3a14fe8ba5
This commit modifies the existing workflow to add additional paths to be used when on the responding side of a single funder workflow. Additionally, several bugs encountered within the existing dual funder workflow logic have been fixed, and modified to account for the wallet being on the igniting side of a single funder workflow.
1447 lines
51 KiB
Go
1447 lines
51 KiB
Go
package lnwallet
|
|
|
|
import (
|
|
"encoding/hex"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"sync"
|
|
"sync/atomic"
|
|
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/lightningnetwork/lnd/chainntfs"
|
|
"github.com/lightningnetwork/lnd/chainntfs/btcdnotify"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/elkrem"
|
|
"github.com/roasbeef/btcd/btcjson"
|
|
|
|
"github.com/roasbeef/btcd/btcec"
|
|
"github.com/roasbeef/btcd/txscript"
|
|
"github.com/roasbeef/btcd/wire"
|
|
"github.com/roasbeef/btcrpcclient"
|
|
"github.com/roasbeef/btcutil"
|
|
"github.com/roasbeef/btcutil/coinset"
|
|
"github.com/roasbeef/btcutil/txsort"
|
|
"github.com/roasbeef/btcwallet/chain"
|
|
"github.com/roasbeef/btcwallet/waddrmgr"
|
|
btcwallet "github.com/roasbeef/btcwallet/wallet"
|
|
)
|
|
|
|
const (
|
|
// The size of the buffered queue of requests to the wallet from the
|
|
// outside word.
|
|
msgBufferSize = 100
|
|
)
|
|
|
|
var (
|
|
// Error types
|
|
ErrInsufficientFunds = errors.New("not enough available outputs to " +
|
|
"create funding transaction")
|
|
|
|
// Namespace bucket keys.
|
|
lightningNamespaceKey = []byte("ln-wallet")
|
|
waddrmgrNamespaceKey = []byte("waddrmgr")
|
|
wtxmgrNamespaceKey = []byte("wtxmgr")
|
|
)
|
|
|
|
// initFundingReserveReq is the first message sent to initiate the workflow
|
|
// required to open a payment channel with a remote peer. The initial required
|
|
// paramters are configurable accross channels. These paramters are to be chosen
|
|
// depending on the fee climate within the network, and time value of funds to
|
|
// be locked up within the channel. Upon success a ChannelReservation will be
|
|
// created in order to track the lifetime of this pending channel. Outputs
|
|
// selected will be 'locked', making them unavailable, for any other pending
|
|
// reservations. Therefore, all channels in reservation limbo will be periodically
|
|
// after a timeout period in order to avoid "exhaustion" attacks.
|
|
// NOTE: The workflow currently assumes fully balanced symmetric channels.
|
|
// Meaning both parties must encumber the same amount of funds.
|
|
// TODO(roasbeef): zombie reservation sweeper goroutine.
|
|
type initFundingReserveMsg struct {
|
|
// The number of confirmations required before the channel is considered
|
|
// open.
|
|
numConfs uint16
|
|
|
|
// The amount of funds requested for this channel.
|
|
fundingAmount btcutil.Amount
|
|
|
|
// The total capacity of the channel which includes the amount of funds
|
|
// the remote party contributes (if any).
|
|
capacity btcutil.Amount
|
|
|
|
// The minimum accepted satoshis/KB fee for the funding transaction. In
|
|
// order to ensure timely confirmation, it is recomened that this fee
|
|
// should be generous, paying some multiple of the accepted base fee
|
|
// rate of the network.
|
|
// TODO(roasbeef): integrate fee estimation project...
|
|
minFeeRate btcutil.Amount
|
|
|
|
// The ID of the remote node we would like to open a channel with.
|
|
// TODO(roasbeef): switch to just reg pubkey?
|
|
nodeID [32]byte
|
|
|
|
// The delay on the "pay-to-self" output(s) of the commitment transaction.
|
|
csvDelay uint32
|
|
|
|
// A channel in which all errors will be sent accross. Will be nil if
|
|
// this initial set is succesful.
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
err chan error
|
|
|
|
// A ChannelReservation with our contributions filled in will be sent
|
|
// accross this channel in the case of a succesfully reservation
|
|
// initiation. In the case of an error, this will read a nil pointer.
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
resp chan *ChannelReservation
|
|
}
|
|
|
|
// fundingReserveCancelMsg is a message reserved for cancelling an existing
|
|
// channel reservation identified by its reservation ID. Cancelling a reservation
|
|
// frees its locked outputs up, for inclusion within further reservations.
|
|
type fundingReserveCancelMsg struct {
|
|
pendingFundingID uint64
|
|
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
err chan error // Buffered
|
|
}
|
|
|
|
// addContributionMsg represents a message executing the second phase of the
|
|
// channel reservation workflow. This message carries the counterparty's
|
|
// "contribution" to the payment channel. In the case that this message is
|
|
// processed without generating any errors, then channel reservation will then
|
|
// be able to construct the funding tx, both commitment transactions, and
|
|
// finally generate signatures for all our inputs to the funding transaction,
|
|
// and for the remote node's version of the commitment transaction.
|
|
type addContributionMsg struct {
|
|
pendingFundingID uint64
|
|
|
|
// TODO(roasbeef): Should also carry SPV proofs in we're in SPV mode
|
|
contribution *ChannelContribution
|
|
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
err chan error
|
|
}
|
|
|
|
// addSingleContributionMsg represents a message executing the second phase of
|
|
// a single funder channel reservation workflow. This messages carries the
|
|
// counterparty's "contribution" to the payment channel. As this message is
|
|
// sent when on the responding side to a single funder workflow, no further
|
|
// action apart from storing the provided contribution is carried out.
|
|
type addSingleContributionMsg struct {
|
|
pendingFundingID uint64
|
|
|
|
contribution *ChannelContribution
|
|
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
err chan error
|
|
}
|
|
|
|
// addCounterPartySigsMsg represents the final message required to complete,
|
|
// and 'open' a payment channel. This message carries the counterparty's
|
|
// signatures for each of their inputs to the funding transaction, and also a
|
|
// signature allowing us to spend our version of the commitment transaction.
|
|
// If we're able to verify all the signatures are valid, the funding transaction
|
|
// will be broadcast to the network. After the funding transaction gains a
|
|
// configurable number of confirmations, the channel is officially considered
|
|
// 'open'.
|
|
type addCounterPartySigsMsg struct {
|
|
pendingFundingID uint64
|
|
|
|
// Should be order of sorted inputs that are theirs. Sorting is done
|
|
// in accordance to BIP-69:
|
|
// https://github.com/bitcoin/bips/blob/master/bip-0069.mediawiki.
|
|
theirFundingInputScripts []*InputScript
|
|
|
|
// This should be 1/2 of the signatures needed to succesfully spend our
|
|
// version of the commitment transaction.
|
|
theirCommitmentSig []byte
|
|
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
err chan error
|
|
}
|
|
|
|
// addSingleFunderSigsMsg represents the next-to-last message required to
|
|
// complete a single-funder channel workflow. Once the initiator is able to
|
|
// construct the funding transaction, they send both the outpoint and a
|
|
// signature for our version of the commitment transaction. Once this message
|
|
// is processed we (the responder) are able to construct both commitment
|
|
// transactions, signing the remote party's version.
|
|
type addSingleFunderSigsMsg struct {
|
|
pendingFundingID uint64
|
|
|
|
// fundingOutpoint is the out point of the completed funding
|
|
// transaction as assembled by the workflow initiator.
|
|
fundingOutpoint *wire.OutPoint
|
|
|
|
// This should be 1/2 of the signatures needed to succesfully spend our
|
|
// version of the commitment transaction.
|
|
theirCommitmentSig []byte
|
|
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
err chan error
|
|
}
|
|
|
|
// channelOpenMsg is the final message sent to finalize a single funder channel
|
|
// workflow to which we are the responder to. This message is sent once the
|
|
// remote peer deems the channel open, meaning it has reached a sufficient
|
|
// number of confirmations in the blockchain.
|
|
type channelOpenMsg struct {
|
|
pendingFundingID uint64
|
|
|
|
// TODO(roasbeef): move verification up to upper layer, yeh?
|
|
spvProof []byte
|
|
|
|
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
|
|
err chan error
|
|
}
|
|
|
|
// LightningWallet is a domain specific, yet general Bitcoin wallet capable of
|
|
// executing workflow required to interact with the Lightning Network. It is
|
|
// domain specific in the sense that it understands all the fancy scripts used
|
|
// within the Lightning Network, channel lifetimes, etc. However, it embedds a
|
|
// general purpose Bitcoin wallet within it. Therefore, it is also able to serve
|
|
// as a regular Bitcoin wallet which uses HD keys. The wallet is highly concurrent
|
|
// internally. All communication, and requests towards the wallet are
|
|
// dispatched as messages over channels, ensuring thread safety across all
|
|
// operations. Interaction has been designed independant of any peer-to-peer
|
|
// communication protocol, allowing the wallet to be self-contained and embeddable
|
|
// within future projects interacting with the Lightning Network.
|
|
// NOTE: At the moment the wallet requires a btcd full node, as it's dependant
|
|
// on btcd's websockets notifications as even triggers during the lifetime of
|
|
// a channel. However, once the chainntnfs package is complete, the wallet
|
|
// will be compatible with multiple RPC/notification services such as Electrum,
|
|
// Bitcoin Core + ZeroMQ, etc. Eventually, the wallet won't require a full-node
|
|
// at all, as SPV support is integrated inot btcwallet.
|
|
type LightningWallet struct {
|
|
// This mutex is to be held when generating external keys to be used
|
|
// as multi-sig, and commitment keys within the channel.
|
|
KeyGenMtx sync.RWMutex
|
|
|
|
// This mutex MUST be held when performing coin selection in order to
|
|
// avoid inadvertently creating multiple funding transaction which
|
|
// double spend inputs accross each other.
|
|
coinSelectMtx sync.RWMutex
|
|
|
|
// A wrapper around a namespace within boltdb reserved for ln-based
|
|
// wallet meta-data. See the 'channeldb' package for further
|
|
// information.
|
|
channelDB *channeldb.DB
|
|
|
|
// Used by in order to obtain notifications about funding transaction
|
|
// reaching a specified confirmation depth, and to catch
|
|
// counterparty's broadcasting revoked commitment states.
|
|
// TODO(roasbeef): needs to be stripped out from wallet
|
|
ChainNotifier chainntnfs.ChainNotifier
|
|
|
|
// The core wallet, all non Lightning Network specific interaction is
|
|
// proxied to the internal wallet.
|
|
*btcwallet.Wallet
|
|
|
|
// An active RPC connection to a full-node. In the case of a btcd node,
|
|
// websockets are used for notifications. If using Bitcoin Core,
|
|
// notifications are either generated via long-polling or the usage of
|
|
// ZeroMQ.
|
|
// TODO(roasbeef): make into interface need: getrawtransaction + gettxout
|
|
// * getrawtransaction -> verify proof of channel links
|
|
// * gettxout -> verify inputs to funding tx exist and are unspent
|
|
rpc *chain.RPCClient
|
|
|
|
// All messages to the wallet are to be sent accross this channel.
|
|
msgChan chan interface{}
|
|
|
|
// Incomplete payment channels are stored in the map below. An intent
|
|
// to create a payment channel is tracked as a "reservation" within
|
|
// limbo. Once the final signatures have been exchanged, a reservation
|
|
// is removed from limbo. Each reservation is tracked by a unique
|
|
// monotonically integer. All requests concerning the channel MUST
|
|
// carry a valid, active funding ID.
|
|
fundingLimbo map[uint64]*ChannelReservation
|
|
nextFundingID uint64
|
|
limboMtx sync.RWMutex
|
|
// TODO(roasbeef): zombie garbage collection routine to solve
|
|
// lost-object/starvation problem/attack.
|
|
|
|
cfg *Config
|
|
|
|
started int32
|
|
shutdown int32
|
|
quit chan struct{}
|
|
|
|
wg sync.WaitGroup
|
|
|
|
// TODO(roasbeef): handle wallet lock/unlock
|
|
}
|
|
|
|
// NewLightningWallet creates/opens and initializes a LightningWallet instance.
|
|
// If the wallet has never been created (according to the passed dataDir), first-time
|
|
// setup is executed.
|
|
func NewLightningWallet(config *Config, cdb *channeldb.DB) (*LightningWallet, error) {
|
|
// Ensure the wallet exists or create it when the create flag is set.
|
|
netDir := networkDir(config.DataDir, config.NetParams)
|
|
|
|
var pubPass []byte
|
|
if config.PublicPass == nil {
|
|
pubPass = defaultPubPassphrase
|
|
} else {
|
|
pubPass = config.PublicPass
|
|
}
|
|
|
|
loader := btcwallet.NewLoader(config.NetParams, netDir)
|
|
walletExists, err := loader.WalletExists()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var createID bool
|
|
var wallet *btcwallet.Wallet
|
|
if !walletExists {
|
|
// Wallet has never been created, perform initial set up.
|
|
wallet, err = loader.CreateNewWallet(pubPass, config.PrivatePass,
|
|
config.HdSeed)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
createID = true
|
|
} else {
|
|
// Wallet has been created and been initialized at this point, open it
|
|
// along with all the required DB namepsaces, and the DB itself.
|
|
wallet, err = loader.OpenExistingWallet(pubPass, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
if err := wallet.Manager.Unlock(config.PrivatePass); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If we just created the wallet, then reserve, and store a key for
|
|
// our ID within the Lightning Network.
|
|
if createID {
|
|
account := uint32(waddrmgr.DefaultAccountNum)
|
|
adrs, err := wallet.Manager.NextInternalAddresses(account, 1, waddrmgr.WitnessPubKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
idPubkeyHash := adrs[0].Address().ScriptAddress()
|
|
if err := cdb.PutIdKey(idPubkeyHash); err != nil {
|
|
return nil, err
|
|
}
|
|
log.Infof("stored identity key pubkey hash in channeldb")
|
|
}
|
|
|
|
// Create a special websockets rpc client for btcd which will be used
|
|
// by the wallet for notifications, calls, etc.
|
|
rpcc, err := chain.NewRPCClient(config.NetParams, config.RpcHost,
|
|
config.RpcUser, config.RpcPass, config.CACert, false, 20)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Using the same authentication info, create a config for a second
|
|
// rpcclient which will be used by the current default chain
|
|
// notifier implemenation.
|
|
rpcConfig := &btcrpcclient.ConnConfig{
|
|
Host: config.RpcHost,
|
|
Endpoint: "ws",
|
|
User: config.RpcUser,
|
|
Pass: config.RpcPass,
|
|
Certificates: config.CACert,
|
|
DisableTLS: false,
|
|
DisableConnectOnNew: true,
|
|
DisableAutoReconnect: false,
|
|
}
|
|
chainNotifier, err := btcdnotify.NewBtcdNotifier(rpcConfig)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// TODO(roasbeef): logging
|
|
return &LightningWallet{
|
|
ChainNotifier: chainNotifier,
|
|
rpc: rpcc,
|
|
Wallet: wallet,
|
|
channelDB: cdb,
|
|
msgChan: make(chan interface{}, msgBufferSize),
|
|
// TODO(roasbeef): make this atomic.Uint32 instead? Which is
|
|
// faster, locks or CAS? I'm guessing CAS because assembly:
|
|
// * https://golang.org/src/sync/atomic/asm_amd64.s
|
|
nextFundingID: 0,
|
|
cfg: config,
|
|
fundingLimbo: make(map[uint64]*ChannelReservation),
|
|
quit: make(chan struct{}),
|
|
}, nil
|
|
}
|
|
|
|
// Startup establishes a connection to the RPC source, and spins up all
|
|
// goroutines required to handle incoming messages.
|
|
func (l *LightningWallet) Startup() error {
|
|
// Already started?
|
|
if atomic.AddInt32(&l.started, 1) != 1 {
|
|
return nil
|
|
}
|
|
|
|
// Establish an RPC connection in additino to starting the goroutines
|
|
// in the underlying wallet.
|
|
if err := l.rpc.Start(); err != nil {
|
|
return err
|
|
}
|
|
l.Start()
|
|
|
|
// Start the notification server. This is used so channel managment
|
|
// goroutines can be notified when a funding transaction reaches a
|
|
// sufficient number of confirmations, or when the input for the funding
|
|
// transaction is spent in an attempt at an uncooperative close by the
|
|
// counter party.
|
|
if err := l.ChainNotifier.Start(); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Pass the rpc client into the wallet so it can sync up to the current
|
|
// main chain.
|
|
l.SynchronizeRPC(l.rpc)
|
|
|
|
l.wg.Add(1)
|
|
// TODO(roasbeef): multiple request handlers?
|
|
go l.requestHandler()
|
|
|
|
return nil
|
|
}
|
|
|
|
// Shutdown gracefully stops the wallet, and all active goroutines.
|
|
func (l *LightningWallet) Shutdown() error {
|
|
if atomic.AddInt32(&l.shutdown, 1) != 1 {
|
|
return nil
|
|
}
|
|
|
|
// Signal the underlying wallet controller to shutdown, waiting until
|
|
// all active goroutines have been shutdown.
|
|
l.Stop()
|
|
l.WaitForShutdown()
|
|
|
|
l.rpc.Shutdown()
|
|
|
|
l.ChainNotifier.Stop()
|
|
|
|
close(l.quit)
|
|
l.wg.Wait()
|
|
return nil
|
|
}
|
|
|
|
// requestHandler is the primary goroutine(s) resposible for handling, and
|
|
// dispatching relies to all messages.
|
|
func (l *LightningWallet) requestHandler() {
|
|
out:
|
|
for {
|
|
select {
|
|
case m := <-l.msgChan:
|
|
switch msg := m.(type) {
|
|
case *initFundingReserveMsg:
|
|
l.handleFundingReserveRequest(msg)
|
|
case *fundingReserveCancelMsg:
|
|
l.handleFundingCancelRequest(msg)
|
|
case *addSingleContributionMsg:
|
|
l.handleSingleContribution(msg)
|
|
case *addContributionMsg:
|
|
l.handleContributionMsg(msg)
|
|
case *addSingleFunderSigsMsg:
|
|
l.handleSingleFunderSigs(msg)
|
|
case *addCounterPartySigsMsg:
|
|
l.handleFundingCounterPartySigs(msg)
|
|
case *channelOpenMsg:
|
|
l.handleChannelOpen(msg)
|
|
}
|
|
case <-l.quit:
|
|
// TODO: do some clean up
|
|
break out
|
|
}
|
|
}
|
|
|
|
l.wg.Done()
|
|
}
|
|
|
|
// InitChannelReservation kicks off the 3-step workflow required to succesfully
|
|
// open a payment channel with a remote node. As part of the funding
|
|
// reservation, the inputs selected for the funding transaction are 'locked'.
|
|
// This ensures that multiple channel reservations aren't double spending the
|
|
// same inputs in the funding transaction. If reservation initialization is
|
|
// succesful, a ChannelReservation containing our completed contribution is
|
|
// returned. Our contribution contains all the items neccessary to allow the
|
|
// counter party to build the funding transaction, and both versions of the
|
|
// commitment transaction. Otherwise, an error occured a nil pointer along with
|
|
// an error are returned.
|
|
//
|
|
// Once a ChannelReservation has been obtained, two additional steps must be
|
|
// processed before a payment channel can be considered 'open'. The second step
|
|
// validates, and processes the counterparty's channel contribution. The third,
|
|
// and final step verifies all signatures for the inputs of the funding
|
|
// transaction, and that the signature we records for our version of the
|
|
// commitment transaction is valid.
|
|
func (l *LightningWallet) InitChannelReservation(capacity,
|
|
ourFundAmt btcutil.Amount, theirID [32]byte, numConfs uint16,
|
|
csvDelay uint32) (*ChannelReservation, error) {
|
|
|
|
errChan := make(chan error, 1)
|
|
respChan := make(chan *ChannelReservation, 1)
|
|
|
|
l.msgChan <- &initFundingReserveMsg{
|
|
capacity: capacity,
|
|
numConfs: numConfs,
|
|
fundingAmount: ourFundAmt,
|
|
csvDelay: csvDelay,
|
|
nodeID: theirID,
|
|
err: errChan,
|
|
resp: respChan,
|
|
}
|
|
|
|
return <-respChan, <-errChan
|
|
}
|
|
|
|
// handleFundingReserveRequest processes a message intending to create, and
|
|
// validate a funding reservation request.
|
|
func (l *LightningWallet) handleFundingReserveRequest(req *initFundingReserveMsg) {
|
|
// Create a limbo and record entry for this newly pending funding request.
|
|
l.limboMtx.Lock()
|
|
|
|
id := l.nextFundingID
|
|
reservation := newChannelReservation(req.capacity, req.fundingAmount,
|
|
req.minFeeRate, l, id, req.numConfs)
|
|
l.nextFundingID++
|
|
l.fundingLimbo[id] = reservation
|
|
|
|
l.limboMtx.Unlock()
|
|
|
|
// Grab the mutex on the ChannelReservation to ensure thead-safety
|
|
reservation.Lock()
|
|
defer reservation.Unlock()
|
|
|
|
reservation.partialState.TheirLNID = req.nodeID
|
|
ourContribution := reservation.ourContribution
|
|
ourContribution.CsvDelay = req.csvDelay
|
|
reservation.partialState.LocalCsvDelay = req.csvDelay
|
|
|
|
// If we're on the receiving end of a single funder channel then we
|
|
// don't need to perform any coin selection. Otherwise, attempt to
|
|
// obtain enough coins to meet the required funding amount.
|
|
if req.fundingAmount != 0 {
|
|
if err := l.selectCoinsAndChange(req.fundingAmount, ourContribution); err != nil {
|
|
req.err <- err
|
|
req.resp <- nil
|
|
return
|
|
}
|
|
}
|
|
|
|
// Grab two fresh keys from our HD chain, one will be used for the
|
|
// multi-sig funding transaction, and the other for the commitment
|
|
// transaction.
|
|
multiSigKey, err := l.getNextRawKey()
|
|
if err != nil {
|
|
req.err <- err
|
|
req.resp <- nil
|
|
return
|
|
}
|
|
commitKey, err := l.getNextRawKey()
|
|
if err != nil {
|
|
req.err <- err
|
|
req.resp <- nil
|
|
return
|
|
}
|
|
reservation.partialState.OurMultiSigKey = multiSigKey
|
|
ourContribution.MultiSigKey = multiSigKey.PubKey()
|
|
reservation.partialState.OurCommitKey = commitKey
|
|
ourContribution.CommitKey = commitKey.PubKey()
|
|
|
|
// Generate a fresh address to be used in the case of a cooperative
|
|
// channel close.
|
|
deliveryAddress, err := l.NewAddress(waddrmgr.DefaultAccountNum,
|
|
waddrmgr.WitnessPubKey)
|
|
if err != nil {
|
|
req.err <- err
|
|
req.resp <- nil
|
|
return
|
|
}
|
|
deliveryScript, err := txscript.PayToAddrScript(deliveryAddress)
|
|
if err != nil {
|
|
req.err <- err
|
|
req.resp <- nil
|
|
return
|
|
}
|
|
reservation.partialState.OurDeliveryScript = deliveryScript
|
|
ourContribution.DeliveryAddress = deliveryAddress
|
|
|
|
// Create a new elkrem for verifiable transaction revocations. This
|
|
// will be used to generate revocation hashes for our past/current
|
|
// commitment transactions once we start to make payments within the
|
|
// channel.
|
|
// TODO(roabeef): should be HMAC based...REMOVE BEFORE ALPHA
|
|
var zero wire.ShaHash
|
|
elkremSender := elkrem.NewElkremSender(63, zero)
|
|
reservation.partialState.LocalElkrem = &elkremSender
|
|
firstPrimage, err := elkremSender.AtIndex(0)
|
|
if err != nil {
|
|
req.err <- err
|
|
req.resp <- nil
|
|
return
|
|
}
|
|
copy(ourContribution.RevocationHash[:], btcutil.Hash160(firstPrimage[:]))
|
|
|
|
// Funding reservation request succesfully handled. The funding inputs
|
|
// will be marked as unavailable until the reservation is either
|
|
// completed, or cancecled.
|
|
req.resp <- reservation
|
|
req.err <- nil
|
|
}
|
|
|
|
// handleFundingReserveCancel cancels an existing channel reservation. As part
|
|
// of the cancellation, outputs previously selected as inputs for the funding
|
|
// transaction via coin selection are freed allowing future reservations to
|
|
// include them.
|
|
func (l *LightningWallet) handleFundingCancelRequest(req *fundingReserveCancelMsg) {
|
|
// TODO(roasbeef): holding lock too long
|
|
l.limboMtx.Lock()
|
|
defer l.limboMtx.Unlock()
|
|
|
|
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
|
|
if !ok {
|
|
// TODO(roasbeef): make new error, "unkown funding state" or something
|
|
req.err <- fmt.Errorf("attempted to cancel non-existant funding state")
|
|
return
|
|
}
|
|
|
|
// Grab the mutex on the ChannelReservation to ensure thead-safety
|
|
pendingReservation.Lock()
|
|
defer pendingReservation.Unlock()
|
|
|
|
// Mark all previously locked outpoints as usuable for future funding
|
|
// requests.
|
|
for _, unusedInput := range pendingReservation.ourContribution.Inputs {
|
|
l.UnlockOutpoint(unusedInput.PreviousOutPoint)
|
|
}
|
|
|
|
// TODO(roasbeef): is it even worth it to keep track of unsed keys?
|
|
|
|
// TODO(roasbeef): Is it possible to mark the unused change also as
|
|
// available?
|
|
|
|
delete(l.fundingLimbo, req.pendingFundingID)
|
|
|
|
req.err <- nil
|
|
}
|
|
|
|
// handleFundingCounterPartyFunds processes the second workflow step for the
|
|
// lifetime of a channel reservation. Upon completion, the reservation will
|
|
// carry a completed funding transaction (minus the counterparty's input
|
|
// signatures), both versions of the commitment transaction, and our signature
|
|
// for their version of the commitment transaction.
|
|
func (l *LightningWallet) handleContributionMsg(req *addContributionMsg) {
|
|
l.limboMtx.Lock()
|
|
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
|
|
l.limboMtx.Unlock()
|
|
if !ok {
|
|
req.err <- fmt.Errorf("attempted to update non-existant funding state")
|
|
return
|
|
}
|
|
|
|
// Grab the mutex on the ChannelReservation to ensure thead-safety
|
|
pendingReservation.Lock()
|
|
defer pendingReservation.Unlock()
|
|
|
|
// Create a blank, fresh transaction. Soon to be a complete funding
|
|
// transaction which will allow opening a lightning channel.
|
|
pendingReservation.fundingTx = wire.NewMsgTx()
|
|
fundingTx := pendingReservation.fundingTx
|
|
|
|
// Some temporary variables to cut down on the resolution verbosity.
|
|
pendingReservation.theirContribution = req.contribution
|
|
theirContribution := req.contribution
|
|
ourContribution := pendingReservation.ourContribution
|
|
|
|
// Add all multi-party inputs and outputs to the transaction.
|
|
for _, ourInput := range ourContribution.Inputs {
|
|
fundingTx.AddTxIn(ourInput)
|
|
}
|
|
for _, theirInput := range theirContribution.Inputs {
|
|
fundingTx.AddTxIn(theirInput)
|
|
}
|
|
for _, ourChangeOutput := range ourContribution.ChangeOutputs {
|
|
fundingTx.AddTxOut(ourChangeOutput)
|
|
}
|
|
for _, theirChangeOutput := range theirContribution.ChangeOutputs {
|
|
fundingTx.AddTxOut(theirChangeOutput)
|
|
}
|
|
|
|
ourKey := pendingReservation.partialState.OurMultiSigKey
|
|
theirKey := theirContribution.MultiSigKey
|
|
|
|
// Finally, add the 2-of-2 multi-sig output which will set up the lightning
|
|
// channel.
|
|
channelCapacity := int64(pendingReservation.partialState.Capacity)
|
|
redeemScript, multiSigOut, err := genFundingPkScript(ourKey.PubKey().SerializeCompressed(),
|
|
theirKey.SerializeCompressed(), channelCapacity)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
pendingReservation.partialState.FundingRedeemScript = redeemScript
|
|
|
|
// Register intent for notifications related to the funding output.
|
|
// This'll allow us to properly track the number of confirmations the
|
|
// funding tx has once it has been broadcasted.
|
|
// TODO(roasbeef): remove
|
|
lastBlock := l.Manager.SyncedTo()
|
|
scriptAddr, err := l.Manager.ImportScript(redeemScript, &lastBlock)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
if err := l.rpc.NotifyReceived([]btcutil.Address{scriptAddr.Address()}); err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
|
|
// Sort the transaction. Since both side agree to a cannonical
|
|
// ordering, by sorting we no longer need to send the entire
|
|
// transaction. Only signatures will be exchanged.
|
|
fundingTx.AddTxOut(multiSigOut)
|
|
txsort.InPlaceSort(pendingReservation.fundingTx)
|
|
|
|
// Next, sign all inputs that are ours, collecting the signatures in
|
|
// order of the inputs.
|
|
pendingReservation.ourFundingInputScripts = make([]*InputScript, 0, len(ourContribution.Inputs))
|
|
hashCache := txscript.NewTxSigHashes(fundingTx)
|
|
for i, txIn := range fundingTx.TxIn {
|
|
// Does the wallet know about the txin?
|
|
txDetail, _ := l.TxStore.TxDetails(&txIn.PreviousOutPoint.Hash)
|
|
if txDetail == nil {
|
|
continue
|
|
}
|
|
|
|
// Is this our txin?
|
|
prevIndex := txIn.PreviousOutPoint.Index
|
|
prevOut := txDetail.TxRecord.MsgTx.TxOut[prevIndex]
|
|
_, addrs, _, _ := txscript.ExtractPkScriptAddrs(prevOut.PkScript, l.cfg.NetParams)
|
|
apkh := addrs[0]
|
|
|
|
ai, err := l.Manager.Address(apkh)
|
|
if err != nil {
|
|
req.err <- fmt.Errorf("cannot get address info: %v", err)
|
|
return
|
|
}
|
|
pka := ai.(waddrmgr.ManagedPubKeyAddress)
|
|
privKey, err := pka.PrivKey()
|
|
if err != nil {
|
|
req.err <- fmt.Errorf("cannot get private key: %v", err)
|
|
return
|
|
}
|
|
|
|
var witnessProgram []byte
|
|
inputScript := &InputScript{}
|
|
|
|
// If we're spending p2wkh output nested within a p2sh output,
|
|
// then we'll need to attach a sigScript in addition to witness
|
|
// data.
|
|
if pka.IsNestedWitness() {
|
|
pubKey := privKey.PubKey()
|
|
pubKeyHash := btcutil.Hash160(pubKey.SerializeCompressed())
|
|
|
|
// Next, we'll generate a valid sigScript that'll allow us to spend
|
|
// the p2sh output. The sigScript will contain only a single push of
|
|
// the p2wkh witness program corresponding to the matching public key
|
|
// of this address.
|
|
p2wkhAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubKeyHash,
|
|
l.cfg.NetParams)
|
|
if err != nil {
|
|
req.err <- fmt.Errorf("unable to create p2wkh addr: %v", err)
|
|
return
|
|
}
|
|
witnessProgram, err = txscript.PayToAddrScript(p2wkhAddr)
|
|
if err != nil {
|
|
req.err <- fmt.Errorf("unable to create witness program: %v", err)
|
|
return
|
|
}
|
|
bldr := txscript.NewScriptBuilder()
|
|
bldr.AddData(witnessProgram)
|
|
sigScript, err := bldr.Script()
|
|
if err != nil {
|
|
req.err <- fmt.Errorf("unable to create scriptsig: %v", err)
|
|
return
|
|
}
|
|
txIn.SignatureScript = sigScript
|
|
inputScript.ScriptSig = sigScript
|
|
} else {
|
|
witnessProgram = prevOut.PkScript
|
|
}
|
|
|
|
// Generate a valid witness stack for the input.
|
|
inputValue := prevOut.Value
|
|
witnessScript, err := txscript.WitnessScript(fundingTx, hashCache, i,
|
|
inputValue, witnessProgram, txscript.SigHashAll, privKey, true)
|
|
if err != nil {
|
|
req.err <- fmt.Errorf("cannot create witnessscript: %s", err)
|
|
return
|
|
}
|
|
txIn.Witness = witnessScript
|
|
inputScript.Witness = witnessScript
|
|
|
|
pendingReservation.ourFundingInputScripts = append(
|
|
pendingReservation.ourFundingInputScripts,
|
|
inputScript,
|
|
)
|
|
}
|
|
|
|
// Locate the index of the multi-sig outpoint in order to record it
|
|
// since the outputs are cannonically sorted. If this is a sigle funder
|
|
// workflow, then we'll also need to send this to the remote node.
|
|
fundingTxID := fundingTx.TxSha()
|
|
found, multiSigIndex := findScriptOutputIndex(fundingTx, multiSigOut.PkScript)
|
|
fundingOutpoint := wire.NewOutPoint(&fundingTxID, multiSigIndex)
|
|
pendingReservation.partialState.FundingOutpoint = fundingOutpoint
|
|
|
|
// Initialize an empty sha-chain for them, tracking the current pending
|
|
// revocation hash (we don't yet know the pre-image so we can't add it
|
|
// to the chain).
|
|
e := elkrem.NewElkremReceiver(63)
|
|
// TODO(roasbeef): this is incorrect!! fix before lnstate integration
|
|
var zero wire.ShaHash
|
|
if err := e.AddNext(&zero); err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
|
|
pendingReservation.partialState.RemoteElkrem = &e
|
|
pendingReservation.partialState.TheirCurrentRevocation = theirContribution.RevocationHash
|
|
|
|
// Grab the hash of the current pre-image in our chain, this is needed
|
|
// for our commitment tx.
|
|
// TODO(roasbeef): grab partial state above to avoid long attr chain
|
|
ourCurrentRevokeHash := pendingReservation.ourContribution.RevocationHash
|
|
|
|
// Create the txIn to our commitment transaction; required to construct
|
|
// the commitment transactions.
|
|
fundingTxIn := wire.NewTxIn(wire.NewOutPoint(&fundingTxID, multiSigIndex), nil, nil)
|
|
|
|
// With the funding tx complete, create both commitment transactions.
|
|
// TODO(roasbeef): much cleanup + de-duplication
|
|
pendingReservation.fundingLockTime = theirContribution.CsvDelay
|
|
ourCommitKey := ourContribution.CommitKey
|
|
theirCommitKey := theirContribution.CommitKey
|
|
ourBalance := ourContribution.FundingAmount
|
|
theirBalance := theirContribution.FundingAmount
|
|
ourCommitTx, err := createCommitTx(fundingTxIn, ourCommitKey, theirCommitKey,
|
|
ourCurrentRevokeHash[:], ourContribution.CsvDelay,
|
|
ourBalance, theirBalance)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
theirCommitTx, err := createCommitTx(fundingTxIn, theirCommitKey, ourCommitKey,
|
|
theirContribution.RevocationHash[:], theirContribution.CsvDelay,
|
|
theirBalance, ourBalance)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
|
|
// Sort both transactions according to the agreed upon cannonical
|
|
// ordering. This lets us skip sending the entire transaction over,
|
|
// instead we'll just send signatures.
|
|
txsort.InPlaceSort(ourCommitTx)
|
|
txsort.InPlaceSort(theirCommitTx)
|
|
|
|
deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
|
|
// Record newly available information witin the open channel state.
|
|
pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay
|
|
pendingReservation.partialState.TheirDeliveryScript = deliveryScript
|
|
pendingReservation.partialState.ChanID = fundingOutpoint
|
|
pendingReservation.partialState.TheirCommitKey = theirCommitKey
|
|
pendingReservation.partialState.TheirMultiSigKey = theirContribution.MultiSigKey
|
|
pendingReservation.partialState.TheirCommitTx = theirCommitTx
|
|
pendingReservation.partialState.OurCommitTx = ourCommitTx
|
|
|
|
// Generate a signature for their version of the initial commitment
|
|
// transaction.
|
|
hashCache = txscript.NewTxSigHashes(theirCommitTx)
|
|
channelBalance := pendingReservation.partialState.Capacity
|
|
sigTheirCommit, err := txscript.RawTxInWitnessSignature(theirCommitTx, hashCache, 0,
|
|
int64(channelBalance), redeemScript, txscript.SigHashAll, ourKey)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
pendingReservation.ourCommitmentSig = sigTheirCommit
|
|
|
|
req.err <- nil
|
|
}
|
|
|
|
// handleSingleContribution is called as the second step to a single funder
|
|
// workflow to which we are the responder. It simply saves the remote peer's
|
|
// contribution to the channel, as solely the remote peer will contribute any
|
|
// funds to the channel.
|
|
func (l *LightningWallet) handleSingleContribution(req *addSingleContributionMsg) {
|
|
l.limboMtx.Lock()
|
|
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
|
|
l.limboMtx.Unlock()
|
|
if !ok {
|
|
req.err <- fmt.Errorf("attempted to update non-existant funding state")
|
|
return
|
|
}
|
|
|
|
// Grab the mutex on the ChannelReservation to ensure thead-safety
|
|
pendingReservation.Lock()
|
|
defer pendingReservation.Unlock()
|
|
|
|
// Simply record the counterparty's contribution into the pending
|
|
// reservation data as they'll be solely funding the channel entirely.
|
|
pendingReservation.theirContribution = req.contribution
|
|
theirContribution := pendingReservation.theirContribution
|
|
|
|
// Additionally, we can now also record the redeem script of the
|
|
// funding transaction.
|
|
// TODO(roasbeef): switch to proper pubkey derivation
|
|
ourKey := pendingReservation.partialState.OurMultiSigKey.PubKey()
|
|
theirKey := theirContribution.MultiSigKey
|
|
channelCapacity := int64(pendingReservation.partialState.Capacity)
|
|
redeemScript, _, err := genFundingPkScript(ourKey.SerializeCompressed(),
|
|
theirKey.SerializeCompressed(), channelCapacity)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
pendingReservation.partialState.FundingRedeemScript = redeemScript
|
|
|
|
// Initialize an empty sha-chain for them, tracking the current pending
|
|
// revocation hash (we don't yet know the pre-image so we can't add it
|
|
// to the chain).
|
|
e := elkrem.NewElkremReceiver(63)
|
|
// TODO(roasbeef): this is incorrect!! fix before lnstate integration
|
|
var zero wire.ShaHash
|
|
if err := e.AddNext(&zero); err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
|
|
// Record the counterpaty's remaining contributions to the channel,
|
|
// converting their delivery address into a public key script.
|
|
deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay
|
|
pendingReservation.partialState.TheirDeliveryScript = deliveryScript
|
|
pendingReservation.partialState.RemoteElkrem = &e
|
|
pendingReservation.partialState.TheirCommitKey = theirContribution.CommitKey
|
|
pendingReservation.partialState.TheirMultiSigKey = theirContribution.MultiSigKey
|
|
pendingReservation.partialState.TheirCurrentRevocation = theirContribution.RevocationHash
|
|
|
|
req.err <- nil
|
|
return
|
|
}
|
|
|
|
// handleFundingCounterPartySigs is the final step in the channel reservation
|
|
// workflow. During this setp, we validate *all* the received signatures for
|
|
// inputs to the funding transaction. If any of these are invalid, we bail,
|
|
// and forcibly cancel this funding request. Additionally, we ensure that the
|
|
// signature we received from the counterparty for our version of the commitment
|
|
// transaction allows us to spend from the funding output with the addition of
|
|
// our signature.
|
|
func (l *LightningWallet) handleFundingCounterPartySigs(msg *addCounterPartySigsMsg) {
|
|
l.limboMtx.RLock()
|
|
pendingReservation, ok := l.fundingLimbo[msg.pendingFundingID]
|
|
l.limboMtx.RUnlock()
|
|
if !ok {
|
|
msg.err <- fmt.Errorf("attempted to update non-existant funding state")
|
|
return
|
|
}
|
|
|
|
// Grab the mutex on the ChannelReservation to ensure thead-safety
|
|
pendingReservation.Lock()
|
|
defer pendingReservation.Unlock()
|
|
|
|
// Now we can complete the funding transaction by adding their
|
|
// signatures to their inputs.
|
|
pendingReservation.theirFundingInputScripts = msg.theirFundingInputScripts
|
|
inputScripts := msg.theirFundingInputScripts
|
|
fundingTx := pendingReservation.fundingTx
|
|
sigIndex := 0
|
|
fundingHashCache := txscript.NewTxSigHashes(fundingTx)
|
|
for i, txin := range fundingTx.TxIn {
|
|
if len(inputScripts) != 0 && len(txin.Witness) == 0 {
|
|
// Attach the input scripts so we can verify it below.
|
|
txin.Witness = inputScripts[sigIndex].Witness
|
|
txin.SignatureScript = inputScripts[sigIndex].ScriptSig
|
|
|
|
// Fetch the alleged previous output along with the
|
|
// pkscript referenced by this input.
|
|
prevOut := txin.PreviousOutPoint
|
|
output, err := l.rpc.GetTxOut(&prevOut.Hash, prevOut.Index, false)
|
|
if output == nil {
|
|
msg.err <- fmt.Errorf("input to funding tx does not exist: %v", err)
|
|
return
|
|
}
|
|
|
|
pkScript, err := hex.DecodeString(output.ScriptPubKey.Hex)
|
|
if err != nil {
|
|
msg.err <- err
|
|
return
|
|
}
|
|
// Sadly, gettxout returns the output value in BTC
|
|
// instead of satoshis.
|
|
inputValue := int64(output.Value) * 1e8
|
|
|
|
// Ensure that the witness+sigScript combo is valid.
|
|
vm, err := txscript.NewEngine(pkScript,
|
|
fundingTx, i, txscript.StandardVerifyFlags, nil,
|
|
fundingHashCache, inputValue)
|
|
if err != nil {
|
|
// TODO(roasbeef): cancel at this stage if invalid sigs?
|
|
msg.err <- fmt.Errorf("cannot create script engine: %s", err)
|
|
return
|
|
}
|
|
if err = vm.Execute(); err != nil {
|
|
msg.err <- fmt.Errorf("cannot validate transaction: %s", err)
|
|
return
|
|
}
|
|
|
|
sigIndex++
|
|
}
|
|
}
|
|
|
|
// At this point, we can also record and verify their signature for our
|
|
// commitment transaction.
|
|
pendingReservation.theirCommitmentSig = msg.theirCommitmentSig
|
|
commitTx := pendingReservation.partialState.OurCommitTx
|
|
theirKey := pendingReservation.theirContribution.MultiSigKey
|
|
ourKey := pendingReservation.partialState.OurMultiSigKey
|
|
|
|
// Re-generate both the redeemScript and p2sh output. We sign the
|
|
// redeemScript script, but include the p2sh output as the subscript
|
|
// for verification.
|
|
redeemScript := pendingReservation.partialState.FundingRedeemScript
|
|
p2wsh, err := witnessScriptHash(redeemScript)
|
|
if err != nil {
|
|
msg.err <- err
|
|
return
|
|
}
|
|
|
|
// First, we sign our copy of the commitment transaction ourselves.
|
|
channelValue := int64(pendingReservation.partialState.Capacity)
|
|
hashCache := txscript.NewTxSigHashes(commitTx)
|
|
ourCommitSig, err := txscript.RawTxInWitnessSignature(commitTx, hashCache, 0,
|
|
channelValue, redeemScript, txscript.SigHashAll, ourKey)
|
|
if err != nil {
|
|
msg.err <- err
|
|
return
|
|
}
|
|
|
|
// Next, create the spending scriptSig, and then verify that the script
|
|
// is complete, allowing us to spend from the funding transaction.
|
|
theirCommitSig := msg.theirCommitmentSig
|
|
ourKeySer := ourKey.PubKey().SerializeCompressed()
|
|
theirKeySer := theirKey.SerializeCompressed()
|
|
witness := spendMultiSig(redeemScript, ourKeySer, ourCommitSig,
|
|
theirKeySer, theirCommitSig)
|
|
|
|
// Finally, create an instance of a Script VM, and ensure that the
|
|
// Script executes succesfully.
|
|
// TODO(roasbeef): remove afterwards, should *never* be hot...
|
|
commitTx.TxIn[0].Witness = witness
|
|
vm, err := txscript.NewEngine(p2wsh,
|
|
commitTx, 0, txscript.StandardVerifyFlags, nil,
|
|
nil, channelValue)
|
|
if err != nil {
|
|
msg.err <- err
|
|
return
|
|
}
|
|
if err := vm.Execute(); err != nil {
|
|
msg.err <- fmt.Errorf("counterparty's commitment signature is invalid: %v", err)
|
|
return
|
|
}
|
|
|
|
// Funding complete, this entry can be removed from limbo.
|
|
l.limboMtx.Lock()
|
|
delete(l.fundingLimbo, pendingReservation.reservationID)
|
|
// TODO(roasbeef): unlock outputs here, Store.InsertTx will handle marking
|
|
// input in unconfirmed tx, so future coin selects don't pick it up
|
|
// * also record location of change address so can use AddCredit
|
|
l.limboMtx.Unlock()
|
|
|
|
log.Infof("Broadcasting funding tx for ChannelPoint(%v): %v",
|
|
pendingReservation.partialState.FundingOutpoint,
|
|
spew.Sdump(fundingTx))
|
|
|
|
// Broacast the finalized funding transaction to the network.
|
|
if err := l.PublishTransaction(fundingTx); err != nil {
|
|
msg.err <- err
|
|
return
|
|
}
|
|
|
|
// Add the complete funding transaction to the DB, in it's open bucket
|
|
// which will be used for the lifetime of this channel.
|
|
if err := pendingReservation.partialState.FullSync(); err != nil {
|
|
msg.err <- err
|
|
return
|
|
}
|
|
|
|
// Create a goroutine to watch the chain so we can open the channel once
|
|
// the funding tx has enough confirmations.
|
|
go l.openChannelAfterConfirmations(pendingReservation)
|
|
|
|
msg.err <- nil
|
|
}
|
|
|
|
// handleSingleFunderSigs is called once the remote peer who initiated the
|
|
// single funder workflow has assembled the funding transaction, and generated
|
|
// a signature for our version of the commitment transaction. This method
|
|
// progresses the workflow by generating a signature for the remote peer's
|
|
// version of the commitment transaction.
|
|
func (l *LightningWallet) handleSingleFunderSigs(req *addSingleFunderSigsMsg) {
|
|
l.limboMtx.RLock()
|
|
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
|
|
l.limboMtx.RUnlock()
|
|
if !ok {
|
|
req.err <- fmt.Errorf("attempted to update non-existant funding state")
|
|
return
|
|
}
|
|
|
|
// Grab the mutex on the ChannelReservation to ensure thead-safety
|
|
pendingReservation.Lock()
|
|
defer pendingReservation.Unlock()
|
|
|
|
pendingReservation.partialState.FundingOutpoint = req.fundingOutpoint
|
|
pendingReservation.partialState.ChanID = req.fundingOutpoint
|
|
fundingTxIn := wire.NewTxIn(req.fundingOutpoint, nil, nil)
|
|
|
|
// Now that we have the funding outpoint, we can generate both versions
|
|
// of the commitment transaction, and generate a signature for the
|
|
// remote node's commitment transactions.
|
|
ourCommitKey := pendingReservation.ourContribution.CommitKey
|
|
theirCommitKey := pendingReservation.theirContribution.CommitKey
|
|
ourBalance := pendingReservation.ourContribution.FundingAmount
|
|
theirBalance := pendingReservation.theirContribution.FundingAmount
|
|
ourCommitTx, err := createCommitTx(fundingTxIn, ourCommitKey, theirCommitKey,
|
|
pendingReservation.ourContribution.RevocationHash[:],
|
|
pendingReservation.ourContribution.CsvDelay, ourBalance, theirBalance)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
theirCommitTx, err := createCommitTx(fundingTxIn, theirCommitKey, ourCommitKey,
|
|
pendingReservation.theirContribution.RevocationHash[:],
|
|
pendingReservation.theirContribution.CsvDelay, theirBalance, ourBalance)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
|
|
// Sort both transactions according to the agreed upon cannonical
|
|
// ordering. This ensures that both parties sign the same sighash
|
|
// without further synchronization.
|
|
txsort.InPlaceSort(ourCommitTx)
|
|
pendingReservation.partialState.OurCommitTx = ourCommitTx
|
|
txsort.InPlaceSort(theirCommitTx)
|
|
pendingReservation.partialState.TheirCommitTx = theirCommitTx
|
|
|
|
// Verify that their signature of valid for our current commitment
|
|
// transaction. Re-generate both the redeemScript and p2sh output. We
|
|
// sign the redeemScript script, but include the p2sh output as the
|
|
// subscript for verification.
|
|
// TODO(roasbeef): replace with regular sighash calculation once the PR
|
|
// is merged.
|
|
redeemScript := pendingReservation.partialState.FundingRedeemScript
|
|
p2wsh, err := witnessScriptHash(redeemScript)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
// TODO(roasbeef): remove all duplication after merge.
|
|
|
|
// First, we sign our copy of the commitment transaction ourselves.
|
|
channelValue := int64(pendingReservation.partialState.Capacity)
|
|
hashCache := txscript.NewTxSigHashes(ourCommitTx)
|
|
theirKey := pendingReservation.theirContribution.MultiSigKey
|
|
ourKey := pendingReservation.partialState.OurMultiSigKey
|
|
ourCommitSig, err := txscript.RawTxInWitnessSignature(ourCommitTx, hashCache, 0,
|
|
channelValue, redeemScript, txscript.SigHashAll, ourKey)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
|
|
// Next, create the spending scriptSig, and then verify that the script
|
|
// is complete, allowing us to spend from the funding transaction.
|
|
ourKeySer := ourKey.PubKey().SerializeCompressed()
|
|
theirKeySer := theirKey.SerializeCompressed()
|
|
witness := spendMultiSig(redeemScript, ourKeySer, ourCommitSig,
|
|
theirKeySer, req.theirCommitmentSig)
|
|
|
|
// Finally, create an instance of a Script VM, and ensure that the
|
|
// Script executes succesfully.
|
|
ourCommitTx.TxIn[0].Witness = witness // TODO(roasbeef): don't stay hot!!
|
|
vm, err := txscript.NewEngine(p2wsh,
|
|
ourCommitTx, 0, txscript.StandardVerifyFlags, nil,
|
|
nil, channelValue)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
if err := vm.Execute(); err != nil {
|
|
req.err <- fmt.Errorf("counterparty's commitment signature is invalid: %v", err)
|
|
return
|
|
}
|
|
|
|
// With their signature for our version of the commitment transactions
|
|
// verified, we can now generate a signature for their version,
|
|
// allowing the funding transaction to be safely broadcast.
|
|
hashCache = txscript.NewTxSigHashes(theirCommitTx)
|
|
sigTheirCommit, err := txscript.RawTxInWitnessSignature(theirCommitTx, hashCache, 0,
|
|
channelValue, redeemScript, txscript.SigHashAll, ourKey)
|
|
if err != nil {
|
|
req.err <- err
|
|
return
|
|
}
|
|
pendingReservation.ourCommitmentSig = sigTheirCommit
|
|
|
|
req.err <- nil
|
|
}
|
|
|
|
// handleChannelOpen completes a single funder reservation to which we are the
|
|
// responder. This method saves the channel state to disk, finally "opening"
|
|
// the channel by sending it over to the caller of the reservation via the
|
|
// channel dispatch channel.
|
|
func (l *LightningWallet) handleChannelOpen(req *channelOpenMsg) {
|
|
l.limboMtx.RLock()
|
|
res, ok := l.fundingLimbo[req.pendingFundingID]
|
|
l.limboMtx.RUnlock()
|
|
if !ok {
|
|
req.err <- fmt.Errorf("attempted to update non-existant funding state")
|
|
res.chanOpen <- nil
|
|
return
|
|
}
|
|
|
|
// Grab the mutex on the ChannelReservation to ensure thead-safety
|
|
res.Lock()
|
|
defer res.Unlock()
|
|
|
|
// Funding complete, this entry can be removed from limbo.
|
|
l.limboMtx.Lock()
|
|
delete(l.fundingLimbo, res.reservationID)
|
|
l.limboMtx.Unlock()
|
|
|
|
// Add the complete funding transaction to the DB, in it's open bucket
|
|
// which will be used for the lifetime of this channel.
|
|
if err := res.partialState.FullSync(); err != nil {
|
|
req.err <- err
|
|
res.chanOpen <- nil
|
|
return
|
|
}
|
|
|
|
// Finally, create and officially open the payment channel!
|
|
// TODO(roasbeef): CreationTime once tx is 'open'
|
|
channel, _ := NewLightningChannel(l, l.ChainNotifier, l.channelDB,
|
|
res.partialState)
|
|
|
|
res.chanOpen <- channel
|
|
req.err <- nil
|
|
}
|
|
|
|
// openChannelAfterConfirmations creates, and opens a payment channel after
|
|
// the funding transaction created within the passed channel reservation
|
|
// obtains the specified number of confirmations.
|
|
func (l *LightningWallet) openChannelAfterConfirmations(res *ChannelReservation) {
|
|
// Register with the ChainNotifier for a notification once the funding
|
|
// transaction reaches `numConfs` confirmations.
|
|
txid := res.fundingTx.TxSha()
|
|
numConfs := uint32(res.numConfsToOpen)
|
|
confNtfn, _ := l.ChainNotifier.RegisterConfirmationsNtfn(&txid, numConfs)
|
|
|
|
log.Infof("Waiting for funding tx (txid: %v) to reach %v confirmations",
|
|
txid, numConfs)
|
|
|
|
// Wait until the specified number of confirmations has been reached,
|
|
// or the wallet signals a shutdown.
|
|
out:
|
|
select {
|
|
case <-confNtfn.Confirmed:
|
|
break out
|
|
case <-l.quit:
|
|
res.chanOpen <- nil
|
|
return
|
|
}
|
|
|
|
// Finally, create and officially open the payment channel!
|
|
// TODO(roasbeef): CreationTime once tx is 'open'
|
|
channel, _ := NewLightningChannel(l, l.ChainNotifier, l.channelDB,
|
|
res.partialState)
|
|
res.chanOpen <- channel
|
|
}
|
|
|
|
// getNextRawKey retrieves the next key within our HD key-chain for use within
|
|
// as a multi-sig key within the funding transaction, or within the commitment
|
|
// transaction's outputs.
|
|
// TODO(roasbeef): on shutdown, write state of pending keys, then read back?
|
|
func (l *LightningWallet) getNextRawKey() (*btcec.PrivateKey, error) {
|
|
l.KeyGenMtx.Lock()
|
|
defer l.KeyGenMtx.Unlock()
|
|
|
|
nextAddr, err := l.Manager.NextExternalAddresses(waddrmgr.DefaultAccountNum,
|
|
1, waddrmgr.WitnessPubKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pkAddr := nextAddr[0].(waddrmgr.ManagedPubKeyAddress)
|
|
|
|
return pkAddr.PrivKey()
|
|
}
|
|
|
|
// ListUnspentWitness returns a slice of all the unspent outputs the wallet
|
|
// controls which pay to witness programs either directly or indirectly.
|
|
func (l *LightningWallet) ListUnspentWitness(minConfs int32) ([]*btcjson.ListUnspentResult, error) {
|
|
// First, grab all the unfiltered currently unspent outputs.
|
|
maxConfs := int32(math.MaxInt32)
|
|
unspentOutputs, err := l.ListUnspent(minConfs, maxConfs, nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Next, we'll run through all the regular outputs, only saving those
|
|
// which are p2wkh outputs or a p2wsh output nested within a p2sh output.
|
|
witnessOutputs := make([]*btcjson.ListUnspentResult, 0, len(unspentOutputs))
|
|
for _, output := range unspentOutputs {
|
|
pkScript, err := hex.DecodeString(output.ScriptPubKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// TODO(roasbeef): this assumes all p2sh outputs returned by
|
|
// the wallet are nested p2sh...
|
|
if txscript.IsPayToWitnessPubKeyHash(pkScript) ||
|
|
txscript.IsPayToScriptHash(pkScript) {
|
|
witnessOutputs = append(witnessOutputs, output)
|
|
}
|
|
|
|
}
|
|
|
|
return witnessOutputs, nil
|
|
}
|
|
|
|
// selectCoinsAndChange performs coin selection in order to obtain witness
|
|
// outputs which sum to at least 'numCoins' amount of satoshis. If coin
|
|
// selection is succesful/possible, then the selected coins are available within
|
|
// the passed contribution's inputs. If necessary, a change address will also be
|
|
// generated.
|
|
// TODO(roasbeef): remove hardcoded fees and req'd confs for outputs.
|
|
func (l *LightningWallet) selectCoinsAndChange(numCoins btcutil.Amount,
|
|
contribution *ChannelContribution) error {
|
|
|
|
// We hold the coin select mutex while querying for outputs, and
|
|
// performing coin selection in order to avoid inadvertent double spends
|
|
// accross funding transactions.
|
|
// NOTE: We don't use defer her so we can properly release the lock
|
|
// when we encounter an error condition.
|
|
l.coinSelectMtx.Lock()
|
|
|
|
// TODO(roasbeef): check if balance is insufficient, if so then select
|
|
// on two channels, one is a time.After that will bail out with
|
|
// insuffcient funds, the other is a notification that the balance has
|
|
// been updated make(chan struct{}, 1).
|
|
|
|
// Find all unlocked unspent witness outputs with greater than 1
|
|
// confirmation.
|
|
// TODO(roasbeef): make num confs a configuration paramter
|
|
unspentOutputs, err := l.ListUnspentWitness(1)
|
|
if err != nil {
|
|
l.coinSelectMtx.Unlock()
|
|
return err
|
|
}
|
|
|
|
// Convert the outputs to coins for coin selection below.
|
|
coins, err := outputsToCoins(unspentOutputs)
|
|
if err != nil {
|
|
l.coinSelectMtx.Unlock()
|
|
return err
|
|
}
|
|
|
|
// Peform coin selection over our available, unlocked unspent outputs
|
|
// in order to find enough coins to meet the funding amount requirements.
|
|
//
|
|
// TODO(roasbeef): Should extend coinset with optimal coin selection
|
|
// heuristics for our use case.
|
|
// NOTE: this current selection assumes "priority" is still a thing.
|
|
selector := &coinset.MaxValueAgeCoinSelector{
|
|
MaxInputs: 10,
|
|
MinChangeAmount: 10000,
|
|
}
|
|
// TODO(roasbeef): don't hardcode fee...
|
|
totalWithFee := numCoins + 10000
|
|
selectedCoins, err := selector.CoinSelect(totalWithFee, coins)
|
|
if err != nil {
|
|
l.coinSelectMtx.Unlock()
|
|
return err
|
|
}
|
|
|
|
// Lock the selected coins. These coins are now "reserved", this
|
|
// prevents concurrent funding requests from referring to and this
|
|
// double-spending the same set of coins.
|
|
contribution.Inputs = make([]*wire.TxIn, len(selectedCoins.Coins()))
|
|
for i, coin := range selectedCoins.Coins() {
|
|
txout := wire.NewOutPoint(coin.Hash(), coin.Index())
|
|
l.LockOutpoint(*txout)
|
|
|
|
// Empty sig script, we'll actually sign if this reservation is
|
|
// queued up to be completed (the other side accepts).
|
|
outPoint := wire.NewOutPoint(coin.Hash(), coin.Index())
|
|
contribution.Inputs[i] = wire.NewTxIn(outPoint, nil, nil)
|
|
}
|
|
|
|
l.coinSelectMtx.Unlock()
|
|
|
|
// Create some possibly neccessary change outputs.
|
|
selectedTotalValue := coinset.NewCoinSet(selectedCoins.Coins()).TotalValue()
|
|
if selectedTotalValue > totalWithFee {
|
|
// Change is necessary. Query for an available change address to
|
|
// send the remainder to.
|
|
contribution.ChangeOutputs = make([]*wire.TxOut, 1)
|
|
changeAddr, err := l.NewChangeAddress(waddrmgr.DefaultAccountNum,
|
|
waddrmgr.WitnessPubKey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
changeAddrScript, err := txscript.PayToAddrScript(changeAddr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
changeAmount := selectedTotalValue - totalWithFee
|
|
contribution.ChangeOutputs[0] = wire.NewTxOut(int64(changeAmount),
|
|
changeAddrScript)
|
|
}
|
|
|
|
// TODO(roasbeef): re-calculate fees here to minFeePerKB, may need more inputs
|
|
return nil
|
|
}
|
|
|
|
type WaddrmgrEncryptorDecryptor struct {
|
|
M *waddrmgr.Manager
|
|
}
|
|
|
|
func (w *WaddrmgrEncryptorDecryptor) Encrypt(p []byte) ([]byte, error) {
|
|
return w.M.Encrypt(waddrmgr.CKTPrivate, p)
|
|
}
|
|
|
|
func (w *WaddrmgrEncryptorDecryptor) Decrypt(c []byte) ([]byte, error) {
|
|
return w.M.Decrypt(waddrmgr.CKTPrivate, c)
|
|
}
|
|
|
|
func (w *WaddrmgrEncryptorDecryptor) OverheadSize() uint32 {
|
|
return 24
|
|
}
|