lnd.xprv/htlcswitch/control_tower_test.go

352 lines
9.7 KiB
Go

package htlcswitch
import (
"fmt"
"testing"
"github.com/btcsuite/fastsha256"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
)
func genHtlc() (*lnwire.UpdateAddHTLC, error) {
preimage, err := genPreimage()
if err != nil {
return nil, fmt.Errorf("unable to generate preimage: %v", err)
}
rhash := fastsha256.Sum256(preimage[:])
htlc := &lnwire.UpdateAddHTLC{
PaymentHash: rhash,
Amount: 1,
}
return htlc, nil
}
type paymentControlTestCase func(*testing.T, bool)
var paymentControlTests = []struct {
name string
strict bool
testcase paymentControlTestCase
}{
{
name: "fail-strict",
strict: true,
testcase: testPaymentControlSwitchFail,
},
{
name: "double-send-strict",
strict: true,
testcase: testPaymentControlSwitchDoubleSend,
},
{
name: "double-pay-strict",
strict: true,
testcase: testPaymentControlSwitchDoublePay,
},
{
name: "fail-not-strict",
strict: false,
testcase: testPaymentControlSwitchFail,
},
{
name: "double-send-not-strict",
strict: false,
testcase: testPaymentControlSwitchDoubleSend,
},
{
name: "double-pay-not-strict",
strict: false,
testcase: testPaymentControlSwitchDoublePay,
},
}
// TestPaymentControls runs a set of common tests against both the strict and
// non-strict payment control instances. This ensures that the two both behave
// identically when making the expected state-transitions of the stricter
// implementation. Behavioral differences in the strict and non-strict
// implementations are tested separately.
func TestPaymentControls(t *testing.T) {
for _, test := range paymentControlTests {
t.Run(test.name, func(t *testing.T) {
test.testcase(t, test.strict)
})
}
}
// testPaymentControlSwitchFail checks that payment status returns to Grounded
// status after failing, and that ClearForTakeoff allows another HTLC for the
// same payment hash.
func testPaymentControlSwitchFail(t *testing.T, strict bool) {
t.Parallel()
db, err := initDB()
if err != nil {
t.Fatalf("unable to init db: %v", err)
}
pControl := NewPaymentControl(strict, db)
htlc, err := genHtlc()
if err != nil {
t.Fatalf("unable to generate htlc message: %v", err)
}
// Sends base htlc message which initiate StatusInFlight.
if err := pControl.ClearForTakeoff(htlc); err != nil {
t.Fatalf("unable to send htlc message: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusInFlight)
// Fail the payment, which should moved it to Grounded.
if err := pControl.Fail(htlc.PaymentHash); err != nil {
t.Fatalf("unable to fail payment hash: %v", err)
}
// Verify the status is indeed Grounded.
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusGrounded)
// Sends the htlc again, which should succeed since the prior payment
// failed.
if err := pControl.ClearForTakeoff(htlc); err != nil {
t.Fatalf("unable to send htlc message: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusInFlight)
// Verifies that status was changed to StatusCompleted.
if err := pControl.Success(htlc.PaymentHash); err != nil {
t.Fatalf("error shouldn't have been received, got: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusCompleted)
// Attempt a final payment, which should now fail since the prior
// payment succeed.
if err := pControl.ClearForTakeoff(htlc); err != ErrAlreadyPaid {
t.Fatalf("unable to send htlc message: %v", err)
}
}
// testPaymentControlSwitchDoubleSend checks the ability of payment control to
// prevent double sending of htlc message, when message is in StatusInFlight.
func testPaymentControlSwitchDoubleSend(t *testing.T, strict bool) {
t.Parallel()
db, err := initDB()
if err != nil {
t.Fatalf("unable to init db: %v", err)
}
pControl := NewPaymentControl(strict, db)
htlc, err := genHtlc()
if err != nil {
t.Fatalf("unable to generate htlc message: %v", err)
}
// Sends base htlc message which initiate base status and move it to
// StatusInFlight and verifies that it was changed.
if err := pControl.ClearForTakeoff(htlc); err != nil {
t.Fatalf("unable to send htlc message: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusInFlight)
// Try to initiate double sending of htlc message with the same
// payment hash, should result in error indicating that payment has
// already been sent.
if err := pControl.ClearForTakeoff(htlc); err != ErrPaymentInFlight {
t.Fatalf("payment control wrong behaviour: " +
"double sending must trigger ErrPaymentInFlight error")
}
}
// TestPaymentControlSwitchDoublePay checks the ability of payment control to
// prevent double payment.
func testPaymentControlSwitchDoublePay(t *testing.T, strict bool) {
t.Parallel()
db, err := initDB()
if err != nil {
t.Fatalf("unable to init db: %v", err)
}
pControl := NewPaymentControl(strict, db)
htlc, err := genHtlc()
if err != nil {
t.Fatalf("unable to generate htlc message: %v", err)
}
// Sends base htlc message which initiate StatusInFlight.
if err := pControl.ClearForTakeoff(htlc); err != nil {
t.Fatalf("unable to send htlc message: %v", err)
}
// Verify that payment is InFlight.
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusInFlight)
// Move payment to completed status, second payment should return error.
if err := pControl.Success(htlc.PaymentHash); err != nil {
t.Fatalf("error shouldn't have been received, got: %v", err)
}
// Verify that payment is Completed.
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusCompleted)
if err := pControl.ClearForTakeoff(htlc); err != ErrAlreadyPaid {
t.Fatalf("payment control wrong behaviour:" +
" double payment must trigger ErrAlreadyPaid")
}
}
// TestPaymentControlNonStrictSuccessesWithoutInFlight checks that a non-strict
// payment control will allow calls to Success when no payment is in flight. This
// is necessary to gracefully handle the case in which the switch already sent
// out a payment for a particular payment hash in a prior db version that didn't
// have payment statuses.
func TestPaymentControlNonStrictSuccessesWithoutInFlight(t *testing.T) {
t.Parallel()
db, err := initDB()
if err != nil {
t.Fatalf("unable to init db: %v", err)
}
pControl := NewPaymentControl(false, db)
htlc, err := genHtlc()
if err != nil {
t.Fatalf("unable to generate htlc message: %v", err)
}
if err := pControl.Success(htlc.PaymentHash); err != nil {
t.Fatalf("unable to mark payment hash success: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusCompleted)
err = pControl.Success(htlc.PaymentHash)
if err != ErrPaymentAlreadyCompleted {
t.Fatalf("unable to remark payment hash failed: %v", err)
}
}
// TestPaymentControlNonStrictFailsWithoutInFlight checks that a non-strict
// payment control will allow calls to Fail when no payment is in flight. This
// is necessary to gracefully handle the case in which the switch already sent
// out a payment for a particular payment hash in a prior db version that didn't
// have payment statuses.
func TestPaymentControlNonStrictFailsWithoutInFlight(t *testing.T) {
t.Parallel()
db, err := initDB()
if err != nil {
t.Fatalf("unable to init db: %v", err)
}
pControl := NewPaymentControl(false, db)
htlc, err := genHtlc()
if err != nil {
t.Fatalf("unable to generate htlc message: %v", err)
}
if err := pControl.Fail(htlc.PaymentHash); err != nil {
t.Fatalf("unable to mark payment hash failed: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusGrounded)
err = pControl.Fail(htlc.PaymentHash)
if err != nil {
t.Fatalf("unable to remark payment hash failed: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusGrounded)
err = pControl.Success(htlc.PaymentHash)
if err != nil {
t.Fatalf("unable to remark payment hash success: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusCompleted)
err = pControl.Fail(htlc.PaymentHash)
if err != ErrPaymentAlreadyCompleted {
t.Fatalf("unable to remark payment hash failed: %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusCompleted)
}
// TestPaymentControlStrictSuccessesWithoutInFlight checks that a strict payment
// control will disallow calls to Success when no payment is in flight.
func TestPaymentControlStrictSuccessesWithoutInFlight(t *testing.T) {
t.Parallel()
db, err := initDB()
if err != nil {
t.Fatalf("unable to init db: %v", err)
}
pControl := NewPaymentControl(true, db)
htlc, err := genHtlc()
if err != nil {
t.Fatalf("unable to generate htlc message: %v", err)
}
err = pControl.Success(htlc.PaymentHash)
if err != ErrPaymentNotInitiated {
t.Fatalf("expected ErrPaymentNotInitiated, got %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusGrounded)
}
// TestPaymentControlStrictFailsWithoutInFlight checks that a strict payment
// control will disallow calls to Fail when no payment is in flight.
func TestPaymentControlStrictFailsWithoutInFlight(t *testing.T) {
t.Parallel()
db, err := initDB()
if err != nil {
t.Fatalf("unable to init db: %v", err)
}
pControl := NewPaymentControl(true, db)
htlc, err := genHtlc()
if err != nil {
t.Fatalf("unable to generate htlc message: %v", err)
}
err = pControl.Fail(htlc.PaymentHash)
if err != ErrPaymentNotInitiated {
t.Fatalf("expected ErrPaymentNotInitiated, got %v", err)
}
assertPaymentStatus(t, db, htlc.PaymentHash, channeldb.StatusGrounded)
}
func assertPaymentStatus(t *testing.T, db *channeldb.DB,
hash [32]byte, expStatus channeldb.PaymentStatus) {
t.Helper()
pStatus, err := db.FetchPaymentStatus(hash)
if err != nil {
t.Fatalf("unable to fetch payment status: %v", err)
}
if pStatus != expStatus {
t.Fatalf("payment status mismatch: expected %v, got %v",
expStatus, pStatus)
}
}