lnd.xprv/zpay32/invoice.go
Conner Fromknecht 2bf94fa409
zpay32/invoice: consolidate 32-byte array parsing and encoding logic
This commit also consolidates the existing code duplication in parsing
payment hashes and description hashes into a single, combined method for
parsing 32-byte values. A similar change is made for encoding 32-byte
values.

zpay32/invoice: consolidate 32-byte encoding logic
2019-12-05 07:58:55 -08:00

1146 lines
33 KiB
Go

package zpay32
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"strings"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/bech32"
"github.com/lightningnetwork/lnd/lnwire"
)
const (
// mSatPerBtc is the number of millisatoshis in 1 BTC.
mSatPerBtc = 100000000000
// signatureBase32Len is the number of 5-bit groups needed to encode
// the 512 bit signature + 8 bit recovery ID.
signatureBase32Len = 104
// timestampBase32Len is the number of 5-bit groups needed to encode
// the 35-bit timestamp.
timestampBase32Len = 7
// hashBase32Len is the number of 5-bit groups needed to encode a
// 256-bit hash. Note that the last group will be padded with zeroes.
hashBase32Len = 52
// pubKeyBase32Len is the number of 5-bit groups needed to encode a
// 33-byte compressed pubkey. Note that the last group will be padded
// with zeroes.
pubKeyBase32Len = 53
// hopHintLen is the number of bytes needed to encode the hop hint of a
// single private route.
hopHintLen = 51
// The following byte values correspond to the supported field types.
// The field name is the character representing that 5-bit value in the
// bech32 string.
// fieldTypeP is the field containing the payment hash.
fieldTypeP = 1
// fieldTypeD contains a short description of the payment.
fieldTypeD = 13
// fieldTypeN contains the pubkey of the target node.
fieldTypeN = 19
// fieldTypeH contains the hash of a description of the payment.
fieldTypeH = 23
// fieldTypeX contains the expiry in seconds of the invoice.
fieldTypeX = 6
// fieldTypeF contains a fallback on-chain address.
fieldTypeF = 9
// fieldTypeR contains extra routing information.
fieldTypeR = 3
// fieldTypeC contains an optional requested final CLTV delta.
fieldTypeC = 24
// fieldType9 contains one or more bytes for signaling features
// supported or required by the receiver.
fieldType9 = 5
// maxInvoiceLength is the maximum total length an invoice can have.
// This is chosen to be the maximum number of bytes that can fit into a
// single QR code: https://en.wikipedia.org/wiki/QR_code#Storage
maxInvoiceLength = 7089
)
var (
// InvoiceFeatures holds the set of all known feature bits that are
// exposed as BOLT 11 features.
InvoiceFeatures = map[lnwire.FeatureBit]string{}
// ErrInvoiceTooLarge is returned when an invoice exceeds maxInvoiceLength.
ErrInvoiceTooLarge = errors.New("invoice is too large")
// ErrInvalidFieldLength is returned when a tagged field was specified
// with a length larger than the left over bytes of the data field.
ErrInvalidFieldLength = errors.New("invalid field length")
// ErrBrokenTaggedField is returned when the last tagged field is
// incorrectly formatted and doesn't have enough bytes to be read.
ErrBrokenTaggedField = errors.New("last tagged field is broken")
)
// MessageSigner is passed to the Encode method to provide a signature
// corresponding to the node's pubkey.
type MessageSigner struct {
// SignCompact signs the passed hash with the node's privkey. The
// returned signature should be 65 bytes, where the last 64 are the
// compact signature, and the first one is a header byte. This is the
// format returned by btcec.SignCompact.
SignCompact func(hash []byte) ([]byte, error)
}
// Invoice represents a decoded invoice, or to-be-encoded invoice. Some of the
// fields are optional, and will only be non-nil if the invoice this was parsed
// from contains that field. When encoding, only the non-nil fields will be
// added to the encoded invoice.
type Invoice struct {
// Net specifies what network this Lightning invoice is meant for.
Net *chaincfg.Params
// MilliSat specifies the amount of this invoice in millisatoshi.
// Optional.
MilliSat *lnwire.MilliSatoshi
// Timestamp specifies the time this invoice was created.
// Mandatory
Timestamp time.Time
// PaymentHash is the payment hash to be used for a payment to this
// invoice.
PaymentHash *[32]byte
// Destination is the public key of the target node. This will always
// be set after decoding, and can optionally be set before encoding to
// include the pubkey as an 'n' field. If this is not set before
// encoding then the destination pubkey won't be added as an 'n' field,
// and the pubkey will be extracted from the signature during decoding.
Destination *btcec.PublicKey
// minFinalCLTVExpiry is the value that the creator of the invoice
// expects to be used for the
//
// NOTE: This value is optional, and should be set to nil if the
// invoice creator doesn't have a strong requirement on the CLTV expiry
// of the final HTLC extended to it.
//
// This field is un-exported and can only be read by the
// MinFinalCLTVExpiry() method. By forcing callers to read via this
// method, we can easily enforce the default if not specified.
minFinalCLTVExpiry *uint64
// Description is a short description of the purpose of this invoice.
// Optional. Non-nil iff DescriptionHash is nil.
Description *string
// DescriptionHash is the SHA256 hash of a description of the purpose of
// this invoice.
// Optional. Non-nil iff Description is nil.
DescriptionHash *[32]byte
// expiry specifies the timespan this invoice will be valid.
// Optional. If not set, a default expiry of 60 min will be implied.
//
// This field is unexported and can be read by the Expiry() method. This
// method makes sure the default expiry time is returned in case the
// field is not set.
expiry *time.Duration
// FallbackAddr is an on-chain address that can be used for payment in
// case the Lightning payment fails.
// Optional.
FallbackAddr btcutil.Address
// RouteHints represents one or more different route hints. Each route
// hint can be individually used to reach the destination. These usually
// represent private routes.
//
// NOTE: This is optional.
RouteHints [][]HopHint
// Features represents an optional field used to signal optional or
// required support for features by the receiver.
Features *lnwire.FeatureVector
}
// Amount is a functional option that allows callers of NewInvoice to set the
// amount in millisatoshis that the Invoice should encode.
func Amount(milliSat lnwire.MilliSatoshi) func(*Invoice) {
return func(i *Invoice) {
i.MilliSat = &milliSat
}
}
// Destination is a functional option that allows callers of NewInvoice to
// explicitly set the pubkey of the Invoice's destination node.
func Destination(destination *btcec.PublicKey) func(*Invoice) {
return func(i *Invoice) {
i.Destination = destination
}
}
// Description is a functional option that allows callers of NewInvoice to set
// the payment description of the created Invoice.
//
// NOTE: Must be used if and only if DescriptionHash is not used.
func Description(description string) func(*Invoice) {
return func(i *Invoice) {
i.Description = &description
}
}
// CLTVExpiry is an optional value which allows the receiver of the payment to
// specify the delta between the current height and the HTLC extended to the
// receiver.
func CLTVExpiry(delta uint64) func(*Invoice) {
return func(i *Invoice) {
i.minFinalCLTVExpiry = &delta
}
}
// DescriptionHash is a functional option that allows callers of NewInvoice to
// set the payment description hash of the created Invoice.
//
// NOTE: Must be used if and only if Description is not used.
func DescriptionHash(descriptionHash [32]byte) func(*Invoice) {
return func(i *Invoice) {
i.DescriptionHash = &descriptionHash
}
}
// Expiry is a functional option that allows callers of NewInvoice to set the
// expiry of the created Invoice. If not set, a default expiry of 60 min will
// be implied.
func Expiry(expiry time.Duration) func(*Invoice) {
return func(i *Invoice) {
i.expiry = &expiry
}
}
// FallbackAddr is a functional option that allows callers of NewInvoice to set
// the Invoice's fallback on-chain address that can be used for payment in case
// the Lightning payment fails
func FallbackAddr(fallbackAddr btcutil.Address) func(*Invoice) {
return func(i *Invoice) {
i.FallbackAddr = fallbackAddr
}
}
// RouteHint is a functional option that allows callers of NewInvoice to add
// one or more hop hints that represent a private route to the destination.
func RouteHint(routeHint []HopHint) func(*Invoice) {
return func(i *Invoice) {
i.RouteHints = append(i.RouteHints, routeHint)
}
}
// Features is a functional option that allows callers of NewInvoice to set the
// desired feature bits that are advertised on the invoice.
func Features(features *lnwire.FeatureVector) func(*Invoice) {
return func(i *Invoice) {
i.Features = features
}
}
// NewInvoice creates a new Invoice object. The last parameter is a set of
// variadic arguments for setting optional fields of the invoice.
//
// NOTE: Either Description or DescriptionHash must be provided for the Invoice
// to be considered valid.
func NewInvoice(net *chaincfg.Params, paymentHash [32]byte,
timestamp time.Time, options ...func(*Invoice)) (*Invoice, error) {
invoice := &Invoice{
Net: net,
PaymentHash: &paymentHash,
Timestamp: timestamp,
}
for _, option := range options {
option(invoice)
}
if err := validateInvoice(invoice); err != nil {
return nil, err
}
return invoice, nil
}
// Decode parses the provided encoded invoice and returns a decoded Invoice if
// it is valid by BOLT-0011 and matches the provided active network.
func Decode(invoice string, net *chaincfg.Params) (*Invoice, error) {
decodedInvoice := Invoice{}
// Before bech32 decoding the invoice, make sure that it is not too large.
// This is done as an anti-DoS measure since bech32 decoding is expensive.
if len(invoice) > maxInvoiceLength {
return nil, ErrInvoiceTooLarge
}
// Decode the invoice using the modified bech32 decoder.
hrp, data, err := decodeBech32(invoice)
if err != nil {
return nil, err
}
// We expect the human-readable part to at least have ln + one char
// encoding the network.
if len(hrp) < 3 {
return nil, fmt.Errorf("hrp too short")
}
// First two characters of HRP should be "ln".
if hrp[:2] != "ln" {
return nil, fmt.Errorf("prefix should be \"ln\"")
}
// The next characters should be a valid prefix for a segwit BIP173
// address that match the active network.
if !strings.HasPrefix(hrp[2:], net.Bech32HRPSegwit) {
return nil, fmt.Errorf(
"invoice not for current active network '%s'", net.Name)
}
decodedInvoice.Net = net
// Optionally, if there's anything left of the HRP after ln + the segwit
// prefix, we try to decode this as the payment amount.
var netPrefixLength = len(net.Bech32HRPSegwit) + 2
if len(hrp) > netPrefixLength {
amount, err := decodeAmount(hrp[netPrefixLength:])
if err != nil {
return nil, err
}
decodedInvoice.MilliSat = &amount
}
// Everything except the last 520 bits of the data encodes the invoice's
// timestamp and tagged fields.
invoiceData := data[:len(data)-signatureBase32Len]
// Parse the timestamp and tagged fields, and fill the Invoice struct.
if err := parseData(&decodedInvoice, invoiceData, net); err != nil {
return nil, err
}
// The last 520 bits (104 groups) make up the signature.
sigBase32 := data[len(data)-signatureBase32Len:]
sigBase256, err := bech32.ConvertBits(sigBase32, 5, 8, true)
if err != nil {
return nil, err
}
var sig lnwire.Sig
copy(sig[:], sigBase256[:64])
recoveryID := sigBase256[64]
// The signature is over the hrp + the data the invoice, encoded in
// base 256.
taggedDataBytes, err := bech32.ConvertBits(invoiceData, 5, 8, true)
if err != nil {
return nil, err
}
toSign := append([]byte(hrp), taggedDataBytes...)
// We expect the signature to be over the single SHA-256 hash of that
// data.
hash := chainhash.HashB(toSign)
// If the destination pubkey was provided as a tagged field, use that
// to verify the signature, if not do public key recovery.
if decodedInvoice.Destination != nil {
signature, err := sig.ToSignature()
if err != nil {
return nil, fmt.Errorf("unable to deserialize "+
"signature: %v", err)
}
if !signature.Verify(hash, decodedInvoice.Destination) {
return nil, fmt.Errorf("invalid invoice signature")
}
} else {
headerByte := recoveryID + 27 + 4
compactSign := append([]byte{headerByte}, sig[:]...)
pubkey, _, err := btcec.RecoverCompact(btcec.S256(),
compactSign, hash)
if err != nil {
return nil, err
}
decodedInvoice.Destination = pubkey
}
// Now that we have created the invoice, make sure it has the required
// fields set.
if err := validateInvoice(&decodedInvoice); err != nil {
return nil, err
}
return &decodedInvoice, nil
}
// Encode takes the given MessageSigner and returns a string encoding this
// invoice signed by the node key of the signer.
func (invoice *Invoice) Encode(signer MessageSigner) (string, error) {
// First check that this invoice is valid before starting the encoding.
if err := validateInvoice(invoice); err != nil {
return "", err
}
// The buffer will encoded the invoice data using 5-bit groups (base32).
var bufferBase32 bytes.Buffer
// The timestamp will be encoded using 35 bits, in base32.
timestampBase32 := uint64ToBase32(uint64(invoice.Timestamp.Unix()))
// The timestamp must be exactly 35 bits, which means 7 groups. If it
// can fit into fewer groups we add leading zero groups, if it is too
// big we fail early, as there is not possible to encode it.
if len(timestampBase32) > timestampBase32Len {
return "", fmt.Errorf("timestamp too big: %d",
invoice.Timestamp.Unix())
}
// Add zero bytes to the first timestampBase32Len-len(timestampBase32)
// groups, then add the non-zero groups.
zeroes := make([]byte, timestampBase32Len-len(timestampBase32),
timestampBase32Len-len(timestampBase32))
_, err := bufferBase32.Write(zeroes)
if err != nil {
return "", fmt.Errorf("unable to write to buffer: %v", err)
}
_, err = bufferBase32.Write(timestampBase32)
if err != nil {
return "", fmt.Errorf("unable to write to buffer: %v", err)
}
// We now write the tagged fields to the buffer, which will fill the
// rest of the data part before the signature.
if err := writeTaggedFields(&bufferBase32, invoice); err != nil {
return "", err
}
// The human-readable part (hrp) is "ln" + net hrp + optional amount.
hrp := "ln" + invoice.Net.Bech32HRPSegwit
if invoice.MilliSat != nil {
// Encode the amount using the fewest possible characters.
am, err := encodeAmount(*invoice.MilliSat)
if err != nil {
return "", err
}
hrp += am
}
// The signature is over the single SHA-256 hash of the hrp + the
// tagged fields encoded in base256.
taggedFieldsBytes, err := bech32.ConvertBits(bufferBase32.Bytes(), 5, 8, true)
if err != nil {
return "", err
}
toSign := append([]byte(hrp), taggedFieldsBytes...)
hash := chainhash.HashB(toSign)
// We use compact signature format, and also encoded the recovery ID
// such that a reader of the invoice can recover our pubkey from the
// signature.
sign, err := signer.SignCompact(hash)
if err != nil {
return "", err
}
// From the header byte we can extract the recovery ID, and the last 64
// bytes encode the signature.
recoveryID := sign[0] - 27 - 4
var sig lnwire.Sig
copy(sig[:], sign[1:])
// If the pubkey field was explicitly set, it must be set to the pubkey
// used to create the signature.
if invoice.Destination != nil {
signature, err := sig.ToSignature()
if err != nil {
return "", fmt.Errorf("unable to deserialize "+
"signature: %v", err)
}
valid := signature.Verify(hash, invoice.Destination)
if !valid {
return "", fmt.Errorf("signature does not match " +
"provided pubkey")
}
}
// Convert the signature to base32 before writing it to the buffer.
signBase32, err := bech32.ConvertBits(append(sig[:], recoveryID), 8, 5, true)
if err != nil {
return "", err
}
bufferBase32.Write(signBase32)
// Now we can create the bech32 encoded string from the base32 buffer.
b32, err := bech32.Encode(hrp, bufferBase32.Bytes())
if err != nil {
return "", err
}
// Before returning, check that the bech32 encoded string is not greater
// than our largest supported invoice size.
if len(b32) > maxInvoiceLength {
return "", ErrInvoiceTooLarge
}
return b32, nil
}
// Expiry returns the expiry time for this invoice. If expiry time is not set
// explicitly, the default 3600 second expiry will be returned.
func (invoice *Invoice) Expiry() time.Duration {
if invoice.expiry != nil {
return *invoice.expiry
}
// If no expiry is set for this invoice, default is 3600 seconds.
return 3600 * time.Second
}
// MinFinalCLTVExpiry returns the minimum final CLTV expiry delta as specified
// by the creator of the invoice. This value specifies the delta between the
// current height and the expiry height of the HTLC extended in the last hop.
func (invoice *Invoice) MinFinalCLTVExpiry() uint64 {
if invoice.minFinalCLTVExpiry != nil {
return *invoice.minFinalCLTVExpiry
}
return DefaultFinalCLTVDelta
}
// validateInvoice does a sanity check of the provided Invoice, making sure it
// has all the necessary fields set for it to be considered valid by BOLT-0011.
func validateInvoice(invoice *Invoice) error {
// The net must be set.
if invoice.Net == nil {
return fmt.Errorf("net params not set")
}
// Ensure that if there is an amount set, it is not negative.
if invoice.MilliSat != nil && *invoice.MilliSat < 0 {
return fmt.Errorf("negative amount: %v", *invoice.MilliSat)
}
// The invoice must contain a payment hash.
if invoice.PaymentHash == nil {
return fmt.Errorf("no payment hash found")
}
// Either Description or DescriptionHash must be set, not both.
if invoice.Description != nil && invoice.DescriptionHash != nil {
return fmt.Errorf("both description and description hash set")
}
if invoice.Description == nil && invoice.DescriptionHash == nil {
return fmt.Errorf("neither description nor description hash set")
}
// Check that we support the field lengths.
if len(invoice.PaymentHash) != 32 {
return fmt.Errorf("unsupported payment hash length: %d",
len(invoice.PaymentHash))
}
if invoice.DescriptionHash != nil && len(invoice.DescriptionHash) != 32 {
return fmt.Errorf("unsupported description hash length: %d",
len(invoice.DescriptionHash))
}
if invoice.Destination != nil &&
len(invoice.Destination.SerializeCompressed()) != 33 {
return fmt.Errorf("unsupported pubkey length: %d",
len(invoice.Destination.SerializeCompressed()))
}
return nil
}
// parseData parses the data part of the invoice. It expects base32 data
// returned from the bech32.Decode method, except signature.
func parseData(invoice *Invoice, data []byte, net *chaincfg.Params) error {
// It must contain the timestamp, encoded using 35 bits (7 groups).
if len(data) < timestampBase32Len {
return fmt.Errorf("data too short: %d", len(data))
}
t, err := parseTimestamp(data[:timestampBase32Len])
if err != nil {
return err
}
invoice.Timestamp = time.Unix(int64(t), 0)
// The rest are tagged parts.
tagData := data[7:]
return parseTaggedFields(invoice, tagData, net)
}
// parseTimestamp converts a 35-bit timestamp (encoded in base32) to uint64.
func parseTimestamp(data []byte) (uint64, error) {
if len(data) != timestampBase32Len {
return 0, fmt.Errorf("timestamp must be 35 bits, was %d",
len(data)*5)
}
return base32ToUint64(data)
}
// parseTaggedFields takes the base32 encoded tagged fields of the invoice, and
// fills the Invoice struct accordingly.
func parseTaggedFields(invoice *Invoice, fields []byte, net *chaincfg.Params) error {
index := 0
for len(fields)-index > 0 {
// If there are less than 3 groups to read, there cannot be more
// interesting information, as we need the type (1 group) and
// length (2 groups).
//
// This means the last tagged field is broken.
if len(fields)-index < 3 {
return ErrBrokenTaggedField
}
typ := fields[index]
dataLength, err := parseFieldDataLength(fields[index+1 : index+3])
if err != nil {
return err
}
// If we don't have enough field data left to read this length,
// return error.
if len(fields) < index+3+int(dataLength) {
return ErrInvalidFieldLength
}
base32Data := fields[index+3 : index+3+int(dataLength)]
// Advance the index in preparation for the next iteration.
index += 3 + int(dataLength)
switch typ {
case fieldTypeP:
if invoice.PaymentHash != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.PaymentHash, err = parse32Bytes(base32Data)
case fieldTypeD:
if invoice.Description != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.Description, err = parseDescription(base32Data)
case fieldTypeN:
if invoice.Destination != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.Destination, err = parseDestination(base32Data)
case fieldTypeH:
if invoice.DescriptionHash != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.DescriptionHash, err = parse32Bytes(base32Data)
case fieldTypeX:
if invoice.expiry != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.expiry, err = parseExpiry(base32Data)
case fieldTypeC:
if invoice.minFinalCLTVExpiry != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.minFinalCLTVExpiry, err = parseMinFinalCLTVExpiry(base32Data)
case fieldTypeF:
if invoice.FallbackAddr != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.FallbackAddr, err = parseFallbackAddr(base32Data, net)
case fieldTypeR:
// An `r` field can be included in an invoice multiple
// times, so we won't skip it if we have already seen
// one.
routeHint, err := parseRouteHint(base32Data)
if err != nil {
return err
}
invoice.RouteHints = append(invoice.RouteHints, routeHint)
case fieldType9:
if invoice.Features != nil {
// We skip the field if we have already seen a
// supported one.
continue
}
invoice.Features, err = parseFeatures(base32Data)
default:
// Ignore unknown type.
}
// Check if there was an error from parsing any of the tagged
// fields and return it.
if err != nil {
return err
}
}
return nil
}
// parseFieldDataLength converts the two byte slice into a uint16.
func parseFieldDataLength(data []byte) (uint16, error) {
if len(data) != 2 {
return 0, fmt.Errorf("data length must be 2 bytes, was %d",
len(data))
}
return uint16(data[0])<<5 | uint16(data[1]), nil
}
// parse32Bytes converts a 256-bit value (encoded in base32) to *[32]byte. This
// can be used for payment hashes, description hashes, payment addresses, etc.
func parse32Bytes(data []byte) (*[32]byte, error) {
var paymentHash [32]byte
// As BOLT-11 states, a reader must skip over the 32-byte fields if
// it does not have a length of 52, so avoid returning an error.
if len(data) != hashBase32Len {
return nil, nil
}
hash, err := bech32.ConvertBits(data, 5, 8, false)
if err != nil {
return nil, err
}
copy(paymentHash[:], hash[:])
return &paymentHash, nil
}
// parseDescription converts the data (encoded in base32) into a string to use
// as the description.
func parseDescription(data []byte) (*string, error) {
base256Data, err := bech32.ConvertBits(data, 5, 8, false)
if err != nil {
return nil, err
}
description := string(base256Data)
return &description, nil
}
// parseDestination converts the data (encoded in base32) into a 33-byte public
// key of the payee node.
func parseDestination(data []byte) (*btcec.PublicKey, error) {
// As BOLT-11 states, a reader must skip over the destination field
// if it does not have a length of 53, so avoid returning an error.
if len(data) != pubKeyBase32Len {
return nil, nil
}
base256Data, err := bech32.ConvertBits(data, 5, 8, false)
if err != nil {
return nil, err
}
return btcec.ParsePubKey(base256Data, btcec.S256())
}
// parseExpiry converts the data (encoded in base32) into the expiry time.
func parseExpiry(data []byte) (*time.Duration, error) {
expiry, err := base32ToUint64(data)
if err != nil {
return nil, err
}
duration := time.Duration(expiry) * time.Second
return &duration, nil
}
// parseMinFinalCLTVExpiry converts the data (encoded in base32) into a uint64
// to use as the minFinalCLTVExpiry.
func parseMinFinalCLTVExpiry(data []byte) (*uint64, error) {
expiry, err := base32ToUint64(data)
if err != nil {
return nil, err
}
return &expiry, nil
}
// parseFallbackAddr converts the data (encoded in base32) into a fallback
// on-chain address.
func parseFallbackAddr(data []byte, net *chaincfg.Params) (btcutil.Address, error) {
// Checks if the data is empty or contains a version without an address.
if len(data) < 2 {
return nil, fmt.Errorf("empty fallback address field")
}
var addr btcutil.Address
version := data[0]
switch version {
case 0:
witness, err := bech32.ConvertBits(data[1:], 5, 8, false)
if err != nil {
return nil, err
}
switch len(witness) {
case 20:
addr, err = btcutil.NewAddressWitnessPubKeyHash(witness, net)
case 32:
addr, err = btcutil.NewAddressWitnessScriptHash(witness, net)
default:
return nil, fmt.Errorf("unknown witness program length %d",
len(witness))
}
if err != nil {
return nil, err
}
case 17:
pubKeyHash, err := bech32.ConvertBits(data[1:], 5, 8, false)
if err != nil {
return nil, err
}
addr, err = btcutil.NewAddressPubKeyHash(pubKeyHash, net)
if err != nil {
return nil, err
}
case 18:
scriptHash, err := bech32.ConvertBits(data[1:], 5, 8, false)
if err != nil {
return nil, err
}
addr, err = btcutil.NewAddressScriptHashFromHash(scriptHash, net)
if err != nil {
return nil, err
}
default:
// Ignore unknown version.
}
return addr, nil
}
// parseRouteHint converts the data (encoded in base32) into an array containing
// one or more routing hop hints that represent a single route hint.
func parseRouteHint(data []byte) ([]HopHint, error) {
base256Data, err := bech32.ConvertBits(data, 5, 8, false)
if err != nil {
return nil, err
}
// Check that base256Data is a multiple of hopHintLen.
if len(base256Data)%hopHintLen != 0 {
return nil, fmt.Errorf("expected length multiple of %d bytes, "+
"got %d", hopHintLen, len(base256Data))
}
var routeHint []HopHint
for len(base256Data) > 0 {
hopHint := HopHint{}
hopHint.NodeID, err = btcec.ParsePubKey(base256Data[:33], btcec.S256())
if err != nil {
return nil, err
}
hopHint.ChannelID = binary.BigEndian.Uint64(base256Data[33:41])
hopHint.FeeBaseMSat = binary.BigEndian.Uint32(base256Data[41:45])
hopHint.FeeProportionalMillionths = binary.BigEndian.Uint32(base256Data[45:49])
hopHint.CLTVExpiryDelta = binary.BigEndian.Uint16(base256Data[49:51])
routeHint = append(routeHint, hopHint)
base256Data = base256Data[51:]
}
return routeHint, nil
}
// parseFeatures decodes any feature bits directly from the base32
// representation.
func parseFeatures(data []byte) (*lnwire.FeatureVector, error) {
rawFeatures := lnwire.NewRawFeatureVector()
err := rawFeatures.DecodeBase32(bytes.NewReader(data), len(data))
if err != nil {
return nil, err
}
fv := lnwire.NewFeatureVector(rawFeatures, InvoiceFeatures)
unknownFeatures := fv.UnknownRequiredFeatures()
if len(unknownFeatures) > 0 {
return nil, fmt.Errorf("invoice contains unknown required "+
"features: %v", unknownFeatures)
}
return fv, nil
}
// writeTaggedFields writes the non-nil tagged fields of the Invoice to the
// base32 buffer.
func writeTaggedFields(bufferBase32 *bytes.Buffer, invoice *Invoice) error {
if invoice.PaymentHash != nil {
err := writeBytes32(bufferBase32, fieldTypeP, *invoice.PaymentHash)
if err != nil {
return err
}
}
if invoice.Description != nil {
base32, err := bech32.ConvertBits([]byte(*invoice.Description),
8, 5, true)
if err != nil {
return err
}
err = writeTaggedField(bufferBase32, fieldTypeD, base32)
if err != nil {
return err
}
}
if invoice.DescriptionHash != nil {
err := writeBytes32(
bufferBase32, fieldTypeH, *invoice.DescriptionHash,
)
if err != nil {
return err
}
}
if invoice.minFinalCLTVExpiry != nil {
finalDelta := uint64ToBase32(uint64(*invoice.minFinalCLTVExpiry))
err := writeTaggedField(bufferBase32, fieldTypeC, finalDelta)
if err != nil {
return err
}
}
if invoice.expiry != nil {
seconds := invoice.expiry.Seconds()
expiry := uint64ToBase32(uint64(seconds))
err := writeTaggedField(bufferBase32, fieldTypeX, expiry)
if err != nil {
return err
}
}
if invoice.FallbackAddr != nil {
var version byte
switch addr := invoice.FallbackAddr.(type) {
case *btcutil.AddressPubKeyHash:
version = 17
case *btcutil.AddressScriptHash:
version = 18
case *btcutil.AddressWitnessPubKeyHash:
version = addr.WitnessVersion()
case *btcutil.AddressWitnessScriptHash:
version = addr.WitnessVersion()
default:
return fmt.Errorf("unknown fallback address type")
}
base32Addr, err := bech32.ConvertBits(
invoice.FallbackAddr.ScriptAddress(), 8, 5, true)
if err != nil {
return err
}
err = writeTaggedField(bufferBase32, fieldTypeF,
append([]byte{version}, base32Addr...))
if err != nil {
return err
}
}
for _, routeHint := range invoice.RouteHints {
// Each hop hint is encoded using 51 bytes, so we'll make to
// sure to allocate enough space for the whole route hint.
routeHintBase256 := make([]byte, 0, hopHintLen*len(routeHint))
for _, hopHint := range routeHint {
hopHintBase256 := make([]byte, hopHintLen)
copy(hopHintBase256[:33], hopHint.NodeID.SerializeCompressed())
binary.BigEndian.PutUint64(
hopHintBase256[33:41], hopHint.ChannelID,
)
binary.BigEndian.PutUint32(
hopHintBase256[41:45], hopHint.FeeBaseMSat,
)
binary.BigEndian.PutUint32(
hopHintBase256[45:49], hopHint.FeeProportionalMillionths,
)
binary.BigEndian.PutUint16(
hopHintBase256[49:51], hopHint.CLTVExpiryDelta,
)
routeHintBase256 = append(routeHintBase256, hopHintBase256...)
}
routeHintBase32, err := bech32.ConvertBits(
routeHintBase256, 8, 5, true,
)
if err != nil {
return err
}
err = writeTaggedField(bufferBase32, fieldTypeR, routeHintBase32)
if err != nil {
return err
}
}
if invoice.Destination != nil {
// Convert 33 byte pubkey to 53 5-bit groups.
pubKeyBase32, err := bech32.ConvertBits(
invoice.Destination.SerializeCompressed(), 8, 5, true)
if err != nil {
return err
}
if len(pubKeyBase32) != pubKeyBase32Len {
return fmt.Errorf("invalid pubkey length: %d",
len(invoice.Destination.SerializeCompressed()))
}
err = writeTaggedField(bufferBase32, fieldTypeN, pubKeyBase32)
if err != nil {
return err
}
}
if invoice.Features != nil && invoice.Features.SerializeSize32() > 0 {
var b bytes.Buffer
err := invoice.Features.RawFeatureVector.EncodeBase32(&b)
if err != nil {
return err
}
err = writeTaggedField(bufferBase32, fieldType9, b.Bytes())
if err != nil {
return err
}
}
return nil
}
// writeBytes32 encodes a 32-byte array as base32 and writes it to bufferBase32
// under the passed fieldType.
func writeBytes32(bufferBase32 *bytes.Buffer, fieldType byte, b [32]byte) error {
// Convert 32 byte hash to 52 5-bit groups.
base32, err := bech32.ConvertBits(b[:], 8, 5, true)
if err != nil {
return err
}
return writeTaggedField(bufferBase32, fieldType, base32)
}
// writeTaggedField takes the type of a tagged data field, and the data of
// the tagged field (encoded in base32), and writes the type, length and data
// to the buffer.
func writeTaggedField(bufferBase32 *bytes.Buffer, dataType byte, data []byte) error {
// Length must be exactly 10 bits, so add leading zero groups if
// needed.
lenBase32 := uint64ToBase32(uint64(len(data)))
for len(lenBase32) < 2 {
lenBase32 = append([]byte{0}, lenBase32...)
}
if len(lenBase32) != 2 {
return fmt.Errorf("data length too big to fit within 10 bits: %d",
len(data))
}
err := bufferBase32.WriteByte(dataType)
if err != nil {
return fmt.Errorf("unable to write to buffer: %v", err)
}
_, err = bufferBase32.Write(lenBase32)
if err != nil {
return fmt.Errorf("unable to write to buffer: %v", err)
}
_, err = bufferBase32.Write(data)
if err != nil {
return fmt.Errorf("unable to write to buffer: %v", err)
}
return nil
}
// base32ToUint64 converts a base32 encoded number to uint64.
func base32ToUint64(data []byte) (uint64, error) {
// Maximum that fits in uint64 is ceil(64 / 5) = 12 groups.
if len(data) > 13 {
return 0, fmt.Errorf("cannot parse data of length %d as uint64",
len(data))
}
val := uint64(0)
for i := 0; i < len(data); i++ {
val = val<<5 | uint64(data[i])
}
return val, nil
}
// uint64ToBase32 converts a uint64 to a base32 encoded integer encoded using
// as few 5-bit groups as possible.
func uint64ToBase32(num uint64) []byte {
// Return at least one group.
if num == 0 {
return []byte{0}
}
// To fit an uint64, we need at most is ceil(64 / 5) = 13 groups.
arr := make([]byte, 13)
i := 13
for num > 0 {
i--
arr[i] = byte(num & uint64(31)) // 0b11111 in binary
num = num >> 5
}
// We only return non-zero leading groups.
return arr[i:]
}