lnd.xprv/lntest/itest/lnd_test.go
Johan T. Halseth 01f696afce
Merge pull request #3487 from matheusd/lnd-fix-extra-dave
itest: Shutdown final Dave node in testChanRestore
2019-09-12 14:55:53 +02:00

14510 lines
458 KiB
Go

// +build rpctest
package itest
import (
"bytes"
"crypto/rand"
"crypto/sha256"
"encoding/hex"
"fmt"
"io"
"io/ioutil"
"math"
"os"
"path/filepath"
"reflect"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/btcsuite/btcd/btcjson"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/rpcclient"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd"
"github.com/lightningnetwork/lnd/chanbackup"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lnrpc/watchtowerrpc"
"github.com/lightningnetwork/lnd/lnrpc/wtclientrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
"golang.org/x/net/context"
"google.golang.org/grpc"
)
var (
harnessNetParams = &chaincfg.RegressionNetParams
)
const (
testFeeBase = 1e+6
defaultCSV = lntest.DefaultCSV
defaultTimeout = lntest.DefaultTimeout
minerMempoolTimeout = lntest.MinerMempoolTimeout
channelOpenTimeout = lntest.ChannelOpenTimeout
channelCloseTimeout = lntest.ChannelCloseTimeout
)
// harnessTest wraps a regular testing.T providing enhanced error detection
// and propagation. All error will be augmented with a full stack-trace in
// order to aid in debugging. Additionally, any panics caused by active
// test cases will also be handled and represented as fatals.
type harnessTest struct {
t *testing.T
// testCase is populated during test execution and represents the
// current test case.
testCase *testCase
// lndHarness is a reference to the current network harness. Will be
// nil if not yet set up.
lndHarness *lntest.NetworkHarness
}
// newHarnessTest creates a new instance of a harnessTest from a regular
// testing.T instance.
func newHarnessTest(t *testing.T, net *lntest.NetworkHarness) *harnessTest {
return &harnessTest{t, nil, net}
}
// Skipf calls the underlying testing.T's Skip method, causing the current test
// to be skipped.
func (h *harnessTest) Skipf(format string, args ...interface{}) {
h.t.Skipf(format, args...)
}
// Fatalf causes the current active test case to fail with a fatal error. All
// integration tests should mark test failures solely with this method due to
// the error stack traces it produces.
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
if h.lndHarness != nil {
h.lndHarness.SaveProfilesPages()
}
stacktrace := errors.Wrap(fmt.Sprintf(format, a...), 1).ErrorStack()
if h.testCase != nil {
h.t.Fatalf("Failed: (%v): exited with error: \n"+
"%v", h.testCase.name, stacktrace)
} else {
h.t.Fatalf("Error outside of test: %v", stacktrace)
}
}
// RunTestCase executes a harness test case. Any errors or panics will be
// represented as fatal.
func (h *harnessTest) RunTestCase(testCase *testCase) {
h.testCase = testCase
defer func() {
h.testCase = nil
}()
defer func() {
if err := recover(); err != nil {
description := errors.Wrap(err, 2).ErrorStack()
h.t.Fatalf("Failed: (%v) panicked with: \n%v",
h.testCase.name, description)
}
}()
testCase.test(h.lndHarness, h)
return
}
func (h *harnessTest) Logf(format string, args ...interface{}) {
h.t.Logf(format, args...)
}
func (h *harnessTest) Log(args ...interface{}) {
h.t.Log(args...)
}
func assertTxInBlock(t *harnessTest, block *wire.MsgBlock, txid *chainhash.Hash) {
for _, tx := range block.Transactions {
sha := tx.TxHash()
if bytes.Equal(txid[:], sha[:]) {
return
}
}
t.Fatalf("tx was not included in block")
}
func rpcPointToWirePoint(t *harnessTest, chanPoint *lnrpc.ChannelPoint) wire.OutPoint {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
return wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
}
// mineBlocks mine 'num' of blocks and check that blocks are present in
// node blockchain. numTxs should be set to the number of transactions
// (excluding the coinbase) we expect to be included in the first mined block.
func mineBlocks(t *harnessTest, net *lntest.NetworkHarness,
num uint32, numTxs int) []*wire.MsgBlock {
// If we expect transactions to be included in the blocks we'll mine,
// we wait here until they are seen in the miner's mempool.
var txids []*chainhash.Hash
var err error
if numTxs > 0 {
txids, err = waitForNTxsInMempool(
net.Miner.Node, numTxs, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("unable to find txns in mempool: %v", err)
}
}
blocks := make([]*wire.MsgBlock, num)
blockHashes, err := net.Miner.Node.Generate(num)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
for i, blockHash := range blockHashes {
block, err := net.Miner.Node.GetBlock(blockHash)
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
blocks[i] = block
}
// Finally, assert that all the transactions were included in the first
// block.
for _, txid := range txids {
assertTxInBlock(t, blocks[0], txid)
}
return blocks
}
// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transaction should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, alice, bob *lntest.HarnessNode,
p lntest.OpenChannelParams) *lnrpc.ChannelPoint {
chanOpenUpdate, err := net.OpenChannel(
ctx, alice, bob, p,
)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Mine 6 blocks, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the first newly mined block. We mine 6 blocks so that in the
// case that the channel is public, it is announced to the network.
block := mineBlocks(t, net, 6, 1)[0]
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := lnd.GetChanPointFundingTxid(fundingChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
if err := net.AssertChannelExists(ctx, bob, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
return fundingChanPoint
}
// closeChannelAndAssert attempts to close a channel identified by the passed
// channel point owned by the passed Lightning node. A fully blocking channel
// closure is attempted, therefore the passed context should be a child derived
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block. Finally, this assertion verifies that the node always sends out a
// disable update when closing the channel if the channel was previously enabled.
//
// NOTE: This method assumes that the provided funding point is confirmed
// on-chain AND that the edge exists in the node's channel graph. If the funding
// transactions was reorged out at some point, use closeReorgedChannelAndAssert.
func closeChannelAndAssert(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {
// Fetch the current channel policy. If the channel is currently
// enabled, we will register for graph notifications before closing to
// assert that the node sends out a disabling update as a result of the
// channel being closed.
curPolicy := getChannelPolicies(t, node, node.PubKeyStr, fundingChanPoint)[0]
expectDisable := !curPolicy.Disabled
// If the current channel policy is enabled, begin subscribing the graph
// updates before initiating the channel closure.
var graphSub *graphSubscription
if expectDisable {
sub := subscribeGraphNotifications(t, ctx, node)
graphSub = &sub
defer close(graphSub.quit)
}
closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// If the channel policy was enabled prior to the closure, wait until we
// received the disabled update.
if expectDisable {
curPolicy.Disabled = true
waitForChannelUpdate(
t, *graphSub,
[]expectedChanUpdate{
{node.PubKeyStr, curPolicy, fundingChanPoint},
},
)
}
return assertChannelClosed(ctx, t, net, node, fundingChanPoint, closeUpdates)
}
// closeReorgedChannelAndAssert attempts to close a channel identified by the
// passed channel point owned by the passed Lightning node. A fully blocking
// channel closure is attempted, therefore the passed context should be a child
// derived via timeout from a base parent. Additionally, once the channel has
// been detected as closed, an assertion checks that the transaction is found
// within a block.
//
// NOTE: This method does not verify that the node sends a disable update for
// the closed channel.
func closeReorgedChannelAndAssert(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {
closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
return assertChannelClosed(ctx, t, net, node, fundingChanPoint, closeUpdates)
}
// assertChannelClosed asserts that the channel is properly cleaned up after
// initiating a cooperative or local close.
func assertChannelClosed(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
fundingChanPoint *lnrpc.ChannelPoint,
closeUpdates lnrpc.Lightning_CloseChannelClient) *chainhash.Hash {
txid, err := lnd.GetChanPointFundingTxid(fundingChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
chanPointStr := fmt.Sprintf("%v:%v", txid, fundingChanPoint.OutputIndex)
// At this point, the channel should now be marked as being in the
// state of "waiting close".
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := node.PendingChannels(ctx, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
var found bool
for _, pendingClose := range pendingChanResp.WaitingCloseChannels {
if pendingClose.Channel.ChannelPoint == chanPointStr {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as waiting close")
}
// We'll now, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, closingTxid)
// Finally, the transaction should no longer be in the waiting close
// state as we've just mined a block that should include the closing
// transaction.
err = lntest.WaitPredicate(func() bool {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := node.PendingChannels(
ctx, pendingChansRequest,
)
if err != nil {
return false
}
for _, pendingClose := range pendingChanResp.WaitingCloseChannels {
if pendingClose.Channel.ChannelPoint == chanPointStr {
return false
}
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("closing transaction not marked as fully closed")
}
return closingTxid
}
// waitForChannelPendingForceClose waits for the node to report that the
// channel is pending force close, and that the UTXO nursery is aware of it.
func waitForChannelPendingForceClose(ctx context.Context,
node *lntest.HarnessNode, fundingChanPoint *lnrpc.ChannelPoint) error {
txid, err := lnd.GetChanPointFundingTxid(fundingChanPoint)
if err != nil {
return err
}
op := wire.OutPoint{
Hash: *txid,
Index: fundingChanPoint.OutputIndex,
}
var predErr error
err = lntest.WaitPredicate(func() bool {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := node.PendingChannels(
ctx, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to get pending "+
"channels: %v", err)
return false
}
forceClose, err := findForceClosedChannel(pendingChanResp, &op)
if err != nil {
predErr = err
return false
}
// We must wait until the UTXO nursery has received the channel
// and is aware of its maturity height.
if forceClose.MaturityHeight == 0 {
predErr = fmt.Errorf("channel had maturity height of 0")
return false
}
return true
}, time.Second*15)
if err != nil {
return predErr
}
return nil
}
// cleanupForceClose mines a force close commitment found in the mempool and
// the following sweep transaction from the force closing node.
func cleanupForceClose(t *harnessTest, net *lntest.NetworkHarness,
node *lntest.HarnessNode, chanPoint *lnrpc.ChannelPoint) {
ctxb := context.Background()
// Wait for the channel to be marked pending force close.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err := waitForChannelPendingForceClose(ctxt, node, chanPoint)
if err != nil {
t.Fatalf("channel not pending force close: %v", err)
}
// Mine enough blocks for the node to sweep its funds from the force
// closed channel.
_, err = net.Miner.Node.Generate(defaultCSV)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// The node should now sweep the funds, clean up by mining the sweeping
// tx.
mineBlocks(t, net, 1, 1)
}
// numOpenChannelsPending sends an RPC request to a node to get a count of the
// node's channels that are currently in a pending state (with a broadcast, but
// not confirmed funding transaction).
func numOpenChannelsPending(ctxt context.Context, node *lntest.HarnessNode) (int, error) {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
resp, err := node.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
return 0, err
}
return len(resp.PendingOpenChannels), nil
}
// assertNumOpenChannelsPending asserts that a pair of nodes have the expected
// number of pending channels between them.
func assertNumOpenChannelsPending(ctxt context.Context, t *harnessTest,
alice, bob *lntest.HarnessNode, expected int) {
err := lntest.WaitNoError(func() error {
aliceNumChans, err := numOpenChannelsPending(ctxt, alice)
if err != nil {
return fmt.Errorf("error fetching alice's node (%v) "+
"pending channels %v", alice.NodeID, err)
}
bobNumChans, err := numOpenChannelsPending(ctxt, bob)
if err != nil {
return fmt.Errorf("error fetching bob's node (%v) "+
"pending channels %v", bob.NodeID, err)
}
aliceStateCorrect := aliceNumChans == expected
if !aliceStateCorrect {
return fmt.Errorf("number of pending channels for "+
"alice incorrect. expected %v, got %v",
expected, aliceNumChans)
}
bobStateCorrect := bobNumChans == expected
if !bobStateCorrect {
return fmt.Errorf("number of pending channels for bob "+
"incorrect. expected %v, got %v", expected,
bobNumChans)
}
return nil
}, 15*time.Second)
if err != nil {
t.Fatalf(err.Error())
}
}
// assertNumConnections asserts number current connections between two peers.
func assertNumConnections(t *harnessTest, alice, bob *lntest.HarnessNode,
expected int) {
ctxb := context.Background()
const nPolls = 10
tick := time.NewTicker(300 * time.Millisecond)
defer tick.Stop()
for i := nPolls - 1; i >= 0; i-- {
select {
case <-tick.C:
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
aNumPeers, err := alice.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch alice's node (%v) list peers %v",
alice.NodeID, err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bNumPeers, err := bob.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch bob's node (%v) list peers %v",
bob.NodeID, err)
}
if len(aNumPeers.Peers) != expected {
// Continue polling if this is not the final
// loop.
if i > 0 {
continue
}
t.Fatalf("number of peers connected to alice is incorrect: "+
"expected %v, got %v", expected, len(aNumPeers.Peers))
}
if len(bNumPeers.Peers) != expected {
// Continue polling if this is not the final
// loop.
if i > 0 {
continue
}
t.Fatalf("number of peers connected to bob is incorrect: "+
"expected %v, got %v", expected, len(bNumPeers.Peers))
}
// Alice and Bob both have the required number of
// peers, stop polling and return to caller.
return
}
}
}
// shutdownAndAssert shuts down the given node and asserts that no errors
// occur.
func shutdownAndAssert(net *lntest.NetworkHarness, t *harnessTest,
node *lntest.HarnessNode) {
if err := net.ShutdownNode(node); err != nil {
t.Fatalf("unable to shutdown %v: %v", node.Name(), err)
}
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
//
// TODO(bvu): Refactor when dynamic fee estimation is added.
// TODO(conner) remove code duplication
func calcStaticFee(numHTLCs int) btcutil.Amount {
const (
commitWeight = btcutil.Amount(724)
htlcWeight = 172
feePerKw = btcutil.Amount(50 * 1000 / 4)
)
return feePerKw * (commitWeight +
btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}
// completePaymentRequests sends payments from a lightning node to complete all
// payment requests. If the awaitResponse parameter is true, this function
// does not return until all payments successfully complete without errors.
func completePaymentRequests(ctx context.Context, client lnrpc.LightningClient,
paymentRequests []string, awaitResponse bool) error {
// We start by getting the current state of the client's channels. This
// is needed to ensure the payments actually have been committed before
// we return.
ctxt, _ := context.WithTimeout(ctx, defaultTimeout)
req := &lnrpc.ListChannelsRequest{}
listResp, err := client.ListChannels(ctxt, req)
if err != nil {
return err
}
ctxc, cancel := context.WithCancel(ctx)
defer cancel()
payStream, err := client.SendPayment(ctxc)
if err != nil {
return err
}
for _, payReq := range paymentRequests {
sendReq := &lnrpc.SendRequest{
PaymentRequest: payReq,
}
err := payStream.Send(sendReq)
if err != nil {
return err
}
}
if awaitResponse {
for range paymentRequests {
resp, err := payStream.Recv()
if err != nil {
return err
}
if resp.PaymentError != "" {
return fmt.Errorf("received payment error: %v",
resp.PaymentError)
}
}
return nil
}
// We are not waiting for feedback in the form of a response, but we
// should still wait long enough for the server to receive and handle
// the send before cancelling the request. We wait for the number of
// updates to one of our channels has increased before we return.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctx, defaultTimeout)
newListResp, err := client.ListChannels(ctxt, req)
if err != nil {
return false
}
for _, c1 := range listResp.Channels {
for _, c2 := range newListResp.Channels {
if c1.ChannelPoint != c2.ChannelPoint {
continue
}
// If this channel has an increased numbr of
// updates, we assume the payments are
// committed, and we can return.
if c2.NumUpdates > c1.NumUpdates {
return true
}
}
}
return false
}, time.Second*15)
if err != nil {
return err
}
return nil
}
// makeFakePayHash creates random pre image hash
func makeFakePayHash(t *harnessTest) []byte {
randBuf := make([]byte, 32)
if _, err := rand.Read(randBuf); err != nil {
t.Fatalf("internal error, cannot generate random string: %v", err)
}
return randBuf
}
// createPayReqs is a helper method that will create a slice of payment
// requests for the given node.
func createPayReqs(node *lntest.HarnessNode, paymentAmt btcutil.Amount,
numInvoices int) ([]string, [][]byte, []*lnrpc.Invoice, error) {
payReqs := make([]string, numInvoices)
rHashes := make([][]byte, numInvoices)
invoices := make([]*lnrpc.Invoice, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := make([]byte, 32)
_, err := rand.Read(preimage)
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to generate "+
"preimage: %v", err)
}
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: int64(paymentAmt),
}
ctxt, _ := context.WithTimeout(
context.Background(), defaultTimeout,
)
resp, err := node.AddInvoice(ctxt, invoice)
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to add "+
"invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
rHashes[i] = resp.RHash
invoices[i] = invoice
}
return payReqs, rHashes, invoices, nil
}
// getChanInfo is a helper method for getting channel info for a node's sole
// channel.
func getChanInfo(ctx context.Context, node *lntest.HarnessNode) (
*lnrpc.Channel, error) {
req := &lnrpc.ListChannelsRequest{}
channelInfo, err := node.ListChannels(ctx, req)
if err != nil {
return nil, err
}
if len(channelInfo.Channels) != 1 {
return nil, fmt.Errorf("node should only have a single "+
"channel, instead it has %v", len(channelInfo.Channels))
}
return channelInfo.Channels[0], nil
}
const (
AddrTypeWitnessPubkeyHash = lnrpc.AddressType_WITNESS_PUBKEY_HASH
AddrTypeNestedPubkeyHash = lnrpc.AddressType_NESTED_PUBKEY_HASH
)
// testOnchainFundRecovery checks lnd's ability to rescan for onchain outputs
// when providing a valid aezeed that owns outputs on the chain. This test
// performs multiple restorations using the same seed and various recovery
// windows to ensure we detect funds properly.
func testOnchainFundRecovery(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, create a new node with strong passphrase and grab the mnemonic
// used for key derivation. This will bring up Carol with an empty
// wallet, and such that she is synced up.
password := []byte("The Magic Words are Squeamish Ossifrage")
carol, mnemonic, err := net.NewNodeWithSeed("Carol", nil, password)
if err != nil {
t.Fatalf("unable to create node with seed; %v", err)
}
shutdownAndAssert(net, t, carol)
// Create a closure for testing the recovery of Carol's wallet. This
// method takes the expected value of Carol's balance when using the
// given recovery window. Additionally, the caller can specify an action
// to perform on the restored node before the node is shutdown.
restoreCheckBalance := func(expAmount int64, expectedNumUTXOs int,
recoveryWindow int32, fn func(*lntest.HarnessNode)) {
// Restore Carol, passing in the password, mnemonic, and
// desired recovery window.
node, err := net.RestoreNodeWithSeed(
"Carol", nil, password, mnemonic, recoveryWindow, nil,
)
if err != nil {
t.Fatalf("unable to restore node: %v", err)
}
// Query carol for her current wallet balance, and also that we
// gain the expected number of UTXOs.
var (
currBalance int64
currNumUTXOs uint32
)
err = lntest.WaitPredicate(func() bool {
req := &lnrpc.WalletBalanceRequest{}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
resp, err := node.WalletBalance(ctxt, req)
if err != nil {
t.Fatalf("unable to query wallet balance: %v",
err)
}
// Verify that Carol's balance matches our expected
// amount.
currBalance = resp.ConfirmedBalance
if expAmount != currBalance {
return false
}
utxoReq := &lnrpc.ListUnspentRequest{
MaxConfs: math.MaxInt32,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
utxoResp, err := node.ListUnspent(ctxt, utxoReq)
if err != nil {
t.Fatalf("unable to query utxos: %v", err)
}
currNumUTXOs := len(utxoResp.Utxos)
if currNumUTXOs != expectedNumUTXOs {
return false
}
return true
}, 15*time.Second)
if err != nil {
t.Fatalf("expected restored node to have %d satoshis, "+
"instead has %d satoshis, expected %d utxos "+
"instead has %d", expAmount, currBalance,
expectedNumUTXOs, currNumUTXOs)
}
// If the user provided a callback, execute the commands against
// the restored Carol.
if fn != nil {
fn(node)
}
// Lastly, shutdown this Carol so we can move on to the next
// restoration.
shutdownAndAssert(net, t, node)
}
// Create a closure-factory for building closures that can generate and
// skip a configurable number of addresses, before finally sending coins
// to a next generated address. The returned closure will apply the same
// behavior to both default P2WKH and NP2WKH scopes.
skipAndSend := func(nskip int) func(*lntest.HarnessNode) {
return func(node *lntest.HarnessNode) {
newP2WKHAddrReq := &lnrpc.NewAddressRequest{
Type: AddrTypeWitnessPubkeyHash,
}
newNP2WKHAddrReq := &lnrpc.NewAddressRequest{
Type: AddrTypeNestedPubkeyHash,
}
// Generate and skip the number of addresses requested.
for i := 0; i < nskip; i++ {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
_, err = node.NewAddress(ctxt, newP2WKHAddrReq)
if err != nil {
t.Fatalf("unable to generate new "+
"p2wkh address: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = node.NewAddress(ctxt, newNP2WKHAddrReq)
if err != nil {
t.Fatalf("unable to generate new "+
"np2wkh address: %v", err)
}
}
// Send one BTC to the next P2WKH address.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(
ctxt, btcutil.SatoshiPerBitcoin, node,
)
if err != nil {
t.Fatalf("unable to send coins to node: %v",
err)
}
// And another to the next NP2WKH address.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoinsNP2WKH(
ctxt, btcutil.SatoshiPerBitcoin, node,
)
if err != nil {
t.Fatalf("unable to send coins to node: %v",
err)
}
}
}
// Restore Carol with a recovery window of 0. Since no coins have been
// sent, her balance should be zero.
//
// After, one BTC is sent to both her first external P2WKH and NP2WKH
// addresses.
restoreCheckBalance(0, 0, 0, skipAndSend(0))
// Check that restoring without a look-ahead results in having no funds
// in the wallet, even though they exist on-chain.
restoreCheckBalance(0, 0, 0, nil)
// Now, check that using a look-ahead of 1 recovers the balance from
// the two transactions above. We should also now have 2 UTXOs in the
// wallet at the end of the recovery attempt.
//
// After, we will generate and skip 9 P2WKH and NP2WKH addresses, and
// send another BTC to the subsequent 10th address in each derivation
// path.
restoreCheckBalance(2*btcutil.SatoshiPerBitcoin, 2, 1, skipAndSend(9))
// Check that using a recovery window of 9 does not find the two most
// recent txns.
restoreCheckBalance(2*btcutil.SatoshiPerBitcoin, 2, 9, nil)
// Extending our recovery window to 10 should find the most recent
// transactions, leaving the wallet with 4 BTC total. We should also
// learn of the two additional UTXOs created above.
//
// After, we will skip 19 more addrs, sending to the 20th address past
// our last found address, and repeat the same checks.
restoreCheckBalance(4*btcutil.SatoshiPerBitcoin, 4, 10, skipAndSend(19))
// Check that recovering with a recovery window of 19 fails to find the
// most recent transactions.
restoreCheckBalance(4*btcutil.SatoshiPerBitcoin, 4, 19, nil)
// Ensure that using a recovery window of 20 succeeds with all UTXOs
// found and the final balance reflected.
restoreCheckBalance(6*btcutil.SatoshiPerBitcoin, 6, 20, nil)
}
// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
chanAmt := lnd.MaxBtcFundingAmount
pushAmt := btcutil.Amount(100000)
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob with Alice pushing 100k satoshis to Bob's side during
// funding. This function will block until the channel itself is fully
// open or an error occurs in the funding process. A series of
// assertions will be executed to ensure the funding process completed
// successfully.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// With the channel open, ensure that the amount specified above has
// properly been pushed to Bob.
balReq := &lnrpc.ChannelBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceBal, err := net.Alice.ChannelBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobBal, err := net.Bob.ChannelBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get bobs's balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt-pushAmt-calcStaticFee(0)) {
t.Fatalf("alice's balance is incorrect: expected %v got %v",
chanAmt-pushAmt-calcStaticFee(0), aliceBal)
}
if bobBal.Balance != int64(pushAmt) {
t.Fatalf("bob's balance is incorrect: expected %v got %v",
pushAmt, bobBal.Balance)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testUnconfirmedChannelFunding tests that our unconfirmed change outputs can
// be used to fund channels.
func testUnconfirmedChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = lnd.MaxBtcFundingAmount
pushAmt = btcutil.Amount(100000)
)
// We'll start off by creating a node for Carol.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create carol's node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// We'll send her some confirmed funds.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, 2*chanAmt, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// Now let Carol send some funds to herself, making a unconfirmed
// change output.
addrReq := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.NewAddress(ctxt, addrReq)
if err != nil {
t.Fatalf("unable to get new address: %v", err)
}
sendReq := &lnrpc.SendCoinsRequest{
Addr: resp.Address,
Amount: int64(chanAmt) / 5,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = carol.SendCoins(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send coins: %v", err)
}
// Make sure the unconfirmed tx is seen in the mempool.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("failed to find tx in miner mempool: %v", err)
}
// Now, we'll connect her to Alice so that they can open a channel
// together. The funding flow should select Carol's unconfirmed output
// as she doesn't have any other funds since it's a new node.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanOpenUpdate, err := net.OpenChannel(
ctxt, carol, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
SpendUnconfirmed: true,
},
)
if err != nil {
t.Fatalf("unable to open channel between carol and alice: %v",
err)
}
// Confirm the channel and wait for it to be recognized by both
// parties. Two transactions should be mined, the unconfirmed spend and
// the funding tx.
mineBlocks(t, net, 6, 2)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
// With the channel open, we'll check the balances on each side of the
// channel as a sanity check to ensure things worked out as intended.
balReq := &lnrpc.ChannelBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBal, err := carol.ChannelBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceBal, err := net.Alice.ChannelBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
if carolBal.Balance != int64(chanAmt-pushAmt-calcStaticFee(0)) {
t.Fatalf("carol's balance is incorrect: expected %v got %v",
chanAmt-pushAmt-calcStaticFee(0), carolBal)
}
if aliceBal.Balance != int64(pushAmt) {
t.Fatalf("alice's balance is incorrect: expected %v got %v",
pushAmt, aliceBal.Balance)
}
// Now that we're done with the test, the channel can be closed.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPoint, false)
}
// txStr returns the string representation of the channel's funding transaction.
func txStr(chanPoint *lnrpc.ChannelPoint) string {
fundingTxID, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
return ""
}
cp := wire.OutPoint{
Hash: *fundingTxID,
Index: chanPoint.OutputIndex,
}
return cp.String()
}
// expectedChanUpdate houses params we expect a ChannelUpdate to advertise.
type expectedChanUpdate struct {
advertisingNode string
expectedPolicy *lnrpc.RoutingPolicy
chanPoint *lnrpc.ChannelPoint
}
// waitForChannelUpdate waits for a node to receive the expected channel
// updates.
func waitForChannelUpdate(t *harnessTest, subscription graphSubscription,
expUpdates []expectedChanUpdate) {
// Create an array indicating which expected channel updates we have
// received.
found := make([]bool, len(expUpdates))
out:
for {
select {
case graphUpdate := <-subscription.updateChan:
for _, update := range graphUpdate.ChannelUpdates {
// For each expected update, check if it matches
// the update we just received.
for i, exp := range expUpdates {
fundingTxStr := txStr(update.ChanPoint)
if fundingTxStr != txStr(exp.chanPoint) {
continue
}
if update.AdvertisingNode !=
exp.advertisingNode {
continue
}
err := checkChannelPolicy(
update.RoutingPolicy,
exp.expectedPolicy,
)
if err != nil {
continue
}
// We got a policy update that matched
// the values and channel point of what
// we expected, mark it as found.
found[i] = true
// If we have no more channel updates
// we are waiting for, break out of the
// loop.
rem := 0
for _, f := range found {
if !f {
rem++
}
}
if rem == 0 {
break out
}
// Since we found a match among the
// expected updates, break out of the
// inner loop.
break
}
}
case err := <-subscription.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(20 * time.Second):
t.Fatalf("did not receive channel update")
}
}
}
// assertNoChannelUpdates ensures that no ChannelUpdates are sent via the
// graphSubscription. This method will block for the provided duration before
// returning to the caller if successful.
func assertNoChannelUpdates(t *harnessTest, subscription graphSubscription,
duration time.Duration) {
timeout := time.After(duration)
for {
select {
case graphUpdate := <-subscription.updateChan:
if len(graphUpdate.ChannelUpdates) > 0 {
t.Fatalf("received %d channel updates when "+
"none were expected",
len(graphUpdate.ChannelUpdates))
}
case err := <-subscription.errChan:
t.Fatalf("graph subscription failure: %v", err)
case <-timeout:
// No updates received, success.
return
}
}
}
// getChannelPolicies queries the channel graph and retrieves the current edge
// policies for the provided channel points.
func getChannelPolicies(t *harnessTest, node *lntest.HarnessNode,
advertisingNode string,
chanPoints ...*lnrpc.ChannelPoint) []*lnrpc.RoutingPolicy {
ctxb := context.Background()
descReq := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: true,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := node.DescribeGraph(ctxt, descReq)
if err != nil {
t.Fatalf("unable to query for alice's graph: %v", err)
}
var policies []*lnrpc.RoutingPolicy
out:
for _, chanPoint := range chanPoints {
for _, e := range chanGraph.Edges {
if e.ChanPoint != txStr(chanPoint) {
continue
}
if e.Node1Pub == advertisingNode {
policies = append(policies, e.Node1Policy)
} else {
policies = append(policies, e.Node2Policy)
}
continue out
}
// If we've iterated over all the known edges and we weren't
// able to find this specific one, then we'll fail.
t.Fatalf("did not find edge %v", txStr(chanPoint))
}
return policies
}
// assertChannelPolicy asserts that the passed node's known channel policy for
// the passed chanPoint is consistent with the expected policy values.
func assertChannelPolicy(t *harnessTest, node *lntest.HarnessNode,
advertisingNode string, expectedPolicy *lnrpc.RoutingPolicy,
chanPoints ...*lnrpc.ChannelPoint) {
policies := getChannelPolicies(t, node, advertisingNode, chanPoints...)
for _, policy := range policies {
err := checkChannelPolicy(policy, expectedPolicy)
if err != nil {
t.Fatalf(err.Error())
}
}
}
// checkChannelPolicy checks that the policy matches the expected one.
func checkChannelPolicy(policy, expectedPolicy *lnrpc.RoutingPolicy) error {
if policy.FeeBaseMsat != expectedPolicy.FeeBaseMsat {
return fmt.Errorf("expected base fee %v, got %v",
expectedPolicy.FeeBaseMsat, policy.FeeBaseMsat)
}
if policy.FeeRateMilliMsat != expectedPolicy.FeeRateMilliMsat {
return fmt.Errorf("expected fee rate %v, got %v",
expectedPolicy.FeeRateMilliMsat,
policy.FeeRateMilliMsat)
}
if policy.TimeLockDelta != expectedPolicy.TimeLockDelta {
return fmt.Errorf("expected time lock delta %v, got %v",
expectedPolicy.TimeLockDelta,
policy.TimeLockDelta)
}
if policy.MinHtlc != expectedPolicy.MinHtlc {
return fmt.Errorf("expected min htlc %v, got %v",
expectedPolicy.MinHtlc, policy.MinHtlc)
}
if policy.Disabled != expectedPolicy.Disabled {
return errors.New("edge should be disabled but isn't")
}
return nil
}
// testUpdateChannelPolicy tests that policy updates made to a channel
// gets propagated to other nodes in the network.
func testUpdateChannelPolicy(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
defaultFeeBase = 1000
defaultFeeRate = 1
defaultTimeLockDelta = lnd.DefaultBitcoinTimeLockDelta
defaultMinHtlc = 1000
)
// Launch notification clients for all nodes, such that we can
// get notified when they discover new channels and updates in the
// graph.
aliceSub := subscribeGraphNotifications(t, ctxb, net.Alice)
defer close(aliceSub.quit)
bobSub := subscribeGraphNotifications(t, ctxb, net.Bob)
defer close(bobSub.quit)
chanAmt := lnd.MaxBtcFundingAmount
pushAmt := chanAmt / 2
// Create a channel Alice->Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// We add all the nodes' update channels to a slice, such that we can
// make sure they all receive the expected updates.
graphSubs := []graphSubscription{aliceSub, bobSub}
nodes := []*lntest.HarnessNode{net.Alice, net.Bob}
// Alice and Bob should see each other's ChannelUpdates, advertising the
// default routing policies.
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: defaultFeeBase,
FeeRateMilliMsat: defaultFeeRate,
TimeLockDelta: defaultTimeLockDelta,
MinHtlc: defaultMinHtlc,
}
for _, graphSub := range graphSubs {
waitForChannelUpdate(
t, graphSub,
[]expectedChanUpdate{
{net.Alice.PubKeyStr, expectedPolicy, chanPoint},
{net.Bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
}
// They should now know about the default policies.
for _, node := range nodes {
assertChannelPolicy(
t, node, net.Alice.PubKeyStr, expectedPolicy, chanPoint,
)
assertChannelPolicy(
t, node, net.Bob.PubKeyStr, expectedPolicy, chanPoint,
)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Create Carol and a new channel Bob->Carol.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
carolSub := subscribeGraphNotifications(t, ctxb, carol)
defer close(carolSub.quit)
graphSubs = append(graphSubs, carolSub)
nodes = append(nodes, carol)
// Send some coins to Carol that can be used for channel funding.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, net.Bob); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
// Open the channel Carol->Bob with a custom min_htlc value set. Since
// Carol is opening the channel, she will require Bob to not forward
// HTLCs smaller than this value, and hence he should advertise it as
// part of his ChannelUpdate.
const customMinHtlc = 5000
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint2 := openChannelAndAssert(
ctxt, t, net, carol, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
MinHtlc: customMinHtlc,
},
)
expectedPolicyBob := &lnrpc.RoutingPolicy{
FeeBaseMsat: defaultFeeBase,
FeeRateMilliMsat: defaultFeeRate,
TimeLockDelta: defaultTimeLockDelta,
MinHtlc: customMinHtlc,
}
expectedPolicyCarol := &lnrpc.RoutingPolicy{
FeeBaseMsat: defaultFeeBase,
FeeRateMilliMsat: defaultFeeRate,
TimeLockDelta: defaultTimeLockDelta,
MinHtlc: defaultMinHtlc,
}
for _, graphSub := range graphSubs {
waitForChannelUpdate(
t, graphSub,
[]expectedChanUpdate{
{net.Bob.PubKeyStr, expectedPolicyBob, chanPoint2},
{carol.PubKeyStr, expectedPolicyCarol, chanPoint2},
},
)
}
// Check that all nodes now know about the updated policies.
for _, node := range nodes {
assertChannelPolicy(
t, node, net.Bob.PubKeyStr, expectedPolicyBob,
chanPoint2,
)
assertChannelPolicy(
t, node, carol.PubKeyStr, expectedPolicyCarol,
chanPoint2,
)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint2)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint2)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint2)
if err != nil {
t.Fatalf("carol didn't report channel: %v", err)
}
// First we'll try to send a payment from Alice to Carol with an amount
// less than the min_htlc value required by Carol. This payment should
// fail, as the channel Bob->Carol cannot carry HTLCs this small.
payAmt := btcutil.Amount(4)
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: int64(payAmt),
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, []string{resp.PaymentRequest}, true,
)
// Alice knows about the channel policy of Carol and should therefore
// not be able to find a path during routing.
if err == nil ||
!strings.Contains(err.Error(), "unable to find a path") {
t.Fatalf("expected payment to fail, instead got %v", err)
}
// Now we try to send a payment over the channel with a value too low
// to be accepted. First we query for a route to route a payment of
// 5000 mSAT, as this is accepted.
payAmt = btcutil.Amount(5)
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: carol.PubKeyStr,
Amt: int64(payAmt),
FinalCltvDelta: defaultTimeLockDelta,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
if len(routes.Routes) != 1 {
t.Fatalf("expected to find 1 route, got %v", len(routes.Routes))
}
// We change the route to carry a payment of 4000 mSAT instead of 5000
// mSAT.
payAmt = btcutil.Amount(4)
amtSat := int64(payAmt)
amtMSat := int64(lnwire.NewMSatFromSatoshis(payAmt))
routes.Routes[0].Hops[0].AmtToForward = amtSat
routes.Routes[0].Hops[0].AmtToForwardMsat = amtMSat
routes.Routes[0].Hops[1].AmtToForward = amtSat
routes.Routes[0].Hops[1].AmtToForwardMsat = amtMSat
// Send the payment with the modified value.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := net.Alice.SendToRoute(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: resp.RHash,
Route: routes.Routes[0],
}
err = alicePayStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We expect this payment to fail, and that the min_htlc value is
// communicated back to us, since the attempted HTLC value was too low.
sendResp, err := alicePayStream.Recv()
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Expected as part of the error message.
substrs := []string{
"AmountBelowMinimum",
"HtlcMinimumMsat: (lnwire.MilliSatoshi) 5000 mSAT",
}
for _, s := range substrs {
if !strings.Contains(sendResp.PaymentError, s) {
t.Fatalf("expected error to contain \"%v\", instead "+
"got %v", s, sendResp.PaymentError)
}
}
// Make sure sending using the original value succeeds.
payAmt = btcutil.Amount(5)
amtSat = int64(payAmt)
amtMSat = int64(lnwire.NewMSatFromSatoshis(payAmt))
routes.Routes[0].Hops[0].AmtToForward = amtSat
routes.Routes[0].Hops[0].AmtToForwardMsat = amtMSat
routes.Routes[0].Hops[1].AmtToForward = amtSat
routes.Routes[0].Hops[1].AmtToForwardMsat = amtMSat
sendReq = &lnrpc.SendToRouteRequest{
PaymentHash: resp.RHash,
Route: routes.Routes[0],
}
err = alicePayStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
sendResp, err = alicePayStream.Recv()
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if sendResp.PaymentError != "" {
t.Fatalf("expected payment to succeed, instead got %v",
sendResp.PaymentError)
}
// With our little cluster set up, we'll update the fees for the
// channel Bob side of the Alice->Bob channel, and make sure all nodes
// learn about it.
baseFee := int64(1500)
feeRate := int64(12)
timeLockDelta := uint32(66)
expectedPolicy = &lnrpc.RoutingPolicy{
FeeBaseMsat: baseFee,
FeeRateMilliMsat: testFeeBase * feeRate,
TimeLockDelta: timeLockDelta,
MinHtlc: defaultMinHtlc,
}
req := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPoint,
},
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if _, err := net.Bob.UpdateChannelPolicy(ctxt, req); err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
// Wait for all nodes to have seen the policy update done by Bob.
for _, graphSub := range graphSubs {
waitForChannelUpdate(
t, graphSub,
[]expectedChanUpdate{
{net.Bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
}
// Check that all nodes now know about Bob's updated policy.
for _, node := range nodes {
assertChannelPolicy(
t, node, net.Bob.PubKeyStr, expectedPolicy, chanPoint,
)
}
// Now that all nodes have received the new channel update, we'll try
// to send a payment from Alice to Carol to ensure that Alice has
// internalized this fee update. This shouldn't affect the route that
// Alice takes though: we updated the Alice -> Bob channel and she
// doesn't pay for transit over that channel as it's direct.
// Note that the payment amount is >= the min_htlc value for the
// channel Bob->Carol, so it should successfully be forwarded.
payAmt = btcutil.Amount(5)
invoice = &lnrpc.Invoice{
Memo: "testing",
Value: int64(payAmt),
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err = carol.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, []string{resp.PaymentRequest}, true,
)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We'll now open a channel from Alice directly to Carol.
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint3 := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint3)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint3)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Make a global update, and check that both channels' new policies get
// propagated.
baseFee = int64(800)
feeRate = int64(123)
timeLockDelta = uint32(22)
expectedPolicy.FeeBaseMsat = baseFee
expectedPolicy.FeeRateMilliMsat = testFeeBase * feeRate
expectedPolicy.TimeLockDelta = timeLockDelta
req = &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
}
req.Scope = &lnrpc.PolicyUpdateRequest_Global{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = net.Alice.UpdateChannelPolicy(ctxt, req)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
// Wait for all nodes to have seen the policy updates for both of
// Alice's channels.
for _, graphSub := range graphSubs {
waitForChannelUpdate(
t, graphSub,
[]expectedChanUpdate{
{net.Alice.PubKeyStr, expectedPolicy, chanPoint},
{net.Alice.PubKeyStr, expectedPolicy, chanPoint3},
},
)
}
// And finally check that all nodes remembers the policy update they
// received.
for _, node := range nodes {
assertChannelPolicy(
t, node, net.Alice.PubKeyStr, expectedPolicy,
chanPoint, chanPoint3,
)
}
// Close the channels.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint2, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint3, false)
}
// waitForNodeBlockHeight queries the node for its current block height until
// it reaches the passed height.
func waitForNodeBlockHeight(ctx context.Context, node *lntest.HarnessNode,
height int32) error {
var predErr error
err := lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctx, 10*time.Second)
info, err := node.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
if err != nil {
predErr = err
return false
}
if int32(info.BlockHeight) != height {
predErr = fmt.Errorf("expected block height to "+
"be %v, was %v", height, info.BlockHeight)
return false
}
return true
}, 15*time.Second)
if err != nil {
return predErr
}
return nil
}
// assertMinerBlockHeightDelta ensures that tempMiner is 'delta' blocks ahead
// of miner.
func assertMinerBlockHeightDelta(t *harnessTest,
miner, tempMiner *rpctest.Harness, delta int32) {
// Ensure the chain lengths are what we expect.
var predErr error
err := lntest.WaitPredicate(func() bool {
_, tempMinerHeight, err := tempMiner.Node.GetBestBlock()
if err != nil {
predErr = fmt.Errorf("unable to get current "+
"blockheight %v", err)
return false
}
_, minerHeight, err := miner.Node.GetBestBlock()
if err != nil {
predErr = fmt.Errorf("unable to get current "+
"blockheight %v", err)
return false
}
if tempMinerHeight != minerHeight+delta {
predErr = fmt.Errorf("expected new miner(%d) to be %d "+
"blocks ahead of original miner(%d)",
tempMinerHeight, delta, minerHeight)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
}
// testOpenChannelAfterReorg tests that in the case where we have an open
// channel where the funding tx gets reorged out, the channel will no
// longer be present in the node's routing table.
func testOpenChannelAfterReorg(net *lntest.NetworkHarness, t *harnessTest) {
// Skip test for neutrino, as we cannot disconnect the miner at will.
// TODO(halseth): remove when either can disconnect at will, or restart
// node with connection to new miner.
if net.BackendCfg.Name() == "neutrino" {
t.Skipf("skipping reorg test for neutrino backend")
}
var (
ctxb = context.Background()
temp = "temp"
)
// Set up a new miner that we can use to cause a reorg.
args := []string{"--rejectnonstd", "--txindex"}
tempMiner, err := rpctest.New(harnessNetParams,
&rpcclient.NotificationHandlers{}, args)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
if err := tempMiner.SetUp(false, 0); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
defer tempMiner.TearDown()
// We start by connecting the new miner to our original miner,
// such that it will sync to our original chain.
err = net.Miner.Node.Node(
btcjson.NConnect, tempMiner.P2PAddress(), &temp,
)
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
nodeSlice := []*rpctest.Harness{net.Miner, tempMiner}
if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
// The two miners should be on the same blockheight.
assertMinerBlockHeightDelta(t, net.Miner, tempMiner, 0)
// We disconnect the two miners, such that we can mine two different
// chains and can cause a reorg later.
err = net.Miner.Node.Node(
btcjson.NDisconnect, tempMiner.P2PAddress(), &temp,
)
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
// Create a new channel that requires 1 confs before it's considered
// open, then broadcast the funding transaction
chanAmt := lnd.MaxBtcFundingAmount
pushAmt := btcutil.Amount(0)
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Wait for miner to have seen the funding tx. The temporary miner is
// disconnected, and won't see the transaction.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("failed to find funding tx in mempool: %v", err)
}
// At this point, the channel's funding transaction will have been
// broadcast, but not confirmed, and the channel should be pending.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// We now cause a fork, by letting our original miner mine 10 blocks,
// and our new miner mine 15. This will also confirm our pending
// channel on the original miner's chain, which should be considered
// open.
block := mineBlocks(t, net, 10, 1)[0]
assertTxInBlock(t, block, fundingTxID)
if _, err := tempMiner.Node.Generate(15); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Ensure the chain lengths are what we expect, with the temp miner
// being 5 blocks ahead.
assertMinerBlockHeightDelta(t, net.Miner, tempMiner, 5)
// Wait for Alice to sync to the original miner's chain.
_, minerHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = waitForNodeBlockHeight(ctxt, net.Alice, minerHeight)
if err != nil {
t.Fatalf("unable to sync to chain: %v", err)
}
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: pendingUpdate.Txid,
},
OutputIndex: pendingUpdate.OutputIndex,
}
// Ensure channel is no longer pending.
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)
// Wait for Alice and Bob to recognize and advertise the new channel
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// Alice should now have 1 edge in her graph.
req := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := net.Alice.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable to query for alice's routing table: %v", err)
}
numEdges := len(chanGraph.Edges)
if numEdges != 1 {
t.Fatalf("expected to find one edge in the graph, found %d",
numEdges)
}
// Now we disconnect Alice's chain backend from the original miner, and
// connect the two miners together. Since the temporary miner knows
// about a longer chain, both miners should sync to that chain.
err = net.BackendCfg.DisconnectMiner()
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
// Connecting to the temporary miner should now cause our original
// chain to be re-orged out.
err = net.Miner.Node.Node(
btcjson.NConnect, tempMiner.P2PAddress(), &temp,
)
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
nodes := []*rpctest.Harness{tempMiner, net.Miner}
if err := rpctest.JoinNodes(nodes, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
// Once again they should be on the same chain.
assertMinerBlockHeightDelta(t, net.Miner, tempMiner, 0)
// Now we disconnect the two miners, and connect our original miner to
// our chain backend once again.
err = net.Miner.Node.Node(
btcjson.NDisconnect, tempMiner.P2PAddress(), &temp,
)
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
err = net.BackendCfg.ConnectMiner()
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
// This should have caused a reorg, and Alice should sync to the longer
// chain, where the funding transaction is not confirmed.
_, tempMinerHeight, err := tempMiner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = waitForNodeBlockHeight(ctxt, net.Alice, tempMinerHeight)
if err != nil {
t.Fatalf("unable to sync to chain: %v", err)
}
// Since the fundingtx was reorged out, Alice should now have no edges
// in her graph.
req = &lnrpc.ChannelGraphRequest{
IncludeUnannounced: true,
}
var predErr error
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query for alice's routing table: %v", err)
return false
}
numEdges = len(chanGraph.Edges)
if numEdges != 0 {
predErr = fmt.Errorf("expected to find no edge in the graph, found %d",
numEdges)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// Cleanup by mining the funding tx again, then closing the channel.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, fundingTxID)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeReorgedChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testDisconnectingTargetPeer performs a test which
// disconnects Alice-peer from Bob-peer and then re-connects them again
func testDisconnectingTargetPeer(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// Check existing connection.
assertNumConnections(t, net.Alice, net.Bob, 1)
chanAmt := lnd.MaxBtcFundingAmount
pushAmt := btcutil.Amount(0)
// Create a new channel that requires 1 confs before it's considered
// open, then broadcast the funding transaction
const numConfs = 1
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have
// been broadcast, but not confirmed. Alice and Bob's nodes
// should reflect this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
// Disconnect Alice-peer from Bob-peer and get error
// causes by one pending channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one pending channel is existing: err %v", err)
}
time.Sleep(time.Millisecond * 300)
// Check existing connection.
assertNumConnections(t, net.Alice, net.Bob, 1)
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, numConfs, 1)[0]
assertTxInBlock(t, block, fundingTxID)
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Millisecond * 300)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.AssertChannelExists(ctxt, net.Bob, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: pendingUpdate.Txid,
},
OutputIndex: pendingUpdate.OutputIndex,
}
// Disconnect Alice-peer from Bob-peer and get error
// causes by one active channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one active channel is existing: err %v", err)
}
// Check existing connection.
assertNumConnections(t, net.Alice, net.Bob, 1)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, true)
// Disconnect Alice-peer from Bob-peer without getting error
// about existing channels.
var predErr error
err = lntest.WaitPredicate(func() bool {
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
predErr = err
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("unable to disconnect Bob's peer from Alice's: err %v",
predErr)
}
// Check zero peer connections.
assertNumConnections(t, net.Alice, net.Bob, 0)
// Finally, re-connect both nodes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect Alice's peer to Bob's: err %v", err)
}
// Check existing connection.
assertNumConnections(t, net.Alice, net.Bob, 1)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Alice, chanPoint)
}
// testFundingPersistence is intended to ensure that the Funding Manager
// persists the state of new channels prior to broadcasting the channel's
// funding transaction. This ensures that the daemon maintains an up-to-date
// representation of channels if the system is restarted or disconnected.
// testFundingPersistence mirrors testBasicChannelFunding, but adds restarts
// and checks for the state of channels with unconfirmed funding transactions.
func testChannelFundingPersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
chanAmt := lnd.MaxBtcFundingAmount
pushAmt := btcutil.Amount(0)
// As we need to create a channel that requires more than 1
// confirmation before it's open, with the current set of defaults,
// we'll need to create a new node instance.
const numConfs = 5
carolArgs := []string{fmt.Sprintf("--bitcoin.defaultchanconfs=%v", numConfs)}
carol, err := net.NewNode("Carol", carolArgs)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Create a new channel that requires 5 confs before it's considered
// open, then broadcast the funding transaction
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, carol,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have been
// broadcast, but not confirmed. Alice and Bob's nodes should reflect
// this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, fundingTxID)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// The following block ensures that after both nodes have restarted,
// they have reconnected before the execution of the next test.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.EnsureConnected(ctxt, net.Alice, carol); err != nil {
t.Fatalf("peers unable to reconnect after restart: %v", err)
}
// Next, mine enough blocks s.t the channel will open with a single
// additional block mined.
if _, err := net.Miner.Node.Generate(3); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// Both nodes should still show a single channel as pending.
time.Sleep(time.Second * 1)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)
// Finally, mine the last block which should mark the channel as open.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Second * 1)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.AssertChannelExists(ctxt, carol, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: pendingUpdate.Txid,
},
OutputIndex: pendingUpdate.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testChannelBalance creates a new channel between Alice and Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// Open a channel with 0.16 BTC between Alice and Bob, ensuring the
// channel has been opened properly.
amount := lnd.MaxBtcFundingAmount
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node lnrpc.LightningClient,
amount btcutil.Amount) {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
response, err := node.ChannelBalance(ctxt, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
balance := btcutil.Amount(response.Balance)
if balance != amount {
t.Fatalf("channel balance wrong: %v != %v", balance,
amount)
}
}
// Before beginning, make sure alice and bob are connected.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.EnsureConnected(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect alice and bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: amount,
},
)
// Wait for both Alice and Bob to recognize this new channel.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// As this is a single funder channel, Alice's balance should be
// exactly 0.5 BTC since now state transitions have taken place yet.
checkChannelBalance(net.Alice, amount-calcStaticFee(0))
// Ensure Bob currently has no available balance within the channel.
checkChannelBalance(net.Bob, 0)
// Finally close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testChannelUnsettledBalance will test that the UnsettledBalance field
// is updated according to the number of Pending Htlcs.
// Alice will send Htlcs to Carol while she is in hodl mode. This will result
// in a build of pending Htlcs. We expect the channels unsettled balance to
// equal the sum of all the Pending Htlcs.
func testChannelUnsettledBalance(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
ctxb := context.Background()
// Create carol in hodl mode.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Connect Alice to Carol.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Open a channel between Alice and Carol.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Wait for Alice and Carol to receive the channel edge from the
// funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Channel should be ready for payments.
const (
payAmt = 100
numInvoices = 6
)
// Create a paystream from Alice to Carol to enable Alice to make
// a series of payments.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := net.Alice.SendPayment(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// Send payments from Alice to Carol a number of numInvoices
// times.
carolPubKey := carol.PubKey[:]
for i := 0; i < numInvoices; i++ {
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(payAmt),
PaymentHash: makeFakePayHash(t),
FinalCltvDelta: lnd.DefaultBitcoinTimeLockDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
}
// Test that the UnsettledBalance for both Alice and Carol
// is equal to the amount of invoices * payAmt.
var unsettledErr error
nodes := []*lntest.HarnessNode{net.Alice, carol}
err = lntest.WaitPredicate(func() bool {
// There should be a number of PendingHtlcs equal
// to the amount of Invoices sent.
unsettledErr = assertNumActiveHtlcs(nodes, numInvoices)
if unsettledErr != nil {
return false
}
// Set the amount expected for the Unsettled Balance for
// this channel.
expectedBalance := numInvoices * payAmt
// Check each nodes UnsettledBalance field.
for _, node := range nodes {
// Get channel info for the node.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanInfo, err := getChanInfo(ctxt, node)
if err != nil {
unsettledErr = err
return false
}
// Check that UnsettledBalance is what we expect.
if int(chanInfo.UnsettledBalance) != expectedBalance {
unsettledErr = fmt.Errorf("unsettled balance failed "+
"expected: %v, received: %v", expectedBalance,
chanInfo.UnsettledBalance)
return false
}
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("unsettled balace error: %v", unsettledErr)
}
// Force and assert the channel closure.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Alice, chanPointAlice)
}
// findForceClosedChannel searches a pending channel response for a particular
// channel, returning the force closed channel upon success.
func findForceClosedChannel(pendingChanResp *lnrpc.PendingChannelsResponse,
op *wire.OutPoint) (*lnrpc.PendingChannelsResponse_ForceClosedChannel, error) {
for _, forceClose := range pendingChanResp.PendingForceClosingChannels {
if forceClose.Channel.ChannelPoint == op.String() {
return forceClose, nil
}
}
return nil, errors.New("channel not marked as force closed")
}
// findWaitingCloseChannel searches a pending channel response for a particular
// channel, returning the waiting close channel upon success.
func findWaitingCloseChannel(pendingChanResp *lnrpc.PendingChannelsResponse,
op *wire.OutPoint) (*lnrpc.PendingChannelsResponse_WaitingCloseChannel, error) {
for _, waitingClose := range pendingChanResp.WaitingCloseChannels {
if waitingClose.Channel.ChannelPoint == op.String() {
return waitingClose, nil
}
}
return nil, errors.New("channel not marked as waiting close")
}
func checkCommitmentMaturity(
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
maturityHeight uint32, blocksTilMaturity int32) error {
if forceClose.MaturityHeight != maturityHeight {
return fmt.Errorf("expected commitment maturity height to be "+
"%d, found %d instead", maturityHeight,
forceClose.MaturityHeight)
}
if forceClose.BlocksTilMaturity != blocksTilMaturity {
return fmt.Errorf("expected commitment blocks til maturity to "+
"be %d, found %d instead", blocksTilMaturity,
forceClose.BlocksTilMaturity)
}
return nil
}
// checkForceClosedChannelNumHtlcs verifies that a force closed channel has the
// proper number of htlcs.
func checkPendingChannelNumHtlcs(
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
expectedNumHtlcs int) error {
if len(forceClose.PendingHtlcs) != expectedNumHtlcs {
return fmt.Errorf("expected force closed channel to have %d "+
"pending htlcs, found %d instead", expectedNumHtlcs,
len(forceClose.PendingHtlcs))
}
return nil
}
// checkNumForceClosedChannels checks that a pending channel response has the
// expected number of force closed channels.
func checkNumForceClosedChannels(pendingChanResp *lnrpc.PendingChannelsResponse,
expectedNumChans int) error {
if len(pendingChanResp.PendingForceClosingChannels) != expectedNumChans {
return fmt.Errorf("expected to find %d force closed channels, "+
"got %d", expectedNumChans,
len(pendingChanResp.PendingForceClosingChannels))
}
return nil
}
// checkNumWaitingCloseChannels checks that a pending channel response has the
// expected number of channels waiting for closing tx to confirm.
func checkNumWaitingCloseChannels(pendingChanResp *lnrpc.PendingChannelsResponse,
expectedNumChans int) error {
if len(pendingChanResp.WaitingCloseChannels) != expectedNumChans {
return fmt.Errorf("expected to find %d channels waiting "+
"closure, got %d", expectedNumChans,
len(pendingChanResp.WaitingCloseChannels))
}
return nil
}
// checkPendingHtlcStageAndMaturity uniformly tests all pending htlc's belonging
// to a force closed channel, testing for the expected stage number, blocks till
// maturity, and the maturity height.
func checkPendingHtlcStageAndMaturity(
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
stage, maturityHeight uint32, blocksTillMaturity int32) error {
for _, pendingHtlc := range forceClose.PendingHtlcs {
if pendingHtlc.Stage != stage {
return fmt.Errorf("expected pending htlc to be stage "+
"%d, found %d", stage, pendingHtlc.Stage)
}
if pendingHtlc.MaturityHeight != maturityHeight {
return fmt.Errorf("expected pending htlc maturity "+
"height to be %d, instead has %d",
maturityHeight, pendingHtlc.MaturityHeight)
}
if pendingHtlc.BlocksTilMaturity != blocksTillMaturity {
return fmt.Errorf("expected pending htlc blocks til "+
"maturity to be %d, instead has %d",
blocksTillMaturity,
pendingHtlc.BlocksTilMaturity)
}
}
return nil
}
// padCLTV is a small helper function that pads a cltv value with a block
// padding.
func padCLTV(cltv uint32) uint32 {
return cltv + uint32(routing.BlockPadding)
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Carol, then
// force closes the channel after some cursory assertions. Within the test, a
// total of 3 + n transactions will be broadcast, representing the commitment
// transaction, a transaction sweeping the local CSV delayed output, a
// transaction sweeping the CSV delayed 2nd-layer htlcs outputs, and n
// htlc success transactions, where n is the number of payments Alice attempted
// to send to Carol. This test includes several restarts to ensure that the
// transaction output states are persisted throughout the forced closure
// process.
//
// TODO(roasbeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = btcutil.Amount(10e6)
pushAmt = btcutil.Amount(5e6)
paymentAmt = 100000
numInvoices = 6
)
// TODO(roasbeef): should check default value in config here
// instead, or make delay a param
defaultCLTV := uint32(lnd.DefaultBitcoinTimeLockDelta)
// Since we'd like to test failure scenarios with outstanding htlcs,
// we'll introduce another node into our test network: Carol.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// We must let Alice have an open channel before she can send a node
// announcement, so we open a channel with Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Before we start, obtain Carol's current wallet balance, we'll check
// to ensure that at the end of the force closure by Alice, Carol
// recognizes his new on-chain output.
carolBalReq := &lnrpc.WalletBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalResp, err := carol.WalletBalance(ctxt, carolBalReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolStartingBalance := carolBalResp.ConfirmedBalance
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// Wait for Alice and Carol to receive the channel edge from the
// funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Send payments from Alice to Carol, since Carol is htlchodl mode, the
// htlc outputs should be left unsettled, and should be swept by the
// utxo nursery.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
carolPubKey := carol.PubKey[:]
for i := 0; i < numInvoices; i++ {
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(paymentAmt),
PaymentHash: makeFakePayHash(t),
FinalCltvDelta: lnd.DefaultBitcoinTimeLockDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
}
// Once the HTLC has cleared, all the nodes n our mini network should
// show that the HTLC has been locked in.
nodes := []*lntest.HarnessNode{net.Alice, carol}
var predErr error
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, numInvoices)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Fetch starting height of this test so we can compute the block
// heights we expect certain events to take place.
_, curHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get best block height")
}
// Using the current height of the chain, derive the relevant heights
// for incubating two-stage htlcs.
var (
startHeight = uint32(curHeight)
commCsvMaturityHeight = startHeight + 1 + defaultCSV
htlcExpiryHeight = padCLTV(startHeight + defaultCLTV)
htlcCsvMaturityHeight = padCLTV(startHeight + defaultCLTV + 1 + defaultCSV)
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceChan, err := getChanInfo(ctxt, net.Alice)
if err != nil {
t.Fatalf("unable to get alice's channel info: %v", err)
}
if aliceChan.NumUpdates == 0 {
t.Fatalf("alice should see at least one update to her channel")
}
// Now that the channel is open and we have unsettled htlcs, immediately
// execute a force closure of the channel. This will also assert that
// the commitment transaction was immediately broadcast in order to
// fulfill the force closure request.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
_, closingTxID, err := net.CloseChannel(ctxt, net.Alice, chanPoint, true)
if err != nil {
t.Fatalf("unable to execute force channel closure: %v", err)
}
// Now that the channel has been force closed, it should show up in the
// PendingChannels RPC under the waiting close section.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
err = checkNumWaitingCloseChannels(pendingChanResp, 1)
if err != nil {
t.Fatalf(err.Error())
}
// Compute the outpoint of the channel, which we will use repeatedly to
// locate the pending channel information in the rpc responses.
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
op := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
waitingClose, err := findWaitingCloseChannel(pendingChanResp, &op)
if err != nil {
t.Fatalf(err.Error())
}
// Immediately after force closing, all of the funds should be in limbo.
if waitingClose.LimboBalance == 0 {
t.Fatalf("all funds should still be in limbo")
}
// The several restarts in this test are intended to ensure that when a
// channel is force-closed, the UTXO nursery has persisted the state of
// the channel in the closure process and will recover the correct state
// when the system comes back on line. This restart tests state
// persistence at the beginning of the process, when the commitment
// transaction has been broadcast but not yet confirmed in a block.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("failed to find commitment in miner mempool: %v", err)
}
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Now that the commitment has been confirmed, the channel should be
// marked as force closed.
err = lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
predErr = checkNumForceClosedChannels(pendingChanResp, 1)
if predErr != nil {
return false
}
forceClose, predErr := findForceClosedChannel(
pendingChanResp, &op,
)
if predErr != nil {
return false
}
// Now that the channel has been force closed, it should now
// have the height and number of blocks to confirm populated.
predErr = checkCommitmentMaturity(
forceClose, commCsvMaturityHeight, int32(defaultCSV),
)
if predErr != nil {
return false
}
// None of our outputs have been swept, so they should all be in
// limbo.
if forceClose.LimboBalance == 0 {
predErr = errors.New("all funds should still be in " +
"limbo")
return false
}
if forceClose.RecoveredBalance != 0 {
predErr = errors.New("no funds should yet be shown " +
"as recovered")
return false
}
return true
}, 15*time.Second)
if err != nil {
t.Fatalf(predErr.Error())
}
// The following restart is intended to ensure that outputs from the
// force close commitment transaction have been persisted once the
// transaction has been confirmed, but before the outputs are spendable
// (the "kindergarten" bucket.)
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Carol's sweep tx should be in the mempool already, as her output is
// not timelocked.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("failed to find Carol's sweep in miner mempool: %v",
err)
}
// Currently within the codebase, the default CSV is 4 relative blocks.
// For the persistence test, we generate three blocks, then trigger
// a restart and then generate the final block that should trigger
// the creation of the sweep transaction.
if _, err := net.Miner.Node.Generate(defaultCSV - 1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// The following restart checks to ensure that outputs in the
// kindergarten bucket are persisted while waiting for the required
// number of confirmations to be reported.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Alice should see the channel in her set of pending force closed
// channels with her funds still in limbo.
err = lntest.WaitNoError(func() error {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
return fmt.Errorf("unable to query for pending "+
"channels: %v", err)
}
err = checkNumForceClosedChannels(pendingChanResp, 1)
if err != nil {
return err
}
forceClose, err := findForceClosedChannel(
pendingChanResp, &op,
)
if err != nil {
return err
}
// At this point, the nursery should show that the commitment
// output has 1 block left before its CSV delay expires. In
// total, we have mined exactly defaultCSV blocks, so the htlc
// outputs should also reflect that this many blocks have
// passed.
err = checkCommitmentMaturity(
forceClose, commCsvMaturityHeight, 1,
)
if err != nil {
return err
}
// All funds should still be shown in limbo.
if forceClose.LimboBalance == 0 {
return errors.New("all funds should still be in " +
"limbo")
}
if forceClose.RecoveredBalance != 0 {
return errors.New("no funds should yet be shown " +
"as recovered")
}
return nil
}, 15*time.Second)
if err != nil {
t.Fatalf(err.Error())
}
// Generate an additional block, which should cause the CSV delayed
// output from the commitment txn to expire.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the sweeping transaction should now be broadcast. So
// we fetch the node's mempool to ensure it has been properly
// broadcast.
sweepingTXID, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("failed to get sweep tx from mempool: %v", err)
}
// Fetch the sweep transaction, all input it's spending should be from
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
for _, txIn := range sweepTx.MsgTx().TxIn {
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("sweep transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// Restart Alice to ensure that she resumes watching the finalized
// commitment sweep txid.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Next, we mine an additional block which should include the sweep
// transaction as the input scripts and the sequence locks on the
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
assertTxInBlock(t, block, sweepTx.Hash())
// Update current height
_, curHeight, err = net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get best block height")
}
err = lntest.WaitPredicate(func() bool {
// Now that the commit output has been fully swept, check to see
// that the channel remains open for the pending htlc outputs.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
err = checkNumForceClosedChannels(pendingChanResp, 1)
if err != nil {
predErr = err
return false
}
// The commitment funds will have been recovered after the
// commit txn was included in the last block. The htlc funds
// will be shown in limbo.
forceClose, err := findForceClosedChannel(pendingChanResp, &op)
if err != nil {
predErr = err
return false
}
predErr = checkPendingChannelNumHtlcs(forceClose, numInvoices)
if predErr != nil {
return false
}
predErr = checkPendingHtlcStageAndMaturity(
forceClose, 1, htlcExpiryHeight,
int32(htlcExpiryHeight)-curHeight,
)
if predErr != nil {
return false
}
if forceClose.LimboBalance == 0 {
predErr = fmt.Errorf("expected funds in limbo, found 0")
return false
}
return true
}, 15*time.Second)
if err != nil {
t.Fatalf(predErr.Error())
}
// Compute the height preceding that which will cause the htlc CLTV
// timeouts will expire. The outputs entered at the same height as the
// output spending from the commitment txn, so we must deduct the number
// of blocks we have generated since adding it to the nursery, and take
// an additional block off so that we end up one block shy of the expiry
// height, and add the block padding.
cltvHeightDelta := padCLTV(defaultCLTV - defaultCSV - 2 - 1)
// Advance the blockchain until just before the CLTV expires, nothing
// exciting should have happened during this time.
blockHash, err = net.Miner.Node.Generate(cltvHeightDelta)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// We now restart Alice, to ensure that she will broadcast the presigned
// htlc timeout txns after the delay expires after experiencing a while
// waiting for the htlc outputs to incubate.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Alice should now see the channel in her set of pending force closed
// channels with one pending HTLC.
err = lntest.WaitNoError(func() error {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
return fmt.Errorf("unable to query for pending "+
"channels: %v", err)
}
err = checkNumForceClosedChannels(pendingChanResp, 1)
if err != nil {
return err
}
forceClose, err := findForceClosedChannel(
pendingChanResp, &op,
)
if err != nil {
return err
}
// We should now be at the block just before the utxo nursery
// will attempt to broadcast the htlc timeout transactions.
err = checkPendingChannelNumHtlcs(forceClose, numInvoices)
if err != nil {
return err
}
err = checkPendingHtlcStageAndMaturity(
forceClose, 1, htlcExpiryHeight, 1,
)
if err != nil {
return err
}
// Now that our commitment confirmation depth has been
// surpassed, we should now see a non-zero recovered balance.
// All htlc outputs are still left in limbo, so it should be
// non-zero as well.
if forceClose.LimboBalance == 0 {
return errors.New("htlc funds should still be in " +
"limbo")
}
return nil
}, 15*time.Second)
if err != nil {
t.Fatalf(err.Error())
}
// Now, generate the block which will cause Alice to broadcast the
// presigned htlc timeout txns.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Since Alice had numInvoices (6) htlcs extended to Carol before force
// closing, we expect Alice to broadcast an htlc timeout txn for each
// one. Wait for them all to show up in the mempool.
htlcTxIDs, err := waitForNTxsInMempool(net.Miner.Node, numInvoices,
minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find htlc timeout txns in mempool: %v", err)
}
// Retrieve each htlc timeout txn from the mempool, and ensure it is
// well-formed. This entails verifying that each only spends from
// output, and that that output is from the commitment txn.
for _, htlcTxID := range htlcTxIDs {
// Fetch the sweep transaction, all input it's spending should
// be from the commitment transaction which was broadcast
// on-chain.
htlcTx, err := net.Miner.Node.GetRawTransaction(htlcTxID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
// Ensure the htlc transaction only has one input.
if len(htlcTx.MsgTx().TxIn) != 1 {
t.Fatalf("htlc transaction should only have one txin, "+
"has %d", len(htlcTx.MsgTx().TxIn))
}
// Ensure the htlc transaction is spending from the commitment
// transaction.
txIn := htlcTx.MsgTx().TxIn[0]
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("htlc transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// With the htlc timeout txns still in the mempool, we restart Alice to
// verify that she can resume watching the htlc txns she broadcasted
// before crashing.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Generate a block that mines the htlc timeout txns. Doing so now
// activates the 2nd-stage CSV delayed outputs.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Alice is restarted here to ensure that she promptly moved the crib
// outputs to the kindergarten bucket after the htlc timeout txns were
// confirmed.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Advance the chain until just before the 2nd-layer CSV delays expire.
blockHash, err = net.Miner.Node.Generate(defaultCSV - 1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Restart Alice to ensure that she can recover from a failure before
// having graduated the htlc outputs in the kindergarten bucket.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Now that the channel has been fully swept, it should no longer show
// incubated, check to see that Alice's node still reports the channel
// as pending force closed.
err = lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err = net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
err = checkNumForceClosedChannels(pendingChanResp, 1)
if err != nil {
predErr = err
return false
}
forceClose, err := findForceClosedChannel(pendingChanResp, &op)
if err != nil {
predErr = err
return false
}
if forceClose.LimboBalance == 0 {
predErr = fmt.Errorf("htlc funds should still be in limbo")
return false
}
predErr = checkPendingChannelNumHtlcs(forceClose, numInvoices)
if predErr != nil {
return false
}
return true
}, 15*time.Second)
if err != nil {
t.Fatalf(predErr.Error())
}
// Generate a block that causes Alice to sweep the htlc outputs in the
// kindergarten bucket.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Wait for the single sweep txn to appear in the mempool.
htlcSweepTxID, err := waitForTxInMempool(
net.Miner.Node, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("failed to get sweep tx from mempool: %v", err)
}
// Construct a map of the already confirmed htlc timeout txids, that
// will count the number of times each is spent by the sweep txn. We
// prepopulate it in this way so that we can later detect if we are
// spending from an output that was not a confirmed htlc timeout txn.
var htlcTxIDSet = make(map[chainhash.Hash]int)
for _, htlcTxID := range htlcTxIDs {
htlcTxIDSet[*htlcTxID] = 0
}
// Fetch the htlc sweep transaction from the mempool.
htlcSweepTx, err := net.Miner.Node.GetRawTransaction(htlcSweepTxID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
// Ensure the htlc sweep transaction only has one input for each htlc
// Alice extended before force closing.
if len(htlcSweepTx.MsgTx().TxIn) != numInvoices {
t.Fatalf("htlc transaction should have %d txin, "+
"has %d", numInvoices, len(htlcSweepTx.MsgTx().TxIn))
}
// Ensure that each output spends from exactly one htlc timeout txn.
for _, txIn := range htlcSweepTx.MsgTx().TxIn {
outpoint := txIn.PreviousOutPoint.Hash
// Check that the input is a confirmed htlc timeout txn.
if _, ok := htlcTxIDSet[outpoint]; !ok {
t.Fatalf("htlc sweep output not spending from htlc "+
"tx, instead spending output %v", outpoint)
}
// Increment our count for how many times this output was spent.
htlcTxIDSet[outpoint]++
// Check that each is only spent once.
if htlcTxIDSet[outpoint] > 1 {
t.Fatalf("htlc sweep tx has multiple spends from "+
"outpoint %v", outpoint)
}
}
// The following restart checks to ensure that the nursery store is
// storing the txid of the previously broadcast htlc sweep txn, and that
// it begins watching that txid after restarting.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Now that the channel has been fully swept, it should no longer show
// incubated, check to see that Alice's node still reports the channel
// as pending force closed.
err = lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
err = checkNumForceClosedChannels(pendingChanResp, 1)
if err != nil {
predErr = err
return false
}
// All htlcs should show zero blocks until maturity, as
// evidenced by having checked the sweep transaction in the
// mempool.
forceClose, err := findForceClosedChannel(pendingChanResp, &op)
if err != nil {
predErr = err
return false
}
predErr = checkPendingChannelNumHtlcs(forceClose, numInvoices)
if predErr != nil {
return false
}
err = checkPendingHtlcStageAndMaturity(
forceClose, 2, htlcCsvMaturityHeight, 0,
)
if err != nil {
predErr = err
return false
}
return true
}, 15*time.Second)
if err != nil {
t.Fatalf(predErr.Error())
}
// Generate the final block that sweeps all htlc funds into the user's
// wallet, and make sure the sweep is in this block.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, htlcSweepTxID)
// Now that the channel has been fully swept, it should no longer show
// up within the pending channels RPC.
err = lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
predErr = checkNumForceClosedChannels(pendingChanResp, 0)
if predErr != nil {
return false
}
// In addition to there being no pending channels, we verify
// that pending channels does not report any money still in
// limbo.
if pendingChanResp.TotalLimboBalance != 0 {
predErr = errors.New("no user funds should be left " +
"in limbo after incubation")
return false
}
return true
}, 15*time.Second)
if err != nil {
t.Fatalf(predErr.Error())
}
// At this point, Bob should now be aware of his new immediately
// spendable on-chain balance, as it was Alice who broadcast the
// commitment transaction.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalResp, err = net.Bob.WalletBalance(ctxt, carolBalReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolExpectedBalance := btcutil.Amount(carolStartingBalance) + pushAmt
if btcutil.Amount(carolBalResp.ConfirmedBalance) < carolExpectedBalance {
t.Fatalf("carol's balance is incorrect: expected %v got %v",
carolExpectedBalance,
carolBalResp.ConfirmedBalance)
}
}
// testSphinxReplayPersistence verifies that replayed onion packets are rejected
// by a remote peer after a restart. We use a combination of unsafe
// configuration arguments to force Carol to replay the same sphinx packet after
// reconnecting to Dave, and compare the returned failure message with what we
// expect for replayed onion packets.
func testSphinxReplayPersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// Open a channel with 100k satoshis between Carol and Dave with Carol being
// the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
// First, we'll create Dave, the receiver, and start him in hodl mode.
dave, err := net.NewNode("Dave", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// We must remember to shutdown the nodes we created for the duration
// of the tests, only leaving the two seed nodes (Alice and Bob) within
// our test network.
defer shutdownAndAssert(net, t, dave)
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in both unsafe-replay and unsafe-disconnect,
// which will cause her to replay any pending Adds held in memory upon
// reconnection.
carol, err := net.NewNode("Carol", []string{"--unsafe-replay"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
assertAmountSent := func(amt btcutil.Amount) {
// Both channels should also have properly accounted from the
// amount that has been sent/received over the channel.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolListChannels, err := carol.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to query for alice's channel list: %v", err)
}
carolSatoshisSent := carolListChannels.Channels[0].TotalSatoshisSent
if carolSatoshisSent != int64(amt) {
t.Fatalf("Carol's satoshis sent is incorrect got %v, expected %v",
carolSatoshisSent, amt)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveListChannels, err := dave.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to query for Dave's channel list: %v", err)
}
daveSatoshisReceived := daveListChannels.Channels[0].TotalSatoshisReceived
if daveSatoshisReceived != int64(amt) {
t.Fatalf("Dave's satoshis received is incorrect got %v, expected %v",
daveSatoshisReceived, amt)
}
}
// Now that the channel is open, create an invoice for Dave which
// expects a payment of 1000 satoshis from Carol paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
invoiceResp, err := dave.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Carol to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Dave added, send a payment from Carol paying
// to the above generated invoice.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
payStream, err := carol.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to open payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{PaymentRequest: invoiceResp.PaymentRequest}
err = payStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Dave's invoice should not be marked as settled.
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
dbInvoice, err := dave.LookupInvoice(ctxt, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if dbInvoice.Settled {
t.Fatalf("dave's invoice should not be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// With the payment sent but hedl, all balance related stats should not
// have changed.
time.Sleep(time.Millisecond * 200)
assertAmountSent(0)
// With the first payment sent, restart dave to make sure he is
// persisting the information required to detect replayed sphinx
// packets.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
// Carol should retransmit the Add hedl in her mailbox on startup. Dave
// should not accept the replayed Add, and actually fail back the
// pending payment. Even though he still holds the original settle, if
// he does fail, it is almost certainly caused by the sphinx replay
// protection, as it is the only validation we do in hodl mode.
resp, err := payStream.Recv()
if err != nil {
t.Fatalf("unable to receive payment response: %v", err)
}
// Construct the response we expect after sending a duplicate packet
// that fails due to sphinx replay detection.
replayErr := "InvalidOnionKey"
if !strings.Contains(resp.PaymentError, replayErr) {
t.Fatalf("received payment error: %v, expected %v",
resp.PaymentError, replayErr)
}
// Since the payment failed, the balance should still be left
// unaltered.
assertAmountSent(0)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPoint, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, carol, chanPoint)
}
func testSingleHopInvoice(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// Open a channel with 100k satoshis between Alice and Bob with Alice being
// the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanAmt := btcutil.Amount(100000)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
assertAmountSent := func(amt btcutil.Amount) {
// Both channels should also have properly accounted from the
// amount that has been sent/received over the channel.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceListChannels, err := net.Alice.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to query for alice's channel list: %v", err)
}
aliceSatoshisSent := aliceListChannels.Channels[0].TotalSatoshisSent
if aliceSatoshisSent != int64(amt) {
t.Fatalf("Alice's satoshis sent is incorrect got %v, expected %v",
aliceSatoshisSent, amt)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobListChannels, err := net.Bob.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to query for bob's channel list: %v", err)
}
bobSatoshisReceived := bobListChannels.Channels[0].TotalSatoshisReceived
if bobSatoshisReceived != int64(amt) {
t.Fatalf("Bob's satoshis received is incorrect got %v, expected %v",
bobSatoshisReceived, amt)
}
}
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendReq := &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Ensure we obtain the proper preimage in the response.
if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
} else if !bytes.Equal(preimage, resp.PaymentPreimage) {
t.Fatalf("preimage mismatch: expected %v, got %v", preimage,
resp.GetPaymentPreimage())
}
// Bob's invoice should now be found and marked as settled.
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
dbInvoice, err := net.Bob.LookupInvoice(ctxt, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if !dbInvoice.Settled {
t.Fatalf("bob's invoice should be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// With the payment completed all balance related stats should be
// properly updated.
time.Sleep(time.Millisecond * 200)
assertAmountSent(paymentAmt)
// Create another invoice for Bob, this time leaving off the preimage
// to one will be randomly generated. We'll test the proper
// encoding/decoding of the zpay32 payment requests.
invoice = &lnrpc.Invoice{
Memo: "test3",
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
invoiceResp, err = net.Bob.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Next send another payment, but this time using a zpay32 encoded
// invoice rather than manually specifying the payment details.
sendReq = &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
}
// The second payment should also have succeeded, with the balances
// being update accordingly.
time.Sleep(time.Millisecond * 200)
assertAmountSent(paymentAmt * 2)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
func testListPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First start by deleting all payments that Alice knows of. This will
// allow us to execute the test with a clean state for Alice.
delPaymentsReq := &lnrpc.DeleteAllPaymentsRequest{}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if _, err := net.Alice.DeleteAllPayments(ctxt, delPaymentsReq); err != nil {
t.Fatalf("unable to delete payments: %v", err)
}
// Check that there are no payments before test.
reqInit := &lnrpc.ListPaymentsRequest{}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsRespInit, err := net.Alice.ListPayments(ctxt, reqInit)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsRespInit.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("B"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
addInvoiceCtxt, _ := context.WithTimeout(ctxb, defaultTimeout)
invoiceResp, err := net.Bob.AddInvoice(addInvoiceCtxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendReq := &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
}
// Grab Alice's list of payments, she should show the existence of
// exactly one payment.
req := &lnrpc.ListPaymentsRequest{}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err := net.Alice.ListPayments(ctxt, req)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 1 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsResp.Payments), 1)
}
p := paymentsResp.Payments[0]
// Ensure that the stored path shows a direct payment to Bob with no
// other nodes in-between.
expectedPath := []string{
net.Bob.PubKeyStr,
}
if !reflect.DeepEqual(p.Path, expectedPath) {
t.Fatalf("incorrect path, got %v, want %v",
p.Path, expectedPath)
}
// The payment amount should also match our previous payment directly.
if p.Value != paymentAmt {
t.Fatalf("incorrect amount, got %v, want %v",
p.Value, paymentAmt)
}
// The payment hash (or r-hash) should have been stored correctly.
correctRHash := hex.EncodeToString(invoiceResp.RHash)
if !reflect.DeepEqual(p.PaymentHash, correctRHash) {
t.Fatalf("incorrect RHash, got %v, want %v",
p.PaymentHash, correctRHash)
}
// As we made a single-hop direct payment, there should have been no fee
// applied.
if p.Fee != 0 {
t.Fatalf("incorrect Fee, got %v, want %v", p.Fee, 0)
}
// Finally, verify that the payment request returned by the rpc matches
// the invoice that we paid.
if p.PaymentRequest != invoiceResp.PaymentRequest {
t.Fatalf("incorrect payreq, got: %v, want: %v",
p.PaymentRequest, invoiceResp.PaymentRequest)
}
// Delete all payments from Alice. DB should have no payments.
delReq := &lnrpc.DeleteAllPaymentsRequest{}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
_, err = net.Alice.DeleteAllPayments(ctxt, delReq)
if err != nil {
t.Fatalf("Can't delete payments at the end: %v", err)
}
// Check that there are no payments before test.
listReq := &lnrpc.ListPaymentsRequest{}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err = net.Alice.ListPayments(ctxt, listReq)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// assertAmountPaid checks that the ListChannels command of the provided
// node list the total amount sent and received as expected for the
// provided channel.
func assertAmountPaid(t *harnessTest, channelName string,
node *lntest.HarnessNode, chanPoint wire.OutPoint, amountSent,
amountReceived int64) {
ctxb := context.Background()
checkAmountPaid := func() error {
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
resp, err := node.ListChannels(ctxt, listReq)
if err != nil {
return fmt.Errorf("unable to for node's "+
"channels: %v", err)
}
for _, channel := range resp.Channels {
if channel.ChannelPoint != chanPoint.String() {
continue
}
if channel.TotalSatoshisSent != amountSent {
return fmt.Errorf("%v: incorrect amount"+
" sent: %v != %v", channelName,
channel.TotalSatoshisSent,
amountSent)
}
if channel.TotalSatoshisReceived !=
amountReceived {
return fmt.Errorf("%v: incorrect amount"+
" received: %v != %v",
channelName,
channel.TotalSatoshisReceived,
amountReceived)
}
return nil
}
return fmt.Errorf("channel not found")
}
// As far as HTLC inclusion in commitment transaction might be
// postponed we will try to check the balance couple of times,
// and then if after some period of time we receive wrong
// balance return the error.
// TODO(roasbeef): remove sleep after invoice notification hooks
// are in place
var timeover uint32
go func() {
<-time.After(time.Second * 20)
atomic.StoreUint32(&timeover, 1)
}()
for {
isTimeover := atomic.LoadUint32(&timeover) == 1
if err := checkAmountPaid(); err != nil {
if isTimeover {
t.Fatalf("Check amount Paid failed: %v", err)
}
} else {
break
}
}
}
// updateChannelPolicy updates the channel policy of node to the
// given fees and timelock delta. This function blocks until
// listenerNode has received the policy update.
func updateChannelPolicy(t *harnessTest, node *lntest.HarnessNode,
chanPoint *lnrpc.ChannelPoint, baseFee int64, feeRate int64,
timeLockDelta uint32, listenerNode *lntest.HarnessNode) {
ctxb := context.Background()
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: baseFee,
FeeRateMilliMsat: feeRate,
TimeLockDelta: timeLockDelta,
MinHtlc: 1000, // default value
}
updateFeeReq := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate) / testFeeBase,
TimeLockDelta: timeLockDelta,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPoint,
},
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if _, err := node.UpdateChannelPolicy(ctxt, updateFeeReq); err != nil {
t.Fatalf("unable to update chan policy: %v", err)
}
// Wait for listener node to receive the channel update from node.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
graphSub := subscribeGraphNotifications(t, ctxt, listenerNode)
defer close(graphSub.quit)
waitForChannelUpdate(
t, graphSub,
[]expectedChanUpdate{
{node.PubKeyStr, expectedPolicy, chanPoint},
},
)
}
func testMultiHopPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 node, 3 channel topology. Dave will make a
// channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice. Dave will
// be running an older node that requires the legacy onion payload.
daveArgs := []string{"--legacyprotocol.onion"}
dave, err := net.NewNode("Dave", daveArgs)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnd.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Bob, which expect a payment from Carol for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Set the fee policies of the Alice -> Bob and the Dave -> Alice
// channel edges to relatively large non default values. This makes it
// possible to pick up more subtle fee calculation errors.
updateChannelPolicy(
t, net.Alice, chanPointAlice, 1000, 100000,
lnd.DefaultBitcoinTimeLockDelta, carol,
)
updateChannelPolicy(
t, dave, chanPointDave, 5000, 150000,
lnd.DefaultBitcoinTimeLockDelta, carol,
)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, carol, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Bob, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Carol->David->Alice->Bob, order is Bob,
// Alice, David, Carol.
// The final node bob expects to get paid five times 1000 sat.
expectedAmountPaidAtoB := int64(5 * 1000)
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), expectedAmountPaidAtoB)
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, expectedAmountPaidAtoB, int64(0))
// To forward a payment of 1000 sat, Alice is charging a fee of
// 1 sat + 10% = 101 sat.
const expectedFeeAlice = 5 * 101
// Dave needs to pay what Alice pays plus Alice's fee.
expectedAmountPaidDtoA := expectedAmountPaidAtoB + expectedFeeAlice
assertAmountPaid(t, "Dave(local) => Alice(remote)", net.Alice,
daveFundPoint, int64(0), expectedAmountPaidDtoA)
assertAmountPaid(t, "Dave(local) => Alice(remote)", dave,
daveFundPoint, expectedAmountPaidDtoA, int64(0))
// To forward a payment of 1101 sat, Dave is charging a fee of
// 5 sat + 15% = 170.15 sat. This is rounded down in rpcserver to 170.
const expectedFeeDave = 5 * 170
// Carol needs to pay what Dave pays plus Dave's fee.
expectedAmountPaidCtoD := expectedAmountPaidDtoA + expectedFeeDave
assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), expectedAmountPaidCtoD)
assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
carolFundPoint, expectedAmountPaidCtoD, int64(0))
// Now that we know all the balances have been settled out properly,
// we'll ensure that our internal record keeping for completed circuits
// was properly updated.
// First, check that the FeeReport response shows the proper fees
// accrued over each time range. Dave should've earned 170 satoshi for
// each of the forwarded payments.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
feeReport, err := dave.FeeReport(ctxt, &lnrpc.FeeReportRequest{})
if err != nil {
t.Fatalf("unable to query for fee report: %v", err)
}
if feeReport.DayFeeSum != uint64(expectedFeeDave) {
t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
feeReport.DayFeeSum)
}
if feeReport.WeekFeeSum != uint64(expectedFeeDave) {
t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
feeReport.WeekFeeSum)
}
if feeReport.MonthFeeSum != uint64(expectedFeeDave) {
t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
feeReport.MonthFeeSum)
}
// Next, ensure that if we issue the vanilla query for the forwarding
// history, it returns 5 values, and each entry is formatted properly.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
fwdingHistory, err := dave.ForwardingHistory(
ctxt, &lnrpc.ForwardingHistoryRequest{},
)
if err != nil {
t.Fatalf("unable to query for fee report: %v", err)
}
if len(fwdingHistory.ForwardingEvents) != 5 {
t.Fatalf("wrong number of forwarding event: expected %v, "+
"got %v", 5, len(fwdingHistory.ForwardingEvents))
}
expectedForwardingFee := uint64(expectedFeeDave / numPayments)
for _, event := range fwdingHistory.ForwardingEvents {
// Each event should show a fee of 170 satoshi.
if event.Fee != expectedForwardingFee {
t.Fatalf("fee mismatch: expected %v, got %v",
expectedForwardingFee, event.Fee)
}
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testSingleHopSendToRoute tests that payments are properly processed
// through a provided route with a single hop. We'll create the
// following network topology:
// Alice --100k--> Bob
// We'll query the daemon for routes from Alice to Bob and then
// send payments through the route.
func testSingleHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob}
nodeNames := []string{"Alice", "Bob"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Query for routes to pay from Alice to Bob.
// We set FinalCltvDelta to 40 since by default QueryRoutes returns
// the last hop with a final cltv delta of 9 where as the default in
// htlcswitch is 40.
const paymentAmt = 1000
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: net.Bob.PubKeyStr,
Amt: paymentAmt,
FinalCltvDelta: lnd.DefaultBitcoinTimeLockDelta,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
// Create 5 invoices for Bob, which expect a payment from Alice for 1k
// satoshis with a different preimage each time.
const numPayments = 5
_, rHashes, _, err := createPayReqs(
net.Bob, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't advertise her channel in time: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Using Alice as the source, pay to the 5 invoices from Carol created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := net.Alice.SendToRoute(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
for _, rHash := range rHashes {
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: routes.Routes[0],
}
err := alicePayStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
}
for range rHashes {
resp, err := alicePayStream.Recv()
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("received payment error: %v", resp.PaymentError)
}
}
req := &lnrpc.ListPaymentsRequest{}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err := net.Alice.ListPayments(ctxt, req)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 5 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsResp.Payments), 5)
}
// Verify that the ListPayments displays the payment without an invoice
// since the payment was completed with SendToRoute.
for _, p := range paymentsResp.Payments {
if p.PaymentRequest != "" {
t.Fatalf("incorrect payreq, want: \"\", got: %v",
p.PaymentRequest)
}
}
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Bob, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Alice->Bob, order is Bob and then Alice.
const amountPaid = int64(5000)
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, amountPaid, int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
}
// testMultiHopSendToRoute tests that payments are properly processed
// through a provided route. We'll create the following network topology:
// Alice --100k--> Bob --100k--> Carol
// We'll query the daemon for routes from Alice to Carol and then
// send payments through the routes.
func testMultiHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create Carol and establish a channel from Bob. Bob is the sole funder
// of the channel with 100k satoshis. The network topology should look like:
// Alice -> Bob -> Carol
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, net.Bob)
if err != nil {
t.Fatalf("unable to send coins to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointBob)
bobChanTXID, err := lnd.GetChanPointFundingTxid(chanPointBob)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundPoint := wire.OutPoint{
Hash: *bobChanTXID,
Index: chanPointBob.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
nodeNames := []string{"Alice", "Bob", "Carol"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Query for routes to pay from Alice to Carol.
// We set FinalCltvDelta to 40 since by default QueryRoutes returns
// the last hop with a final cltv delta of 9 where as the default in
// htlcswitch is 40.
const paymentAmt = 1000
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: carol.PubKeyStr,
Amt: paymentAmt,
FinalCltvDelta: lnd.DefaultBitcoinTimeLockDelta,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
// Create 5 invoices for Carol, which expect a payment from Alice for 1k
// satoshis with a different preimage each time.
const numPayments = 5
_, rHashes, _, err := createPayReqs(
carol, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("bob didn't advertise his channel in time: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Using Alice as the source, pay to the 5 invoices from Carol created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := net.Alice.SendToRoute(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
for _, rHash := range rHashes {
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: routes.Routes[0],
}
err := alicePayStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
}
for range rHashes {
resp, err := alicePayStream.Recv()
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("received payment error: %v", resp.PaymentError)
}
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Alice->Bob->Carol, order is Carol, Bob,
// Alice.
const amountPaid = int64(5000)
assertAmountPaid(t, "Bob(local) => Carol(remote)", carol,
bobFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Bob(local) => Carol(remote)", net.Bob,
bobFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, amountPaid+(baseFee*numPayments), int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointBob, false)
}
// testSendToRouteErrorPropagation tests propagation of errors that occur
// while processing a multi-hop payment through an unknown route.
func testSendToRouteErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't advertise her channel: %v", err)
}
// Create a new nodes (Carol and Charlie), load her with some funds,
// then establish a connection between Carol and Charlie with a channel
// that has identical capacity to the one created above.Then we will
// get route via queryroutes call which will be fake route for Alice ->
// Bob graph.
//
// The network topology should now look like: Alice -> Bob; Carol -> Charlie.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
charlie, err := net.NewNode("Charlie", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, charlie)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, charlie)
if err != nil {
t.Fatalf("unable to send coins to charlie: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, charlie); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, charlie,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel: %v", err)
}
// Query routes from Carol to Charlie which will be an invalid route
// for Alice -> Bob.
fakeReq := &lnrpc.QueryRoutesRequest{
PubKey: charlie.PubKeyStr,
Amt: int64(1),
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
fakeRoute, err := carol.QueryRoutes(ctxt, fakeReq)
if err != nil {
t.Fatalf("unable get fake route: %v", err)
}
// Create 1 invoices for Bob, which expect a payment from Alice for 1k
// satoshis
const paymentAmt = 1000
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Bob.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
rHash := resp.RHash
// Using Alice as the source, pay to the 5 invoices from Bob created above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := net.Alice.SendToRoute(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: fakeRoute.Routes[0],
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// At this place we should get an rpc error with notification
// that edge is not found on hop(0)
if _, err := alicePayStream.Recv(); err != nil && strings.Contains(err.Error(),
"edge not found") {
} else if err != nil {
t.Fatalf("payment stream has been closed but fake route has consumed: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testUnannouncedChannels checks unannounced channels are not returned by
// describeGraph RPC request unless explicitly asked for.
func testUnannouncedChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
amount := lnd.MaxBtcFundingAmount
// Open a channel between Alice and Bob, ensuring the
// channel has been opened properly.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanOpenUpdate, err := net.OpenChannel(
ctxt, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: amount,
},
)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Mine 2 blocks, and check that the channel is opened but not yet
// announced to the network.
mineBlocks(t, net, 2, 1)
// One block is enough to make the channel ready for use, since the
// nodes have defaultNumConfs=1 set.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
fundingChanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
// Alice should have 1 edge in her graph.
req := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := net.Alice.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable to query alice's graph: %v", err)
}
numEdges := len(chanGraph.Edges)
if numEdges != 1 {
t.Fatalf("expected to find 1 edge in the graph, found %d", numEdges)
}
// Channels should not be announced yet, hence Alice should have no
// announced edges in her graph.
req.IncludeUnannounced = false
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable to query alice's graph: %v", err)
}
numEdges = len(chanGraph.Edges)
if numEdges != 0 {
t.Fatalf("expected to find 0 announced edges in the graph, found %d",
numEdges)
}
// Mine 4 more blocks, and check that the channel is now announced.
mineBlocks(t, net, 4, 0)
// Give the network a chance to learn that auth proof is confirmed.
var predErr error
err = lntest.WaitPredicate(func() bool {
// The channel should now be announced. Check that Alice has 1
// announced edge.
req.IncludeUnannounced = false
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query alice's graph: %v", err)
return false
}
numEdges = len(chanGraph.Edges)
if numEdges != 1 {
predErr = fmt.Errorf("expected to find 1 announced edge in "+
"the graph, found %d", numEdges)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// The channel should now be announced. Check that Alice has 1 announced
// edge.
req.IncludeUnannounced = false
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable to query alice's graph: %v", err)
}
numEdges = len(chanGraph.Edges)
if numEdges != 1 {
t.Fatalf("expected to find 1 announced edge in the graph, found %d",
numEdges)
}
// Close the channel used during the test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, fundingChanPoint, false)
}
// testPrivateChannels tests that a private channel can be used for
// routing by the two endpoints of the channel, but is not known by
// the rest of the nodes in the graph.
func testPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// We create the following topology:
//
// Dave --100k--> Alice --200k--> Bob
// ^ ^
// | |
// 100k 100k
// | |
// +---- Carol ----+
//
// where the 100k channel between Carol and Alice is private.
// Open a channel with 200k satoshis between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt * 2,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create Dave, and a channel to Alice of 100k.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnd.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel from her to
// Dave of 100k.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all these channels, as they
// are all public.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Now create a _private_ channel directly between Carol and
// Alice of 100k.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanOpenUpdate, err := net.OpenChannel(
ctxt, carol, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// One block is enough to make the channel ready for use, since the
// nodes have defaultNumConfs=1 set.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanPointPrivate, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := lnd.GetChanPointFundingTxid(chanPointPrivate)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
privateFundPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: chanPointPrivate.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.AssertChannelExists(ctxt, carol, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.AssertChannelExists(ctxt, net.Alice, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// The channel should be available for payments between Carol and Alice.
// We check this by sending payments from Carol to Bob, that
// collectively would deplete at least one of Carol's channels.
// Create 2 invoices for Bob, each of 70k satoshis. Since each of
// Carol's channels is of size 100k, these payments cannot succeed
// by only using one of the channels.
const numPayments = 2
const paymentAmt = 70000
payReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Let Carol pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, carol, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// Bob should have received 140k satoshis from Alice.
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), 2*paymentAmt)
// Alice sent 140k to Bob.
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, 2*paymentAmt, int64(0))
// Alice received 70k + fee from Dave.
assertAmountPaid(t, "Dave(local) => Alice(remote)", net.Alice,
daveFundPoint, int64(0), paymentAmt+baseFee)
// Dave sent 70k+fee to Alice.
assertAmountPaid(t, "Dave(local) => Alice(remote)", dave,
daveFundPoint, paymentAmt+baseFee, int64(0))
// Dave received 70k+fee of two hops from Carol.
assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), paymentAmt+baseFee*2)
// Carol sent 70k+fee of two hops to Dave.
assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
carolFundPoint, paymentAmt+baseFee*2, int64(0))
// Alice received 70k+fee from Carol.
assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
net.Alice, privateFundPoint, int64(0), paymentAmt+baseFee)
// Carol sent 70k+fee to Alice.
assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
carol, privateFundPoint, paymentAmt+baseFee, int64(0))
// Alice should also be able to route payments using this channel,
// so send two payments of 60k back to Carol.
const paymentAmt60k = 60000
payReqs, _, _, err = createPayReqs(
carol, paymentAmt60k, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Let Bob pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Alice, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Finally, we make sure Dave and Bob does not know about the
// private channel between Carol and Alice. We first mine
// plenty of blocks, such that the channel would have been
// announced in case it was public.
mineBlocks(t, net, 10, 0)
// We create a helper method to check how many edges each of the
// nodes know about. Carol and Alice should know about 4, while
// Bob and Dave should only know about 3, since one channel is
// private.
numChannels := func(node *lntest.HarnessNode, includeUnannounced bool) int {
req := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: includeUnannounced,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := node.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable go describegraph: %v", err)
}
return len(chanGraph.Edges)
}
var predErr error
err = lntest.WaitPredicate(func() bool {
aliceChans := numChannels(net.Alice, true)
if aliceChans != 4 {
predErr = fmt.Errorf("expected Alice to know 4 edges, "+
"had %v", aliceChans)
return false
}
alicePubChans := numChannels(net.Alice, false)
if alicePubChans != 3 {
predErr = fmt.Errorf("expected Alice to know 3 public edges, "+
"had %v", alicePubChans)
return false
}
bobChans := numChannels(net.Bob, true)
if bobChans != 3 {
predErr = fmt.Errorf("expected Bob to know 3 edges, "+
"had %v", bobChans)
return false
}
carolChans := numChannels(carol, true)
if carolChans != 4 {
predErr = fmt.Errorf("expected Carol to know 4 edges, "+
"had %v", carolChans)
return false
}
carolPubChans := numChannels(carol, false)
if carolPubChans != 3 {
predErr = fmt.Errorf("expected Carol to know 3 public edges, "+
"had %v", carolPubChans)
return false
}
daveChans := numChannels(dave, true)
if daveChans != 3 {
predErr = fmt.Errorf("expected Dave to know 3 edges, "+
"had %v", daveChans)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// Close all channels.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointPrivate, false)
}
// testInvoiceRoutingHints tests that the routing hints for an invoice are
// created properly.
func testInvoiceRoutingHints(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
// Throughout this test, we'll be opening a channel between Alice and
// several other parties.
//
// First, we'll create a private channel between Alice and Bob. This
// will be the only channel that will be considered as a routing hint
// throughout this test. We'll include a push amount since we currently
// require channels to have enough remote balance to cover the invoice's
// payment.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
Private: true,
},
)
// Then, we'll create Carol's node and open a public channel between her
// and Alice. This channel will not be considered as a routing hint due
// to it being public.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create carol's node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
},
)
// We'll also create a public channel between Bob and Carol to ensure
// that Bob gets selected as the only routing hint. We do this as
// we should only include routing hints for nodes that are publicly
// advertised, otherwise we'd end up leaking information about nodes
// that wish to stay unadvertised.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBobCarol := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
},
)
// Then, we'll create Dave's node and open a private channel between him
// and Alice. We will not include a push amount in order to not consider
// this channel as a routing hint as it will not have enough remote
// balance for the invoice's amount.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create dave's node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, dave); err != nil {
t.Fatalf("unable to connect alice to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, net.Alice, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
// Finally, we'll create Eve's node and open a private channel between
// her and Alice. This time though, we'll take Eve's node down after the
// channel has been created to avoid populating routing hints for
// inactive channels.
eve, err := net.NewNode("Eve", nil)
if err != nil {
t.Fatalf("unable to create eve's node: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, eve); err != nil {
t.Fatalf("unable to connect alice to eve: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointEve := openChannelAndAssert(
ctxt, t, net, net.Alice, eve,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
Private: true,
},
)
// Make sure all the channels have been opened.
nodeNames := []string{"bob", "carol", "dave", "eve"}
aliceChans := []*lnrpc.ChannelPoint{
chanPointBob, chanPointCarol, chanPointBobCarol, chanPointDave,
chanPointEve,
}
for i, chanPoint := range aliceChans {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("timed out waiting for channel open between "+
"alice and %s: %v", nodeNames[i], err)
}
}
// Now that the channels are open, we'll take down Eve's node.
shutdownAndAssert(net, t, eve)
// Create an invoice for Alice that will populate the routing hints.
invoice := &lnrpc.Invoice{
Memo: "routing hints",
Value: int64(chanAmt / 4),
Private: true,
}
// Due to the way the channels were set up above, the channel between
// Alice and Bob should be the only channel used as a routing hint.
var predErr error
var decoded *lnrpc.PayReq
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Alice.AddInvoice(ctxt, invoice)
if err != nil {
predErr = fmt.Errorf("unable to add invoice: %v", err)
return false
}
// We'll decode the invoice's payment request to determine which
// channels were used as routing hints.
payReq := &lnrpc.PayReqString{
PayReq: resp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
decoded, err = net.Alice.DecodePayReq(ctxt, payReq)
if err != nil {
predErr = fmt.Errorf("unable to decode payment "+
"request: %v", err)
return false
}
if len(decoded.RouteHints) != 1 {
predErr = fmt.Errorf("expected one route hint, got %d",
len(decoded.RouteHints))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
hops := decoded.RouteHints[0].HopHints
if len(hops) != 1 {
t.Fatalf("expected one hop in route hint, got %d", len(hops))
}
chanID := hops[0].ChanId
// We'll need the short channel ID of the channel between Alice and Bob
// to make sure the routing hint is for this channel.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
listResp, err := net.Alice.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to retrieve alice's channels: %v", err)
}
var aliceBobChanID uint64
for _, channel := range listResp.Channels {
if channel.RemotePubkey == net.Bob.PubKeyStr {
aliceBobChanID = channel.ChanId
}
}
if aliceBobChanID == 0 {
t.Fatalf("channel between alice and bob not found")
}
if chanID != aliceBobChanID {
t.Fatalf("expected channel ID %d, got %d", aliceBobChanID,
chanID)
}
// Now that we've confirmed the routing hints were added correctly, we
// can close all the channels and shut down all the nodes created.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointDave, false)
// The channel between Alice and Eve should be force closed since Eve
// is offline.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointEve, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Alice, chanPointEve)
}
// testMultiHopOverPrivateChannels tests that private channels can be used as
// intermediate hops in a route for payments.
func testMultiHopOverPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// We'll test that multi-hop payments over private channels work as
// intended. To do so, we'll create the following topology:
// private public private
// Alice <--100k--> Bob <--100k--> Carol <--100k--> Dave
const chanAmt = btcutil.Amount(100000)
// First, we'll open a private channel between Alice and Bob with Alice
// being the funder.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't see the channel alice <-> bob before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("bob didn't see the channel alice <-> bob before "+
"timeout: %v", err)
}
// Retrieve Alice's funding outpoint.
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Next, we'll create Carol's node and open a public channel between
// her and Bob with Bob being the funder.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create carol's node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("bob didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("carol didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("alice didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
// Retrieve Bob's funding outpoint.
bobChanTXID, err := lnd.GetChanPointFundingTxid(chanPointBob)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundPoint := wire.OutPoint{
Hash: *bobChanTXID,
Index: chanPointBob.OutputIndex,
}
// Next, we'll create Dave's node and open a private channel between him
// and Carol with Carol being the funder.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create dave's node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't see the channel carol <-> dave before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("dave didn't see the channel carol <-> dave before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("dave didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
// Retrieve Carol's funding point.
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Now that all the channels are set up according to the topology from
// above, we can proceed to test payments. We'll create an invoice for
// Dave of 20k satoshis and pay it with Alice. Since there is no public
// route from Alice to Dave, we'll need to use the private channel
// between Carol and Dave as a routing hint encoded in the invoice.
const paymentAmt = 20000
// Create the invoice for Dave.
invoice := &lnrpc.Invoice{
Memo: "two hopz!",
Value: paymentAmt,
Private: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := dave.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice for dave: %v", err)
}
// Let Alice pay the invoice.
payReqs := []string{resp.PaymentRequest}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Alice, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments from alice to dave: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when opening
// the channels.
const baseFee = 1
// Dave should have received 20k satoshis from Carol.
assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
dave, carolFundPoint, 0, paymentAmt)
// Carol should have sent 20k satoshis to Dave.
assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
carol, carolFundPoint, paymentAmt, 0)
// Carol should have received 20k satoshis + fee for one hop from Bob.
assertAmountPaid(t, "Bob(local) => Carol(remote)",
carol, bobFundPoint, 0, paymentAmt+baseFee)
// Bob should have sent 20k satoshis + fee for one hop to Carol.
assertAmountPaid(t, "Bob(local) => Carol(remote)",
net.Bob, bobFundPoint, paymentAmt+baseFee, 0)
// Bob should have received 20k satoshis + fee for two hops from Alice.
assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Bob,
aliceFundPoint, 0, paymentAmt+baseFee*2)
// Alice should have sent 20k satoshis + fee for two hops to Bob.
assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Alice,
aliceFundPoint, paymentAmt+baseFee*2, 0)
// At this point, the payment was successful. We can now close all the
// channels and shutdown the nodes created throughout this test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(500000)
// Open a channel with 500k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Next create a new invoice for Bob requesting 1k satoshis.
// TODO(roasbeef): make global list of invoices for each node to re-use
// and avoid collisions
const paymentAmt = 1000
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: makeFakePayHash(t),
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
invoiceResp, err := net.Bob.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
lastAddIndex := invoiceResp.AddIndex
// Create a new invoice subscription client for Bob, the notification
// should be dispatched shortly below.
req := &lnrpc.InvoiceSubscription{}
ctx, cancelInvoiceSubscription := context.WithCancel(ctxb)
bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctx, req)
if err != nil {
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
var settleIndex uint64
quit := make(chan struct{})
updateSent := make(chan struct{})
go func() {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
select {
case <-quit:
// Received cancellation
return
default:
}
if err != nil {
t.Fatalf("unable to recv invoice update: %v", err)
}
// The invoice update should exactly match the invoice created
// above, but should now be settled and have SettleDate
if !invoiceUpdate.Settled {
t.Fatalf("invoice not settled but should be")
}
if invoiceUpdate.SettleDate == 0 {
t.Fatalf("invoice should have non zero settle date, but doesn't")
}
if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
t.Fatalf("payment preimages don't match: expected %v, got %v",
invoice.RPreimage, invoiceUpdate.RPreimage)
}
if invoiceUpdate.SettleIndex == 0 {
t.Fatalf("invoice should have settle index")
}
settleIndex = invoiceUpdate.SettleIndex
close(updateSent)
}()
// Wait for the channel to be recognized by both Alice and Bob before
// continuing the rest of the test.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
// TODO(roasbeef): will need to make num blocks to advertise a
// node param
close(quit)
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// With the assertion above set up, send a payment from Alice to Bob
// which should finalize and settle the invoice.
sendReq := &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
close(quit)
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
close(quit)
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
}
select {
case <-time.After(time.Second * 10):
close(quit)
t.Fatalf("update not sent after 10 seconds")
case <-updateSent: // Fall through on success
}
// With the base case working, we'll now cancel Bob's current
// subscription in order to exercise the backlog fill behavior.
cancelInvoiceSubscription()
// We'll now add 3 more invoices to Bob's invoice registry.
const numInvoices = 3
payReqs, _, newInvoices, err := createPayReqs(
net.Bob, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Now that the set of invoices has been added, we'll re-register for
// streaming invoice notifications for Bob, this time specifying the
// add invoice of the last prior invoice.
req = &lnrpc.InvoiceSubscription{
AddIndex: lastAddIndex,
}
ctx, cancelInvoiceSubscription = context.WithCancel(ctxb)
bobInvoiceSubscription, err = net.Bob.SubscribeInvoices(ctx, req)
if err != nil {
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
// Since we specified a value of the prior add index above, we should
// now immediately get the invoices we just added as we should get the
// backlog of notifications.
for i := 0; i < numInvoices; i++ {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
if err != nil {
t.Fatalf("unable to receive subscription")
}
// We should now get the ith invoice we added, as they should
// be returned in order.
if invoiceUpdate.Settled {
t.Fatalf("should have only received add events")
}
originalInvoice := newInvoices[i]
rHash := sha256.Sum256(originalInvoice.RPreimage[:])
if !bytes.Equal(invoiceUpdate.RHash, rHash[:]) {
t.Fatalf("invoices have mismatched payment hashes: "+
"expected %x, got %x", rHash[:],
invoiceUpdate.RHash)
}
}
cancelInvoiceSubscription()
// We'll now have Bob settle out the remainder of these invoices so we
// can test that all settled invoices are properly notified.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// With the set of invoices paid, we'll now cancel the old
// subscription, and create a new one for Bob, this time using the
// settle index to obtain the backlog of settled invoices.
req = &lnrpc.InvoiceSubscription{
SettleIndex: settleIndex,
}
ctx, cancelInvoiceSubscription = context.WithCancel(ctxb)
bobInvoiceSubscription, err = net.Bob.SubscribeInvoices(ctx, req)
if err != nil {
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
defer cancelInvoiceSubscription()
// As we specified the index of the past settle index, we should now
// receive notifications for the three HTLCs that we just settled. As
// the order that the HTLCs will be settled in is partially randomized,
// we'll use a map to assert that the proper set has been settled.
settledInvoices := make(map[[32]byte]struct{})
for _, invoice := range newInvoices {
rHash := sha256.Sum256(invoice.RPreimage[:])
settledInvoices[rHash] = struct{}{}
}
for i := 0; i < numInvoices; i++ {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
if err != nil {
t.Fatalf("unable to receive subscription")
}
// We should now get the ith invoice we added, as they should
// be returned in order.
if !invoiceUpdate.Settled {
t.Fatalf("should have only received settle events")
}
var rHash [32]byte
copy(rHash[:], invoiceUpdate.RHash)
if _, ok := settledInvoices[rHash]; !ok {
t.Fatalf("unknown invoice settled: %x", rHash)
}
delete(settledInvoices, rHash)
}
// At this point, all the invoices should be fully settled.
if len(settledInvoices) != 0 {
t.Fatalf("not all invoices settled")
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// channelSubscription houses the proxied update and error chans for a node's
// channel subscriptions.
type channelSubscription struct {
updateChan chan *lnrpc.ChannelEventUpdate
errChan chan error
quit chan struct{}
}
// subscribeChannelNotifications subscribes to channel updates and launches a
// goroutine that forwards these to the returned channel.
func subscribeChannelNotifications(ctxb context.Context, t *harnessTest,
node *lntest.HarnessNode) channelSubscription {
// We'll first start by establishing a notification client which will
// send us notifications upon channels becoming active, inactive or
// closed.
req := &lnrpc.ChannelEventSubscription{}
ctx, cancelFunc := context.WithCancel(ctxb)
chanUpdateClient, err := node.SubscribeChannelEvents(ctx, req)
if err != nil {
t.Fatalf("unable to create channel update client: %v", err)
}
// We'll launch a goroutine that will be responsible for proxying all
// notifications recv'd from the client into the channel below.
errChan := make(chan error, 1)
quit := make(chan struct{})
chanUpdates := make(chan *lnrpc.ChannelEventUpdate, 20)
go func() {
defer cancelFunc()
for {
select {
case <-quit:
return
default:
chanUpdate, err := chanUpdateClient.Recv()
select {
case <-quit:
return
default:
}
if err == io.EOF {
return
} else if err != nil {
select {
case errChan <- err:
case <-quit:
}
return
}
select {
case chanUpdates <- chanUpdate:
case <-quit:
return
}
}
}
}()
return channelSubscription{
updateChan: chanUpdates,
errChan: errChan,
quit: quit,
}
}
// verifyCloseUpdate is used to verify that a closed channel update is of the
// expected type.
func verifyCloseUpdate(chanUpdate *lnrpc.ChannelEventUpdate,
force bool, forceType lnrpc.ChannelCloseSummary_ClosureType) error {
// We should receive one inactive and one closed notification
// for each channel.
switch update := chanUpdate.Channel.(type) {
case *lnrpc.ChannelEventUpdate_InactiveChannel:
if chanUpdate.Type != lnrpc.ChannelEventUpdate_INACTIVE_CHANNEL {
return fmt.Errorf("update type mismatch: expected %v, got %v",
lnrpc.ChannelEventUpdate_INACTIVE_CHANNEL,
chanUpdate.Type)
}
case *lnrpc.ChannelEventUpdate_ClosedChannel:
if chanUpdate.Type !=
lnrpc.ChannelEventUpdate_CLOSED_CHANNEL {
return fmt.Errorf("update type mismatch: expected %v, got %v",
lnrpc.ChannelEventUpdate_CLOSED_CHANNEL,
chanUpdate.Type)
}
switch force {
case true:
if update.ClosedChannel.CloseType != forceType {
return fmt.Errorf("channel closure type mismatch: "+
"expected %v, got %v",
forceType,
update.ClosedChannel.CloseType)
}
case false:
if update.ClosedChannel.CloseType !=
lnrpc.ChannelCloseSummary_COOPERATIVE_CLOSE {
return fmt.Errorf("channel closure type "+
"mismatch: expected %v, got %v",
lnrpc.ChannelCloseSummary_COOPERATIVE_CLOSE,
update.ClosedChannel.CloseType)
}
}
default:
return fmt.Errorf("channel update channel of wrong type, "+
"expected closed channel, got %T",
update)
}
return nil
}
// testBasicChannelCreationAndUpdates tests multiple channel opening and closing,
// and ensures that if a node is subscribed to channel updates they will be
// received correctly for both cooperative and force closed channels.
func testBasicChannelCreationAndUpdates(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
numChannels = 2
amount = lnd.MaxBtcFundingAmount
)
// Subscribe Bob and Alice to channel event notifications.
bobChanSub := subscribeChannelNotifications(ctxb, t, net.Bob)
defer close(bobChanSub.quit)
aliceChanSub := subscribeChannelNotifications(ctxb, t, net.Alice)
defer close(aliceChanSub.quit)
// Open the channel between Alice and Bob, asserting that the
// channel has been properly open on-chain.
chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
for i := 0; i < numChannels; i++ {
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoints[i] = openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: amount,
},
)
}
// Since each of the channels just became open, Bob and Alice should
// each receive an open and an active notification for each channel.
var numChannelUpds int
const totalNtfns = 2 * numChannels
verifyOpenUpdatesReceived := func(sub channelSubscription) error {
numChannelUpds = 0
for numChannelUpds < totalNtfns {
select {
case update := <-sub.updateChan:
switch update.Type {
case lnrpc.ChannelEventUpdate_ACTIVE_CHANNEL:
if numChannelUpds%2 != 1 {
return fmt.Errorf("expected open" +
"channel ntfn, got active " +
"channel ntfn instead")
}
case lnrpc.ChannelEventUpdate_OPEN_CHANNEL:
if numChannelUpds%2 != 0 {
return fmt.Errorf("expected active" +
"channel ntfn, got open" +
"channel ntfn instead")
}
default:
return fmt.Errorf("update type mismatch: "+
"expected open or active channel "+
"notification, got: %v",
update.Type)
}
numChannelUpds++
case <-time.After(time.Second * 10):
return fmt.Errorf("timeout waiting for channel "+
"notifications, only received %d/%d "+
"chanupds", numChannelUpds,
totalNtfns)
}
}
return nil
}
if err := verifyOpenUpdatesReceived(bobChanSub); err != nil {
t.Fatalf("error verifying open updates: %v", err)
}
if err := verifyOpenUpdatesReceived(aliceChanSub); err != nil {
t.Fatalf("error verifying open updates: %v", err)
}
// Close the channel between Alice and Bob, asserting that the channel
// has been properly closed on-chain.
for i, chanPoint := range chanPoints {
ctx, _ := context.WithTimeout(context.Background(), defaultTimeout)
// Force close half of the channels.
force := i%2 == 0
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, force)
if force {
cleanupForceClose(t, net, net.Alice, chanPoint)
}
}
// verifyCloseUpdatesReceived is used to verify that Alice and Bob
// receive the correct channel updates in order.
verifyCloseUpdatesReceived := func(sub channelSubscription,
forceType lnrpc.ChannelCloseSummary_ClosureType) error {
// Ensure one inactive and one closed notification is received for each
// closed channel.
numChannelUpds := 0
for numChannelUpds < 2*numChannels {
// Every other channel should be force closed.
force := (numChannelUpds/2)%2 == 0
select {
case chanUpdate := <-sub.updateChan:
err := verifyCloseUpdate(chanUpdate, force, forceType)
if err != nil {
return err
}
numChannelUpds++
case err := <-sub.errChan:
return err
case <-time.After(time.Second * 10):
return fmt.Errorf("timeout waiting for channel "+
"notifications, only received %d/%d "+
"chanupds", numChannelUpds, 2*numChannels)
}
}
return nil
}
// Verify Bob receives all closed channel notifications. He should
// receive a remote force close notification for force closed channels.
if err := verifyCloseUpdatesReceived(bobChanSub,
lnrpc.ChannelCloseSummary_REMOTE_FORCE_CLOSE); err != nil {
t.Fatalf("errored verifying close updates: %v", err)
}
// Verify Alice receives all closed channel notifications. She should
// receive a remote force close notification for force closed channels.
if err := verifyCloseUpdatesReceived(aliceChanSub,
lnrpc.ChannelCloseSummary_LOCAL_FORCE_CLOSE); err != nil {
t.Fatalf("errored verifying close updates: %v", err)
}
}
// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
maxPendingChannels := lnd.DefaultMaxPendingChannels + 1
amount := lnd.MaxBtcFundingAmount
// Create a new node (Carol) with greater number of max pending
// channels.
args := []string{
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
}
carol, err := net.NewNode("Carol", args)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalance := btcutil.Amount(maxPendingChannels) * amount
if err := net.SendCoins(ctxt, carolBalance, carol); err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// Send open channel requests without generating new blocks thereby
// increasing pool of pending channels. Then check that we can't open
// the channel if the number of pending channels exceed max value.
openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
for i := 0; i < maxPendingChannels; i++ {
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
stream, err := net.OpenChannel(
ctxt, net.Alice, carol,
lntest.OpenChannelParams{
Amt: amount,
},
)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
openStreams[i] = stream
}
// Carol exhausted available amount of pending channels, next open
// channel request should cause ErrorGeneric to be sent back to Alice.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
_, err = net.OpenChannel(
ctxt, net.Alice, carol,
lntest.OpenChannelParams{
Amt: amount,
},
)
if err == nil {
t.Fatalf("error wasn't received")
} else if grpc.Code(err) != lnwire.ErrMaxPendingChannels.ToGrpcCode() {
t.Fatalf("not expected error was received: %v", err)
}
// For now our channels are in pending state, in order to not interfere
// with other tests we should clean up - complete opening of the
// channel and then close it.
// Mine 6 blocks, then wait for node's to notify us that the channel has
// been opened. The funding transactions should be found within the
// first newly mined block. 6 blocks make sure the funding transaction
// has enough confirmations to be announced publicly.
block := mineBlocks(t, net, 6, maxPendingChannels)[0]
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
for i, stream := range openStreams {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
fundingChanPoint, err := net.WaitForChannelOpen(ctxt, stream)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := lnd.GetChanPointFundingTxid(fundingChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
// Ensure that the funding transaction enters a block, and is
// properly advertised by Alice.
assertTxInBlock(t, block, fundingTxID)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, fundingChanPoint)
if err != nil {
t.Fatalf("channel not seen on network before "+
"timeout: %v", err)
}
// The channel should be listed in the peer information
// returned by both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
chanPoints[i] = fundingChanPoint
}
// Next, close the channel between Alice and Carol, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
}
// waitForTxInMempool polls until finding one transaction in the provided
// miner's mempool. An error is returned if *one* transaction isn't found within
// the given timeout.
func waitForTxInMempool(miner *rpcclient.Client,
timeout time.Duration) (*chainhash.Hash, error) {
txs, err := waitForNTxsInMempool(miner, 1, timeout)
if err != nil {
return nil, err
}
return txs[0], err
}
// waitForNTxsInMempool polls until finding the desired number of transactions
// in the provided miner's mempool. An error is returned if this number is not
// met after the given timeout.
func waitForNTxsInMempool(miner *rpcclient.Client, n int,
timeout time.Duration) ([]*chainhash.Hash, error) {
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
var err error
var mempool []*chainhash.Hash
for {
select {
case <-breakTimeout:
return nil, fmt.Errorf("wanted %v, found %v txs "+
"in mempool: %v", n, len(mempool), mempool)
case <-ticker.C:
mempool, err = miner.GetRawMempool()
if err != nil {
return nil, err
}
if len(mempool) == n {
return mempool, nil
}
}
}
}
// testFailingChannel tests that we will fail the channel by force closing ii
// in the case where a counterparty tries to settle an HTLC with the wrong
// preimage.
func testFailingChannel(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
paymentAmt = 10000
)
chanAmt := lnd.MaxFundingAmount
// We'll introduce Carol, which will settle any incoming invoice with a
// totally unrelated preimage.
carol, err := net.NewNode("Carol", []string{"--hodl.bogus-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Let Alice connect and open a channel to Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a invoice for Carol that Alice
// will attempt to pay.
preimage := bytes.Repeat([]byte{byte(192)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
carolPayReqs := []string{resp.PaymentRequest}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Send the payment from Alice to Carol. We expect Carol to attempt to
// settle this payment with the wrong preimage.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Alice, carolPayReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Since Alice detects that Carol is trying to trick her by providing a
// fake preimage, she should fail and force close the channel.
var predErr error
err = lntest.WaitPredicate(func() bool {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(ctxt,
pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
n := len(pendingChanResp.WaitingCloseChannels)
if n != 1 {
predErr = fmt.Errorf("Expected to find %d channels "+
"waiting close, found %d", 1, n)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// Mine a block to confirm the broadcasted commitment.
block := mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
// The channel should now show up as force closed both for Alice and
// Carol.
err = lntest.WaitPredicate(func() bool {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(ctxt,
pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
n := len(pendingChanResp.WaitingCloseChannels)
if n != 0 {
predErr = fmt.Errorf("Expected to find %d channels "+
"waiting close, found %d", 0, n)
return false
}
n = len(pendingChanResp.PendingForceClosingChannels)
if n != 1 {
predErr = fmt.Errorf("expected to find %d channel "+
"pending force close, found %d", 1, n)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
err = lntest.WaitPredicate(func() bool {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := carol.PendingChannels(ctxt,
pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
n := len(pendingChanResp.PendingForceClosingChannels)
if n != 1 {
predErr = fmt.Errorf("expected to find %d channel "+
"pending force close, found %d", 1, n)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// Carol will use the correct preimage to resolve the HTLC on-chain.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's resolve tx in mempool: %v", err)
}
// Mine enough blocks for Alice to sweep her funds from the force
// closed channel.
_, err = net.Miner.Node.Generate(defaultCSV)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Wait for the sweeping tx to be broadcast.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Alice's sweep tx in mempool: %v", err)
}
// Mine the sweep.
_, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// No pending channels should be left.
err = lntest.WaitPredicate(func() bool {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(ctxt,
pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
n := len(pendingChanResp.PendingForceClosingChannels)
if n != 0 {
predErr = fmt.Errorf("expected to find %d channel "+
"pending force close, found %d", 0, n)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
}
// testGarbageCollectLinkNodes tests that we properly garbase collect link nodes
// from the database and the set of persistent connections within the server.
func testGarbageCollectLinkNodes(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = 1000000
)
// Open a channel between Alice and Bob which will later be
// cooperatively closed.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
coopChanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Carol's node and connect Alice to her.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create carol's node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice and carol: %v", err)
}
// Open a channel between Alice and Carol which will later be force
// closed.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
forceCloseChanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Now, create Dave's a node and also open a channel between Alice and
// him. This link will serve as the only persistent link throughout
// restarts in this test.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create dave's node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
if err := net.ConnectNodes(ctxt, net.Alice, dave); err != nil {
t.Fatalf("unable to connect alice to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
persistentChanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// isConnected is a helper closure that checks if a peer is connected to
// Alice.
isConnected := func(pubKey string) bool {
req := &lnrpc.ListPeersRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Alice.ListPeers(ctxt, req)
if err != nil {
t.Fatalf("unable to retrieve alice's peers: %v", err)
}
for _, peer := range resp.Peers {
if peer.PubKey == pubKey {
return true
}
}
return false
}
// Restart both Bob and Carol to ensure Alice is able to reconnect to
// them.
if err := net.RestartNode(net.Bob, nil); err != nil {
t.Fatalf("unable to restart bob's node: %v", err)
}
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("unable to restart carol's node: %v", err)
}
err = lntest.WaitPredicate(func() bool {
return isConnected(net.Bob.PubKeyStr)
}, 15*time.Second)
if err != nil {
t.Fatalf("alice did not reconnect to bob")
}
err = lntest.WaitPredicate(func() bool {
return isConnected(carol.PubKeyStr)
}, 15*time.Second)
if err != nil {
t.Fatalf("alice did not reconnect to carol")
}
// We'll also restart Alice to ensure she can reconnect to her peers
// with open channels.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart alice's node: %v", err)
}
err = lntest.WaitPredicate(func() bool {
return isConnected(net.Bob.PubKeyStr)
}, 15*time.Second)
if err != nil {
t.Fatalf("alice did not reconnect to bob")
}
err = lntest.WaitPredicate(func() bool {
return isConnected(carol.PubKeyStr)
}, 15*time.Second)
if err != nil {
t.Fatalf("alice did not reconnect to carol")
}
err = lntest.WaitPredicate(func() bool {
return isConnected(dave.PubKeyStr)
}, 15*time.Second)
if err != nil {
t.Fatalf("alice did not reconnect to dave")
}
// testReconnection is a helper closure that restarts the nodes at both
// ends of a channel to ensure they do not reconnect after restarting.
// When restarting Alice, we'll first need to ensure she has
// reestablished her connection with Dave, as they still have an open
// channel together.
testReconnection := func(node *lntest.HarnessNode) {
// Restart both nodes, to trigger the pruning logic.
if err := net.RestartNode(node, nil); err != nil {
t.Fatalf("unable to restart %v's node: %v",
node.Name(), err)
}
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart alice's node: %v", err)
}
// Now restart both nodes and make sure they don't reconnect.
if err := net.RestartNode(node, nil); err != nil {
t.Fatalf("unable to restart %v's node: %v", node.Name(),
err)
}
err = lntest.WaitInvariant(func() bool {
return !isConnected(node.PubKeyStr)
}, 5*time.Second)
if err != nil {
t.Fatalf("alice reconnected to %v", node.Name())
}
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart alice's node: %v", err)
}
err = lntest.WaitPredicate(func() bool {
return isConnected(dave.PubKeyStr)
}, 20*time.Second)
if err != nil {
t.Fatalf("alice didn't reconnect to Dave")
}
err = lntest.WaitInvariant(func() bool {
return !isConnected(node.PubKeyStr)
}, 5*time.Second)
if err != nil {
t.Fatalf("alice reconnected to %v", node.Name())
}
}
// Now, we'll close the channel between Alice and Bob and ensure there
// is no reconnection logic between the both once the channel is fully
// closed.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, coopChanPoint, false)
testReconnection(net.Bob)
// We'll do the same with Alice and Carol, but this time we'll force
// close the channel instead.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, forceCloseChanPoint, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Alice, forceCloseChanPoint)
// We'll need to mine some blocks in order to mark the channel fully
// closed.
_, err = net.Miner.Node.Generate(lnd.DefaultBitcoinTimeLockDelta - defaultCSV)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Before we test reconnection, we'll ensure that the channel has been
// fully cleaned up for both Carol and Alice.
var predErr error
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
predErr = checkNumForceClosedChannels(pendingChanResp, 0)
if predErr != nil {
return false
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err = carol.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
predErr = checkNumForceClosedChannels(pendingChanResp, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("channels not marked as fully resolved: %v", predErr)
}
testReconnection(carol)
// Finally, we'll ensure that Bob and Carol no longer show in Alice's
// channel graph.
describeGraphReq := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
channelGraph, err := net.Alice.DescribeGraph(ctxt, describeGraphReq)
if err != nil {
t.Fatalf("unable to query for alice's channel graph: %v", err)
}
for _, node := range channelGraph.Nodes {
if node.PubKey == net.Bob.PubKeyStr {
t.Fatalf("did not expect to find bob in the channel " +
"graph, but did")
}
if node.PubKey == carol.PubKeyStr {
t.Fatalf("did not expect to find carol in the channel " +
"graph, but did")
}
}
// Now that the test is done, we can also close the persistent link.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, persistentChanPoint, false)
}
// testRevokedCloseRetribution tests that Carol is able carry out
// retribution in the event that she fails immediately after detecting Bob's
// breach txn in the mempool.
func testRevokedCloseRetribution(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = lnd.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Carol will be the breached party. We set --nolisten to ensure Bob
// won't be able to connect to her and trigger the channel data
// protection logic automatically.
carol, err := net.NewNode(
"Carol",
[]string{"--hodl.exit-settle", "--nolisten"},
)
if err != nil {
t.Fatalf("unable to create new carol node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// We must let Bob communicate with Carol before they are able to open
// channel, so we connect Bob and Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
// Before we make a channel, we'll load up Carol with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// In order to test Carol's response to an uncooperative channel
// closure by Bob, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, carol, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a few invoices for Bob that
// Carol will pay to in order to advance the state of the channel.
bobPayReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Carol to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("carol didn't see the carol->bob channel before "+
"timeout: %v", err)
}
// Send payments from Carol to Bob using 3 of Bob's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, carol, bobPayReqs[:numInvoices/2],
true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Bob's channel state, as we sent 3 payments of 10k
// satoshis each, Bob should now see his balance as being 30k satoshis.
var bobChan *lnrpc.Channel
var predErr error
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bChan, err := getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bChan.LocalBalance != 30000 {
predErr = fmt.Errorf("bob's balance is incorrect, "+
"got %v, expected %v", bChan.LocalBalance,
30000)
return false
}
bobChan = bChan
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// Grab Bob's current commitment height (update number), we'll later
// revert him to this state after additional updates to force him to
// broadcast this soon to be revoked state.
bobStateNumPreCopy := bobChan.NumUpdates
// Create a temporary file to house Bob's database state at this
// particular point in history.
bobTempDbPath, err := ioutil.TempDir("", "bob-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
bobTempDbFile := filepath.Join(bobTempDbPath, "channel.db")
defer os.Remove(bobTempDbPath)
// With the temporary file created, copy Bob's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := lntest.CopyFile(bobTempDbFile, net.Bob.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Carol to Bob, consuming Bob's remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, carol, bobPayReqs[numInvoices/2:],
true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobChan, err = getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
// Now we shutdown Bob, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Bob to travel back in time
// within the channel's history.
if err = net.RestartNode(net.Bob, func() error {
return os.Rename(bobTempDbFile, net.Bob.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Bob's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobChan, err = getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
if bobChan.NumUpdates != bobStateNumPreCopy {
t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
}
// Now force Bob to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Carol's retribution.
var closeUpdates lnrpc.Lightning_CloseChannelClient
force := true
err = lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, _, err = net.CloseChannel(ctxt, net.Bob, chanPoint, force)
if err != nil {
predErr = err
return false
}
return true
}, time.Second*10)
if err != nil {
t.Fatalf("unable to close channel: %v", predErr)
}
// Wait for Bob's breach transaction to show up in the mempool to ensure
// that Carol's node has started waiting for confirmations.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Bob's breach tx in mempool: %v", err)
}
// Here, Carol sees Bob's breach transaction in the mempool, but is waiting
// for it to confirm before continuing her retribution. We restart Carol to
// ensure that she is persisting her retribution state and continues
// watching for the breach transaction to confirm even after her node
// restarts.
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("unable to restart Carol's node: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Carol's justice transaction, this should be
// broadcast as Bob's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's justice tx in mempool: %v", err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Bob's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Carol here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Carol has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Carol restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("unable to restart Carol's node: %v", err)
}
// Now mine a block, this transaction should include Carol's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, carol, 0)
}
// testRevokedCloseRetributionZeroValueRemoteOutput tests that Dave is able
// carry out retribution in the event that she fails in state where the remote
// commitment output has zero-value.
func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = lnd.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Dave will be the breached party. We set --nolisten to ensure Carol
// won't be able to connect to him and trigger the channel data
// protection logic automatically.
dave, err := net.NewNode(
"Dave",
[]string{"--hodl.exit-settle", "--nolisten"},
)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
// We must let Dave have an open channel before she can send a node
// announcement, so we open a channel with Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
// In order to test Dave's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Next query for Carol's channel state, as we sent 0 payments, Carol
// should now see her balance as being 0 satoshis.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != 0 {
t.Fatalf("carol's balance is incorrect, got %v, expected %v",
carolChan.LocalBalance, 0)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force him to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Create a temporary file to house Carol's database state at this
// particular point in history.
carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
defer os.Remove(carolTempDbPath)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := lntest.CopyFile(carolTempDbFile, carol.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, dave, carolPayReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
// Now we shutdown Carol, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return os.Rename(carolTempDbFile, carol.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Carol's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Dave's retribution.
var (
closeUpdates lnrpc.Lightning_CloseChannelClient
closeTxId *chainhash.Hash
closeErr error
force bool = true
)
err = lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxId, closeErr = net.CloseChannel(
ctxt, carol, chanPoint, force,
)
return closeErr == nil
}, time.Second*15)
if err != nil {
t.Fatalf("unable to close channel: %v", closeErr)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxId {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxId, txid)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
// Here, Dave receives a confirmation of Carol's breach transaction.
// We restart Dave to ensure that she is persisting her retribution
// state and continues exacting justice after her node restarts.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to stop Dave's node: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's justice tx in mempool: %v",
err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Dave here to ensure that he persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Dave has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Dave restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart Dave's node: %v", err)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, dave, 0)
}
// testRevokedCloseRetributionRemoteHodl tests that Dave properly responds to a
// channel breach made by the remote party, specifically in the case that the
// remote party breaches before settling extended HTLCs.
func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = lnd.MaxBtcFundingAmount
pushAmt = 200000
paymentAmt = 10000
numInvoices = 6
)
// Since this test will result in the counterparty being left in a
// weird state, we will introduce another node into our test network:
// Carol.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// We'll also create a new node Dave, who will have a channel with
// Carol, and also use similar settings so we can broadcast a commit
// with active HTLCs. Dave will be the breached party. We set
// --nolisten to ensure Carol won't be able to connect to him and
// trigger the channel data protection logic automatically.
dave, err := net.NewNode(
"Dave",
[]string{"--hodl.exit-settle", "--nolisten"},
)
if err != nil {
t.Fatalf("unable to create new dave node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
// We must let Dave communicate with Carol before they are able to open
// channel, so we connect Dave and Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
// In order to test Dave's response to an uncooperative channel closure
// by Carol, we'll first open up a channel between them with a
// lnd.MaxBtcFundingAmount (2^24) satoshis value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll introduce a closure to validate that Carol's current balance
// matches the given expected amount.
checkCarolBalance := func(expectedAmt int64) {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != expectedAmt {
t.Fatalf("carol's balance is incorrect, "+
"got %v, expected %v", carolChan.LocalBalance,
expectedAmt)
}
}
// We'll introduce another closure to validate that Carol's current
// number of updates is at least as large as the provided minimum
// number.
checkCarolNumUpdatesAtLeast := func(minimum uint64) {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.NumUpdates < minimum {
t.Fatalf("carol's numupdates is incorrect, want %v "+
"to be at least %v", carolChan.NumUpdates,
minimum)
}
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Ensure that carol's balance starts with the amount we pushed to her.
checkCarolBalance(pushAmt)
// Send payments from Dave to Carol using 3 of Carol's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, carolPayReqs[:numInvoices/2], false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// At this point, we'll also send over a set of HTLC's from Carol to
// Dave. This ensures that the final revoked transaction has HTLC's in
// both directions.
davePayReqs, _, _, err := createPayReqs(
dave, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Send payments from Carol to Dave using 3 of Dave's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, davePayReqs[:numInvoices/2], false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Carol's channel state, as we sent 3 payments of 10k
// satoshis each, however Carol should now see her balance as being
// equal to the push amount in satoshis since she has not settled.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force her to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Ensure that carol's balance still reflects the original amount we
// pushed to her, minus the HTLCs she just sent to Dave.
checkCarolBalance(pushAmt - 3*paymentAmt)
// Since Carol has not settled, she should only see at least one update
// to her channel.
checkCarolNumUpdatesAtLeast(1)
// Create a temporary file to house Carol's database state at this
// particular point in history.
carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
defer os.Remove(carolTempDbPath)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := lntest.CopyFile(carolTempDbFile, carol.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's
// remaining payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, carolPayReqs[numInvoices/2:], false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Ensure that carol's balance still shows the amount we originally
// pushed to her (minus the HTLCs she sent to Bob), and that at least
// one more update has occurred.
time.Sleep(500 * time.Millisecond)
checkCarolBalance(pushAmt - 3*paymentAmt)
checkCarolNumUpdatesAtLeast(carolStateNumPreCopy + 1)
// Now we shutdown Carol, copying over the her temporary database state
// which has the *prior* channel state over her current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return os.Rename(carolTempDbFile, carol.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Ensure that Carol's view of the channel is consistent with the state
// of the channel just before it was snapshotted.
checkCarolBalance(pushAmt - 3*paymentAmt)
checkCarolNumUpdatesAtLeast(1)
// Now query for Carol's channel state, it should show that she's at a
// state number in the past, *not* the latest state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting her current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so she'll soon
// feel the wrath of Dave's retribution.
force := true
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxId, err := net.CloseChannel(ctxt, carol,
chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxId {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxId, txid)
}
time.Sleep(200 * time.Millisecond)
// Generate a single block to mine the breach transaction.
block := mineBlocks(t, net, 1, 1)[0]
// Wait so Dave receives a confirmation of Carol's breach transaction.
time.Sleep(200 * time.Millisecond)
// We restart Dave to ensure that he is persisting his retribution
// state and continues exacting justice after her node restarts.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to stop Dave's node: %v", err)
}
// Finally, wait for the final close status update, then ensure that
// the closing transaction was included in the block.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
if *breachTXID != *closeTxId {
t.Fatalf("expected breach ID(%v) to be equal to close ID (%v)",
breachTXID, closeTxId)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above. Since Carol might have had the time to take some of the HTLC
// outputs to the second level before Dave broadcasts his justice tx,
// we'll search through the mempool for a tx that matches the number of
// expected inputs in the justice tx.
var predErr error
var justiceTxid *chainhash.Hash
errNotFound := errors.New("justice tx not found")
findJusticeTx := func() (*chainhash.Hash, error) {
mempool, err := net.Miner.Node.GetRawMempool()
if err != nil {
return nil, fmt.Errorf("unable to get mempool from "+
"miner: %v", err)
}
for _, txid := range mempool {
// Check that the justice tx has the appropriate number
// of inputs.
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
return nil, fmt.Errorf("unable to query for "+
"txs: %v", err)
}
exNumInputs := 2 + numInvoices
if len(tx.MsgTx().TxIn) == exNumInputs {
return txid, nil
}
}
return nil, errNotFound
}
err = lntest.WaitPredicate(func() bool {
txid, err := findJusticeTx()
if err != nil {
predErr = err
return false
}
justiceTxid = txid
return true
}, time.Second*10)
if err != nil && predErr == errNotFound {
// If Dave is unable to broadcast his justice tx on first
// attempt because of the second layer transactions, he will
// wait until the next block epoch before trying again. Because
// of this, we'll mine a block if we cannot find the justice tx
// immediately. Since we cannot tell for sure how many
// transactions will be in the mempool at this point, we pass 0
// as the last argument, indicating we don't care what's in the
// mempool.
mineBlocks(t, net, 1, 0)
err = lntest.WaitPredicate(func() bool {
txid, err := findJusticeTx()
if err != nil {
predErr = err
return false
}
justiceTxid = txid
return true
}, time.Second*10)
}
if err != nil {
t.Fatalf(predErr.Error())
}
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTxid)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
// isSecondLevelSpend checks that the passed secondLevelTxid is a
// potentitial second level spend spending from the commit tx.
isSecondLevelSpend := func(commitTxid, secondLevelTxid *chainhash.Hash) bool {
secondLevel, err := net.Miner.Node.GetRawTransaction(
secondLevelTxid)
if err != nil {
t.Fatalf("unable to query for tx: %v", err)
}
// A second level spend should have only one input, and one
// output.
if len(secondLevel.MsgTx().TxIn) != 1 {
return false
}
if len(secondLevel.MsgTx().TxOut) != 1 {
return false
}
// The sole input should be spending from the commit tx.
txIn := secondLevel.MsgTx().TxIn[0]
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], commitTxid[:]) {
return false
}
return true
}
// Check that all the inputs of this transaction are spending outputs
// generated by Carol's breach transaction above.
for _, txIn := range justiceTx.MsgTx().TxIn {
if bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
continue
}
// If the justice tx is spending from an output that was not on
// the breach tx, Carol might have had the time to take an
// output to the second level. In that case, check that the
// justice tx is spending this second level output.
if isSecondLevelSpend(breachTXID, &txIn.PreviousOutPoint.Hash) {
continue
}
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
time.Sleep(100 * time.Millisecond)
// We restart Dave here to ensure that he persists he retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Dave has broadcast the justice transaction, but it
// hasn't been confirmed yet; when Dave restarts, he should start
// waiting for the justice transaction to confirm again.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart Dave's node: %v", err)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, justiceTxid)
// Dave should have no open channels.
assertNodeNumChannels(t, dave, 0)
}
// testRevokedCloseRetributionAltruistWatchtower establishes a channel between
// Carol and Dave, where Carol is using a third node Willy as her watchtower.
// After sending some payments, Dave reverts his state and force closes to
// trigger a breach. Carol is kept offline throughout the process and the test
// asserts that Willy responds by broadcasting the justice transaction on
// Carol's behalf sweeping her funds without a reward.
func testRevokedCloseRetributionAltruistWatchtower(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = lnd.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
externalIP = "1.2.3.4"
)
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Willy the watchtower will protect Dave from Carol's breach. He will
// remain online in order to punish Carol on Dave's behalf, since the
// breach will happen while Dave is offline.
willy, err := net.NewNode("Willy", []string{
"--watchtower.active",
"--watchtower.externalip=" + externalIP,
})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, willy)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
willyInfo, err := willy.Watchtower.GetInfo(
ctxt, &watchtowerrpc.GetInfoRequest{},
)
if err != nil {
t.Fatalf("unable to getinfo from willy: %v", err)
}
// Assert that Willy has one listener and it is 0.0.0.0:9911 or
// [::]:9911. Since no listener is explicitly specified, one of these
// should be the default depending on whether the host supports IPv6 or
// not.
if len(willyInfo.Listeners) != 1 {
t.Fatalf("Willy should have 1 listener, has %d",
len(willyInfo.Listeners))
}
listener := willyInfo.Listeners[0]
if listener != "0.0.0.0:9911" && listener != "[::]:9911" {
t.Fatalf("expected listener on 0.0.0.0:9911 or [::]:9911, "+
"got %v", listener)
}
// Assert the Willy's URIs properly display the chosen external IP.
if len(willyInfo.Uris) != 1 {
t.Fatalf("Willy should have 1 uri, has %d",
len(willyInfo.Uris))
}
if !strings.Contains(willyInfo.Uris[0], externalIP) {
t.Fatalf("expected uri with %v, got %v",
externalIP, willyInfo.Uris[0])
}
// Dave will be the breached party. We set --nolisten to ensure Carol
// won't be able to connect to him and trigger the channel data
// protection logic automatically.
dave, err := net.NewNode("Dave", []string{
"--nolisten",
"--wtclient.active",
})
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
addTowerReq := &wtclientrpc.AddTowerRequest{
Pubkey: willyInfo.Pubkey,
Address: listener,
}
if _, err := dave.WatchtowerClient.AddTower(ctxt, addTowerReq); err != nil {
t.Fatalf("unable to add willy's watchtower: %v", err)
}
// We must let Dave have an open channel before she can send a node
// announcement, so we open a channel with Carol,
if err := net.ConnectNodes(ctxb, dave, carol); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
// In order to test Dave's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: 3 * (chanAmt / 4),
PushAmt: chanAmt / 4,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Next query for Carol's channel state, as we sent 0 payments, Carol
// should still see her balance as the push amount, which is 1/4 of the
// capacity.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != int64(chanAmt/4) {
t.Fatalf("carol's balance is incorrect, got %v, expected %v",
carolChan.LocalBalance, chanAmt/4)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force him to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Create a temporary file to house Carol's database state at this
// particular point in history.
carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
defer os.Remove(carolTempDbPath)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := lntest.CopyFile(carolTempDbFile, carol.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's remaining
// payment hashes.
err = completePaymentRequests(ctxb, dave, carolPayReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.WalletBalanceRequest{}
daveBalResp, err := dave.WalletBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
davePreSweepBalance := daveBalResp.ConfirmedBalance
// Shutdown Dave to simulate going offline for an extended period of
// time. Once he's not watching, Carol will try to breach the channel.
restart, err := net.SuspendNode(dave)
if err != nil {
t.Fatalf("unable to suspend Dave: %v", err)
}
// Now we shutdown Carol, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return os.Rename(carolTempDbFile, carol.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Carol's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// TODO(conner): add hook for backup completion
time.Sleep(3 * time.Second)
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Dave's retribution.
closeUpdates, closeTxId, err := net.CloseChannel(
ctxb, carol, chanPoint, true,
)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxId {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxId, txid)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's justice tx in mempool: %v",
err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
willyBalReq := &lnrpc.WalletBalanceRequest{}
willyBalResp, err := willy.WalletBalance(ctxt, willyBalReq)
if err != nil {
t.Fatalf("unable to get willy's balance: %v", err)
}
if willyBalResp.ConfirmedBalance != 0 {
t.Fatalf("willy should have 0 balance before mining "+
"justice transaction, instead has %d",
willyBalResp.ConfirmedBalance)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
// Ensure that Willy doesn't get any funds, as he is acting as an
// altruist watchtower.
var predErr error
err = lntest.WaitInvariant(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
willyBalReq := &lnrpc.WalletBalanceRequest{}
willyBalResp, err := willy.WalletBalance(ctxt, willyBalReq)
if err != nil {
t.Fatalf("unable to get willy's balance: %v", err)
}
if willyBalResp.ConfirmedBalance != 0 {
predErr = fmt.Errorf("Expected Willy to have no funds "+
"after justice transaction was mined, found %v",
willyBalResp)
return false
}
return true
}, time.Second*5)
if err != nil {
t.Fatalf("%v", predErr)
}
// Restart Dave, who will still think his channel with Carol is open.
// We should him to detect the breach, but realize that the funds have
// then been swept to his wallet by Willy.
err = restart()
if err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.ChannelBalanceRequest{}
daveBalResp, err := dave.ChannelBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
if daveBalResp.Balance != 0 {
predErr = fmt.Errorf("Dave should end up with zero "+
"channel balance, instead has %d",
daveBalResp.Balance)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
assertNumPendingChannels(t, dave, 0, 0)
err = lntest.WaitPredicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.WalletBalanceRequest{}
daveBalResp, err := dave.WalletBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
if daveBalResp.ConfirmedBalance <= davePreSweepBalance {
predErr = fmt.Errorf("Dave should have more than %d "+
"after sweep, instead has %d",
davePreSweepBalance,
daveBalResp.ConfirmedBalance)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// Dave should have no open channels.
assertNodeNumChannels(t, dave, 0)
}
// assertNumPendingChannels checks that a PendingChannels response from the
// node reports the expected number of pending channels.
func assertNumPendingChannels(t *harnessTest, node *lntest.HarnessNode,
expWaitingClose, expPendingForceClose int) {
ctxb := context.Background()
var predErr error
err := lntest.WaitPredicate(func() bool {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := node.PendingChannels(ctxt,
pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
n := len(pendingChanResp.WaitingCloseChannels)
if n != expWaitingClose {
predErr = fmt.Errorf("Expected to find %d channels "+
"waiting close, found %d", expWaitingClose, n)
return false
}
n = len(pendingChanResp.PendingForceClosingChannels)
if n != expPendingForceClose {
predErr = fmt.Errorf("expected to find %d channel "+
"pending force close, found %d", expPendingForceClose, n)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
}
// assertDLPExecuted asserts that Dave is a node that has recovered their state
// form scratch. Carol should then force close on chain, with Dave sweeping his
// funds immediately, and Carol sweeping her fund after her CSV delay is up. If
// the blankSlate value is true, then this means that Dave won't need to sweep
// on chain as he has no funds in the channel.
func assertDLPExecuted(net *lntest.NetworkHarness, t *harnessTest,
carol *lntest.HarnessNode, carolStartingBalance int64,
dave *lntest.HarnessNode, daveStartingBalance int64) {
// Upon reconnection, the nodes should detect that Dave is out of sync.
// Carol should force close the channel using her latest commitment.
ctxb := context.Background()
forceClose, err := waitForTxInMempool(
net.Miner.Node, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
// Channel should be in the state "waiting close" for Carol since she
// broadcasted the force close tx.
assertNumPendingChannels(t, carol, 1, 0)
// Dave should also consider the channel "waiting close", as he noticed
// the channel was out of sync, and is now waiting for a force close to
// hit the chain.
assertNumPendingChannels(t, dave, 1, 0)
// Restart Dave to make sure he is able to sweep the funds after
// shutdown.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Generate a single block, which should confirm the closing tx.
block := mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, forceClose)
// Dave should sweep his funds immediately, as they are not timelocked.
daveSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's sweep tx in mempool: %v", err)
}
// Dave should consider the channel pending force close (since he is
// waiting for his sweep to confirm).
assertNumPendingChannels(t, dave, 0, 1)
// Carol is considering it "pending force close", as we must wait
// before she can sweep her outputs.
assertNumPendingChannels(t, carol, 0, 1)
// Mine the sweep tx.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, daveSweep)
// Now Dave should consider the channel fully closed.
assertNumPendingChannels(t, dave, 0, 0)
// We query Dave's balance to make sure it increased after the channel
// closed. This checks that he was able to sweep the funds he had in
// the channel.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
balReq := &lnrpc.WalletBalanceRequest{}
daveBalResp, err := dave.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
daveBalance := daveBalResp.ConfirmedBalance
if daveBalance <= daveStartingBalance {
t.Fatalf("expected dave to have balance above %d, "+
"instead had %v", daveStartingBalance, daveBalance)
}
// After the Carol's output matures, she should also reclaim her funds.
mineBlocks(t, net, defaultCSV-1, 0)
carolSweep, err := waitForTxInMempool(
net.Miner.Node, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("unable to find Carol's sweep tx in mempool: %v", err)
}
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, carolSweep)
// Now the channel should be fully closed also from Carol's POV.
assertNumPendingChannels(t, carol, 0, 0)
// Make sure Carol got her balance back.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalResp, err := carol.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolBalance := carolBalResp.ConfirmedBalance
if carolBalance <= carolStartingBalance {
t.Fatalf("expected carol to have balance above %d, "+
"instead had %v", carolStartingBalance,
carolBalance)
}
assertNodeNumChannels(t, dave, 0)
assertNodeNumChannels(t, carol, 0)
}
// testDataLossProtection tests that if one of the nodes in a channel
// relationship lost state, they will detect this during channel sync, and the
// up-to-date party will force close the channel, giving the outdated party the
// opportunity to sweep its output.
func testDataLossProtection(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = lnd.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Carol will be the up-to-date party. We set --nolisten to ensure Dave
// won't be able to connect to her and trigger the channel data
// protection logic automatically.
carol, err := net.NewNode("Carol", []string{"--nolisten"})
if err != nil {
t.Fatalf("unable to create new carol node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Dave will be the party losing his state.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
// Before we make a channel, we'll load up Carol with some coins sent
// directly from the miner.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// timeTravel is a method that will make Carol open a channel to the
// passed node, settle a series of payments, then reset the node back
// to the state before the payments happened. When this method returns
// the node will be unaware of the new state updates. The returned
// function can be used to restart the node in this state.
timeTravel := func(node *lntest.HarnessNode) (func() error,
*lnrpc.ChannelPoint, int64, error) {
// We must let the node communicate with Carol before they are
// able to open channel, so we connect them.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.EnsureConnected(ctxt, carol, node); err != nil {
t.Fatalf("unable to connect %v to carol: %v",
node.Name(), err)
}
// We'll first open up a channel between them with a 0.5 BTC
// value.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, carol, node,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a few invoices for the
// node that Carol will pay to in order to advance the state of
// the channel.
// TODO(halseth): have dangling HTLCs on the commitment, able to
// retrive funds?
payReqs, _, _, err := createPayReqs(
node, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Carol to receive the channel edge from the funding
// manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("carol didn't see the carol->%s channel "+
"before timeout: %v", node.Name(), err)
}
// Send payments from Carol using 3 of the payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, carol,
payReqs[:numInvoices/2], true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for the node's channel state, as we sent 3
// payments of 10k satoshis each, it should now see his balance
// as being 30k satoshis.
var nodeChan *lnrpc.Channel
var predErr error
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bChan, err := getChanInfo(ctxt, node)
if err != nil {
t.Fatalf("unable to get channel info: %v", err)
}
if bChan.LocalBalance != 30000 {
predErr = fmt.Errorf("balance is incorrect, "+
"got %v, expected %v",
bChan.LocalBalance, 30000)
return false
}
nodeChan = bChan
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// Grab the current commitment height (update number), we'll
// later revert him to this state after additional updates to
// revoke this state.
stateNumPreCopy := nodeChan.NumUpdates
// Create a temporary file to house the database state at this
// particular point in history.
tempDbPath, err := ioutil.TempDir("", node.Name()+"-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
tempDbFile := filepath.Join(tempDbPath, "channel.db")
defer os.Remove(tempDbPath)
// With the temporary file created, copy the current state into
// the temporary file we created above. Later after more
// updates, we'll restore this state.
if err := lntest.CopyFile(tempDbFile, node.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send more payments from , using the remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, carol,
payReqs[numInvoices/2:], true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
nodeChan, err = getChanInfo(ctxt, node)
if err != nil {
t.Fatalf("unable to get dave chan info: %v", err)
}
// Now we shutdown the node, copying over the its temporary
// database state which has the *prior* channel state over his
// current most up to date state. With this, we essentially
// force the node to travel back in time within the channel's
// history.
if err = net.RestartNode(node, func() error {
return os.Rename(tempDbFile, node.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Make sure the channel is still there from the PoV of the
// node.
assertNodeNumChannels(t, node, 1)
// Now query for the channel state, it should show that it's at
// a state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
nodeChan, err = getChanInfo(ctxt, node)
if err != nil {
t.Fatalf("unable to get dave chan info: %v", err)
}
if nodeChan.NumUpdates != stateNumPreCopy {
t.Fatalf("db copy failed: %v", nodeChan.NumUpdates)
}
balReq := &lnrpc.WalletBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
balResp, err := node.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
restart, err := net.SuspendNode(node)
if err != nil {
t.Fatalf("unable to suspend node: %v", err)
}
return restart, chanPoint, balResp.ConfirmedBalance, nil
}
// Reset Dave to a state where he has an outdated channel state.
restartDave, _, daveStartingBalance, err := timeTravel(dave)
if err != nil {
t.Fatalf("unable to time travel dave: %v", err)
}
// We make a note of the nodes' current on-chain balances, to make sure
// they are able to retrieve the channel funds eventually,
balReq := &lnrpc.WalletBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalResp, err := carol.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolStartingBalance := carolBalResp.ConfirmedBalance
// Restart Dave to trigger a channel resync.
if err := restartDave(); err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
// Assert that once Dave comes up, they reconnect, Carol force closes
// on chain, and both of them properly carry out the DLP protocol.
assertDLPExecuted(
net, t, carol, carolStartingBalance, dave, daveStartingBalance,
)
// As a second part of this test, we will test the scenario where a
// channel is closed while Dave is offline, loses his state and comes
// back online. In this case the node should attempt to resync the
// channel, and the peer should resend a channel sync message for the
// closed channel, such that Dave can retrieve his funds.
//
// We start by letting Dave time travel back to an outdated state.
restartDave, chanPoint2, daveStartingBalance, err := timeTravel(dave)
if err != nil {
t.Fatalf("unable to time travel eve: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalResp, err = carol.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolStartingBalance = carolBalResp.ConfirmedBalance
// Now let Carol force close the channel while Dave is offline.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPoint2, true)
// Wait for the channel to be marked pending force close.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = waitForChannelPendingForceClose(ctxt, carol, chanPoint2)
if err != nil {
t.Fatalf("channel not pending force close: %v", err)
}
// Mine enough blocks for Carol to sweep her funds.
mineBlocks(t, net, defaultCSV, 0)
carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's sweep tx in mempool: %v", err)
}
block := mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, carolSweep)
// Now the channel should be fully closed also from Carol's POV.
assertNumPendingChannels(t, carol, 0, 0)
// Make sure Carol got her balance back.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalResp, err = carol.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolBalance := carolBalResp.ConfirmedBalance
if carolBalance <= carolStartingBalance {
t.Fatalf("expected carol to have balance above %d, "+
"instead had %v", carolStartingBalance,
carolBalance)
}
assertNodeNumChannels(t, carol, 0)
// When Dave comes online, he will reconnect to Carol, try to resync
// the channel, but it will already be closed. Carol should resend the
// information Dave needs to sweep his funds.
if err := restartDave(); err != nil {
t.Fatalf("unable to restart Eve: %v", err)
}
// Dave should sweep his funds.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's sweep tx in mempool: %v", err)
}
// Mine a block to confirm the sweep, and make sure Dave got his
// balance back.
mineBlocks(t, net, 1, 1)
assertNodeNumChannels(t, dave, 0)
err = lntest.WaitNoError(func() error {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveBalResp, err := dave.WalletBalance(ctxt, balReq)
if err != nil {
return fmt.Errorf("unable to get dave's balance: %v",
err)
}
daveBalance := daveBalResp.ConfirmedBalance
if daveBalance <= daveStartingBalance {
return fmt.Errorf("expected dave to have balance "+
"above %d, intead had %v", daveStartingBalance,
daveBalance)
}
return nil
}, time.Second*15)
if err != nil {
t.Fatalf("%v", err)
}
}
// assertNodeNumChannels polls the provided node's list channels rpc until it
// reaches the desired number of total channels.
func assertNodeNumChannels(t *harnessTest, node *lntest.HarnessNode,
numChannels int) {
ctxb := context.Background()
// Poll node for its list of channels.
req := &lnrpc.ListChannelsRequest{}
var predErr error
pred := func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanInfo, err := node.ListChannels(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query for node's "+
"channels: %v", err)
return false
}
// Return true if the query returned the expected number of
// channels.
num := len(chanInfo.Channels)
if num != numChannels {
predErr = fmt.Errorf("expected %v channels, got %v",
numChannels, num)
return false
}
return true
}
if err := lntest.WaitPredicate(pred, time.Second*15); err != nil {
t.Fatalf("node has incorrect number of channels: %v", predErr)
}
}
func testHtlcErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// In this test we wish to exercise the daemon's correct parsing,
// handling, and propagation of errors that occur while processing a
// multi-hop payment.
const chanAmt = lnd.MaxBtcFundingAmount
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
commitFee := calcStaticFee(0)
assertBaseBalance := func() {
balReq := &lnrpc.ChannelBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceBal, err := net.Alice.ChannelBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobBal, err := net.Bob.ChannelBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt-commitFee) {
t.Fatalf("alice has an incorrect balance: expected %v got %v",
int64(chanAmt-commitFee), aliceBal)
}
if bobBal.Balance != int64(chanAmt-commitFee) {
t.Fatalf("bob has an incorrect balance: expected %v got %v",
int64(chanAmt-commitFee), bobBal)
}
}
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Next, we'll create a connection from Bob to Carol, and open a
// channel between them so we have the topology: Alice -> Bob -> Carol.
// The channel created will be of lower capacity that the one created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
const bobChanAmt = lnd.MaxBtcFundingAmount
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Ensure that Alice has Carol in her routing table before proceeding.
nodeInfoReq := &lnrpc.NodeInfoRequest{
PubKey: carol.PubKeyStr,
}
checkTableTimeout := time.After(time.Second * 10)
checkTableTicker := time.NewTicker(100 * time.Millisecond)
defer checkTableTicker.Stop()
out:
// TODO(roasbeef): make into async hook for node announcements
for {
select {
case <-checkTableTicker.C:
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err := net.Alice.GetNodeInfo(ctxt, nodeInfoReq)
if err != nil && strings.Contains(err.Error(),
"unable to find") {
continue
}
break out
case <-checkTableTimeout:
t.Fatalf("carol's node announcement didn't propagate within " +
"the timeout period")
}
}
// With the channels, open we can now start to test our multi-hop error
// scenarios. First, we'll generate an invoice from carol that we'll
// use to test some error cases.
const payAmt = 10000
invoiceReq := &lnrpc.Invoice{
Memo: "kek99",
Value: payAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
carolPayReq, err := carol.DecodePayReq(ctxb,
&lnrpc.PayReqString{
PayReq: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to decode generated payment request: %v", err)
}
// Before we send the payment, ensure that the announcement of the new
// channel has been processed by Alice.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// For the first scenario, we'll test the cancellation of an HTLC with
// an unknown payment hash.
// TODO(roasbeef): return failure response rather than failing entire
// stream on payment error.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
sendReq := &lnrpc.SendRequest{
PaymentHashString: hex.EncodeToString(makeFakePayHash(t)),
DestString: hex.EncodeToString(carol.PubKey[:]),
Amt: payAmt,
FinalCltvDelta: int32(carolPayReq.CltvExpiry),
}
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should have resulted in an error since we sent it with the
// wrong payment hash.
if resp.PaymentError == "" {
t.Fatalf("payment should have been rejected due to invalid " +
"payment hash")
}
expectedErrorCode := lnwire.CodeIncorrectOrUnknownPaymentDetails.String()
if !strings.Contains(resp.PaymentError, expectedErrorCode) {
// TODO(roasbeef): make into proper gRPC error code
t.Fatalf("payment should have failed due to unknown payment hash, "+
"instead failed due to: %v", resp.PaymentError)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// Next, we'll test the case of a recognized payHash but, an incorrect
// value on the extended HTLC.
htlcAmt := lnwire.NewMSatFromSatoshis(1000)
sendReq = &lnrpc.SendRequest{
PaymentHashString: hex.EncodeToString(carolInvoice.RHash),
DestString: hex.EncodeToString(carol.PubKey[:]),
Amt: int64(htlcAmt.ToSatoshis()), // 10k satoshis are expected.
FinalCltvDelta: int32(carolPayReq.CltvExpiry),
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should fail with an error since we sent 1k satoshis isn't of
// 10k as was requested.
if resp.PaymentError == "" {
t.Fatalf("payment should have been rejected due to wrong " +
"HTLC amount")
}
expectedErrorCode = lnwire.CodeIncorrectOrUnknownPaymentDetails.String()
if !strings.Contains(resp.PaymentError, expectedErrorCode) {
t.Fatalf("payment should have failed due to wrong amount, "+
"instead failed due to: %v", resp.PaymentError)
}
// We'll also ensure that the encoded error includes the invlaid HTLC
// amount.
if !strings.Contains(resp.PaymentError, htlcAmt.String()) {
t.Fatalf("error didn't include expected payment amt of %v: "+
"%v", htlcAmt, resp.PaymentError)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// Next we'll test an error that occurs mid-route due to an outgoing
// link having insufficient capacity. In order to do so, we'll first
// need to unbalance the link connecting Bob<->Carol.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
bobPayStream, err := net.Bob.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// To do so, we'll push most of the funds in the channel over to
// Alice's side, leaving on 10k satoshis of available balance for bob.
// There's a max payment amount, so we'll have to do this
// incrementally.
chanReserve := int64(chanAmt / 100)
amtToSend := int64(chanAmt) - chanReserve - 20000
amtSent := int64(0)
for amtSent != amtToSend {
// We'll send in chunks of the max payment amount. If we're
// about to send too much, then we'll only send the amount
// remaining.
toSend := int64(lnd.MaxPaymentMSat.ToSatoshis())
if toSend+amtSent > amtToSend {
toSend = amtToSend - amtSent
}
invoiceReq = &lnrpc.Invoice{
Value: toSend,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice2, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
if err := bobPayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice2.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := bobPayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("bob's payment failed: %v", resp.PaymentError)
}
amtSent += toSend
}
// At this point, Alice has 50mil satoshis on her side of the channel,
// but Bob only has 10k available on his side of the channel. So a
// payment from Alice to Carol worth 100k satoshis should fail.
invoiceReq = &lnrpc.Invoice{
Value: 100000,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice3, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
sendReq = &lnrpc.SendRequest{
PaymentRequest: carolInvoice3.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError == "" {
t.Fatalf("payment should fail due to insufficient "+
"capacity: %v", err)
} else if !strings.Contains(resp.PaymentError,
lnwire.CodeTemporaryChannelFailure.String()) {
t.Fatalf("payment should fail due to insufficient capacity, "+
"instead: %v", resp.PaymentError)
}
// Generate new invoice to not pay same invoice twice.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err = carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// For our final test, we'll ensure that if a target link isn't
// available for what ever reason then the payment fails accordingly.
//
// We'll attempt to complete the original invoice we created with Carol
// above, but before we do so, Carol will go offline, resulting in a
// failed payment.
shutdownAndAssert(net, t, carol)
// Reset mission control to forget the temporary channel failure above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = net.Alice.RouterClient.ResetMissionControl(
ctxt, &routerrpc.ResetMissionControlRequest{},
)
if err != nil {
t.Fatalf("unable to reset mission control: %v", err)
}
sendReq = &lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError == "" {
t.Fatalf("payment should have failed")
}
expectedErrorCode = lnwire.CodeUnknownNextPeer.String()
if !strings.Contains(resp.PaymentError, expectedErrorCode) {
t.Fatalf("payment should fail due to unknown hop, instead: %v",
resp.PaymentError)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
// Force close Bob's final channel.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Bob, chanPointBob)
}
// testRejectHTLC tests that a node can be created with the flag --rejecthtlc.
// This means that the node will reject all forwarded HTLCs but can still
// accept direct HTLCs as well as send HTLCs.
func testRejectHTLC(net *lntest.NetworkHarness, t *harnessTest) {
// RejectHTLC
// Alice ------> Carol ------> Bob
//
const chanAmt = btcutil.Amount(1000000)
ctxb := context.Background()
// Create Carol with reject htlc flag.
carol, err := net.NewNode("Carol", []string{"--rejecthtlc"})
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Connect Alice to Carol.
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Connect Carol to Bob.
if err := net.ConnectNodes(ctxb, carol, net.Bob); err != nil {
t.Fatalf("unable to conenct carol to net.Bob: %v", err)
}
// Send coins to Carol.
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// Send coins to Alice.
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcent, net.Alice)
if err != nil {
t.Fatalf("unable to send coins to alice: %v", err)
}
// Open a channel between Alice and Carol.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Open a channel between Carol and Bob.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Channel should be ready for payments.
const payAmt = 100
// Helper closure to generate a random pre image.
genPreImage := func() []byte {
preimage := make([]byte, 32)
_, err = rand.Read(preimage)
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
return preimage
}
// Create an invoice from Carol of 100 satoshis.
// We expect Alice to be able to pay this invoice.
preimage := genPreImage()
carolInvoice := &lnrpc.Invoice{
Memo: "testing - alice should pay carol",
RPreimage: preimage,
Value: payAmt,
}
// Carol adds the invoice to her database.
resp, err := carol.AddInvoice(ctxb, carolInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Alice pays Carols invoice.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, []string{resp.PaymentRequest}, true,
)
if err != nil {
t.Fatalf("unable to send payments from alice to carol: %v", err)
}
// Create an invoice from Bob of 100 satoshis.
// We expect Carol to be able to pay this invoice.
preimage = genPreImage()
bobInvoice := &lnrpc.Invoice{
Memo: "testing - carol should pay bob",
RPreimage: preimage,
Value: payAmt,
}
// Bob adds the invoice to his database.
resp, err = net.Bob.AddInvoice(ctxb, bobInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Carol pays Bobs invoice.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, []string{resp.PaymentRequest}, true,
)
if err != nil {
t.Fatalf("unable to send payments from carol to bob: %v", err)
}
// Create an invoice from Bob of 100 satoshis.
// Alice attempts to pay Bob but this should fail, since we are
// using Carol as a hop and her node will reject onward HTLCs.
preimage = genPreImage()
bobInvoice = &lnrpc.Invoice{
Memo: "testing - alice tries to pay bob",
RPreimage: preimage,
Value: payAmt,
}
// Bob adds the invoice to his database.
resp, err = net.Bob.AddInvoice(ctxb, bobInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Alice attempts to pay Bobs invoice. This payment should be rejected since
// we are using Carol as an intermediary hop, Carol is running lnd with
// --rejecthtlc.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, []string{resp.PaymentRequest}, true,
)
if err == nil {
t.Fatalf(
"should have been rejected, carol will not accept forwarded htlcs",
)
}
if !strings.Contains(err.Error(), lnwire.CodeChannelDisabled.String()) {
t.Fatalf("error returned should have been Channel Disabled")
}
// Close all channels.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// graphSubscription houses the proxied update and error chans for a node's
// graph subscriptions.
type graphSubscription struct {
updateChan chan *lnrpc.GraphTopologyUpdate
errChan chan error
quit chan struct{}
}
// subscribeGraphNotifications subscribes to channel graph updates and launches
// a goroutine that forwards these to the returned channel.
func subscribeGraphNotifications(t *harnessTest, ctxb context.Context,
node *lntest.HarnessNode) graphSubscription {
// We'll first start by establishing a notification client which will
// send us notifications upon detected changes in the channel graph.
req := &lnrpc.GraphTopologySubscription{}
ctx, cancelFunc := context.WithCancel(ctxb)
topologyClient, err := node.SubscribeChannelGraph(ctx, req)
if err != nil {
t.Fatalf("unable to create topology client: %v", err)
}
// We'll launch a goroutine that will be responsible for proxying all
// notifications recv'd from the client into the channel below.
errChan := make(chan error, 1)
quit := make(chan struct{})
graphUpdates := make(chan *lnrpc.GraphTopologyUpdate, 20)
go func() {
for {
defer cancelFunc()
select {
case <-quit:
return
default:
graphUpdate, err := topologyClient.Recv()
select {
case <-quit:
return
default:
}
if err == io.EOF {
return
} else if err != nil {
select {
case errChan <- err:
case <-quit:
}
return
}
select {
case graphUpdates <- graphUpdate:
case <-quit:
return
}
}
}
}()
return graphSubscription{
updateChan: graphUpdates,
errChan: errChan,
quit: quit,
}
}
func testGraphTopologyNotifications(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = lnd.MaxBtcFundingAmount
// Let Alice subscribe to graph notifications.
graphSub := subscribeGraphNotifications(
t, ctxb, net.Alice,
)
defer close(graphSub.quit)
// Open a new channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// The channel opening above should have triggered a few notifications
// sent to the notification client. We'll expect two channel updates,
// and two node announcements.
var numChannelUpds int
var numNodeAnns int
for numChannelUpds < 2 && numNodeAnns < 2 {
select {
// Ensure that a new update for both created edges is properly
// dispatched to our registered client.
case graphUpdate := <-graphSub.updateChan:
// Process all channel updates prsented in this update
// message.
for _, chanUpdate := range graphUpdate.ChannelUpdates {
switch chanUpdate.AdvertisingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
numChannelUpds++
}
for _, nodeUpdate := range graphUpdate.NodeUpdates {
switch nodeUpdate.IdentityKey {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown node: %v",
nodeUpdate.IdentityKey)
}
numNodeAnns++
}
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notifications, "+
"only received %d/2 chanupds and %d/2 nodeanns",
numChannelUpds, numNodeAnns)
}
}
_, blockHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
// Now we'll test that updates are properly sent after channels are closed
// within the network.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
// Now that the channel has been closed, we should receive a
// notification indicating so.
out:
for {
select {
case graphUpdate := <-graphSub.updateChan:
if len(graphUpdate.ClosedChans) != 1 {
continue
}
closedChan := graphUpdate.ClosedChans[0]
if closedChan.ClosedHeight != uint32(blockHeight+1) {
t.Fatalf("close heights of channel mismatch: "+
"expected %v, got %v", blockHeight+1,
closedChan.ClosedHeight)
}
chanPointTxid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
closedChanTxid, err := lnd.GetChanPointFundingTxid(
closedChan.ChanPoint,
)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
if !bytes.Equal(closedChanTxid[:], chanPointTxid[:]) {
t.Fatalf("channel point hash mismatch: "+
"expected %v, got %v", chanPointTxid,
closedChanTxid)
}
if closedChan.ChanPoint.OutputIndex != chanPoint.OutputIndex {
t.Fatalf("output index mismatch: expected %v, "+
"got %v", chanPoint.OutputIndex,
closedChan.ChanPoint)
}
break out
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(time.Second * 10):
t.Fatalf("notification for channel closure not " +
"sent")
}
}
// For the final portion of the test, we'll ensure that once a new node
// appears in the network, the proper notification is dispatched. Note
// that a node that does not have any channels open is ignored, so first
// we disconnect Alice and Bob, open a channel between Bob and Carol,
// and finally connect Alice to Bob again.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to disconnect alice and bob: %v", err)
}
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint = openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Reconnect Alice and Bob. This should result in the nodes syncing up
// their respective graph state, with the new addition being the
// existence of Carol in the graph, and also the channel between Bob
// and Carol. Note that we will also receive a node announcement from
// Bob, since a node will update its node announcement after a new
// channel is opened.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.EnsureConnected(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect alice to bob: %v", err)
}
// We should receive an update advertising the newly connected node,
// Bob's new node announcement, and the channel between Bob and Carol.
numNodeAnns = 0
numChannelUpds = 0
for numChannelUpds < 2 && numNodeAnns < 1 {
select {
case graphUpdate := <-graphSub.updateChan:
for _, nodeUpdate := range graphUpdate.NodeUpdates {
switch nodeUpdate.IdentityKey {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown node update pubey: %v",
nodeUpdate.IdentityKey)
}
numNodeAnns++
}
for _, chanUpdate := range graphUpdate.ChannelUpdates {
switch chanUpdate.AdvertisingNode {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
numChannelUpds++
}
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notifications, "+
"only received %d/2 chanupds and %d/2 nodeanns",
numChannelUpds, numNodeAnns)
}
}
// Close the channel between Bob and Carol.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
}
// testNodeAnnouncement ensures that when a node is started with one or more
// external IP addresses specified on the command line, that those addresses
// announced to the network and reported in the network graph.
func testNodeAnnouncement(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
aliceSub := subscribeGraphNotifications(t, ctxb, net.Alice)
defer close(aliceSub.quit)
advertisedAddrs := []string{
"192.168.1.1:8333",
"[2001:db8:85a3:8d3:1319:8a2e:370:7348]:8337",
"bkb6azqggsaiskzi.onion:9735",
"fomvuglh6h6vcag73xo5t5gv56ombih3zr2xvplkpbfd7wrog4swjwid.onion:1234",
}
var lndArgs []string
for _, addr := range advertisedAddrs {
lndArgs = append(lndArgs, "--externalip="+addr)
}
dave, err := net.NewNode("Dave", lndArgs)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
// We must let Dave have an open channel before he can send a node
// announcement, so we open a channel with Bob,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, dave); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
// Alice shouldn't receive any new updates yet since the channel has yet
// to be opened.
select {
case <-aliceSub.updateChan:
t.Fatalf("received unexpected update from dave")
case <-time.After(time.Second):
}
// We'll then go ahead and open a channel between Bob and Dave. This
// ensures that Alice receives the node announcement from Bob as part of
// the announcement broadcast.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Bob, dave,
lntest.OpenChannelParams{
Amt: 1000000,
},
)
assertAddrs := func(addrsFound []string, targetAddrs ...string) {
addrs := make(map[string]struct{}, len(addrsFound))
for _, addr := range addrsFound {
addrs[addr] = struct{}{}
}
for _, addr := range targetAddrs {
if _, ok := addrs[addr]; !ok {
t.Fatalf("address %v not found in node "+
"announcement", addr)
}
}
}
waitForAddrsInUpdate := func(graphSub graphSubscription,
nodePubKey string, targetAddrs ...string) {
for {
select {
case graphUpdate := <-graphSub.updateChan:
for _, update := range graphUpdate.NodeUpdates {
if update.IdentityKey == nodePubKey {
assertAddrs(
update.Addresses,
targetAddrs...,
)
return
}
}
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(20 * time.Second):
t.Fatalf("did not receive node ann update")
}
}
}
// We'll then wait for Alice to receive Dave's node announcement
// including the expected advertised addresses from Bob since they
// should already be connected.
waitForAddrsInUpdate(
aliceSub, dave.PubKeyStr, advertisedAddrs...,
)
// Close the channel between Bob and Dave.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
}
func testNodeSignVerify(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
chanAmt := lnd.MaxBtcFundingAmount
pushAmt := btcutil.Amount(100000)
// Create a channel between alice and bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
aliceBobCh := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
aliceMsg := []byte("alice msg")
// alice signs "alice msg" and sends her signature to bob.
sigReq := &lnrpc.SignMessageRequest{Msg: aliceMsg}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
sigResp, err := net.Alice.SignMessage(ctxt, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
aliceSig := sigResp.Signature
// bob verifying alice's signature should succeed since alice and bob are
// connected.
verifyReq := &lnrpc.VerifyMessageRequest{Msg: aliceMsg, Signature: aliceSig}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
verifyResp, err := net.Bob.VerifyMessage(ctxt, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if !verifyResp.Valid {
t.Fatalf("alice's signature didn't validate")
}
if verifyResp.Pubkey != net.Alice.PubKeyStr {
t.Fatalf("alice's signature doesn't contain alice's pubkey.")
}
// carol is a new node that is unconnected to alice or bob.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
carolMsg := []byte("carol msg")
// carol signs "carol msg" and sends her signature to bob.
sigReq = &lnrpc.SignMessageRequest{Msg: carolMsg}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
sigResp, err = carol.SignMessage(ctxt, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
carolSig := sigResp.Signature
// bob verifying carol's signature should fail since they are not connected.
verifyReq = &lnrpc.VerifyMessageRequest{Msg: carolMsg, Signature: carolSig}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
verifyResp, err = net.Bob.VerifyMessage(ctxt, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if verifyResp.Valid {
t.Fatalf("carol's signature should not be valid")
}
if verifyResp.Pubkey != carol.PubKeyStr {
t.Fatalf("carol's signature doesn't contain her pubkey")
}
// Close the channel between alice and bob.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceBobCh, false)
}
// testAsyncPayments tests the performance of the async payments, and also
// checks that balances of both sides can't be become negative under stress
// payment strikes.
func testAsyncPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
paymentAmt = 100
)
// First establish a channel with a capacity equals to the overall
// amount of payments, between Alice and Bob, at the end of the test
// Alice should send all money from her side to Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
channelCapacity := btcutil.Amount(paymentAmt * 2000)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: channelCapacity,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
info, err := getChanInfo(ctxt, net.Alice)
if err != nil {
t.Fatalf("unable to get alice channel info: %v", err)
}
// Calculate the number of invoices. We will deplete the channel
// all the way down to the channel reserve.
chanReserve := channelCapacity / 100
availableBalance := btcutil.Amount(info.LocalBalance) - chanReserve
numInvoices := int(availableBalance / paymentAmt)
bobAmt := int64(numInvoices * paymentAmt)
aliceAmt := info.LocalBalance - bobAmt
// Send one more payment in order to cause insufficient capacity error.
numInvoices++
// With the channel open, we'll create invoices for Bob that Alice
// will pay to in order to advance the state of the channel.
bobPayReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
// Open up a payment stream to Alice that we'll use to send payment to
// Bob. We also create a small helper function to send payments to Bob,
// consuming the payment hashes we generated above.
ctxt, _ = context.WithTimeout(ctxb, lntest.AsyncBenchmarkTimeout)
alicePayStream, err := net.Alice.SendPayment(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// Send payments from Alice to Bob using of Bob's payment hashes
// generated above.
now := time.Now()
for i := 0; i < numInvoices; i++ {
sendReq := &lnrpc.SendRequest{
PaymentRequest: bobPayReqs[i],
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: "+
"stream has been closed: %v", err)
}
}
// We should receive one insufficient capacity error, because we sent
// one more payment than we can actually handle with the current
// channel capacity.
errorReceived := false
for i := 0; i < numInvoices; i++ {
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream have been closed: %v", err)
} else if resp.PaymentError != "" {
if errorReceived {
t.Fatalf("redundant payment error: %v",
resp.PaymentError)
}
errorReceived = true
continue
}
}
if !errorReceived {
t.Fatalf("insufficient capacity error haven't been received")
}
// All payments have been sent, mark the finish time.
timeTaken := time.Since(now)
// Next query for Bob's and Alice's channel states, in order to confirm
// that all payment have been successful transmitted.
// Wait for the revocation to be received so alice no longer has pending
// htlcs listed and has correct balances. This is needed due to the fact
// that we now pipeline the settles.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceChan, err := getChanInfo(ctxt, net.Alice)
if err != nil {
return false
}
if len(aliceChan.PendingHtlcs) != 0 {
return false
}
if aliceChan.RemoteBalance != bobAmt {
return false
}
if aliceChan.LocalBalance != aliceAmt {
return false
}
return true
}, time.Second*5)
if err != nil {
t.Fatalf("failed to assert alice's pending htlcs and/or remote/local balance")
}
// Wait for Bob to receive revocation from Alice.
time.Sleep(2 * time.Second)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobChan, err := getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if len(bobChan.PendingHtlcs) != 0 {
t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
"expected %v", len(bobChan.PendingHtlcs), 0)
}
if bobChan.LocalBalance != bobAmt {
t.Fatalf("bob's local balance is incorrect, got %v, expected"+
" %v", bobChan.LocalBalance, bobAmt)
}
if bobChan.RemoteBalance != aliceAmt {
t.Fatalf("bob's remote balance is incorrect, got %v, "+
"expected %v", bobChan.RemoteBalance, aliceAmt)
}
t.Log("\tBenchmark info: Elapsed time: ", timeTaken)
t.Log("\tBenchmark info: TPS: ", float64(numInvoices)/float64(timeTaken.Seconds()))
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testBidirectionalAsyncPayments tests that nodes are able to send the
// payments to each other in async manner without blocking.
func testBidirectionalAsyncPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
paymentAmt = 1000
)
// First establish a channel with a capacity equals to the overall
// amount of payments, between Alice and Bob, at the end of the test
// Alice should send all money from her side to Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: paymentAmt * 2000,
PushAmt: paymentAmt * 1000,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
info, err := getChanInfo(ctxt, net.Alice)
if err != nil {
t.Fatalf("unable to get alice channel info: %v", err)
}
// Calculate the number of invoices.
numInvoices := int(info.LocalBalance / paymentAmt)
// Nodes should exchange the same amount of money and because of this
// at the end balances should remain the same.
aliceAmt := info.LocalBalance
bobAmt := info.RemoteBalance
// With the channel open, we'll create invoices for Bob that Alice
// will pay to in order to advance the state of the channel.
bobPayReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// With the channel open, we'll create invoices for Alice that Bob
// will pay to in order to advance the state of the channel.
alicePayReqs, _, _, err := createPayReqs(
net.Alice, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("bob didn't see the bob->alice channel before "+
"timeout: %v", err)
}
// Reset mission control to prevent previous payment results from
// interfering with this test. A new channel has been opened, but
// mission control operates on node pairs.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = net.Alice.RouterClient.ResetMissionControl(
ctxt, &routerrpc.ResetMissionControlRequest{},
)
if err != nil {
t.Fatalf("unable to reset mc for alice: %v", err)
}
// Open up a payment streams to Alice and to Bob, that we'll use to
// send payment between nodes.
ctx, cancel := context.WithTimeout(ctxb, lntest.AsyncBenchmarkTimeout)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
ctx, cancel = context.WithTimeout(ctxb, lntest.AsyncBenchmarkTimeout)
defer cancel()
bobPayStream, err := net.Bob.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for bob: %v", err)
}
// Send payments from Alice to Bob and from Bob to Alice in async
// manner.
for i := 0; i < numInvoices; i++ {
aliceSendReq := &lnrpc.SendRequest{
PaymentRequest: bobPayReqs[i],
}
bobSendReq := &lnrpc.SendRequest{
PaymentRequest: alicePayReqs[i],
}
if err := alicePayStream.Send(aliceSendReq); err != nil {
t.Fatalf("unable to send payment: "+
"%v", err)
}
if err := bobPayStream.Send(bobSendReq); err != nil {
t.Fatalf("unable to send payment: "+
"%v", err)
}
}
errChan := make(chan error)
go func() {
for i := 0; i < numInvoices; i++ {
if resp, err := alicePayStream.Recv(); err != nil {
errChan <- errors.Errorf("payment stream has"+
" been closed: %v", err)
return
} else if resp.PaymentError != "" {
errChan <- errors.Errorf("unable to send "+
"payment from alice to bob: %v",
resp.PaymentError)
return
}
}
errChan <- nil
}()
go func() {
for i := 0; i < numInvoices; i++ {
if resp, err := bobPayStream.Recv(); err != nil {
errChan <- errors.Errorf("payment stream has"+
" been closed: %v", err)
return
} else if resp.PaymentError != "" {
errChan <- errors.Errorf("unable to send "+
"payment from bob to alice: %v",
resp.PaymentError)
return
}
}
errChan <- nil
}()
// Wait for Alice and Bob receive their payments, and throw and error
// if something goes wrong.
for i := 0; i < 2; i++ {
select {
case err := <-errChan:
if err != nil {
t.Fatalf(err.Error())
}
case <-time.After(lntest.AsyncBenchmarkTimeout):
t.Fatalf("waiting for payments to finish too long "+
"(%v)", lntest.AsyncBenchmarkTimeout)
}
}
// Wait for Alice and Bob to receive revocations messages, and update
// states, i.e. balance info.
time.Sleep(1 * time.Second)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceInfo, err := getChanInfo(ctxt, net.Alice)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if aliceInfo.RemoteBalance != bobAmt {
t.Fatalf("alice's remote balance is incorrect, got %v, "+
"expected %v", aliceInfo.RemoteBalance, bobAmt)
}
if aliceInfo.LocalBalance != aliceAmt {
t.Fatalf("alice's local balance is incorrect, got %v, "+
"expected %v", aliceInfo.LocalBalance, aliceAmt)
}
if len(aliceInfo.PendingHtlcs) != 0 {
t.Fatalf("alice's pending htlcs is incorrect, got %v, "+
"expected %v", len(aliceInfo.PendingHtlcs), 0)
}
// Next query for Bob's and Alice's channel states, in order to confirm
// that all payment have been successful transmitted.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobInfo, err := getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bobInfo.LocalBalance != bobAmt {
t.Fatalf("bob's local balance is incorrect, got %v, expected"+
" %v", bobInfo.LocalBalance, bobAmt)
}
if bobInfo.RemoteBalance != aliceAmt {
t.Fatalf("bob's remote balance is incorrect, got %v, "+
"expected %v", bobInfo.RemoteBalance, aliceAmt)
}
if len(bobInfo.PendingHtlcs) != 0 {
t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
"expected %v", len(bobInfo.PendingHtlcs), 0)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// assertActiveHtlcs makes sure all the passed nodes have the _exact_ HTLCs
// matching payHashes on _all_ their channels.
func assertActiveHtlcs(nodes []*lntest.HarnessNode, payHashes ...[]byte) error {
ctxb := context.Background()
req := &lnrpc.ListChannelsRequest{}
for _, node := range nodes {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
nodeChans, err := node.ListChannels(ctxt, req)
if err != nil {
return fmt.Errorf("unable to get node chans: %v", err)
}
for _, channel := range nodeChans.Channels {
// Record all payment hashes active for this channel.
htlcHashes := make(map[string]struct{})
for _, htlc := range channel.PendingHtlcs {
_, ok := htlcHashes[string(htlc.HashLock)]
if ok {
return fmt.Errorf("duplicate HashLock")
}
htlcHashes[string(htlc.HashLock)] = struct{}{}
}
// Channel should have exactly the payHashes active.
if len(payHashes) != len(htlcHashes) {
return fmt.Errorf("node %x had %v htlcs active, "+
"expected %v", node.PubKey[:],
len(htlcHashes), len(payHashes))
}
// Make sure all the payHashes are active.
for _, payHash := range payHashes {
if _, ok := htlcHashes[string(payHash)]; ok {
continue
}
return fmt.Errorf("node %x didn't have the "+
"payHash %v active", node.PubKey[:],
payHash)
}
}
}
return nil
}
func assertNumActiveHtlcsChanPoint(node *lntest.HarnessNode,
chanPoint wire.OutPoint, numHtlcs int) error {
ctxb := context.Background()
req := &lnrpc.ListChannelsRequest{}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
nodeChans, err := node.ListChannels(ctxt, req)
if err != nil {
return err
}
for _, channel := range nodeChans.Channels {
if channel.ChannelPoint != chanPoint.String() {
continue
}
if len(channel.PendingHtlcs) != numHtlcs {
return fmt.Errorf("expected %v active HTLCs, got %v",
numHtlcs, len(channel.PendingHtlcs))
}
return nil
}
return fmt.Errorf("channel point %v not found", chanPoint)
}
func assertNumActiveHtlcs(nodes []*lntest.HarnessNode, numHtlcs int) error {
ctxb := context.Background()
req := &lnrpc.ListChannelsRequest{}
for _, node := range nodes {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
nodeChans, err := node.ListChannels(ctxt, req)
if err != nil {
return err
}
for _, channel := range nodeChans.Channels {
if len(channel.PendingHtlcs) != numHtlcs {
return fmt.Errorf("expected %v HTLCs, got %v",
numHtlcs, len(channel.PendingHtlcs))
}
}
}
return nil
}
func assertSpendingTxInMempool(t *harnessTest, miner *rpcclient.Client,
timeout time.Duration, chanPoint wire.OutPoint) {
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-breakTimeout:
t.Fatalf("didn't find tx in mempool")
case <-ticker.C:
mempool, err := miner.GetRawMempool()
if err != nil {
t.Fatalf("unable to get mempool: %v", err)
}
if len(mempool) == 0 {
continue
}
for _, txid := range mempool {
tx, err := miner.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to fetch tx: %v", err)
}
for _, txIn := range tx.MsgTx().TxIn {
if txIn.PreviousOutPoint == chanPoint {
return
}
}
}
}
}
}
func createThreeHopNetwork(t *harnessTest, net *lntest.NetworkHarness,
carolHodl bool) (*lnrpc.ChannelPoint, *lnrpc.ChannelPoint,
*lntest.HarnessNode) {
ctxb := context.Background()
// We'll start the test by creating a channel between Alice and Bob,
// which will act as the first leg for out multi-hop HTLC.
const chanAmt = 1000000
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
aliceChanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, aliceChanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, aliceChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Next, we'll create a new node "carol" and have Bob connect to her. If
// the carolHodl flag is set, we'll make carol always hold onto the
// HTLC, this way it'll force Bob to go to chain to resolve the HTLC.
carolFlags := []string{}
if carolHodl {
carolFlags = append(carolFlags, "--hodl.exit-settle")
}
carol, err := net.NewNode("Carol", carolFlags)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
// We'll then create a channel from Bob to Carol. After this channel is
// open, our topology looks like: A -> B -> C.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
bobChanPoint := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
return aliceChanPoint, bobChanPoint, carol
}
// testMultiHopHtlcLocalTimeout tests that in a multi-hop HTLC scenario, if the
// outgoing HTLC is about to time out, then we'll go to chain in order to claim
// it. Any dust HTLC's should be immediately cancelled backwards. Once the
// timeout has been reached, then we should sweep it on-chain, and cancel the
// HTLC backwards.
func testMultiHopHtlcLocalTimeout(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol :=
createThreeHopNetwork(t, net, true)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
time.Sleep(time.Second * 1)
// Now that our channels are set up, we'll send two HTLC's from Alice
// to Carol. The first HTLC will be universally considered "dust",
// while the second will be a proper fully valued HTLC.
const (
dustHtlcAmt = btcutil.Amount(100)
htlcAmt = btcutil.Amount(30000)
finalCltvDelta = 40
)
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// We'll create two random payment hashes unknown to carol, then send
// each of them by manually specifying the HTLC details.
carolPubKey := carol.PubKey[:]
dustPayHash := makeFakePayHash(t)
payHash := makeFakePayHash(t)
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(dustHtlcAmt),
PaymentHash: dustPayHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(htlcAmt),
PaymentHash: payHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
// Verify that all nodes in the path now have two HTLC's with the
// proper parameters.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, dustPayHash, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// We'll now mine enough blocks to trigger Bob's broadcast of his
// commitment transaction due to the fact that the HTLC is about to
// timeout. With the default outgoing broadcast delta of zero, this will
// be the same height as the htlc expiry height.
numBlocks := padCLTV(
uint32(finalCltvDelta - lnd.DefaultOutgoingBroadcastDelta),
)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Bob's force close transaction should now be found in the mempool.
bobFundingTxid, err := lnd.GetChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
closeTxid, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find closing txid: %v", err)
}
assertSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
},
)
// Mine a block to confirm the closing transaction.
mineBlocks(t, net, 1, 1)
// At this point, Bob should have cancelled backwards the dust HTLC
// that we sent earlier. This means Alice should now only have a single
// HTLC on her channel.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// With the closing transaction confirmed, we should expect Bob's HTLC
// timeout transaction to be broadcast due to the expiry being reached.
htlcTimeout, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's htlc timeout tx: %v", err)
}
// We'll mine the remaining blocks in order to generate the sweep
// transaction of Bob's commitment output.
mineBlocks(t, net, defaultCSV, 1)
assertSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, wire.OutPoint{
Hash: *closeTxid,
Index: 1,
},
)
// Bob's pending channel report should show that he has a commitment
// output awaiting sweeping, and also that there's an outgoing HTLC
// output pending.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
t.Fatalf("bob should have pending for close chan but doesn't")
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.LimboBalance == 0 {
t.Fatalf("bob should have nonzero limbo balance instead "+
"has: %v", forceCloseChan.LimboBalance)
}
if len(forceCloseChan.PendingHtlcs) == 0 {
t.Fatalf("bob should have pending htlc but doesn't")
}
// Now we'll mine an additional block, which should confirm Bob's commit
// sweep. This block should also prompt Bob to broadcast their second
// layer sweep due to the CSV on the HTLC timeout output.
mineBlocks(t, net, 1, 1)
assertSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, wire.OutPoint{
Hash: *htlcTimeout,
Index: 0,
},
)
// The block should have confirmed Bob's HTLC timeout transaction.
// Therefore, at this point, there should be no active HTLC's on the
// commitment transaction from Alice -> Bob.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("alice's channel still has active htlc's: %v", predErr)
}
// At this point, Bob should show that the pending HTLC has advanced to
// the second stage and is to be swept.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err = net.Bob.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
forceCloseChan = pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
t.Fatalf("bob's htlc should have advanced to the second stage: %v", err)
}
// Next, we'll mine a final block that should confirm the second-layer
// sweeping transaction.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Once this transaction has been confirmed, Bob should detect that he
// no longer has any pending channels.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err = net.Bob.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending "+
"channels but shouldn't: %v",
spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}
// testMultiHopLocalForceCloseOnChainHtlcTimeout tests that in a multi-hop HTLC
// scenario, if the node that extended the HTLC to the final node closes their
// commitment on-chain early, then it eventually recognizes this HTLC as one
// that's timed out. At this point, the node should timeout the HTLC, then
// cancel it backwards as normal.
func testMultiHopLocalForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol :=
createThreeHopNetwork(t, net, true)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With our channels set up, we'll then send a single HTLC from Alice
// to Carol. As Carol is in hodl mode, she won't settle this HTLC which
// opens up the base for out tests.
const (
finalCltvDelta = 40
htlcAmt = btcutil.Amount(30000)
)
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// We'll now send a single HTLC across our multi-hop network.
carolPubKey := carol.PubKey[:]
payHash := makeFakePayHash(t)
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(htlcAmt),
PaymentHash: payHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
// Once the HTLC has cleared, all channels in our mini network should
// have the it locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// Now that all parties have the HTLC locked in, we'll immediately
// force close the Bob -> Carol channel. This should trigger contract
// resolution mode for both of them.
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, bobChanPoint, true)
// At this point, Bob should have a pending force close channel as he
// just went to chain.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(ctxt,
pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.LimboBalance == 0 {
predErr = fmt.Errorf("bob should have nonzero limbo "+
"balance instead has: %v",
forceCloseChan.LimboBalance)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// We'll mine defaultCSV blocks in order to generate the sweep transaction
// of Bob's funding output.
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's funding output sweep tx: %v", err)
}
// We'll now mine enough blocks for the HTLC to expire. After this, Bob
// should hand off the now expired HTLC output to the utxo nursery.
numBlocks := padCLTV(uint32(finalCltvDelta - defaultCSV - 1))
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Bob's pending channel report should show that he has a single HTLC
// that's now in stage one.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending force " +
"close chan but doesn't")
return false
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
if forceCloseChan.PendingHtlcs[0].Stage != 1 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the first stage: %v", err)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// We should also now find a transaction in the mempool, as Bob should
// have broadcast his second layer timeout transaction.
timeoutTx, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's htlc timeout tx: %v", err)
}
// Next, we'll mine an additional block. This should serve to confirm
// the second layer timeout transaction.
block := mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, timeoutTx)
// With the second layer timeout transaction confirmed, Bob should have
// cancelled backwards the HTLC that carol sent.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("alice's channel still has active htlc's: %v", predErr)
}
// Additionally, Bob should now show that HTLC as being advanced to the
// second stage.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the second stage: %v", err)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// We'll now mine 4 additional blocks. This should be enough for Bob's
// CSV timelock to expire and the sweeping transaction of the HTLC to be
// broadcast.
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
sweepTx, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's htlc sweep tx: %v", err)
}
// We'll then mine a final block which should confirm this second layer
// sweep transaction.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, sweepTx)
// At this point, Bob should no longer show any channels as pending
// close.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}
// testMultiHopRemoteForceCloseOnChainHtlcTimeout tests that if we extend a
// multi-hop HTLC, and the final destination of the HTLC force closes the
// channel, then we properly timeout the HTLC on *their* commitment transaction
// once the timeout has expired. Once we sweep the transaction, we should also
// cancel back the initial HTLC.
func testMultiHopRemoteForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol :=
createThreeHopNetwork(t, net, true)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With our channels set up, we'll then send a single HTLC from Alice
// to Carol. As Carol is in hodl mode, she won't settle this HTLC which
// opens up the base for out tests.
const (
finalCltvDelta = 40
htlcAmt = btcutil.Amount(30000)
)
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// We'll now send a single HTLC across our multi-hop network.
carolPubKey := carol.PubKey[:]
payHash := makeFakePayHash(t)
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(htlcAmt),
PaymentHash: payHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
// Once the HTLC has cleared, all the nodes in our mini network should
// show that the HTLC has been locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// At this point, we'll now instruct Carol to force close the
// transaction. This will let us exercise that Bob is able to sweep the
// expired HTLC on Carol's version of the commitment transaction.
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, bobChanPoint, true)
// At this point, Bob should have a pending force close channel as
// Carol has gone directly to chain.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for "+
"pending channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending " +
"force close channels but doesn't")
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// Bob can sweep his output immediately.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's funding output sweep tx: %v",
err)
}
// Next, we'll mine enough blocks for the HTLC to expire. At this
// point, Bob should hand off the output to his internal utxo nursery,
// which will broadcast a sweep transaction.
numBlocks := padCLTV(finalCltvDelta - 1)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// If we check Bob's pending channel report, it should show that he has
// a single HTLC that's now in the second stage, as skip the initial
// first stage since this is a direct HTLC.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the second stage: %v", err)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// Bob's sweeping transaction should now be found in the mempool at
// this point.
sweepTx, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
// If Bob's transaction isn't yet in the mempool, then due to
// internal message passing and the low period between blocks
// being mined, it may have been detected as a late
// registration. As a result, we'll mine another block and
// repeat the check. If it doesn't go through this time, then
// we'll fail.
// TODO(halseth): can we use waitForChannelPendingForceClose to
// avoid this hack?
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
sweepTx, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction: "+
"%v", err)
}
}
// If we mine an additional block, then this should confirm Bob's
// transaction which sweeps the direct HTLC output.
block := mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, sweepTx)
// Now that the sweeping transaction has been confirmed, Bob should
// cancel back that HTLC. As a result, Alice should not know of any
// active HTLC's.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("alice's channel still has active htlc's: %v", predErr)
}
// Now we'll check Bob's pending channel report. Since this was Carol's
// commitment, he doesn't have to wait for any CSV delays. As a result,
// he should show no additional pending transactions.
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// We'll close out the test by closing the channel from Alice to Bob,
// and then shutting down the new node we created as its no longer
// needed.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}
// testSwitchCircuitPersistence creates a multihop network to ensure the sender
// and intermediaries are persisting their open payment circuits. After
// forwarding a packet via an outgoing link, all are restarted, and expected to
// forward a response back from the receiver once back online.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. X X X Bob restart sender and intermediaries
// 3. Carol <-- Dave <-- Alice <-- Bob expect settle to propagate
func testSwitchCircuitPersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnd.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs, _, _, err := createPayReqs(
carol, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Wait until all nodes in the network have 5 outstanding htlcs.
var predErr error
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, numPayments)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Restart the intermediaries and the sender.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Bob, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Ensure all of the intermediate links are reconnected.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, net.Alice, dave)
if err != nil {
t.Fatalf("unable to reconnect alice and dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, net.Bob, net.Alice)
if err != nil {
t.Fatalf("unable to reconnect bob and alice: %v", err)
}
// Ensure all nodes in the network still have 5 outstanding htlcs.
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, numPayments)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, dave, carol)
if err != nil {
t.Fatalf("unable to reconnect dave and carol: %v", err)
}
// After the payments settle, there should be no active htlcs on any of
// the nodes in the network.
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddInvoice(ctxt, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testSwitchOfflineDelivery constructs a set of multihop payments, and tests
// that the returning payments are not lost if a peer on the backwards path is
// offline when the settle/fails are received. We expect the payments to be
// buffered in memory, and transmitted as soon as the disconnect link comes back
// online.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol <-- Dave <-- Alice --- Bob reconnect, expect settle to propagate
func testSwitchOfflineDelivery(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode("Dave", []string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnd.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs, _, _, err := createPayReqs(
carol, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Wait for all of the payments to reach Carol.
var predErr error
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, numPayments)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// First, disconnect Dave and Alice so that their link is broken.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Then, reconnect them to ensure Dave doesn't just fail back the htlc.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Wait to ensure that the payment remain are not failed back after
// reconnecting. All node should report the number payments initiated
// for the duration of the interval.
err = lntest.WaitInvariant(func() bool {
predErr = assertNumActiveHtlcs(nodes, numPayments)
if predErr != nil {
return false
}
return true
}, time.Second*2)
if err != nil {
t.Fatalf("htlc change: %v", predErr)
}
// Now, disconnect Dave from Alice again before settling back the
// payment.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Wait for Carol to report no outstanding htlcs.
carolNode := []*lntest.HarnessNode{carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(carolNode, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Now that the settles have reached Dave, reconnect him with Alice,
// allowing the settles to return to the sender.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.EnsureConnected(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Wait until all outstanding htlcs in the network have been settled.
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddInvoice(ctxt, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testSwitchOfflineDeliveryPersistence constructs a set of multihop payments,
// and tests that the returning payments are not lost if a peer on the backwards
// path is offline when the settle/fails are received AND the peer buffering the
// responses is completely restarts. We expect the payments to be reloaded from
// disk, and transmitted as soon as the intermediaries are reconnected.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol --- Dave X X Bob restart Alice
// 5. Carol <-- Dave <-- Alice --- Bob expect settle to propagate
func testSwitchOfflineDeliveryPersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode("Dave", []string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnd.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs, _, _, err := createPayReqs(
carol, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
var predErr error
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, numPayments)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Disconnect the two intermediaries, Alice and Dave, by shutting down
// Alice.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.StopNode(net.Alice); err != nil {
t.Fatalf("unable to shutdown alice: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Make Carol and Dave are reconnected before waiting for the htlcs to
// clear.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, dave, carol)
if err != nil {
t.Fatalf("unable to reconnect dave and carol: %v", err)
}
// Wait for Carol to report no outstanding htlcs, and also for Dav to
// receive all the settles from Carol.
carolNode := []*lntest.HarnessNode{carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(carolNode, 0)
if predErr != nil {
return false
}
predErr = assertNumActiveHtlcsChanPoint(dave, carolFundPoint, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Finally, restart dave who received the settles, but was unable to
// deliver them to Alice since they were disconnected.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
if err = net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart alice: %v", err)
}
// Force Dave and Alice to reconnect before waiting for the htlcs to
// clear.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, dave, net.Alice)
if err != nil {
t.Fatalf("unable to reconnect dave and carol: %v", err)
}
// After reconnection succeeds, the settles should be propagated all
// the way back to the sender. All nodes should report no active htlcs.
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddInvoice(ctxt, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Before completing the final payment request, ensure that the
// connection between Dave and Carol has been healed.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, dave, carol)
if err != nil {
t.Fatalf("unable to reconnect dave and carol: %v", err)
}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testSwitchOfflineDeliveryOutgoingOffline constructs a set of multihop payments,
// and tests that the returning payments are not lost if a peer on the backwards
// path is offline when the settle/fails are received AND the peer buffering the
// responses is completely restarts. We expect the payments to be reloaded from
// disk, and transmitted as soon as the intermediaries are reconnected.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol --- Dave X X shutdown Bob, restart Alice
// 5. Carol <-- Dave <-- Alice X expect settle to propagate
func testSwitchOfflineDeliveryOutgoingOffline(
net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode("Dave", []string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnd.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode("Carol", []string{"--hodl.exit-settle"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs, _, _, err := createPayReqs(
carol, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Wait for all payments to reach Carol.
var predErr error
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, numPayments)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Disconnect the two intermediaries, Alice and Dave, so that when carol
// restarts, the response will be held by Dave.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.StopNode(net.Alice); err != nil {
t.Fatalf("unable to shutdown alice: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Wait for Carol to report no outstanding htlcs.
carolNode := []*lntest.HarnessNode{carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(carolNode, 0)
if predErr != nil {
return false
}
predErr = assertNumActiveHtlcsChanPoint(dave, carolFundPoint, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Now check that the total amount was transferred from Dave to Carol.
// The amount transferred should be exactly equal to the invoice total
// payment amount, 5k satsohis.
const amountPaid = int64(5000)
assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
// Shutdown carol and leave her offline for the rest of the test. This
// is critical, as we wish to see if Dave can propragate settles even if
// the outgoing link is never revived.
shutdownAndAssert(net, t, carol)
// Now restart Dave, ensuring he is both persisting the settles, and is
// able to reforward them to Alice after recovering from a restart.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
if err = net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart alice: %v", err)
}
// Ensure that Dave is reconnected to Alice before waiting for the
// htlcs to clear.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, dave, net.Alice)
if err != nil {
t.Fatalf("unable to reconnect alice and dave: %v", err)
}
// Since Carol has been shutdown permanently, we will wait until all
// other nodes in the network report no active htlcs.
nodesMinusCarol := []*lntest.HarnessNode{net.Bob, net.Alice, dave}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodesMinusCarol, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point, all channels (minus Carol, who is shutdown) should
// show a shift of 5k satoshis towards Carol. The order of asserts
// corresponds to increasing of time is needed to embed the HTLC in
// commitment transaction, in channel Bob->Alice->David, order is
// David, Alice, Bob.
assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
}
// computeFee calculates the payment fee as specified in BOLT07
func computeFee(baseFee, feeRate, amt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
return baseFee + amt*feeRate/1000000
}
// testQueryRoutes checks the response of queryroutes.
// We'll create the following network topology:
// Alice --> Bob --> Carol --> Dave
// and query the daemon for routes from Alice to Dave.
func testQueryRoutes(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
// Create Carol and establish a channel from Bob.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
t.Fatalf("unable to connect carol to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, net.Bob)
if err != nil {
t.Fatalf("unable to send coins to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointBob)
// Create Dave and establish a channel from Carol.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Query for routes to pay from Alice to Dave.
const paymentAmt = 1000
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routesRes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
const mSat = 1000
feePerHopMSat := computeFee(1000, 1, paymentAmt*mSat)
for i, route := range routesRes.Routes {
expectedTotalFeesMSat :=
lnwire.MilliSatoshi(len(route.Hops)-1) * feePerHopMSat
expectedTotalAmtMSat := (paymentAmt * mSat) + expectedTotalFeesMSat
if route.TotalFees != route.TotalFeesMsat/mSat {
t.Fatalf("route %v: total fees %v (msat) does not "+
"round down to %v (sat)",
i, route.TotalFeesMsat, route.TotalFees)
}
if route.TotalFeesMsat != int64(expectedTotalFeesMSat) {
t.Fatalf("route %v: total fees in msat expected %v got %v",
i, expectedTotalFeesMSat, route.TotalFeesMsat)
}
if route.TotalAmt != route.TotalAmtMsat/mSat {
t.Fatalf("route %v: total amt %v (msat) does not "+
"round down to %v (sat)",
i, route.TotalAmtMsat, route.TotalAmt)
}
if route.TotalAmtMsat != int64(expectedTotalAmtMSat) {
t.Fatalf("route %v: total amt in msat expected %v got %v",
i, expectedTotalAmtMSat, route.TotalAmtMsat)
}
// For all hops except the last, we check that fee equals feePerHop
// and amount to forward deducts feePerHop on each hop.
expectedAmtToForwardMSat := expectedTotalAmtMSat
for j, hop := range route.Hops[:len(route.Hops)-1] {
expectedAmtToForwardMSat -= feePerHopMSat
if hop.Fee != hop.FeeMsat/mSat {
t.Fatalf("route %v hop %v: fee %v (msat) does not "+
"round down to %v (sat)",
i, j, hop.FeeMsat, hop.Fee)
}
if hop.FeeMsat != int64(feePerHopMSat) {
t.Fatalf("route %v hop %v: fee in msat expected %v got %v",
i, j, feePerHopMSat, hop.FeeMsat)
}
if hop.AmtToForward != hop.AmtToForwardMsat/mSat {
t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
"round down to %v (sat)",
i, j, hop.AmtToForwardMsat, hop.AmtToForward)
}
if hop.AmtToForwardMsat != int64(expectedAmtToForwardMSat) {
t.Fatalf("route %v hop %v: amt to forward in msat "+
"expected %v got %v",
i, j, expectedAmtToForwardMSat, hop.AmtToForwardMsat)
}
}
// Last hop should have zero fee and amount to forward should equal
// payment amount.
hop := route.Hops[len(route.Hops)-1]
if hop.Fee != 0 || hop.FeeMsat != 0 {
t.Fatalf("route %v hop %v: fee expected 0 got %v (sat) %v (msat)",
i, len(route.Hops)-1, hop.Fee, hop.FeeMsat)
}
if hop.AmtToForward != hop.AmtToForwardMsat/mSat {
t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
"round down to %v (sat)",
i, len(route.Hops)-1, hop.AmtToForwardMsat, hop.AmtToForward)
}
if hop.AmtToForwardMsat != paymentAmt*mSat {
t.Fatalf("route %v hop %v: amt to forward in msat "+
"expected %v got %v",
i, len(route.Hops)-1, paymentAmt*mSat, hop.AmtToForwardMsat)
}
}
// We clean up the test case by closing channels that were created for
// the duration of the tests.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testRouteFeeCutoff tests that we are able to prevent querying routes and
// sending payments that incur a fee higher than the fee limit.
func testRouteFeeCutoff(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// For this test, we'll create the following topology:
//
// --- Bob ---
// / \
// Alice ---- ---- Dave
// \ /
// -- Carol --
//
// Alice will attempt to send payments to Dave that should not incur a
// fee greater than the fee limit expressed as a percentage of the
// amount and as a fixed amount of satoshis.
const chanAmt = btcutil.Amount(100000)
// Open a channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Carol's node and open a channel between her and Alice with
// Alice being the funder.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create carol's node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceCarol := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Dave's node and open a channel between him and Bob with Bob
// being the funder.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create dave's node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Bob); err != nil {
t.Fatalf("unable to connect dave to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBobDave := openChannelAndAssert(
ctxt, t, net, net.Bob, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Open a channel between Carol and Dave.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarolDave := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Now that all the channels were set up, we'll wait for all the nodes
// to have seen all the channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"alice", "bob", "carol", "dave"}
networkChans := []*lnrpc.ChannelPoint{
chanPointAliceBob, chanPointAliceCarol, chanPointBobDave,
chanPointCarolDave,
}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
outpoint := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d) timed out waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, outpoint, err)
}
}
}
// The payments should only be successful across the route:
// Alice -> Bob -> Dave
// Therefore, we'll update the fee policy on Carol's side for the
// channel between her and Dave to invalidate the route:
// Alice -> Carol -> Dave
baseFee := int64(10000)
feeRate := int64(5)
timeLockDelta := uint32(lnd.DefaultBitcoinTimeLockDelta)
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: baseFee,
FeeRateMilliMsat: testFeeBase * feeRate,
TimeLockDelta: timeLockDelta,
MinHtlc: 1000, // default value
}
updateFeeReq := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPointCarolDave,
},
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if _, err := carol.UpdateChannelPolicy(ctxt, updateFeeReq); err != nil {
t.Fatalf("unable to update chan policy: %v", err)
}
// Wait for Alice to receive the channel update from Carol.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceSub := subscribeGraphNotifications(t, ctxt, net.Alice)
defer close(aliceSub.quit)
waitForChannelUpdate(
t, aliceSub,
[]expectedChanUpdate{
{carol.PubKeyStr, expectedPolicy, chanPointCarolDave},
},
)
// We'll also need the channel IDs for Bob's channels in order to
// confirm the route of the payments.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
listResp, err := net.Bob.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to retrieve bob's channels: %v", err)
}
var aliceBobChanID, bobDaveChanID uint64
for _, channel := range listResp.Channels {
switch channel.RemotePubkey {
case net.Alice.PubKeyStr:
aliceBobChanID = channel.ChanId
case dave.PubKeyStr:
bobDaveChanID = channel.ChanId
}
}
if aliceBobChanID == 0 {
t.Fatalf("channel between alice and bob not found")
}
if bobDaveChanID == 0 {
t.Fatalf("channel between bob and dave not found")
}
hopChanIDs := []uint64{aliceBobChanID, bobDaveChanID}
// checkRoute is a helper closure to ensure the route contains the
// correct intermediate hops.
checkRoute := func(route *lnrpc.Route) {
if len(route.Hops) != 2 {
t.Fatalf("expected two hops, got %d", len(route.Hops))
}
for i, hop := range route.Hops {
if hop.ChanId != hopChanIDs[i] {
t.Fatalf("expected chan id %d, got %d",
hopChanIDs[i], hop.ChanId)
}
}
}
// We'll be attempting to send two payments from Alice to Dave. One will
// have a fee cutoff expressed as a percentage of the amount and the
// other will have it expressed as a fixed amount of satoshis.
const paymentAmt = 100
carolFee := computeFee(lnwire.MilliSatoshi(baseFee), 1, paymentAmt)
// testFeeCutoff is a helper closure that will ensure the different
// types of fee limits work as intended when querying routes and sending
// payments.
testFeeCutoff := func(feeLimit *lnrpc.FeeLimit) {
queryRoutesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmt,
FeeLimit: feeLimit,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routesResp, err := net.Alice.QueryRoutes(ctxt, queryRoutesReq)
if err != nil {
t.Fatalf("unable to get routes: %v", err)
}
checkRoute(routesResp.Routes[0])
invoice := &lnrpc.Invoice{Value: paymentAmt}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
invoiceResp, err := dave.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to create invoice: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
FeeLimit: feeLimit,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
paymentResp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if paymentResp.PaymentError != "" {
t.Fatalf("unable to send payment: %v",
paymentResp.PaymentError)
}
checkRoute(paymentResp.PaymentRoute)
}
// We'll start off using percentages first. Since the fee along the
// route using Carol as an intermediate hop is 10% of the payment's
// amount, we'll use a lower percentage in order to invalid that route.
feeLimitPercent := &lnrpc.FeeLimit{
Limit: &lnrpc.FeeLimit_Percent{
Percent: baseFee/1000 - 1,
},
}
testFeeCutoff(feeLimitPercent)
// Now we'll test using fixed fee limit amounts. Since we computed the
// fee for the route using Carol as an intermediate hop earlier, we can
// use a smaller value in order to invalidate that route.
feeLimitFixed := &lnrpc.FeeLimit{
Limit: &lnrpc.FeeLimit_Fixed{
Fixed: int64(carolFee.ToSatoshis()) - 1,
},
}
testFeeCutoff(feeLimitFixed)
// Once we're done, close the channels and shut down the nodes created
// throughout this test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarolDave, false)
}
// testSendUpdateDisableChannel ensures that a channel update with the disable
// flag set is sent once a channel has been either unilaterally or cooperatively
// closed.
func testSendUpdateDisableChannel(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = 100000
)
// Open a channel between Alice and Bob and Alice and Carol. These will
// be closed later on in order to trigger channel update messages
// marking the channels as disabled.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
carol, err := net.NewNode("Carol", []string{
"--minbackoff=10s",
"--unsafe-disconnect",
"--chan-enable-timeout=1.5s",
"--chan-disable-timeout=3s",
"--chan-status-sample-interval=.5s",
})
if err != nil {
t.Fatalf("unable to create carol's node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceCarol := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// We create a new node Eve that has an inactive channel timeout of
// just 2 seconds (down from the default 20m). It will be used to test
// channel updates for channels going inactive.
eve, err := net.NewNode("Eve", []string{
"--minbackoff=10s",
"--chan-enable-timeout=1.5s",
"--chan-disable-timeout=3s",
"--chan-status-sample-interval=.5s",
})
if err != nil {
t.Fatalf("unable to create eve's node: %v", err)
}
defer shutdownAndAssert(net, t, eve)
// Give Eve some coins.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, eve)
if err != nil {
t.Fatalf("unable to send coins to eve: %v", err)
}
// Connect Eve to Carol and Bob, and open a channel to carol.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, eve, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, eve, net.Bob); err != nil {
t.Fatalf("unable to connect eve to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointEveCarol := openChannelAndAssert(
ctxt, t, net, eve, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Launch a node for Dave which will connect to Bob in order to receive
// graph updates from. This will ensure that the channel updates are
// propagated throughout the network.
dave, err := net.NewNode("Dave", nil)
if err != nil {
t.Fatalf("unable to create dave's node: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, dave); err != nil {
t.Fatalf("unable to connect bob to dave: %v", err)
}
daveSub := subscribeGraphNotifications(t, ctxb, dave)
defer close(daveSub.quit)
// We should expect to see a channel update with the default routing
// policy, except that it should indicate the channel is disabled.
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: int64(lnd.DefaultBitcoinBaseFeeMSat),
FeeRateMilliMsat: int64(lnd.DefaultBitcoinFeeRate),
TimeLockDelta: lnd.DefaultBitcoinTimeLockDelta,
MinHtlc: 1000, // default value
Disabled: true,
}
// Let Carol go offline. Since Eve has an inactive timeout of 2s, we
// expect her to send an update disabling the channel.
restartCarol, err := net.SuspendNode(carol)
if err != nil {
t.Fatalf("unable to suspend carol: %v", err)
}
waitForChannelUpdate(
t, daveSub,
[]expectedChanUpdate{
{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
},
)
// We restart Carol. Since the channel now becomes active again, Eve
// should send a ChannelUpdate setting the channel no longer disabled.
if err := restartCarol(); err != nil {
t.Fatalf("unable to restart carol: %v", err)
}
expectedPolicy.Disabled = false
waitForChannelUpdate(
t, daveSub,
[]expectedChanUpdate{
{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
},
)
// Now we'll test a long disconnection. Disconnect Carol and Eve and
// ensure they both detect each other as disabled. Their min backoffs
// are high enough to not interfere with disabling logic.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.DisconnectNodes(ctxt, carol, eve); err != nil {
t.Fatalf("unable to disconnect Carol from Eve: %v", err)
}
// Wait for a disable from both Carol and Eve to come through.
expectedPolicy.Disabled = true
waitForChannelUpdate(
t, daveSub,
[]expectedChanUpdate{
{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
{carol.PubKeyStr, expectedPolicy, chanPointEveCarol},
},
)
// Reconnect Carol and Eve, this should cause them to reenable the
// channel from both ends after a short delay.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.EnsureConnected(ctxt, carol, eve); err != nil {
t.Fatalf("unable to reconnect Carol to Eve: %v", err)
}
expectedPolicy.Disabled = false
waitForChannelUpdate(
t, daveSub,
[]expectedChanUpdate{
{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
{carol.PubKeyStr, expectedPolicy, chanPointEveCarol},
},
)
// Now we'll test a short disconnection. Disconnect Carol and Eve, then
// reconnect them after one second so that their scheduled disables are
// aborted. One second is twice the status sample interval, so this
// should allow for the disconnect to be detected, but still leave time
// to cancel the announcement before the 3 second inactive timeout is
// hit.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.DisconnectNodes(ctxt, carol, eve); err != nil {
t.Fatalf("unable to disconnect Carol from Eve: %v", err)
}
time.Sleep(time.Second)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.EnsureConnected(ctxt, eve, carol); err != nil {
t.Fatalf("unable to reconnect Carol to Eve: %v", err)
}
// Since the disable should have been canceled by both Carol and Eve, we
// expect no channel updates to appear on the network.
assertNoChannelUpdates(t, daveSub, 4*time.Second)
// Close Alice's channels with Bob and Carol cooperatively and
// unilaterally respectively.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
_, _, err = net.CloseChannel(ctxt, net.Alice, chanPointAliceBob, false)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
_, _, err = net.CloseChannel(ctxt, net.Alice, chanPointAliceCarol, true)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Now that the channel close processes have been started, we should
// receive an update marking each as disabled.
expectedPolicy.Disabled = true
waitForChannelUpdate(
t, daveSub,
[]expectedChanUpdate{
{net.Alice.PubKeyStr, expectedPolicy, chanPointAliceBob},
{net.Alice.PubKeyStr, expectedPolicy, chanPointAliceCarol},
},
)
// Finally, close the channels by mining the closing transactions.
mineBlocks(t, net, 1, 2)
// Also do this check for Eve's channel with Carol.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
_, _, err = net.CloseChannel(ctxt, eve, chanPointEveCarol, false)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
waitForChannelUpdate(
t, daveSub,
[]expectedChanUpdate{
{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
},
)
mineBlocks(t, net, 1, 1)
// And finally, clean up the force closed channel by mining the
// sweeping transaction.
cleanupForceClose(t, net, net.Alice, chanPointAliceCarol)
}
// testAbandonChannel abandones a channel and asserts that it is no
// longer open and not in one of the pending closure states. It also
// verifies that the abandoned channel is reported as closed with close
// type 'abandoned'.
func testAbandonChannel(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First establish a channel between Alice and Bob.
channelParam := lntest.OpenChannelParams{
Amt: lnd.MaxBtcFundingAmount,
PushAmt: btcutil.Amount(100000),
}
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob, channelParam)
// Wait for channel to be confirmed open.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Send request to abandon channel.
abandonChannelRequest := &lnrpc.AbandonChannelRequest{
ChannelPoint: chanPoint,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = net.Alice.AbandonChannel(ctxt, abandonChannelRequest)
if err != nil {
t.Fatalf("unable to abandon channel: %v", err)
}
// Assert that channel in no longer open.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceChannelList, err := net.Alice.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to list channels: %v", err)
}
if len(aliceChannelList.Channels) != 0 {
t.Fatalf("alice should only have no channels open, "+
"instead she has %v",
len(aliceChannelList.Channels))
}
// Assert that channel is not pending closure.
pendingReq := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePendingList, err := net.Alice.PendingChannels(ctxt, pendingReq)
if err != nil {
t.Fatalf("unable to list pending channels: %v", err)
}
if len(alicePendingList.PendingClosingChannels) != 0 {
t.Fatalf("alice should only have no pending closing channels, "+
"instead she has %v",
len(alicePendingList.PendingClosingChannels))
}
if len(alicePendingList.PendingForceClosingChannels) != 0 {
t.Fatalf("alice should only have no pending force closing "+
"channels instead she has %v",
len(alicePendingList.PendingForceClosingChannels))
}
if len(alicePendingList.WaitingCloseChannels) != 0 {
t.Fatalf("alice should only have no waiting close "+
"channels instead she has %v",
len(alicePendingList.WaitingCloseChannels))
}
// Assert that channel is listed as abandoned.
closedReq := &lnrpc.ClosedChannelsRequest{
Abandoned: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceClosedList, err := net.Alice.ClosedChannels(ctxt, closedReq)
if err != nil {
t.Fatalf("unable to list closed channels: %v", err)
}
if len(aliceClosedList.Channels) != 1 {
t.Fatalf("alice should only have a single abandoned channel, "+
"instead she has %v",
len(aliceClosedList.Channels))
}
// Now that we're done with the test, the channel can be closed. This is
// necessary to avoid unexpected outcomes of other tests that use Bob's
// lnd instance.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Bob, chanPoint)
}
// testSweepAllCoins tests that we're able to properly sweep all coins from the
// wallet into a single target address at the specified fee rate.
func testSweepAllCoins(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll make a new node, ainz who'll we'll use to test wallet
// sweeping.
ainz, err := net.NewNode("Ainz", nil)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, ainz)
// Next, we'll give Ainz exactly 2 utxos of 1 BTC each, with one of
// them being p2wkh and the other being a n2wpkh address.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, ainz)
if err != nil {
t.Fatalf("unable to send coins to eve: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoinsNP2WKH(ctxt, btcutil.SatoshiPerBitcoin, ainz)
if err != nil {
t.Fatalf("unable to send coins to eve: %v", err)
}
// Ensure that we can't send coins to our own Pubkey.
info, err := ainz.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
if err != nil {
t.Fatalf("unable to get node info: %v", err)
}
sweepReq := &lnrpc.SendCoinsRequest{
Addr: info.IdentityPubkey,
SendAll: true,
}
_, err = ainz.SendCoins(ctxt, sweepReq)
if err == nil {
t.Fatalf("expected SendCoins to users own pubkey to fail")
}
// Ensure that we can't send coins to another users Pubkey.
info, err = net.Alice.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
if err != nil {
t.Fatalf("unable to get node info: %v", err)
}
sweepReq = &lnrpc.SendCoinsRequest{
Addr: info.IdentityPubkey,
SendAll: true,
}
_, err = ainz.SendCoins(ctxt, sweepReq)
if err == nil {
t.Fatalf("expected SendCoins to Alices pubkey to fail")
}
// With the two coins above mined, we'll now instruct ainz to sweep all
// the coins to an external address not under its control.
// We will first attempt to send the coins to addresses that are not
// compatible with the current network. This is to test that the wallet
// will prevent any onchain transactions to addresses that are not on the
// same network as the user.
// Send coins to a testnet3 address.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
sweepReq = &lnrpc.SendCoinsRequest{
Addr: "tb1qfc8fusa98jx8uvnhzavxccqlzvg749tvjw82tg",
SendAll: true,
}
_, err = ainz.SendCoins(ctxt, sweepReq)
if err == nil {
t.Fatalf("expected SendCoins to different network to fail")
}
// Send coins to a mainnet address.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
sweepReq = &lnrpc.SendCoinsRequest{
Addr: "1MPaXKp5HhsLNjVSqaL7fChE3TVyrTMRT3",
SendAll: true,
}
_, err = ainz.SendCoins(ctxt, sweepReq)
if err == nil {
t.Fatalf("expected SendCoins to different network to fail")
}
// Send coins to a compatible address.
minerAddr, err := net.Miner.NewAddress()
if err != nil {
t.Fatalf("unable to create new miner addr: %v", err)
}
sweepReq = &lnrpc.SendCoinsRequest{
Addr: minerAddr.String(),
SendAll: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = ainz.SendCoins(ctxt, sweepReq)
if err != nil {
t.Fatalf("unable to sweep coins: %v", err)
}
// We'll mine a block which should include the sweep transaction we
// generated above.
block := mineBlocks(t, net, 1, 1)[0]
// The sweep transaction should have exactly two inputs as we only had
// two UTXOs in the wallet.
sweepTx := block.Transactions[1]
if len(sweepTx.TxIn) != 2 {
t.Fatalf("expected 2 inputs instead have %v", len(sweepTx.TxIn))
}
// Finally, Ainz should now have no coins at all within his wallet.
balReq := &lnrpc.WalletBalanceRequest{}
resp, err := ainz.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get ainz's balance: %v", err)
}
switch {
case resp.ConfirmedBalance != 0:
t.Fatalf("expected no confirmed balance, instead have %v",
resp.ConfirmedBalance)
case resp.UnconfirmedBalance != 0:
t.Fatalf("expected no unconfirmed balance, instead have %v",
resp.UnconfirmedBalance)
}
// If we try again, but this time specifying an amount, then the call
// should fail.
sweepReq.Amount = 10000
_, err = ainz.SendCoins(ctxt, sweepReq)
if err == nil {
t.Fatalf("sweep attempt should fail")
}
}
// testChannelBackupUpdates tests that both the streaming channel update RPC,
// and the on-disk channels.backup are updated each time a channel is
// opened/closed.
func testChannelBackupUpdates(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll make a temp directory that we'll use to store our
// backup file, so we can check in on it during the test easily.
backupDir, err := ioutil.TempDir("", "")
if err != nil {
t.Fatalf("unable to create backup dir: %v", err)
}
defer os.RemoveAll(backupDir)
// First, we'll create a new node, Carol. We'll also create a temporary
// file that Carol will use to store her channel backups.
backupFilePath := filepath.Join(
backupDir, chanbackup.DefaultBackupFileName,
)
carolArgs := fmt.Sprintf("--backupfilepath=%v", backupFilePath)
carol, err := net.NewNode("carol", []string{carolArgs})
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Next, we'll register for streaming notifications for changes to the
// backup file.
backupStream, err := carol.SubscribeChannelBackups(
ctxb, &lnrpc.ChannelBackupSubscription{},
)
if err != nil {
t.Fatalf("unable to create backup stream: %v", err)
}
// We'll use this goroutine to proxy any updates to a channel we can
// easily use below.
var wg sync.WaitGroup
backupUpdates := make(chan *lnrpc.ChanBackupSnapshot)
streamErr := make(chan error)
streamQuit := make(chan struct{})
wg.Add(1)
go func() {
defer wg.Done()
for {
snapshot, err := backupStream.Recv()
if err != nil {
select {
case streamErr <- err:
case <-streamQuit:
return
}
}
select {
case backupUpdates <- snapshot:
case <-streamQuit:
return
}
}
}()
defer close(streamQuit)
// With Carol up, we'll now connect her to Alice, and open a channel
// between them.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
// Next, we'll open two channels between Alice and Carol back to back.
var chanPoints []*lnrpc.ChannelPoint
numChans := 2
chanAmt := btcutil.Amount(1000000)
for i := 0; i < numChans; i++ {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
chanPoints = append(chanPoints, chanPoint)
}
// Using this helper function, we'll maintain a pointer to the latest
// channel backup so we can compare it to the on disk state.
var currentBackup *lnrpc.ChanBackupSnapshot
assertBackupNtfns := func(numNtfns int) {
for i := 0; i < numNtfns; i++ {
select {
case err := <-streamErr:
t.Fatalf("error with backup stream: %v", err)
case currentBackup = <-backupUpdates:
case <-time.After(time.Second * 5):
t.Fatalf("didn't receive channel backup "+
"notification %v", i+1)
}
}
}
// assertBackupFileState is a helper function that we'll use to compare
// the on disk back up file to our currentBackup pointer above.
assertBackupFileState := func() {
err := lntest.WaitNoError(func() error {
packedBackup, err := ioutil.ReadFile(backupFilePath)
if err != nil {
return fmt.Errorf("unable to read backup "+
"file: %v", err)
}
// As each back up file will be encrypted with a fresh
// nonce, we can't compare them directly, so instead
// we'll compare the length which is a proxy for the
// number of channels that the multi-backup contains.
rawBackup := currentBackup.MultiChanBackup.MultiChanBackup
if len(rawBackup) != len(packedBackup) {
return fmt.Errorf("backup files don't match: "+
"expected %x got %x", rawBackup, packedBackup)
}
// Additionally, we'll assert that both backups up
// returned are valid.
for i, backup := range [][]byte{rawBackup, packedBackup} {
snapshot := &lnrpc.ChanBackupSnapshot{
MultiChanBackup: &lnrpc.MultiChanBackup{
MultiChanBackup: backup,
},
}
_, err := carol.VerifyChanBackup(ctxb, snapshot)
if err != nil {
return fmt.Errorf("unable to verify "+
"backup #%d: %v", i, err)
}
}
return nil
}, time.Second*15)
if err != nil {
t.Fatalf("backup state invalid: %v", err)
}
}
// As these two channels were just open, we should've got two
// notifications for channel backups.
assertBackupNtfns(2)
// The on disk file should also exactly match the latest backup that we
// have.
assertBackupFileState()
// Next, we'll close the channels one by one. After each channel
// closure, we should get a notification, and the on-disk state should
// match this state as well.
for i := 0; i < numChans; i++ {
// To ensure force closes also trigger an update, we'll force
// close half of the channels.
forceClose := i%2 == 0
chanPoint := chanPoints[i]
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(
ctxt, t, net, net.Alice, chanPoint, forceClose,
)
// We should get a single notification after closing, and the
// on-disk state should match this latest notifications.
assertBackupNtfns(1)
assertBackupFileState()
// If we force closed the channel, then we'll mine enough
// blocks to ensure all outputs have been swept.
if forceClose {
cleanupForceClose(t, net, net.Alice, chanPoint)
}
}
}
// testExportChannelBackup tests that we're able to properly export either a
// targeted channel's backup, or export backups of all the currents open
// channels.
func testExportChannelBackup(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create our primary test node: Carol. We'll use Carol to
// open channels and also export backups that we'll examine throughout
// the test.
carol, err := net.NewNode("carol", nil)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// With Carol up, we'll now connect her to Alice, and open a channel
// between them.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
// Next, we'll open two channels between Alice and Carol back to back.
var chanPoints []*lnrpc.ChannelPoint
numChans := 2
chanAmt := btcutil.Amount(1000000)
for i := 0; i < numChans; i++ {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
chanPoints = append(chanPoints, chanPoint)
}
// Now that the channels are open, we should be able to fetch the
// backups of each of the channels.
for _, chanPoint := range chanPoints {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
req := &lnrpc.ExportChannelBackupRequest{
ChanPoint: chanPoint,
}
chanBackup, err := carol.ExportChannelBackup(ctxt, req)
if err != nil {
t.Fatalf("unable to fetch backup for channel %v: %v",
chanPoint, err)
}
// The returned backup should be full populated. Since it's
// encrypted, we can't assert any more than that atm.
if len(chanBackup.ChanBackup) == 0 {
t.Fatalf("obtained empty backup for channel: %v", chanPoint)
}
// The specified chanPoint in the response should match our
// requested chanPoint.
if chanBackup.ChanPoint.String() != chanPoint.String() {
t.Fatalf("chanPoint mismatched: expected %v, got %v",
chanPoint.String(),
chanBackup.ChanPoint.String())
}
}
// Before we proceed, we'll make two utility methods we'll use below
// for our primary assertions.
assertNumSingleBackups := func(numSingles int) {
err := lntest.WaitNoError(func() error {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
req := &lnrpc.ChanBackupExportRequest{}
chanSnapshot, err := carol.ExportAllChannelBackups(
ctxt, req,
)
if err != nil {
return fmt.Errorf("unable to export channel "+
"backup: %v", err)
}
if chanSnapshot.SingleChanBackups == nil {
return fmt.Errorf("single chan backups not " +
"populated")
}
backups := chanSnapshot.SingleChanBackups.ChanBackups
if len(backups) != numSingles {
return fmt.Errorf("expected %v singles, "+
"got %v", len(backups), numSingles)
}
return nil
}, defaultTimeout)
if err != nil {
t.Fatalf(err.Error())
}
}
assertMultiBackupFound := func() func(bool, map[wire.OutPoint]struct{}) {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
req := &lnrpc.ChanBackupExportRequest{}
chanSnapshot, err := carol.ExportAllChannelBackups(ctxt, req)
if err != nil {
t.Fatalf("unable to export channel backup: %v", err)
}
return func(found bool, chanPoints map[wire.OutPoint]struct{}) {
switch {
case found && chanSnapshot.MultiChanBackup == nil:
t.Fatalf("multi-backup not present")
case !found && chanSnapshot.MultiChanBackup != nil &&
(len(chanSnapshot.MultiChanBackup.MultiChanBackup) !=
chanbackup.NilMultiSizePacked):
t.Fatalf("found multi-backup when non should " +
"be found")
}
if !found {
return
}
backedUpChans := chanSnapshot.MultiChanBackup.ChanPoints
if len(chanPoints) != len(backedUpChans) {
t.Fatalf("expected %v chans got %v", len(chanPoints),
len(backedUpChans))
}
for _, chanPoint := range backedUpChans {
wirePoint := rpcPointToWirePoint(t, chanPoint)
if _, ok := chanPoints[wirePoint]; !ok {
t.Fatalf("unexpected backup: %v", wirePoint)
}
}
}
}
chans := make(map[wire.OutPoint]struct{})
for _, chanPoint := range chanPoints {
chans[rpcPointToWirePoint(t, chanPoint)] = struct{}{}
}
// We should have exactly two single channel backups contained, and we
// should also have a multi-channel backup.
assertNumSingleBackups(2)
assertMultiBackupFound()(true, chans)
// We'll now close each channel on by one. After we close a channel, we
// shouldn't be able to find that channel as a backup still. We should
// also have one less single written to disk.
for i, chanPoint := range chanPoints {
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(
ctxt, t, net, net.Alice, chanPoint, false,
)
assertNumSingleBackups(len(chanPoints) - i - 1)
delete(chans, rpcPointToWirePoint(t, chanPoint))
assertMultiBackupFound()(true, chans)
}
// At this point we shouldn't have any single or multi-chan backups at
// all.
assertNumSingleBackups(0)
assertMultiBackupFound()(false, nil)
}
// nodeRestorer is a function closure that allows each chanRestoreTestCase to
// control exactly *how* the prior node is restored. This might be using an
// backup obtained over RPC, or the file system, etc.
type nodeRestorer func() (*lntest.HarnessNode, error)
// chanRestoreTestCase describes a test case for an end to end SCB restoration
// work flow. One node will start from scratch using an existing SCB. At the
// end of the est, both nodes should be made whole via the DLP protocol.
type chanRestoreTestCase struct {
// name is the name of the target test case.
name string
// channelsUpdated is false then this means that no updates
// have taken place within the channel before restore.
// Otherwise, HTLCs will be settled between the two parties
// before restoration modifying the balance beyond the initial
// allocation.
channelsUpdated bool
// initiator signals if Dave should be the one that opens the
// channel to Alice, or if it should be the other way around.
initiator bool
// private signals if the channel from Dave to Carol should be
// private or not.
private bool
// restoreMethod takes an old node, then returns a function
// closure that'll return the same node, but with its state
// restored via a custom method. We use this to abstract away
// _how_ a node is restored from our assertions once the node
// has been fully restored itself.
restoreMethod func(oldNode *lntest.HarnessNode,
backupFilePath string,
mnemonic []string) (nodeRestorer, error)
}
// testChanRestoreScenario executes a chanRestoreTestCase from end to end,
// ensuring that after Dave restores his channel state according to the
// testCase, the DLP protocol is executed properly and both nodes are made
// whole.
func testChanRestoreScenario(t *harnessTest, net *lntest.NetworkHarness,
testCase *chanRestoreTestCase, password []byte) {
const (
chanAmt = btcutil.Amount(10000000)
pushAmt = btcutil.Amount(5000000)
)
ctxb := context.Background()
// First, we'll create a brand new node we'll use within the test. If
// we have a custom backup file specified, then we'll also create that
// for use.
dave, mnemonic, err := net.NewNodeWithSeed(
"dave", nil, password,
)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
// Defer to a closure instead of to shutdownAndAssert due to the value
// of 'dave' changing throughout the test.
defer func() {
shutdownAndAssert(net, t, dave)
}()
carol, err := net.NewNode("carol", nil)
if err != nil {
t.Fatalf("unable to make new node: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Now that our new node is created, we'll give him some coins it can
// use to open channels with Carol.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
var from, to *lntest.HarnessNode
if testCase.initiator {
from, to = dave, carol
} else {
from, to = carol, dave
}
// Next, we'll connect Dave to Carol, and open a new channel to her
// with a portion pushed.
if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, from, to,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
Private: testCase.private,
},
)
// Wait for both sides to see the opened channel.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't report channel: %v", err)
}
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("carol didn't report channel: %v", err)
}
// If both parties should start with existing channel updates, then
// we'll send+settle an HTLC between 'from' and 'to' now.
if testCase.channelsUpdated {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: 10000,
}
invoiceResp, err := to.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, from, []string{invoiceResp.PaymentRequest},
true,
)
if err != nil {
t.Fatalf("unable to complete payments: %v", err)
}
}
// Before we start the recovery, we'll record the balances of both
// Carol and Dave to ensure they both sweep their coins at the end.
balReq := &lnrpc.WalletBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolBalResp, err := carol.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolStartingBalance := carolBalResp.ConfirmedBalance
daveBalance, err := dave.WalletBalance(ctxt, balReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
daveStartingBalance := daveBalance.ConfirmedBalance
// At this point, we'll now execute the restore method to give us the
// new node we should attempt our assertions against.
backupFilePath := dave.ChanBackupPath()
restoredNodeFunc, err := testCase.restoreMethod(
dave, backupFilePath, mnemonic,
)
if err != nil {
t.Fatalf("unable to prep node restoration: %v", err)
}
// TODO(roasbeef): assert recovery state in channel
// Now that we're able to make our restored now, we'll shutdown the old
// Dave node as we'll be storing it shortly below.
shutdownAndAssert(net, t, dave)
// Next, we'll make a new Dave and start the bulk of our recovery
// workflow.
dave, err = restoredNodeFunc()
if err != nil {
t.Fatalf("unable to restore node: %v", err)
}
// Now that we have our new node up, we expect that it'll re-connect to
// Carol automatically based on the restored backup.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.EnsureConnected(ctxt, dave, carol)
if err != nil {
t.Fatalf("node didn't connect after recovery: %v", err)
}
// TODO(roasbeef): move dave restarts?
// Now we'll assert that both sides properly execute the DLP protocol.
// We grab their balances now to ensure that they're made whole at the
// end of the protocol.
assertDLPExecuted(
net, t, carol, carolStartingBalance, dave, daveStartingBalance,
)
}
// chanRestoreViaRPC is a helper test method that returns a nodeRestorer
// instance which will restore the target node from a password+seed, then
// trigger a SCB restore using the RPC interface.
func chanRestoreViaRPC(net *lntest.NetworkHarness,
password []byte, mnemonic []string,
multi []byte) (nodeRestorer, error) {
backup := &lnrpc.RestoreChanBackupRequest_MultiChanBackup{
MultiChanBackup: multi,
}
ctxb := context.Background()
return func() (*lntest.HarnessNode, error) {
newNode, err := net.RestoreNodeWithSeed(
"dave", nil, password, mnemonic, 1000, nil,
)
if err != nil {
return nil, fmt.Errorf("unable to "+
"restore node: %v", err)
}
_, err = newNode.RestoreChannelBackups(
ctxb, &lnrpc.RestoreChanBackupRequest{
Backup: backup,
},
)
if err != nil {
return nil, fmt.Errorf("unable "+
"to restore backups: %v", err)
}
return newNode, nil
}, nil
}
// testChannelBackupRestore tests that we're able to recover from, and initiate
// the DLP protocol via: the RPC restore command, restoring on unlock, and
// restoring from initial wallet creation. We'll also alternate between
// restoring form the on disk file, and restoring from the exported RPC command
// as well.
func testChannelBackupRestore(net *lntest.NetworkHarness, t *harnessTest) {
password := []byte("El Psy Kongroo")
ctxb := context.Background()
var testCases = []chanRestoreTestCase{
// Restore from backups obtained via the RPC interface. Dave
// was the initiator, of the non-advertised channel.
{
name: "restore from RPC backup",
channelsUpdated: false,
initiator: true,
private: false,
restoreMethod: func(oldNode *lntest.HarnessNode,
backupFilePath string,
mnemonic []string) (nodeRestorer, error) {
// For this restoration method, we'll grab the
// current multi-channel backup from the old
// node, and use it to restore a new node
// within the closure.
req := &lnrpc.ChanBackupExportRequest{}
chanBackup, err := oldNode.ExportAllChannelBackups(
ctxb, req,
)
if err != nil {
return nil, fmt.Errorf("unable to obtain "+
"channel backup: %v", err)
}
multi := chanBackup.MultiChanBackup.MultiChanBackup
// In our nodeRestorer function, we'll restore
// the node from seed, then manually recover
// the channel backup.
return chanRestoreViaRPC(
net, password, mnemonic, multi,
)
},
},
// Restore the backup from the on-disk file, using the RPC
// interface.
{
name: "restore from backup file",
initiator: true,
private: false,
restoreMethod: func(oldNode *lntest.HarnessNode,
backupFilePath string,
mnemonic []string) (nodeRestorer, error) {
// Read the entire Multi backup stored within
// this node's chaannels.backup file.
multi, err := ioutil.ReadFile(backupFilePath)
if err != nil {
return nil, err
}
// Now that we have Dave's backup file, we'll
// create a new nodeRestorer that will restore
// using the on-disk channels.backup.
return chanRestoreViaRPC(
net, password, mnemonic, multi,
)
},
},
// Restore the backup as part of node initialization with the
// prior mnemonic and new backup seed.
{
name: "restore during creation",
initiator: true,
private: false,
restoreMethod: func(oldNode *lntest.HarnessNode,
backupFilePath string,
mnemonic []string) (nodeRestorer, error) {
// First, fetch the current backup state as is,
// to obtain our latest Multi.
chanBackup, err := oldNode.ExportAllChannelBackups(
ctxb, &lnrpc.ChanBackupExportRequest{},
)
if err != nil {
return nil, fmt.Errorf("unable to obtain "+
"channel backup: %v", err)
}
backupSnapshot := &lnrpc.ChanBackupSnapshot{
MultiChanBackup: chanBackup.MultiChanBackup,
}
// Create a new nodeRestorer that will restore
// the node using the Multi backup we just
// obtained above.
return func() (*lntest.HarnessNode, error) {
return net.RestoreNodeWithSeed(
"dave", nil, password,
mnemonic, 1000, backupSnapshot,
)
}, nil
},
},
// Restore the backup once the node has already been
// re-created, using the Unlock call.
{
name: "restore during unlock",
initiator: true,
private: false,
restoreMethod: func(oldNode *lntest.HarnessNode,
backupFilePath string,
mnemonic []string) (nodeRestorer, error) {
// First, fetch the current backup state as is,
// to obtain our latest Multi.
chanBackup, err := oldNode.ExportAllChannelBackups(
ctxb, &lnrpc.ChanBackupExportRequest{},
)
if err != nil {
return nil, fmt.Errorf("unable to obtain "+
"channel backup: %v", err)
}
backupSnapshot := &lnrpc.ChanBackupSnapshot{
MultiChanBackup: chanBackup.MultiChanBackup,
}
// Create a new nodeRestorer that will restore
// the node with its seed, but no channel
// backup, shutdown this initialized node, then
// restart it again using Unlock.
return func() (*lntest.HarnessNode, error) {
newNode, err := net.RestoreNodeWithSeed(
"dave", nil, password,
mnemonic, 1000, nil,
)
if err != nil {
return nil, err
}
err = net.RestartNode(
newNode, nil, backupSnapshot,
)
if err != nil {
return nil, err
}
return newNode, nil
}, nil
},
},
}
// TODO(roasbeef): online vs offline close?
// TODO(roasbeef): need to re-trigger the on-disk file once the node
// ann is updated?
for _, testCase := range testCases {
success := t.t.Run(testCase.name, func(t *testing.T) {
h := newHarnessTest(t, net)
testChanRestoreScenario(h, net, &testCase, password)
})
if !success {
break
}
}
}
// testHoldInvoicePersistence tests that a sender to a hold-invoice, can be
// restarted before the payment gets settled, and still be able to receive the
// preimage.
func testHoldInvoicePersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = btcutil.Amount(1000000)
numPayments = 10
)
// Create carol, and clean up when the test finishes.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
// Connect Alice to Carol.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Open a channel between Alice and Carol.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Wait for Alice and Carol to receive the channel edge from the
// funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Create preimages for all payments we are going to initiate.
var preimages []lntypes.Preimage
for i := 0; i < numPayments; i++ {
var preimage lntypes.Preimage
_, err = rand.Read(preimage[:])
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
preimages = append(preimages, preimage)
}
// Let Carol create hold-invoices for all the payments.
var (
payAmt = btcutil.Amount(4)
payReqs []string
invoiceStreams []invoicesrpc.Invoices_SubscribeSingleInvoiceClient
)
for _, preimage := range preimages {
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Memo: "testing",
Value: int64(payAmt),
Hash: payHash[:],
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddHoldInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
stream, err := carol.SubscribeSingleInvoice(
ctx,
&invoicesrpc.SubscribeSingleInvoiceRequest{
RHash: payHash[:],
},
)
if err != nil {
t.Fatalf("unable to subscribe to invoice: %v", err)
}
invoiceStreams = append(invoiceStreams, stream)
payReqs = append(payReqs, resp.PaymentRequest)
}
// Wait for all the invoices to reach the OPEN state.
for _, stream := range invoiceStreams {
invoice, err := stream.Recv()
if err != nil {
t.Fatalf("err: %v", err)
}
if invoice.State != lnrpc.Invoice_OPEN {
t.Fatalf("expected OPEN, got state: %v", invoice.State)
}
}
// Let Alice initiate payments for all the created invoices.
var paymentStreams []routerrpc.Router_SendPaymentClient
for _, payReq := range payReqs {
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
payStream, err := net.Alice.RouterClient.SendPayment(
ctx, &routerrpc.SendPaymentRequest{
PaymentRequest: payReq,
TimeoutSeconds: 60,
FeeLimitSat: 1000000,
},
)
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
paymentStreams = append(paymentStreams, payStream)
}
// Wait for inlight status update.
for _, payStream := range paymentStreams {
status, err := payStream.Recv()
if err != nil {
t.Fatalf("Failed receiving status update: %v", err)
}
if status.State != routerrpc.PaymentState_IN_FLIGHT {
t.Fatalf("state not in flight: %v", status.State)
}
}
// The payments should now show up in Alice's ListInvoices, with a zero
// preimage, indicating they are not yet settled.
err = lntest.WaitNoError(func() error {
req := &lnrpc.ListPaymentsRequest{
IncludeIncomplete: true,
}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err := net.Alice.ListPayments(ctxt, req)
if err != nil {
return fmt.Errorf("error when obtaining payments: %v",
err)
}
// Gather the payment hashes we are looking for in the
// response.
payHashes := make(map[string]struct{})
for _, preimg := range preimages {
payHashes[preimg.Hash().String()] = struct{}{}
}
var zeroPreimg lntypes.Preimage
for _, payment := range paymentsResp.Payments {
_, ok := payHashes[payment.PaymentHash]
if !ok {
continue
}
// The preimage should NEVER be non-zero at this point.
if payment.PaymentPreimage != zeroPreimg.String() {
t.Fatalf("expected zero preimage, got %v",
payment.PaymentPreimage)
}
// We wait for the payment attempt to have been
// properly recorded in the DB.
if len(payment.Path) == 0 {
return fmt.Errorf("path is empty")
}
delete(payHashes, payment.PaymentHash)
}
if len(payHashes) != 0 {
return fmt.Errorf("payhash not found in response")
}
return nil
}, time.Second*15)
if err != nil {
t.Fatalf("predicate not satisfied: %v", err)
}
// Wait for all invoices to be accepted.
for _, stream := range invoiceStreams {
invoice, err := stream.Recv()
if err != nil {
t.Fatalf("err: %v", err)
}
if invoice.State != lnrpc.Invoice_ACCEPTED {
t.Fatalf("expected ACCEPTED, got state: %v",
invoice.State)
}
}
// Restart alice. This to ensure she will still be able to handle
// settling the invoices after a restart.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Now after a restart, we must re-track the payments. We set up a
// goroutine for each to track thir status updates.
var (
statusUpdates []chan *routerrpc.PaymentStatus
wg sync.WaitGroup
quit = make(chan struct{})
)
defer close(quit)
for _, preimg := range preimages {
hash := preimg.Hash()
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
payStream, err := net.Alice.RouterClient.TrackPayment(
ctx, &routerrpc.TrackPaymentRequest{
PaymentHash: hash[:],
},
)
if err != nil {
t.Fatalf("unable to send track payment: %v", err)
}
// We set up a channel where we'll forward any status update.
upd := make(chan *routerrpc.PaymentStatus)
wg.Add(1)
go func() {
defer wg.Done()
for {
status, err := payStream.Recv()
if err != nil {
close(upd)
return
}
select {
case upd <- status:
case <-quit:
return
}
}
}()
statusUpdates = append(statusUpdates, upd)
}
// Wait for the infligt status update.
for _, upd := range statusUpdates {
select {
case status, ok := <-upd:
if !ok {
t.Fatalf("failed getting status update")
}
if status.State != routerrpc.PaymentState_IN_FLIGHT {
t.Fatalf("state not in in flight: %v",
status.State)
}
case <-time.After(5 * time.Second):
t.Fatalf("in flight status not recevied")
}
}
// Settle invoices half the invoices, cancel the rest.
for i, preimage := range preimages {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if i%2 == 0 {
settle := &invoicesrpc.SettleInvoiceMsg{
Preimage: preimage[:],
}
_, err = carol.SettleInvoice(ctxt, settle)
} else {
hash := preimage.Hash()
settle := &invoicesrpc.CancelInvoiceMsg{
PaymentHash: hash[:],
}
_, err = carol.CancelInvoice(ctxt, settle)
}
if err != nil {
t.Fatalf("unable to cancel/settle invoice: %v", err)
}
}
// Make sure we get the expected status update.
for i, upd := range statusUpdates {
select {
case status, ok := <-upd:
if !ok {
t.Fatalf("failed getting status update")
}
if i%2 == 0 {
if status.State != routerrpc.PaymentState_SUCCEEDED {
t.Fatalf("state not suceeded : %v",
status.State)
}
} else {
if status.State != routerrpc.PaymentState_FAILED_INCORRECT_PAYMENT_DETAILS {
t.Fatalf("state not failed: %v",
status.State)
}
}
case <-time.After(5 * time.Second):
t.Fatalf("in flight status not recevied")
}
}
// Check that Alice's invoices to be shown as settled and failed
// accordingly, and preimages matching up.
req := &lnrpc.ListPaymentsRequest{
IncludeIncomplete: true,
}
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err := net.Alice.ListPayments(ctxt, req)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
for i, preimage := range preimages {
paymentHash := preimage.Hash()
var p string
for _, resp := range paymentsResp.Payments {
if resp.PaymentHash == paymentHash.String() {
p = resp.PaymentPreimage
break
}
}
if p == "" {
t.Fatalf("payment not found")
}
if i%2 == 0 {
if p != preimage.String() {
t.Fatalf("preimage doesn't match: %v vs %v",
p, preimage.String())
}
} else {
if p != lntypes.ZeroHash.String() {
t.Fatalf("preimage not zero: %v", p)
}
}
}
}
type testCase struct {
name string
test func(net *lntest.NetworkHarness, t *harnessTest)
}
var testsCases = []*testCase{
{
name: "sweep coins",
test: testSweepAllCoins,
},
{
name: "onchain fund recovery",
test: testOnchainFundRecovery,
},
{
name: "basic funding flow",
test: testBasicChannelFunding,
},
{
name: "unconfirmed channel funding",
test: testUnconfirmedChannelFunding,
},
{
name: "update channel policy",
test: testUpdateChannelPolicy,
},
{
name: "open channel reorg test",
test: testOpenChannelAfterReorg,
},
{
name: "disconnecting target peer",
test: testDisconnectingTargetPeer,
},
{
name: "graph topology notifications",
test: testGraphTopologyNotifications,
},
{
name: "funding flow persistence",
test: testChannelFundingPersistence,
},
{
name: "channel force closure",
test: testChannelForceClosure,
},
{
name: "channel balance",
test: testChannelBalance,
},
{
name: "channel unsettled balance",
test: testChannelUnsettledBalance,
},
{
name: "single hop invoice",
test: testSingleHopInvoice,
},
{
name: "sphinx replay persistence",
test: testSphinxReplayPersistence,
},
{
name: "list outgoing payments",
test: testListPayments,
},
{
name: "max pending channel",
test: testMaxPendingChannels,
},
{
name: "multi-hop payments",
test: testMultiHopPayments,
},
{
name: "single-hop send to route",
test: testSingleHopSendToRoute,
},
{
name: "multi-hop send to route",
test: testMultiHopSendToRoute,
},
{
name: "send to route error propagation",
test: testSendToRouteErrorPropagation,
},
{
name: "unannounced channels",
test: testUnannouncedChannels,
},
{
name: "private channels",
test: testPrivateChannels,
},
{
name: "invoice routing hints",
test: testInvoiceRoutingHints,
},
{
name: "multi-hop payments over private channels",
test: testMultiHopOverPrivateChannels,
},
{
name: "multiple channel creation and update subscription",
test: testBasicChannelCreationAndUpdates,
},
{
name: "invoice update subscription",
test: testInvoiceSubscriptions,
},
{
name: "multi-hop htlc error propagation",
test: testHtlcErrorPropagation,
},
{
name: "reject onward htlc",
test: testRejectHTLC,
},
// TODO(roasbeef): multi-path integration test
{
name: "node announcement",
test: testNodeAnnouncement,
},
{
name: "node sign verify",
test: testNodeSignVerify,
},
{
name: "async payments benchmark",
test: testAsyncPayments,
},
{
name: "async bidirectional payments",
test: testBidirectionalAsyncPayments,
},
{
// bob: outgoing our commit timeout
// carol: incoming their commit watch and see timeout
name: "test multi-hop htlc local force close immediate expiry",
test: testMultiHopHtlcLocalTimeout,
},
{
// bob: outgoing watch and see, they sweep on chain
// carol: incoming our commit, know preimage
name: "test multi-hop htlc receiver chain claim",
test: testMultiHopReceiverChainClaim,
},
{
// bob: outgoing our commit watch and see timeout
// carol: incoming their commit watch and see timeout
name: "test multi-hop local force close on-chain htlc timeout",
test: testMultiHopLocalForceCloseOnChainHtlcTimeout,
},
{
// bob: outgoing their commit watch and see timeout
// carol: incoming our commit watch and see timeout
name: "test multi-hop remote force close on-chain htlc timeout",
test: testMultiHopRemoteForceCloseOnChainHtlcTimeout,
},
{
// bob: outgoing our commit watch and see, they sweep on chain
// bob: incoming our commit watch and learn preimage
// carol: incoming their commit know preimage
name: "test multi-hop htlc local chain claim",
test: testMultiHopHtlcLocalChainClaim,
},
{
// bob: outgoing their commit watch and see, they sweep on chain
// bob: incoming their commit watch and learn preimage
// carol: incoming our commit know preimage
name: "test multi-hop htlc remote chain claim",
test: testMultiHopHtlcRemoteChainClaim,
},
{
name: "switch circuit persistence",
test: testSwitchCircuitPersistence,
},
{
name: "switch offline delivery",
test: testSwitchOfflineDelivery,
},
{
name: "switch offline delivery persistence",
test: testSwitchOfflineDeliveryPersistence,
},
{
name: "switch offline delivery outgoing offline",
test: testSwitchOfflineDeliveryOutgoingOffline,
},
{
// TODO(roasbeef): test always needs to be last as Bob's state
// is borked since we trick him into attempting to cheat Alice?
name: "revoked uncooperative close retribution",
test: testRevokedCloseRetribution,
},
{
name: "failing link",
test: testFailingChannel,
},
{
name: "garbage collect link nodes",
test: testGarbageCollectLinkNodes,
},
{
name: "abandonchannel",
test: testAbandonChannel,
},
{
name: "revoked uncooperative close retribution zero value remote output",
test: testRevokedCloseRetributionZeroValueRemoteOutput,
},
{
name: "revoked uncooperative close retribution remote hodl",
test: testRevokedCloseRetributionRemoteHodl,
},
{
name: "revoked uncooperative close retribution altruist watchtower",
test: testRevokedCloseRetributionAltruistWatchtower,
},
{
name: "data loss protection",
test: testDataLossProtection,
},
{
name: "query routes",
test: testQueryRoutes,
},
{
name: "route fee cutoff",
test: testRouteFeeCutoff,
},
{
name: "send update disable channel",
test: testSendUpdateDisableChannel,
},
{
name: "streaming channel backup update",
test: testChannelBackupUpdates,
},
{
name: "export channel backup",
test: testExportChannelBackup,
},
{
name: "channel backup restore",
test: testChannelBackupRestore,
},
{
name: "hold invoice sender persistence",
test: testHoldInvoicePersistence,
},
{
name: "cpfp",
test: testCPFP,
},
}
// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
ht := newHarnessTest(t, nil)
// Declare the network harness here to gain access to its
// 'OnTxAccepted' call back.
var lndHarness *lntest.NetworkHarness
// Create an instance of the btcd's rpctest.Harness that will act as
// the miner for all tests. This will be used to fund the wallets of
// the nodes within the test network and to drive blockchain related
// events within the network. Revert the default setting of accepting
// non-standard transactions on simnet to reject them. Transactions on
// the lightning network should always be standard to get better
// guarantees of getting included in to blocks.
//
// We will also connect it to our chain backend.
minerLogDir := "./.minerlogs"
args := []string{
"--rejectnonstd",
"--txindex",
"--debuglevel=debug",
"--logdir=" + minerLogDir,
"--trickleinterval=100ms",
}
handlers := &rpcclient.NotificationHandlers{
OnTxAccepted: func(hash *chainhash.Hash, amt btcutil.Amount) {
lndHarness.OnTxAccepted(hash)
},
}
miner, err := rpctest.New(harnessNetParams, handlers, args)
if err != nil {
ht.Fatalf("unable to create mining node: %v", err)
}
defer func() {
miner.TearDown()
// After shutting down the miner, we'll make a copy of the log
// file before deleting the temporary log dir.
logFile := fmt.Sprintf(
"%s/%s/btcd.log", minerLogDir, harnessNetParams.Name,
)
err := lntest.CopyFile("./output_btcd_miner.log", logFile)
if err != nil {
fmt.Printf("unable to copy file: %v\n", err)
}
if err = os.RemoveAll(minerLogDir); err != nil {
fmt.Printf("Cannot remove dir %s: %v\n",
minerLogDir, err)
}
}()
// Start a chain backend.
chainBackend, cleanUp, err := lntest.NewBackend(
miner.P2PAddress(), harnessNetParams,
)
if err != nil {
ht.Fatalf("unable to start backend: %v", err)
}
defer cleanUp()
if err := miner.SetUp(true, 50); err != nil {
ht.Fatalf("unable to set up mining node: %v", err)
}
if err := miner.Node.NotifyNewTransactions(false); err != nil {
ht.Fatalf("unable to request transaction notifications: %v", err)
}
// Now we can set up our test harness (LND instance), with the chain
// backend we just created.
lndHarness, err = lntest.NewNetworkHarness(miner, chainBackend)
if err != nil {
ht.Fatalf("unable to create lightning network harness: %v", err)
}
defer lndHarness.TearDownAll()
// Spawn a new goroutine to watch for any fatal errors that any of the
// running lnd processes encounter. If an error occurs, then the test
// case should naturally as a result and we log the server error here to
// help debug.
go func() {
for {
select {
case err, more := <-lndHarness.ProcessErrors():
if !more {
return
}
ht.Logf("lnd finished with error (stderr):\n%v", err)
}
}
}()
// Next mine enough blocks in order for segwit and the CSV package
// soft-fork to activate on SimNet.
numBlocks := harnessNetParams.MinerConfirmationWindow * 2
if _, err := miner.Node.Generate(numBlocks); err != nil {
ht.Fatalf("unable to generate blocks: %v", err)
}
// With the btcd harness created, we can now complete the
// initialization of the network. args - list of lnd arguments,
// example: "--debuglevel=debug"
// TODO(roasbeef): create master balanced channel with all the monies?
if err = lndHarness.SetUp(nil); err != nil {
ht.Fatalf("unable to set up test lightning network: %v", err)
}
t.Logf("Running %v integration tests", len(testsCases))
for _, testCase := range testsCases {
logLine := fmt.Sprintf("STARTING ============ %v ============\n",
testCase.name)
err := lndHarness.EnsureConnected(
context.Background(), lndHarness.Alice, lndHarness.Bob,
)
if err != nil {
t.Fatalf("unable to connect alice to bob: %v", err)
}
if err := lndHarness.Alice.AddToLog(logLine); err != nil {
t.Fatalf("unable to add to log: %v", err)
}
if err := lndHarness.Bob.AddToLog(logLine); err != nil {
t.Fatalf("unable to add to log: %v", err)
}
success := t.Run(testCase.name, func(t1 *testing.T) {
ht := newHarnessTest(t1, lndHarness)
ht.RunTestCase(testCase)
})
// Stop at the first failure. Mimic behavior of original test
// framework.
if !success {
break
}
}
}