266 lines
6.4 KiB
Go
266 lines
6.4 KiB
Go
package autopilot
|
|
|
|
import (
|
|
"fmt"
|
|
"sync"
|
|
)
|
|
|
|
// stack is a simple int stack to help with readability of Brandes'
|
|
// betweenness centrality implementation below.
|
|
type stack struct {
|
|
stack []int
|
|
}
|
|
|
|
func (s *stack) push(v int) {
|
|
s.stack = append(s.stack, v)
|
|
}
|
|
|
|
func (s *stack) top() int {
|
|
return s.stack[len(s.stack)-1]
|
|
}
|
|
|
|
func (s *stack) pop() {
|
|
s.stack = s.stack[:len(s.stack)-1]
|
|
}
|
|
|
|
func (s *stack) empty() bool {
|
|
return len(s.stack) == 0
|
|
}
|
|
|
|
// queue is a simple int queue to help with readability of Brandes'
|
|
// betweenness centrality implementation below.
|
|
type queue struct {
|
|
queue []int
|
|
}
|
|
|
|
func (q *queue) push(v int) {
|
|
q.queue = append(q.queue, v)
|
|
}
|
|
|
|
func (q *queue) front() int {
|
|
return q.queue[0]
|
|
}
|
|
|
|
func (q *queue) pop() {
|
|
q.queue = q.queue[1:]
|
|
}
|
|
|
|
func (q *queue) empty() bool {
|
|
return len(q.queue) == 0
|
|
}
|
|
|
|
// BetweennessCentrality is a NodeMetric that calculates node betweenness
|
|
// centrality using Brandes' algorithm. Betweenness centrality for each node
|
|
// is the number of shortest paths passing trough that node, not counting
|
|
// shortest paths starting or ending at that node. This is a useful metric
|
|
// to measure control of individual nodes over the whole network.
|
|
type BetweennessCentrality struct {
|
|
// workers number of goroutines are used to parallelize
|
|
// centrality calculation.
|
|
workers int
|
|
|
|
// centrality stores original (not normalized) centrality values for
|
|
// each node in the graph.
|
|
centrality map[NodeID]float64
|
|
|
|
// min is the minimum centrality in the graph.
|
|
min float64
|
|
|
|
// max is the maximum centrality in the graph.
|
|
max float64
|
|
}
|
|
|
|
// NewBetweennessCentralityMetric creates a new BetweennessCentrality instance.
|
|
// Users can specify the number of workers to use for calculating centrality.
|
|
func NewBetweennessCentralityMetric(workers int) (*BetweennessCentrality, error) {
|
|
// There should be at least one worker.
|
|
if workers < 1 {
|
|
return nil, fmt.Errorf("workers must be positive")
|
|
}
|
|
return &BetweennessCentrality{
|
|
workers: workers,
|
|
}, nil
|
|
}
|
|
|
|
// Name returns the name of the metric.
|
|
func (bc *BetweennessCentrality) Name() string {
|
|
return "betweenness_centrality"
|
|
}
|
|
|
|
// betweennessCentrality is the core of Brandes' algorithm.
|
|
// We first calculate the shortest paths from the start node s to all other
|
|
// nodes with BFS, then update the betweenness centrality values by using
|
|
// Brandes' dependency trick.
|
|
// For detailed explanation please read:
|
|
// https://www.cl.cam.ac.uk/teaching/1617/MLRD/handbook/brandes.html
|
|
func betweennessCentrality(g *SimpleGraph, s int, centrality []float64) {
|
|
// pred[w] is the list of nodes that immediately precede w on a
|
|
// shortest path from s to t for each node t.
|
|
pred := make([][]int, len(g.Nodes))
|
|
|
|
// sigma[t] is the number of shortest paths between nodes s and t
|
|
// for each node t.
|
|
sigma := make([]int, len(g.Nodes))
|
|
sigma[s] = 1
|
|
|
|
// dist[t] holds the distance between s and t for each node t.
|
|
// We initialize this to -1 (meaning infinity) for each t != s.
|
|
dist := make([]int, len(g.Nodes))
|
|
for i := range dist {
|
|
dist[i] = -1
|
|
}
|
|
|
|
dist[s] = 0
|
|
|
|
var (
|
|
st stack
|
|
q queue
|
|
)
|
|
q.push(s)
|
|
|
|
// BFS to calculate the shortest paths (sigma and pred)
|
|
// from s to t for each node t.
|
|
for !q.empty() {
|
|
v := q.front()
|
|
q.pop()
|
|
st.push(v)
|
|
|
|
for _, w := range g.Adj[v] {
|
|
// If distance from s to w is infinity (-1)
|
|
// then set it and enqueue w.
|
|
if dist[w] < 0 {
|
|
dist[w] = dist[v] + 1
|
|
q.push(w)
|
|
}
|
|
|
|
// If w is on a shortest path the update
|
|
// sigma and add v to w's predecessor list.
|
|
if dist[w] == dist[v]+1 {
|
|
sigma[w] += sigma[v]
|
|
pred[w] = append(pred[w], v)
|
|
}
|
|
}
|
|
}
|
|
|
|
// delta[v] is the ratio of the shortest paths between s and t that go
|
|
// through v and the total number of shortest paths between s and t.
|
|
// If we have delta then the betweenness centrality is simply the sum
|
|
// of delta[w] for each w != s.
|
|
delta := make([]float64, len(g.Nodes))
|
|
|
|
for !st.empty() {
|
|
w := st.top()
|
|
st.pop()
|
|
|
|
// pred[w] is the list of nodes that immediately precede w on a
|
|
// shortest path from s.
|
|
for _, v := range pred[w] {
|
|
// Update delta using Brandes' equation.
|
|
delta[v] += (float64(sigma[v]) / float64(sigma[w])) * (1.0 + delta[w])
|
|
}
|
|
|
|
if w != s {
|
|
// As noted above centrality is simply the sum
|
|
// of delta[w] for each w != s.
|
|
centrality[w] += delta[w]
|
|
}
|
|
}
|
|
}
|
|
|
|
// Refresh recaculates and stores centrality values.
|
|
func (bc *BetweennessCentrality) Refresh(graph ChannelGraph) error {
|
|
cache, err := NewSimpleGraph(graph)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var wg sync.WaitGroup
|
|
work := make(chan int)
|
|
partials := make(chan []float64, bc.workers)
|
|
|
|
// Each worker will compute a partial result.
|
|
// This partial result is a sum of centrality updates
|
|
// on roughly N / workers nodes.
|
|
worker := func() {
|
|
defer wg.Done()
|
|
partial := make([]float64, len(cache.Nodes))
|
|
|
|
// Consume the next node, update centrality
|
|
// parital to avoid unnecessary synchronizaton.
|
|
for node := range work {
|
|
betweennessCentrality(cache, node, partial)
|
|
}
|
|
partials <- partial
|
|
}
|
|
|
|
// Now start the N workers.
|
|
wg.Add(bc.workers)
|
|
for i := 0; i < bc.workers; i++ {
|
|
go worker()
|
|
}
|
|
|
|
// Distribute work amongst workers.
|
|
// Should be fair when the graph is sufficiently large.
|
|
for node := range cache.Nodes {
|
|
work <- node
|
|
}
|
|
|
|
close(work)
|
|
wg.Wait()
|
|
close(partials)
|
|
|
|
// Collect and sum partials for final result.
|
|
centrality := make([]float64, len(cache.Nodes))
|
|
for partial := range partials {
|
|
for i := 0; i < len(partial); i++ {
|
|
centrality[i] += partial[i]
|
|
}
|
|
}
|
|
|
|
// Get min/max to be able to normalize
|
|
// centrality values between 0 and 1.
|
|
bc.min = 0
|
|
bc.max = 0
|
|
if len(centrality) > 0 {
|
|
for _, v := range centrality {
|
|
if v < bc.min {
|
|
bc.min = v
|
|
} else if v > bc.max {
|
|
bc.max = v
|
|
}
|
|
}
|
|
}
|
|
|
|
// Divide by two as this is an undirected graph.
|
|
bc.min /= 2.0
|
|
bc.max /= 2.0
|
|
|
|
bc.centrality = make(map[NodeID]float64)
|
|
for u, value := range centrality {
|
|
// Divide by two as this is an undirected graph.
|
|
bc.centrality[cache.Nodes[u]] = value / 2.0
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// GetMetric returns the current centrality values for each node indexed
|
|
// by node id.
|
|
func (bc *BetweennessCentrality) GetMetric(normalize bool) map[NodeID]float64 {
|
|
// Normalization factor.
|
|
var z float64
|
|
if (bc.max - bc.min) > 0 {
|
|
z = 1.0 / (bc.max - bc.min)
|
|
}
|
|
|
|
centrality := make(map[NodeID]float64)
|
|
for k, v := range bc.centrality {
|
|
if normalize {
|
|
v = (v - bc.min) * z
|
|
}
|
|
centrality[k] = v
|
|
}
|
|
|
|
return centrality
|
|
}
|