rate didn't change: expected %v, got %v",
newFeeRate, aliceFeeRate)
}
if bobFeeRate != newFeeRate {
t.Fatalf("bob's fee rate didn't change: expected %v, got %v",
newFeeRate, aliceFeeRate)
}
}
// TestChannelLinkAcceptDuplicatePayment tests that if a link receives an
// incoming HTLC for a payment we have already settled, then it accepts the
// HTLC. We do this to simplify the processing of settles after restarts or
// failures, reducing ambiguity when a batch is only partially processed.
func TestChannelLinkAcceptDuplicatePayment(t *testing.T) {
t.Parallel()
// First, we'll create our traditional three hop network. We'll only be
// interacting with and asserting the state of two of the end points
// for this test.
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
// We'll start off by making a payment from Alice to Carol. We'll
// manually generate this request so we can control all the parameters.
htlcAmt, totalTimelock, hops := generateHops(amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink)
blob, err := generateRoute(hops...)
if err != nil {
t.Fatal(err)
}
invoice, htlc, err := generatePayment(amount, htlcAmt, totalTimelock,
blob)
if err != nil {
t.Fatal(err)
}
if err := n.carolServer.registry.AddInvoice(*invoice); err != nil {
t.Fatalf("unable to add invoice in carol registry: %v", err)
}
// With the invoice now added to Carol's registry, we'll send the
// payment. It should succeed w/o any issues as it has been crafted
// properly.
_, err = n.aliceServer.htlcSwitch.SendHTLC(
n.firstBobChannelLink.ShortChanID(), htlc,
newMockDeobfuscator(),
)
if err != nil {
t.Fatalf("unable to send payment to carol: %v", err)
}
// Now, if we attempt to send the payment *again* it should be rejected
// as it's a duplicate request.
_, err = n.aliceServer.htlcSwitch.SendHTLC(
n.firstBobChannelLink.ShortChanID(), htlc,
newMockDeobfuscator(),
)
if err != ErrAlreadyPaid {
t.Fatalf("ErrAlreadyPaid should have been received got: %v", err)
}
}
// TestChannelLinkAcceptOverpay tests that if we create an invoice for sender,
// and the sender sends *more* than specified in the invoice, then we'll still
// accept it and settle as normal.
func TestChannelLinkAcceptOverpay(t *testing.T) {
t.Parallel()
// First, we'll create our traditional three hop network. We'll only be
// interacting with and asserting the state of two of the end points
// for this test.
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(t, channels.aliceToBob, channels.bobToAlice,
channels.bobToCarol, channels.carolToBob, testStartingHeight)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
carolBandwidthBefore := n.carolChannelLink.Bandwidth()
firstBobBandwidthBefore := n.firstBobChannelLink.Bandwidth()
secondBobBandwidthBefore := n.secondBobChannelLink.Bandwidth()
aliceBandwidthBefore := n.aliceChannelLink.Bandwidth()
// We'll request a route to send 10k satoshis via Alice -> Bob ->
// Carol.
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(
amount, testStartingHeight,
n.firstBobChannelLink, n.carolChannelLink,
)
// When we actually go to send the payment, we'll actually create an
// invoice at Carol for only half of this amount.
receiver := n.carolServer
firstHop := n.firstBobChannelLink.ShortChanID()
rhash, err := n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amount/2, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
time.Sleep(100 * time.Millisecond)
// Even though we sent 2x what was asked for, Carol should still have
// accepted the payment and marked it as settled.
invoice, _, err := receiver.registry.LookupInvoice(rhash)
if err != nil {
t.Fatalf("unable to get invoice: %v", err)
}
if !invoice.Terms.Settled {
t.Fatal("carol invoice haven't been settled")
}
expectedAliceBandwidth := aliceBandwidthBefore - htlcAmt
if expectedAliceBandwidth != n.aliceChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedAliceBandwidth, n.aliceChannelLink.Bandwidth())
}
expectedBobBandwidth1 := firstBobBandwidthBefore + htlcAmt
if expectedBobBandwidth1 != n.firstBobChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedBobBandwidth1, n.firstBobChannelLink.Bandwidth())
}
expectedBobBandwidth2 := secondBobBandwidthBefore - amount
if expectedBobBandwidth2 != n.secondBobChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedBobBandwidth2, n.secondBobChannelLink.Bandwidth())
}
expectedCarolBandwidth := carolBandwidthBefore + amount
if expectedCarolBandwidth != n.carolChannelLink.Bandwidth() {
t.Fatalf("channel bandwidth incorrect: expected %v, got %v",
expectedCarolBandwidth, n.carolChannelLink.Bandwidth())
}
// Finally, we'll ensure that the amount we paid is properly reflected
// in the stored invoice.
if invoice.AmtPaid != amount {
t.Fatalf("expected amt paid to be %v, is instead %v", amount,
invoice.AmtPaid)
}
}
// chanRestoreFunc is a method signature for functions that can reload both
// endpoints of a link from their persistent storage engines.
type chanRestoreFunc func() (*lnwallet.LightningChannel, *lnwallet.LightningChannel, error)
// persistentLinkHarness is used to control the lifecylce of a link and the
// switch that operates it. It supports the ability to restart either the link
// or both the link and the switch.
type persistentLinkHarness struct {
t *testing.T
link ChannelLink
coreLink *channelLink
channel *lnwallet.LightningChannel
batchTicker chan time.Time
msgs chan lnwire.Message
restoreChan chanRestoreFunc
}
// newPersistentLinkHarness initializes a new persistentLinkHarness and derives
// the supporting references from the active link.
func newPersistentLinkHarness(t *testing.T, link ChannelLink,
batchTicker chan time.Time,
restore chanRestoreFunc) *persistentLinkHarness {
coreLink := link.(*channelLink)
return &persistentLinkHarness{
t: t,
link: link,
coreLink: coreLink,
channel: coreLink.channel,
batchTicker: batchTicker,
msgs: coreLink.cfg.Peer.(*mockPeer).sentMsgs,
restoreChan: restore,
}
}
// restart facilitates a shutdown and restart of the link maintained by the
// harness. The primary purpose of this method is to ensure the consistency of
// the supporting references is maintained across restarts.
//
// If `restartSwitch` is set, the entire switch will also be restarted,
// and will be reinitialized with the contents of the channeldb backing Alice's
// channel.
//
// Any number of hodl flags can be passed as additional arguments to this
// method. If none are provided, the mask will be extracted as hodl.MaskNone.
func (h *persistentLinkHarness) restart(restartSwitch bool,
hodlFlags ...hodl.Flag) func() {
// First, remove the link from the switch.
h.coreLink.cfg.Switch.RemoveLink(h.link.ChanID())
var htlcSwitch *Switch
if restartSwitch {
// If a switch restart is requested, we will stop it and
// leave htlcSwitch nil, which will trigger the creation
// of a fresh instance in restartLink.
h.coreLink.cfg.Switch.Stop()
} else {
// Otherwise, we capture the switch's reference so that
// it can be carried over to the restarted link.
htlcSwitch = h.coreLink.cfg.Switch
}
// Since our in-memory state may have diverged from our persistent
// state, we will restore the persisted state to ensure we always start
// the link in a consistent state.
var err error
h.channel, _, err = h.restoreChan()
if err != nil {
h.t.Fatalf("unable to restore channels: %v", err)
}
// Now, restart the link using the channel state. This will take care of
// adding the link to an existing switch, or creating a new one using
// the database owned by the link.
var cleanUp func()
h.link, h.batchTicker, cleanUp, err = restartLink(
h.channel, htlcSwitch, hodlFlags,
)
if err != nil {
h.t.Fatalf("unable to restart alicelink: %v", err)
}
// Repopulate the remaining fields in the harness.
h.coreLink = h.link.(*channelLink)
h.msgs = h.coreLink.cfg.Peer.(*mockPeer).sentMsgs
return cleanUp
}
// checkSent reads the links message stream and verify that the messages are
// dequeued in the same order as provided by `pkts`.
func (h *persistentLinkHarness) checkSent(pkts []*htlcPacket) {
for _, pkt := range pkts {
var msg lnwire.Message
select {
case msg = <-h.msgs:
case <-time.After(15 * time.Second):
h.t.Fatalf("did not receive message")
}
if !reflect.DeepEqual(msg, pkt.htlc) {
h.t.Fatalf("unexpected packet, want %v, got %v",
pkt.htlc, msg)
}
}
}
// commitCircuits accepts a list of circuits and tries to commit them to the
// switch's circuit map. The forwarding actions are returned if there was no
// failure.
func (h *persistentLinkHarness) commitCircuits(circuits []*PaymentCircuit) *CircuitFwdActions {
fwdActions, err := h.coreLink.cfg.Switch.commitCircuits(circuits...)
if err != nil {
h.t.Fatalf("unable to commit circuit: %v", err)
}
return fwdActions
}
func (h *persistentLinkHarness) assertNumPendingNumOpenCircuits(
wantPending, wantOpen int) {
_, _, line, _ := runtime.Caller(1)
numPending := h.coreLink.cfg.Switch.circuits.NumPending()
if numPending != wantPending {
h.t.Fatalf("line: %d: wrong number of pending circuits: "+
"want %d, got %d", line, wantPending, numPending)
}
numOpen := h.coreLink.cfg.Switch.circuits.NumOpen()
if numOpen != wantOpen {
h.t.Fatalf("line: %d: wrong number of open circuits: "+
"want %d, got %d", line, wantOpen, numOpen)
}
}
// trySignNextCommitment signals the batch ticker so that the link will try to
// update its commitment transaction.
func (h *persistentLinkHarness) trySignNextCommitment() {
select {
case h.batchTicker <- time.Now():
// Give the link enough time to process the request.
time.Sleep(time.Millisecond * 500)
case <-time.After(15 * time.Second):
h.t.Fatalf("did not initiate state transition")
}
}
// restartLink creates a new channel link from the given channel state, and adds
// to an htlcswitch. If none is provided by the caller, a new one will be
// created using Alice's database.
func restartLink(aliceChannel *lnwallet.LightningChannel, aliceSwitch *Switch,
hodlFlags []hodl.Flag) (ChannelLink, chan time.Time, func(), error) {
var (
decoder = newMockIteratorDecoder()
obfuscator = NewMockObfuscator()
alicePeer = &mockPeer{
sentMsgs: make(chan lnwire.Message, 2000),
quit: make(chan struct{}),
}
globalPolicy = ForwardingPolicy{
MinHTLC: lnwire.NewMSatFromSatoshis(5),
BaseFee: lnwire.NewMSatFromSatoshis(1),
TimeLockDelta: 6,
}
invoiceRegistry = newMockRegistry(globalPolicy.TimeLockDelta)
pCache = &mockPreimageCache{
// hash -> preimage
preimageMap: make(map[[32]byte][]byte),
}
)
aliceDb := aliceChannel.State().Db
if aliceSwitch == nil {
var err error
aliceSwitch, err = initSwitchWithDB(testStartingHeight, aliceDb)
if err != nil {
return nil, nil, nil, err
}
}
// Instantiate with a long interval, so that we can precisely control
// the firing via force feeding.
bticker := ticker.MockNew(time.Hour)
aliceCfg := ChannelLinkConfig{
FwrdingPolicy: globalPolicy,
Peer: alicePeer,
Switch: aliceSwitch,
Circuits: aliceSwitch.CircuitModifier(),
ForwardPackets: aliceSwitch.ForwardPackets,
DecodeHopIterators: decoder.DecodeHopIterators,
ExtractErrorEncrypter: func(*btcec.PublicKey) (
ErrorEncrypter, lnwire.FailCode) {
return obfuscator, lnwire.CodeNone
},
FetchLastChannelUpdate: mockGetChanUpdateMessage,
PreimageCache: pCache,
OnChannelFailure: func(lnwire.ChannelID,
lnwire.ShortChannelID, LinkFailureError) {
},
UpdateContractSignals: func(*contractcourt.ContractSignals) error {
return nil
},
Registry: invoiceRegistry,
ChainEvents: &contractcourt.ChainEventSubscription{},
BatchTicker: bticker,
FwdPkgGCTicker: ticker.New(5 * time.Second),
// Make the BatchSize and Min/MaxFeeUpdateTimeout large enough
// to not trigger commit updates automatically during tests.
BatchSize: 10000,
MinFeeUpdateTimeout: 30 * time.Minute,
MaxFeeUpdateTimeout: 40 * time.Minute,
// Set any hodl flags requested for the new link.
HodlMask: hodl.MaskFromFlags(hodlFlags...),
DebugHTLC: len(hodlFlags) > 0,
}
const startingHeight = 100
aliceLink := NewChannelLink(aliceCfg, aliceChannel)
if err := aliceSwitch.AddLink(aliceLink); err != nil {
return nil, nil, nil, err
}
go func() {
for {
select {
case <-aliceLink.(*channelLink).htlcUpdates:
case <-aliceLink.(*channelLink).quit:
return
}
}
}()
cleanUp := func() {
close(alicePeer.quit)
defer aliceLink.Stop()
}
return aliceLink, bticker.Force, cleanUp, nil
}
// gnerateHtlc generates a simple payment from Bob to Alice.
func generateHtlc(t *testing.T, coreLink *channelLink,
bobChannel *lnwallet.LightningChannel, id uint64) *lnwire.UpdateAddHTLC {
htlcAmt := lnwire.NewMSatFromSatoshis(10000)
hops := []ForwardingInfo{
{
Network: BitcoinHop,
NextHop: exitHop,
AmountToForward: htlcAmt,
OutgoingCTLV: 144,
},
}
blob, err := generateRoute(hops...)
invoice, htlc, err := generatePayment(htlcAmt, htlcAmt, 144,
blob)
if err != nil {
t.Fatalf("unable to create payment: %v", err)
}
// We must add the invoice to the registry, such that Alice
// expects this payment.
err = coreLink.cfg.Registry.(*mockInvoiceRegistry).AddInvoice(
*invoice)
if err != nil {
t.Fatalf("unable to add invoice to registry: %v", err)
}
htlc.ID = id
return htlc
}
// sendHtlcBobToAlice sends an HTLC from Bob to Alice, that pays to a preimage
// already in Alice's registry.
func sendHtlcBobToAlice(t *testing.T, aliceLink ChannelLink,
bobChannel *lnwallet.LightningChannel, htlc *lnwire.UpdateAddHTLC) {
_, err := bobChannel.AddHTLC(htlc, nil)
if err != nil {
t.Fatalf("bob failed adding htlc: %v", err)
}
aliceLink.HandleChannelUpdate(htlc)
}
// sendCommitSigBobToAlice makes Bob sign a new commitment and send it to
// Alice, asserting that it signs expHtlcs number of HTLCs.
func sendCommitSigBobToAlice(t *testing.T, aliceLink ChannelLink,
bobChannel *lnwallet.LightningChannel, expHtlcs int) {
sig, htlcSigs, err := bobChannel.SignNextCommitment()
if err != nil {
t.Fatalf("error signing commitment: %v", err)
}
commitSig := &lnwire.CommitSig{
CommitSig: sig,
HtlcSigs: htlcSigs,
}
if len(commitSig.HtlcSigs) != expHtlcs {
t.Fatalf("Expected %d htlc sigs, got %d", expHtlcs,
len(commitSig.HtlcSigs))
}
aliceLink.HandleChannelUpdate(commitSig)
}
// receiveRevAndAckAliceToBob waits for Alice to send a RevAndAck to Bob, then
// hands this to Bob.
func receiveRevAndAckAliceToBob(t *testing.T, aliceMsgs chan lnwire.Message,
aliceLink ChannelLink,
bobChannel *lnwallet.LightningChannel) {
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
rev, ok := msg.(*lnwire.RevokeAndAck)
if !ok {
t.Fatalf("expected RevokeAndAck, got %T", msg)
}
_, _, _, err := bobChannel.ReceiveRevocation(rev)
if err != nil {
t.Fatalf("bob failed receiving revocation: %v", err)
}
}
// receiveCommitSigAliceToBob waits for Alice to send a CommitSig to Bob,
// signing expHtlcs numbers of HTLCs, then hands this to Bob.
func receiveCommitSigAliceToBob(t *testing.T, aliceMsgs chan lnwire.Message,
aliceLink ChannelLink, bobChannel *lnwallet.LightningChannel,
expHtlcs int) {
t.Helper()
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
comSig, ok := msg.(*lnwire.CommitSig)
if !ok {
t.Fatalf("expected CommitSig, got %T", msg)
}
if len(comSig.HtlcSigs) != expHtlcs {
t.Fatalf("expected %d htlc sigs, got %d", expHtlcs,
len(comSig.HtlcSigs))
}
err := bobChannel.ReceiveNewCommitment(comSig.CommitSig,
comSig.HtlcSigs)
if err != nil {
t.Fatalf("bob failed receiving commitment: %v", err)
}
}
// sendRevAndAckBobToAlice make Bob revoke his current commitment, then hand
// the RevokeAndAck to Alice.
func sendRevAndAckBobToAlice(t *testing.T, aliceLink ChannelLink,
bobChannel *lnwallet.LightningChannel) {
rev, _, err := bobChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("unable to revoke commitment: %v", err)
}
aliceLink.HandleChannelUpdate(rev)
}
// receiveSettleAliceToBob waits for Alice to send a HTLC settle message to
// Bob, then hands this to Bob.
func receiveSettleAliceToBob(t *testing.T, aliceMsgs chan lnwire.Message,
aliceLink ChannelLink, bobChannel *lnwallet.LightningChannel) {
t.Helper()
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
settleMsg, ok := msg.(*lnwire.UpdateFulfillHTLC)
if !ok {
t.Fatalf("expected UpdateFulfillHTLC, got %T", msg)
}
err := bobChannel.ReceiveHTLCSettle(settleMsg.PaymentPreimage,
settleMsg.ID)
if err != nil {
t.Fatalf("failed settling htlc: %v", err)
}
}
// receiveSettleAliceToBob waits for Alice to send a HTLC settle message to
// Bob, then hands this to Bob.
func receiveFailAliceToBob(t *testing.T, aliceMsgs chan lnwire.Message,
aliceLink ChannelLink, bobChannel *lnwallet.LightningChannel) {
t.Helper()
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
case <-time.After(15 * time.Second):
t.Fatalf("did not receive message")
}
failMsg, ok := msg.(*lnwire.UpdateFailHTLC)
if !ok {
t.Fatalf("expected UpdateFailHTLC, got %T", msg)
}
err := bobChannel.ReceiveFailHTLC(failMsg.ID, failMsg.Reason)
if err != nil {
t.Fatalf("unable to apply received fail htlc: %v", err)
}
}
// TestChannelLinkNoMoreUpdates tests that we won't send a new commitment
// when there are no new updates to sign.
func TestChannelLinkNoMoreUpdates(t *testing.T) {
t.Parallel()
const chanAmt = btcutil.SatoshiPerBitcoin * 5
const chanReserve = btcutil.SatoshiPerBitcoin * 1
aliceLink, bobChannel, _, start, cleanUp, _, err :=
newSingleLinkTestHarness(chanAmt, chanReserve)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
var (
coreLink = aliceLink.(*channelLink)
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
)
// Add two HTLCs to Alice's registry, that Bob can pay.
htlc1 := generateHtlc(t, coreLink, bobChannel, 0)
htlc2 := generateHtlc(t, coreLink, bobChannel, 1)
// We now play out the following scanario:
//
// (1) Alice receives htlc1 from Bob.
// (2) Bob sends signature covering htlc1.
// (3) Alice receives htlc2 from Bob.
// (4) Since Bob has sent a new commitment signature, Alice should
// first respond with a revocation.
// (5) Alice should also send a commitment signature for the new state,
// covering htlc1.
// (6) Bob sends a new commitment signature, covering htlc2 that he sent
// earlier. This signature should cover hltc1 + htlc2.
// (7) Alice should revoke the old commitment. This ACKs htlc2.
// (8) Bob can now revoke his old commitment in response to the
// signature Alice sent covering htlc1.
// (9) htlc1 is now locked in on Bob's commitment, and we expect Alice
// to settle it.
// (10) Alice should send a signature covering this settle to Bob. Only
// htlc2 should now be covered by this signature.
// (11) Bob can revoke his last state, which will also ACK the settle
// of htlc1.
// (12) Bob sends a new commitment signature. This signature should
// cover htlc2.
// (13) Alice will send a settle for htlc2.
// (14) Alice will also send a signature covering the settle.
// (15) Alice should send a revocation in response to the signature Bob
// sent earlier.
// (16) Bob will revoke his commitment in response to the commitment
// Alice sent.
// (17) Send a signature for the empty state. No HTLCs are left.
// (18) Alice will revoke her previous state.
// Alice Bob
// | |
// | ... |
// | | <--- idle (no htlc on either side)
// | |
sendHtlcBobToAlice(t, aliceLink, bobChannel, htlc1) // |<----- add-1 ------| (1)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 1) // |<------ sig -------| (2)
sendHtlcBobToAlice(t, aliceLink, bobChannel, htlc2) // |<----- add-2 ------| (3)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (4) <--- Alice acks add-1
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 1) // |------- sig ------>| (5) <--- Alice signs add-1
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 2) // |<------ sig -------| (6)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (7) <--- Alice acks add-2
sendRevAndAckBobToAlice(t, aliceLink, bobChannel) // |<------ rev -------| (8)
receiveSettleAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------ ful-1 ----->| (9)
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 1) // |------- sig ------>| (10) <--- Alice signs add-1 + add-2 + ful-1 = add-2
sendRevAndAckBobToAlice(t, aliceLink, bobChannel) // |<------ rev -------| (11)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 1) // |<------ sig -------| (12)
receiveSettleAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------ ful-2 ----->| (13)
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 0) // |------- sig ------>| (14) <--- Alice signs add-2 + ful-2 = no htlcs
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (15)
sendRevAndAckBobToAlice(t, aliceLink, bobChannel) // |<------ rev -------| (16) <--- Bob acks that there are no more htlcs
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 0) // |<------ sig -------| (17)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (18) <--- Alice acks that there are no htlcs on Alice's side
// No there are no more changes to ACK or sign, make sure Alice doesn't
// attempt to send any more messages.
var msg lnwire.Message
select {
case msg = <-aliceMsgs:
t.Fatalf("did not expect message %T", msg)
case <-time.After(100 * time.Millisecond):
}
}
// TestChannelLinkWaitForRevocation tests that we will keep accepting updates
// to our commitment transaction, even when we are waiting for a revocation
// from the remote node.
func TestChannelLinkWaitForRevocation(t *testing.T) {
t.Parallel()
const chanAmt = btcutil.SatoshiPerBitcoin * 5
const chanReserve = btcutil.SatoshiPerBitcoin * 1
aliceLink, bobChannel, _, start, cleanUp, _, err :=
newSingleLinkTestHarness(chanAmt, chanReserve)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
var (
coreLink = aliceLink.(*channelLink)
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
)
// We will send 10 HTLCs in total, from Bob to Alice.
numHtlcs := 10
var htlcs []*lnwire.UpdateAddHTLC
for i := 0; i < numHtlcs; i++ {
htlc := generateHtlc(t, coreLink, bobChannel, uint64(i))
htlcs = append(htlcs, htlc)
}
// We play out the following scenario:
//
// (1) Add the first HTLC.
// (2) Bob sends signature covering the htlc.
// (3) Since Bob has sent a new commitment signature, Alice should first
// respond with a revocation. This revocation will ACK the first htlc.
// (4) Alice should also send a commitment signature for the new state,
// locking in the HTLC on Bob's commitment. Note that we don't
// immediately let Bob respond with a revocation in this case.
// (5.i) Now we send the rest of the HTLCs from Bob to Alice.
// (6.i) Bob sends a new commitment signature, covering all HTLCs up
// to this point.
// (7.i) Alice should respond to Bob's state updates with revocations,
// but cannot send any new signatures for Bob's state because her
// revocation window is exhausted.
// (8) Now let Bob finally send his revocation.
// (9) We expect Alice to settle her first HTLC, since it was already
// locked in.
// (10) Now Alice should send a signature covering this settle + lock
// in the rest of the HTLCs on Bob's commitment.
// (11) Bob receives the new signature for his commitment, and can
// revoke his old state, ACKing the settle.
// (12.i) Now Alice can settle all the HTLCs, since they are locked in
// on both parties' commitments.
// (13) Bob can send a signature covering the first settle Alice sent.
// Bob's signature should cover all the remaining HTLCs as well, since
// he hasn't ACKed the last settles yet. Alice receives the signature
// from Bob. Alice's commitment now has the first HTLC settled, and all
// the other HTLCs locked in.
// (14) Alice will send a signature for all the settles she just sent.
// (15) Bob can revoke his previous state, in response to Alice's
// signature.
// (16) In response to the signature Bob sent, Alice can
// revoke her previous state.
// (17) Bob still hasn't sent a commitment covering all settles, so do
// that now. Since Bob ACKed all settles, no HTLCs should be left on
// the commitment.
// (18) Alice will revoke her previous state.
// Alice Bob
// | |
// | ... |
// | | <--- idle (no htlc on either side)
// | |
sendHtlcBobToAlice(t, aliceLink, bobChannel, htlcs[0]) // |<----- add-1 ------| (1)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 1) // |<------ sig -------| (2)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (3) <--- Alice acks add-1
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 1) // |------- sig ------>| (4) <--- Alice signs add-1
for i := 1; i < numHtlcs; i++ { // | |
sendHtlcBobToAlice(t, aliceLink, bobChannel, htlcs[i]) // |<----- add-i ------| (5.i)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, i+1) // |<------ sig -------| (6.i)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (7.i) <--- Alice acks add-i
select { // | |
case <-aliceMsgs: // | | Alice should not send a sig for
t.Fatalf("unexpectedly received msg from Alice") // | | Bob's last state, since she is
default: // | | still waiting for a revocation
} // | | for the previous one.
} // | |
sendRevAndAckBobToAlice(t, aliceLink, bobChannel) // |<------ rev -------| (8) Finally let Bob send rev
receiveSettleAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------ ful-1 ----->| (9)
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, numHtlcs-1) // |------- sig ------>| (10) <--- Alice signs add-i
sendRevAndAckBobToAlice(t, aliceLink, bobChannel) // |<------ rev -------| (11)
for i := 1; i < numHtlcs; i++ { // | |
receiveSettleAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------ ful-1 ----->| (12.i)
} // | |
sendCommitSigBobToAlice(t, aliceLink, bobChannel, numHtlcs-1) // |<------ sig -------| (13)
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 0) // |------- sig ------>| (14)
sendRevAndAckBobToAlice(t, aliceLink, bobChannel) // |<------ rev -------| (15)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (16)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 0) // |<------ sig -------| (17)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel) // |------- rev ------>| (18)
// Both side's state is now updated, no more messages should be sent.
select {
case <-aliceMsgs:
t.Fatalf("did not expect message from Alice")
case <-time.After(50 * time.Millisecond):
}
}
// TestChannelLinkCleanupSpuriousResponses tests that we properly cleanup
// references in the event that internal retransmission continues as a result of
// not properly cleaning up Add/SettleFailRefs.
func TestChannelLinkCleanupSpuriousResponses(t *testing.T) {
t.Parallel()
const chanAmt = btcutil.SatoshiPerBitcoin * 5
const chanReserve = btcutil.SatoshiPerBitcoin * 1
aliceLink, bobChannel, _, start, cleanUp, _, err :=
newSingleLinkTestHarness(chanAmt, chanReserve)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
defer cleanUp()
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
var (
coreLink = aliceLink.(*channelLink)
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
)
// Settle Alice in hodl ExitSettle mode so that she won't respond
// immediately to the htlc's meant for her. This allows us to control
// the responses she gives back to Bob.
coreLink.cfg.DebugHTLC = true
coreLink.cfg.HodlMask = hodl.ExitSettle.Mask()
// Add two HTLCs to Alice's registry, that Bob can pay.
htlc1 := generateHtlc(t, coreLink, bobChannel, 0)
htlc2 := generateHtlc(t, coreLink, bobChannel, 1)
// We start with he following scenario: Bob sends Alice two HTLCs, and a
// commitment dance ensures, leaving two HTLCs that Alice can respond
// to. Since Alice is in ExitSettle mode, we will then take over and
// provide targeted fail messages to test the link's ability to cleanup
// spurious responses.
//
// Bob Alice
// |------ add-1 ----->|
// |------ add-2 ----->|
// |------ sig ----->| commits add-1 + add-2
// |<----- rev ------|
// |<----- sig ------| commits add-1 + add-2
// |------ rev ----->|
sendHtlcBobToAlice(t, aliceLink, bobChannel, htlc1)
sendHtlcBobToAlice(t, aliceLink, bobChannel, htlc2)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 2)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel)
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 2)
sendRevAndAckBobToAlice(t, aliceLink, bobChannel)
// Give Alice to time to process the revocation.
time.Sleep(time.Second)
aliceFwdPkgs, err := coreLink.channel.LoadFwdPkgs()
if err != nil {
t.Fatalf("unable to load alice's fwdpkgs: %v", err)
}
// Alice should have exactly one forwarding package.
if len(aliceFwdPkgs) != 1 {
t.Fatalf("alice should have 1 fwd pkgs, has %d instead",
len(aliceFwdPkgs))
}
// We'll stash the height of these AddRefs, so that we can reconstruct
// the proper references later.
addHeight := aliceFwdPkgs[0].Height
// The first fwdpkg should have exactly 2 entries, one for each Add that
// was added during the last dance.
if aliceFwdPkgs[0].AckFilter.Count() != 2 {
t.Fatalf("alice fwdpkg should have 2 Adds, has %d instead",
aliceFwdPkgs[0].AckFilter.Count())
}
// Both of the entries in the FwdFilter should be unacked.
for i := 0; i < 2; i++ {
if aliceFwdPkgs[0].AckFilter.Contains(uint16(i)) {
t.Fatalf("alice fwdpkg index %d should not "+
"have ack", i)
}
}
// Now, construct a Fail packet for Bob settling the first HTLC. This
// packet will NOT include a sourceRef, meaning the AddRef on disk will
// not be acked after committing this response.
fail0 := &htlcPacket{
incomingChanID: bobChannel.ShortChanID(),
incomingHTLCID: 0,
obfuscator: NewMockObfuscator(),
htlc: &lnwire.UpdateFailHTLC{},
}
aliceLink.HandleSwitchPacket(fail0)
// Bob Alice
// |<----- fal-1 ------|
// |<----- sig ------| commits fal-1
receiveFailAliceToBob(t, aliceMsgs, aliceLink, bobChannel)
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 1)
aliceFwdPkgs, err = coreLink.channel.LoadFwdPkgs()
if err != nil {
t.Fatalf("unable to load alice's fwdpkgs: %v", err)
}
// Alice should still only have one fwdpkg, as she hasn't yet received
// another revocation from Bob.
if len(aliceFwdPkgs) != 1 {
t.Fatalf("alice should have 1 fwd pkgs, has %d instead",
len(aliceFwdPkgs))
}
// Assert the fwdpkg still has 2 entries for the original Adds.
if aliceFwdPkgs[0].AckFilter.Count() != 2 {
t.Fatalf("alice fwdpkg should have 2 Adds, has %d instead",
aliceFwdPkgs[0].AckFilter.Count())
}
// Since the fail packet was missing the AddRef, the forward filter for
// either HTLC should not have been modified.
for i := 0; i < 2; i++ {
if aliceFwdPkgs[0].AckFilter.Contains(uint16(i)) {
t.Fatalf("alice fwdpkg index %d should not "+
"have ack", i)
}
}
// Complete the rest of the commitment dance, now that the forwarding
// packages have been verified.
//
// Bob Alice
// |------ rev ----->|
// |------ sig ----->|
// |<----- rev ------|
sendRevAndAckBobToAlice(t, aliceLink, bobChannel)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 1)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel)
// Next, we'll construct a fail packet for add-2 (index 1), which we'll
// send to Bob and lock in. Since the AddRef is set on this instance, we
// should see the second HTLCs AddRef update the forward filter for the
// first fwd pkg.
fail1 := &htlcPacket{
sourceRef: &channeldb.AddRef{
Height: addHeight,
Index: 1,
},
incomingChanID: bobChannel.ShortChanID(),
incomingHTLCID: 1,
obfuscator: NewMockObfuscator(),
htlc: &lnwire.UpdateFailHTLC{},
}
aliceLink.HandleSwitchPacket(fail1)
// Bob Alice
// |<----- fal-1 ------|
// |<----- sig ------| commits fal-1
receiveFailAliceToBob(t, aliceMsgs, aliceLink, bobChannel)
receiveCommitSigAliceToBob(t, aliceMsgs, aliceLink, bobChannel, 0)
aliceFwdPkgs, err = coreLink.channel.LoadFwdPkgs()
if err != nil {
t.Fatalf("unable to load alice's fwdpkgs: %v", err)
}
// Now that another commitment dance has completed, Alice should have 2
// forwarding packages.
if len(aliceFwdPkgs) != 2 {
t.Fatalf("alice should have 2 fwd pkgs, has %d instead",
len(aliceFwdPkgs))
}
// The most recent package should have no new HTLCs, so it should be
// empty.
if aliceFwdPkgs[1].AckFilter.Count() != 0 {
t.Fatalf("alice fwdpkg height=%d should have 0 Adds, "+
"has %d instead", aliceFwdPkgs[1].Height,
aliceFwdPkgs[1].AckFilter.Count())
}
// The index for the first AddRef should still be unacked, as the
// sourceRef was missing on the htlcPacket.
if aliceFwdPkgs[0].AckFilter.Contains(0) {
t.Fatalf("alice fwdpkg height=%d index=0 should not "+
"have an ack", aliceFwdPkgs[0].Height)
}
// The index for the second AddRef should now be acked, as it was
// properly constructed and committed in Alice's last commit sig.
if !aliceFwdPkgs[0].AckFilter.Contains(1) {
t.Fatalf("alice fwdpkg height=%d index=1 should have "+
"an ack", aliceFwdPkgs[0].Height)
}
// Complete the rest of the commitment dance.
//
// Bob Alice
// |------ rev ----->|
// |------ sig ----->|
// |<----- rev ------|
sendRevAndAckBobToAlice(t, aliceLink, bobChannel)
sendCommitSigBobToAlice(t, aliceLink, bobChannel, 0)
receiveRevAndAckAliceToBob(t, aliceMsgs, aliceLink, bobChannel)
// We'll do a quick sanity check, and blindly send the same fail packet
// for the first HTLC. Since this HTLC index has already been settled,
// this should trigger an attempt to cleanup the spurious response.
// However, we expect it to result in a NOP since it is still missing
// its sourceRef.
aliceLink.HandleSwitchPacket(fail0)
// Allow the link enough time to process and reject the duplicate
// packet, we'll also check that this doesn't trigger Alice to send the
// fail to Bob.
select {
case <-aliceMsgs:
t.Fatalf("message sent for duplicate fail")
case <-time.After(time.Second):
}
aliceFwdPkgs, err = coreLink.channel.LoadFwdPkgs()
if err != nil {
t.Fatalf("unable to load alice's fwdpkgs: %v", err)
}
// Alice should now have 3 forwarding packages, and the latest should be
// empty.
if len(aliceFwdPkgs) != 3 {
t.Fatalf("alice should have 3 fwd pkgs, has %d instead",
len(aliceFwdPkgs))
}
if aliceFwdPkgs[2].AckFilter.Count() != 0 {
t.Fatalf("alice fwdpkg height=%d should have 0 Adds, "+
"has %d instead", aliceFwdPkgs[2].Height,
aliceFwdPkgs[2].AckFilter.Count())
}
// The state of the forwarding packages should be unmodified from the
// prior assertion, since the duplicate Fail for index 0 should have
// been ignored.
if aliceFwdPkgs[0].AckFilter.Contains(0) {
t.Fatalf("alice fwdpkg height=%d index=0 should not "+
"have an ack", aliceFwdPkgs[0].Height)
}
if !aliceFwdPkgs[0].AckFilter.Contains(1) {
t.Fatalf("alice fwdpkg height=%d index=1 should have "+
"an ack", aliceFwdPkgs[0].Height)
}
// Finally, construct a new Fail packet for the first HTLC, this time
// with the sourceRef properly constructed. When the link handles this
// duplicate, it should clean up the remaining AddRef state maintained
// in Alice's link, but it should not result in anything being sent to
// Bob.
fail0 = &htlcPacket{
sourceRef: &channeldb.AddRef{
Height: addHeight,
Index: 0,
},
incomingChanID: bobChannel.ShortChanID(),
incomingHTLCID: 0,
obfuscator: NewMockObfuscator(),
htlc: &lnwire.UpdateFailHTLC{},
}
aliceLink.HandleSwitchPacket(fail0)
// Allow the link enough time to process and reject the duplicate
// packet, we'll also check that this doesn't trigger Alice to send the
// fail to Bob.
select {
case <-aliceMsgs:
t.Fatalf("message sent for duplicate fail")
case <-time.After(time.Second):
}
aliceFwdPkgs, err = coreLink.channel.LoadFwdPkgs()
if err != nil {
t.Fatalf("unable to load alice's fwdpkgs: %v", err)
}
// Since no state transitions have been performed for the duplicate
// packets, Alice should still have the same 3 forwarding packages.
if len(aliceFwdPkgs) != 3 {
t.Fatalf("alice should have 3 fwd pkgs, has %d instead",
len(aliceFwdPkgs))
}
// Assert that all indices in our original forwarded have now been acked
// as a result of our spurious cleanup logic.
for i := 0; i < 2; i++ {
if !aliceFwdPkgs[0].AckFilter.Contains(uint16(i)) {
t.Fatalf("alice fwdpkg height=%d index=%d "+
"should have ack", aliceFwdPkgs[0].Height, i)
}
}
}
type mockPackager struct {
failLoadFwdPkgs bool
}
func (*mockPackager) AddFwdPkg(tx *bolt.Tx, fwdPkg *channeldb.FwdPkg) error {
return nil
}
func (*mockPackager) SetFwdFilter(tx *bolt.Tx, height uint64,
fwdFilter *channeldb.PkgFilter) error {
return nil
}
func (*mockPackager) AckAddHtlcs(tx *bolt.Tx,
addRefs ...channeldb.AddRef) error {
return nil
}
func (m *mockPackager) LoadFwdPkgs(tx *bolt.Tx) ([]*channeldb.FwdPkg, error) {
if m.failLoadFwdPkgs {
return nil, fmt.Errorf("failing LoadFwdPkgs")
}
return nil, nil
}
func (*mockPackager) RemovePkg(tx *bolt.Tx, height uint64) error {
return nil
}
func (*mockPackager) AckSettleFails(tx *bolt.Tx,
settleFailRefs ...channeldb.SettleFailRef) error {
return nil
}
// TestChannelLinkFail tests that we will fail the channel, and force close the
// channel in certain situations.
func TestChannelLinkFail(t *testing.T) {
t.Parallel()
testCases := []struct {
// options is used to set up mocks and configure the link
// before it is started.
options func(*channelLink)
// link test is used to execute the given test on the channel
// link after it is started.
linkTest func(*testing.T, *channelLink, *lnwallet.LightningChannel)
// shouldForceClose indicates whether we expect the link to
// force close the channel in response to the actions performed
// during the linkTest.
shouldForceClose bool
}{
{
// Test that we don't force close if syncing states
// fails at startup.
func(c *channelLink) {
c.cfg.SyncStates = true
// Make the syncChanStateCall fail by making
// the SendMessage call fail.
c.cfg.Peer.(*mockPeer).disconnected = true
},
func(t *testing.T, c *channelLink, _ *lnwallet.LightningChannel) {
// Should fail at startup.
},
false,
},
{
// Test that we don't force closes the channel if
// resolving forward packages fails at startup.
func(c *channelLink) {
// We make the call to resolveFwdPkgs fail by
// making the underlying forwarder fail.
pkg := &mockPackager{
failLoadFwdPkgs: true,
}
c.channel.State().Packager = pkg
},
func(t *testing.T, c *channelLink, _ *lnwallet.LightningChannel) {
// Should fail at startup.
},
false,
},
{
// Test that we force close the channel if we receive
// an invalid Settle message.
func(c *channelLink) {
},
func(t *testing.T, c *channelLink, _ *lnwallet.LightningChannel) {
// Recevive an htlc settle for an htlc that was
// never added.
htlcSettle := &lnwire.UpdateFulfillHTLC{
ID: 0,
PaymentPreimage: [32]byte{},
}
c.HandleChannelUpdate(htlcSettle)
},
true,
},
{
// Test that we force close the channel if we receive
// an invalid CommitSig, not containing enough HTLC
// sigs.
func(c *channelLink) {
},
func(t *testing.T, c *channelLink, remoteChannel *lnwallet.LightningChannel) {
// Generate an HTLC and send to the link.
htlc1 := generateHtlc(t, c, remoteChannel, 0)
sendHtlcBobToAlice(t, c, remoteChannel, htlc1)
// Sign a commitment that will include
// signature for the HTLC just sent.
sig, htlcSigs, err :=
remoteChannel.SignNextCommitment()
if err != nil {
t.Fatalf("error signing commitment: %v",
err)
}
// Remove the HTLC sig, such that the commit
// sig will be invalid.
commitSig := &lnwire.CommitSig{
CommitSig: sig,
HtlcSigs: htlcSigs[1:],
}
c.HandleChannelUpdate(commitSig)
},
true,
},
{
// Test that we force close the channel if we receive
// an invalid CommitSig, where the sig itself is
// corrupted.
func(c *channelLink) {
},
func(t *testing.T, c *channelLink, remoteChannel *lnwallet.LightningChannel) {
// Generate an HTLC and send to the link.
htlc1 := generateHtlc(t, c, remoteChannel, 0)
sendHtlcBobToAlice(t, c, remoteChannel, htlc1)
// Sign a commitment that will include
// signature for the HTLC just sent.
sig, htlcSigs, err :=
remoteChannel.SignNextCommitment()
if err != nil {
t.Fatalf("error signing commitment: %v",
err)
}
// Flip a bit on the signature, rendering it
// invalid.
sig[19] ^= 1
commitSig := &lnwire.CommitSig{
CommitSig: sig,
HtlcSigs: htlcSigs,
}
c.HandleChannelUpdate(commitSig)
},
true,
},
}
const chanAmt = btcutil.SatoshiPerBitcoin * 5
const chanReserve = 0
// Execute each test case.
for i, test := range testCases {
link, remoteChannel, _, start, cleanUp, _, err :=
newSingleLinkTestHarness(chanAmt, 0)
if err != nil {
t.Fatalf("unable to create link: %v", err)
}
coreLink := link.(*channelLink)
// Set up a channel used to check whether the link error
// force closed the channel.
linkErrors := make(chan LinkFailureError, 1)
coreLink.cfg.OnChannelFailure = func(_ lnwire.ChannelID,
_ lnwire.ShortChannelID, linkErr LinkFailureError) {
linkErrors <- linkErr
}
// Set up the link before starting it.
test.options(coreLink)
if err := start(); err != nil {
t.Fatalf("unable to start test harness: %v", err)
}
// Execute the test case.
test.linkTest(t, coreLink, remoteChannel)
// Currently we expect all test cases to lead to link error.
var linkErr LinkFailureError
select {
case linkErr = <-linkErrors:
case <-time.After(10 * time.Second):
t.Fatalf("%d) Alice did not fail"+
"channel", i)
}
// If we expect the link to force close the channel in this
// case, check that it happens. If not, make sure it does not
// happen.
if test.shouldForceClose != linkErr.ForceClose {
t.Fatalf("%d) Expected Alice to force close(%v), "+
"instead got(%v)", i, test.shouldForceClose,
linkErr.ForceClose)
}
// Clean up before starting next test case.
cleanUp()
}
}
// TestExpectedFee tests calculation of ExpectedFee returns expected fee, given
// a baseFee, a feeRate, and an htlc amount.
func TestExpectedFee(t *testing.T) {
testCases := []struct {
baseFee lnwire.MilliSatoshi
feeRate lnwire.MilliSatoshi
htlcAmt lnwire.MilliSatoshi
expected lnwire.MilliSatoshi
}{
{
lnwire.MilliSatoshi(0),
lnwire.MilliSatoshi(0),
lnwire.MilliSatoshi(0),
lnwire.MilliSatoshi(0),
},
{
lnwire.MilliSatoshi(0),
lnwire.MilliSatoshi(1),
lnwire.MilliSatoshi(999999),
lnwire.MilliSatoshi(0),
},
{
lnwire.MilliSatoshi(0),
lnwire.MilliSatoshi(1),
lnwire.MilliSatoshi(1000000),
lnwire.MilliSatoshi(1),
},
{
lnwire.MilliSatoshi(0),
lnwire.MilliSatoshi(1),
lnwire.MilliSatoshi(1000001),
lnwire.MilliSatoshi(1),
},
{
lnwire.MilliSatoshi(1),
lnwire.MilliSatoshi(1),
lnwire.MilliSatoshi(1000000),
lnwire.MilliSatoshi(2),
},
}
for _, test := range testCases {
f := ForwardingPolicy{
BaseFee: test.baseFee,
FeeRate: test.feeRate,
}
fee := ExpectedFee(f, test.htlcAmt)
if fee != test.expected {
t.Errorf("expected fee to be (%v), instead got (%v)", test.expected,
fee)
}
}
}
// TestForwardingAsymmetricTimeLockPolicies tests that each link is able to
// properly handle forwarding HTLCs when their outgoing channels have
// asymmetric policies w.r.t what they require for time locks.
func TestForwardingAsymmetricTimeLockPolicies(t *testing.T) {
t.Parallel()
// First, we'll create our traditional three hop network. Bob
// interacting with and asserting the state of two of the end points
// for this test.
channels, cleanUp, _, err := createClusterChannels(
btcutil.SatoshiPerBitcoin*3,
btcutil.SatoshiPerBitcoin*5,
)
if err != nil {
t.Fatalf("unable to create channel: %v", err)
}
defer cleanUp()
n := newThreeHopNetwork(
t, channels.aliceToBob, channels.bobToAlice, channels.bobToCarol,
channels.carolToBob, testStartingHeight,
)
if err := n.start(); err != nil {
t.Fatalf("unable to start three hop network: %v", err)
}
defer n.stop()
// Now that each of the links are up, we'll modify the link from Alice
// -> Bob to have a greater time lock delta than that of the link of
// Bob -> Carol.
n.firstBobChannelLink.UpdateForwardingPolicy(ForwardingPolicy{
TimeLockDelta: 7,
})
// Now that the Alice -> Bob link has been updated, we'll craft and
// send a payment from Alice -> Carol. This should succeed as normal,
// even though Bob has asymmetric time lock policies.
amount := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
htlcAmt, totalTimelock, hops := generateHops(
amount, testStartingHeight, n.firstBobChannelLink,
n.carolChannelLink,
)
firstHop := n.firstBobChannelLink.ShortChanID()
_, err = n.makePayment(
n.aliceServer, n.carolServer, firstHop, hops, amount, htlcAmt,
totalTimelock,
).Wait(30 * time.Second)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
}