lnd.xprv/autopilot/agent.go
Johan T. Halseth 186e6d4da4
autopilot/agent: signal chanOpenFailureUpdates on own channel
We do this to avoid a huge amount of goroutines piling up when autopilot
is trying to open many channels, as they will all block trying to send
the update on the stateUpdates channel. Now we instead send them on a
buffered channel, similar to what is done with the nodeUpdates.
2018-09-04 10:17:33 +02:00

653 lines
20 KiB
Go

package autopilot
import (
"net"
"sync"
"sync/atomic"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcutil"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/lnwire"
)
// Config couples all the items that an autopilot agent needs to function.
// All items within the struct MUST be populated for the Agent to be able to
// carry out its duties.
type Config struct {
// Self is the identity public key of the Lightning Network node that
// is being driven by the agent. This is used to ensure that we don't
// accidentally attempt to open a channel with ourselves.
Self *btcec.PublicKey
// Heuristic is an attachment heuristic which will govern to whom we
// open channels to, and also what those channels look like in terms of
// desired capacity. The Heuristic will take into account the current
// state of the graph, our set of open channels, and the amount of
// available funds when determining how channels are to be opened.
// Additionally, a heuristic make also factor in extra-graph
// information in order to make more pertinent recommendations.
Heuristic AttachmentHeuristic
// ChanController is an interface that is able to directly manage the
// creation, closing and update of channels within the network.
ChanController ChannelController
// ConnectToPeer attempts to connect to the peer using one of its
// advertised addresses. The boolean returned signals whether the peer
// was already connected.
ConnectToPeer func(*btcec.PublicKey, []net.Addr) (bool, error)
// DisconnectPeer attempts to disconnect the peer with the given public
// key.
DisconnectPeer func(*btcec.PublicKey) error
// WalletBalance is a function closure that should return the current
// available balance o the backing wallet.
WalletBalance func() (btcutil.Amount, error)
// Graph is an abstract channel graph that the Heuristic and the Agent
// will use to make decisions w.r.t channel allocation and placement
// within the graph.
Graph ChannelGraph
// MaxPendingOpens is the maximum number of pending channel
// establishment goroutines that can be lingering. We cap this value in
// order to control the level of parallelism caused by the autopiloit
// agent.
MaxPendingOpens uint16
// TODO(roasbeef): add additional signals from fee rates and revenue of
// currently opened channels
}
// channelState is a type that represents the set of active channels of the
// backing LN node that the Agent should be ware of. This type contains a few
// helper utility methods.
type channelState map[lnwire.ShortChannelID]Channel
// Channels returns a slice of all the active channels.
func (c channelState) Channels() []Channel {
chans := make([]Channel, 0, len(c))
for _, channel := range c {
chans = append(chans, channel)
}
return chans
}
// ConnectedNodes returns the set of nodes we currently have a channel with.
// This information is needed as we want to avoid making repeated channels with
// any node.
func (c channelState) ConnectedNodes() map[NodeID]struct{} {
nodes := make(map[NodeID]struct{})
for _, channels := range c {
nodes[channels.Node] = struct{}{}
}
// TODO(roasbeef): add outgoing, nodes, allow incoming and outgoing to
// per node
// * only add node is chan as funding amt set
return nodes
}
// Agent implements a closed-loop control system which seeks to autonomously
// optimize the allocation of satoshis within channels throughput the network's
// channel graph. An agent is configurable by swapping out different
// AttachmentHeuristic strategies. The agent uses external signals such as the
// wallet balance changing, or new channels being opened/closed for the local
// node as an indicator to re-examine its internal state, and the amount of
// available funds in order to make updated decisions w.r.t the channel graph.
// The Agent will automatically open, close, and splice in/out channel as
// necessary for it to step closer to its optimal state.
//
// TODO(roasbeef): prob re-word
type Agent struct {
// Only to be used atomically.
started uint32
stopped uint32
// cfg houses the configuration state of the Ant.
cfg Config
// chanState tracks the current set of open channels.
chanState channelState
// stateUpdates is a channel that any external state updates that may
// affect the heuristics of the agent will be sent over.
stateUpdates chan interface{}
// nodeUpdates is a channel that changes to the graph node landscape
// will be sent over. This channel will be buffered to ensure we have
// at most one pending update of this type to handle at a given time.
nodeUpdates chan *nodeUpdates
// chanOpenFailures is a channel where updates about channel open
// failures will be sent. This channel will be buffered to ensure we
// have at most one pending update of this type to handle at a given
// time.
chanOpenFailures chan *chanOpenFailureUpdate
// totalBalance is the total number of satoshis the backing wallet is
// known to control at any given instance. This value will be updated
// when the agent receives external balance update signals.
totalBalance btcutil.Amount
quit chan struct{}
wg sync.WaitGroup
}
// New creates a new instance of the Agent instantiated using the passed
// configuration and initial channel state. The initial channel state slice
// should be populated with the set of Channels that are currently opened by
// the backing Lightning Node.
func New(cfg Config, initialState []Channel) (*Agent, error) {
a := &Agent{
cfg: cfg,
chanState: make(map[lnwire.ShortChannelID]Channel),
quit: make(chan struct{}),
stateUpdates: make(chan interface{}),
nodeUpdates: make(chan *nodeUpdates, 1),
chanOpenFailures: make(chan *chanOpenFailureUpdate, 1),
}
for _, c := range initialState {
a.chanState[c.ChanID] = c
}
return a, nil
}
// Start starts the agent along with any goroutines it needs to perform its
// normal duties.
func (a *Agent) Start() error {
if !atomic.CompareAndSwapUint32(&a.started, 0, 1) {
return nil
}
log.Infof("Autopilot Agent starting")
a.wg.Add(1)
go a.controller()
return nil
}
// Stop signals the Agent to gracefully shutdown. This function will block
// until all goroutines have exited.
func (a *Agent) Stop() error {
if !atomic.CompareAndSwapUint32(&a.stopped, 0, 1) {
return nil
}
log.Infof("Autopilot Agent stopping")
close(a.quit)
a.wg.Wait()
return nil
}
// balanceUpdate is a type of external state update that reflects an
// increase/decrease in the funds currently available to the wallet.
type balanceUpdate struct {
}
// nodeUpdates is a type of external state update that reflects an addition or
// modification in channel graph node membership.
type nodeUpdates struct{}
// chanOpenUpdate is a type of external state update that indicates a new
// channel has been opened, either by the Agent itself (within the main
// controller loop), or by an external user to the system.
type chanOpenUpdate struct {
newChan Channel
}
// chanPendingOpenUpdate is a type of external state update that indicates a new
// channel has been opened, either by the agent itself or an external subsystem,
// but is still pending.
type chanPendingOpenUpdate struct{}
// chanOpenFailureUpdate is a type of external state update that indicates
// a previous channel open failed, and that it might be possible to try again.
type chanOpenFailureUpdate struct{}
// chanCloseUpdate is a type of external state update that indicates that the
// backing Lightning Node has closed a previously open channel.
type chanCloseUpdate struct {
closedChans []lnwire.ShortChannelID
}
// OnBalanceChange is a callback that should be executed each time the balance of
// the backing wallet changes.
func (a *Agent) OnBalanceChange() {
a.wg.Add(1)
go func() {
defer a.wg.Done()
select {
case a.stateUpdates <- &balanceUpdate{}:
case <-a.quit:
}
}()
}
// OnNodeUpdates is a callback that should be executed each time our channel
// graph has new nodes or their node announcements are updated.
func (a *Agent) OnNodeUpdates() {
select {
case a.nodeUpdates <- &nodeUpdates{}:
default:
}
}
// OnChannelOpen is a callback that should be executed each time a new channel
// is manually opened by the user or any system outside the autopilot agent.
func (a *Agent) OnChannelOpen(c Channel) {
a.wg.Add(1)
go func() {
defer a.wg.Done()
select {
case a.stateUpdates <- &chanOpenUpdate{newChan: c}:
case <-a.quit:
}
}()
}
// OnChannelPendingOpen is a callback that should be executed each time a new
// channel is opened, either by the agent or an external subsystems, but is
// still pending.
func (a *Agent) OnChannelPendingOpen() {
go func() {
select {
case a.stateUpdates <- &chanPendingOpenUpdate{}:
case <-a.quit:
}
}()
}
// OnChannelOpenFailure is a callback that should be executed when the
// autopilot has attempted to open a channel, but failed. In this case we can
// retry channel creation with a different node.
func (a *Agent) OnChannelOpenFailure() {
select {
case a.chanOpenFailures <- &chanOpenFailureUpdate{}:
default:
}
}
// OnChannelClose is a callback that should be executed each time a prior
// channel has been closed for any reason. This includes regular
// closes, force closes, and channel breaches.
func (a *Agent) OnChannelClose(closedChans ...lnwire.ShortChannelID) {
a.wg.Add(1)
go func() {
defer a.wg.Done()
select {
case a.stateUpdates <- &chanCloseUpdate{closedChans: closedChans}:
case <-a.quit:
}
}()
}
// mergeNodeMaps merges the Agent's set of nodes that it already has active
// channels open to, with the set of nodes that are pending new channels. This
// ensures that the Agent doesn't attempt to open any "duplicate" channels to
// the same node.
func mergeNodeMaps(a map[NodeID]struct{}, b map[NodeID]struct{},
c map[NodeID]Channel) map[NodeID]struct{} {
res := make(map[NodeID]struct{}, len(a)+len(b)+len(c))
for nodeID := range a {
res[nodeID] = struct{}{}
}
for nodeID := range b {
res[nodeID] = struct{}{}
}
for nodeID := range c {
res[nodeID] = struct{}{}
}
return res
}
// mergeChanState merges the Agent's set of active channels, with the set of
// channels awaiting confirmation. This ensures that the agent doesn't go over
// the prescribed channel limit or fund allocation limit.
func mergeChanState(pendingChans map[NodeID]Channel,
activeChans channelState) []Channel {
numChans := len(pendingChans) + len(activeChans)
totalChans := make([]Channel, 0, numChans)
for _, activeChan := range activeChans.Channels() {
totalChans = append(totalChans, activeChan)
}
for _, pendingChan := range pendingChans {
totalChans = append(totalChans, pendingChan)
}
return totalChans
}
// controller implements the closed-loop control system of the Agent. The
// controller will make a decision w.r.t channel placement within the graph
// based on: its current internal state of the set of active channels open,
// and external state changes as a result of decisions it makes w.r.t channel
// allocation, or attributes affecting its control loop being updated by the
// backing Lightning Node.
func (a *Agent) controller() {
defer a.wg.Done()
// We'll start off by assigning our starting balance, and injecting
// that amount as an initial wake up to the main controller goroutine.
a.OnBalanceChange()
// TODO(roasbeef): do we in fact need to maintain order?
// * use sync.Cond if so
// failedNodes lists nodes that we've previously attempted to initiate
// channels with, but didn't succeed.
failedNodes := make(map[NodeID]struct{})
// pendingOpens tracks the channels that we've requested to be
// initiated, but haven't yet been confirmed as being fully opened.
// This state is required as otherwise, we may go over our allotted
// channel limit, or open multiple channels to the same node.
pendingOpens := make(map[NodeID]Channel)
var pendingMtx sync.Mutex
updateBalance := func() {
newBalance, err := a.cfg.WalletBalance()
if err != nil {
log.Warnf("unable to update wallet balance: %v", err)
return
}
a.totalBalance = newBalance
}
// TODO(roasbeef): add 10-minute wake up timer
for {
select {
// A new external signal has arrived. We'll use this to update
// our internal state, then determine if we should trigger a
// channel state modification (open/close, splice in/out).
case signal := <-a.stateUpdates:
log.Infof("Processing new external signal")
switch update := signal.(type) {
// The balance of the backing wallet has changed, if
// more funds are now available, we may attempt to open
// up an additional channel, or splice in funds to an
// existing one.
case *balanceUpdate:
log.Debug("Applying external balance state " +
"update")
updateBalance()
// A new channel has been opened successfully. This was
// either opened by the Agent, or an external system
// that is able to drive the Lightning Node.
case *chanOpenUpdate:
log.Debugf("New channel successfully opened, "+
"updating state with: %v",
spew.Sdump(update.newChan))
newChan := update.newChan
a.chanState[newChan.ChanID] = newChan
pendingMtx.Lock()
delete(pendingOpens, newChan.Node)
pendingMtx.Unlock()
updateBalance()
// A new channel has been opened by the agent or an
// external subsystem, but is still pending
// confirmation.
case *chanPendingOpenUpdate:
updateBalance()
// A channel has been closed, this may free up an
// available slot, triggering a new channel update.
case *chanCloseUpdate:
log.Debugf("Applying closed channel "+
"updates: %v",
spew.Sdump(update.closedChans))
for _, closedChan := range update.closedChans {
delete(a.chanState, closedChan)
}
updateBalance()
}
// The channel we tried to open previously failed for whatever
// reason.
case <-a.chanOpenFailures:
log.Debug("Retrying after previous channel open " +
"failure.")
updateBalance()
// New nodes have been added to the graph or their node
// announcements have been updated. We will consider opening
// channels to these nodes if we haven't stabilized.
case <-a.nodeUpdates:
log.Infof("Node updates received, assessing " +
"need for more channels")
// The agent has been signalled to exit, so we'll bail out
// immediately.
case <-a.quit:
return
}
pendingMtx.Lock()
log.Debugf("Pending channels: %v", spew.Sdump(pendingOpens))
pendingMtx.Unlock()
// With all the updates applied, we'll obtain a set of the
// current active channels (confirmed channels), and also
// factor in our set of unconfirmed channels.
confirmedChans := a.chanState
pendingMtx.Lock()
totalChans := mergeChanState(pendingOpens, confirmedChans)
pendingMtx.Unlock()
// Now that we've updated our internal state, we'll consult our
// channel attachment heuristic to determine if we should open
// up any additional channels or modify existing channels.
availableFunds, numChans, needMore := a.cfg.Heuristic.NeedMoreChans(
totalChans, a.totalBalance,
)
if !needMore {
continue
}
log.Infof("Triggering attachment directive dispatch, "+
"total_funds=%v", a.totalBalance)
// We're to attempt an attachment so we'll o obtain the set of
// nodes that we currently have channels with so we avoid
// duplicate edges.
connectedNodes := a.chanState.ConnectedNodes()
pendingMtx.Lock()
nodesToSkip := mergeNodeMaps(connectedNodes, failedNodes, pendingOpens)
pendingMtx.Unlock()
// If we reach this point, then according to our heuristic we
// should modify our channel state to tend towards what it
// determines to the optimal state. So we'll call Select to get
// a fresh batch of attachment directives, passing in the
// amount of funds available for us to use.
chanCandidates, err := a.cfg.Heuristic.Select(
a.cfg.Self, a.cfg.Graph, availableFunds,
numChans, nodesToSkip,
)
if err != nil {
log.Errorf("Unable to select candidates for "+
"attachment: %v", err)
continue
}
if len(chanCandidates) == 0 {
log.Infof("No eligible candidates to connect to")
continue
}
log.Infof("Attempting to execute channel attachment "+
"directives: %v", spew.Sdump(chanCandidates))
// For each recommended attachment directive, we'll launch a
// new goroutine to attempt to carry out the directive. If any
// of these succeed, then we'll receive a new state update,
// taking us back to the top of our controller loop.
pendingMtx.Lock()
for _, chanCandidate := range chanCandidates {
// Before we proceed, we'll check to see if this
// attempt would take us past the total number of
// allowed pending opens. If so, then we'll skip this
// round and wait for an attempt to either fail or
// succeed.
if uint16(len(pendingOpens))+1 >
a.cfg.MaxPendingOpens {
log.Debugf("Reached cap of %v pending "+
"channel opens, will retry "+
"after success/failure",
a.cfg.MaxPendingOpens)
continue
}
go func(directive AttachmentDirective) {
// We'll start out by attempting to connect to
// the peer in order to begin the funding
// workflow.
pub := directive.PeerKey
alreadyConnected, err := a.cfg.ConnectToPeer(
pub, directive.Addrs,
)
if err != nil {
log.Warnf("Unable to connect "+
"to %x: %v",
pub.SerializeCompressed(),
err)
// Since we failed to connect to them,
// we'll mark them as failed so that we
// don't attempt to connect to them
// again.
nodeID := NewNodeID(pub)
pendingMtx.Lock()
failedNodes[nodeID] = struct{}{}
pendingMtx.Unlock()
// Finally, we'll trigger the agent to
// select new peers to connect to.
a.OnChannelOpenFailure()
return
}
// If we were succesful, we'll track this peer
// in our set of pending opens. We do this here
// to ensure we don't stall on selecting new
// peers if the connection attempt happens to
// take too long.
pendingMtx.Lock()
if uint16(len(pendingOpens))+1 >
a.cfg.MaxPendingOpens {
pendingMtx.Unlock()
// Since we've reached our max number
// of pending opens, we'll disconnect
// this peer and exit. However, if we
// were previously connected to them,
// then we'll make sure to maintain the
// connection alive.
if alreadyConnected {
return
}
err = a.cfg.DisconnectPeer(
pub,
)
if err != nil {
log.Warnf("Unable to "+
"disconnect peer "+
"%x: %v",
pub.SerializeCompressed(),
err)
}
return
}
nodeID := NewNodeID(directive.PeerKey)
pendingOpens[nodeID] = Channel{
Capacity: directive.ChanAmt,
Node: nodeID,
}
pendingMtx.Unlock()
// We can then begin the funding workflow with
// this peer.
err = a.cfg.ChanController.OpenChannel(
pub, directive.ChanAmt,
)
if err != nil {
log.Warnf("Unable to open "+
"channel to %x of %v: %v",
pub.SerializeCompressed(),
directive.ChanAmt, err)
// As the attempt failed, we'll clear
// the peer from the set of pending
// opens and mark them as failed so we
// don't attempt to open a channel to
// them again.
pendingMtx.Lock()
delete(pendingOpens, nodeID)
failedNodes[nodeID] = struct{}{}
pendingMtx.Unlock()
// Trigger the agent to re-evaluate
// everything and possibly retry with a
// different node.
a.OnChannelOpenFailure()
// Finally, we should also disconnect
// the peer if we weren't already
// connected to them beforehand by an
// external subsystem.
if alreadyConnected {
return
}
err = a.cfg.DisconnectPeer(pub)
if err != nil {
log.Warnf("Unable to "+
"disconnect peer "+
"%x: %v",
pub.SerializeCompressed(),
err)
}
}
// Since the channel open was successful and is
// currently pending, we'll trigger the
// autopilot agent to query for more peers.
a.OnChannelPendingOpen()
}(chanCandidate)
}
pendingMtx.Unlock()
}
}