615 lines
16 KiB
Go
615 lines
16 KiB
Go
package contractcourt
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"reflect"
|
|
"testing"
|
|
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/channeldb/kvdb"
|
|
"github.com/lightningnetwork/lnd/input"
|
|
"github.com/lightningnetwork/lnd/lntest/mock"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
)
|
|
|
|
var testHtlcAmt = lnwire.MilliSatoshi(200000)
|
|
|
|
type htlcResolverTestContext struct {
|
|
resolver ContractResolver
|
|
|
|
checkpoint func(_ ContractResolver,
|
|
_ ...*channeldb.ResolverReport) error
|
|
|
|
notifier *mock.ChainNotifier
|
|
resolverResultChan chan resolveResult
|
|
resolutionChan chan ResolutionMsg
|
|
|
|
t *testing.T
|
|
}
|
|
|
|
func newHtlcResolverTestContext(t *testing.T,
|
|
newResolver func(htlc channeldb.HTLC,
|
|
cfg ResolverConfig) ContractResolver) *htlcResolverTestContext {
|
|
|
|
notifier := &mock.ChainNotifier{
|
|
EpochChan: make(chan *chainntnfs.BlockEpoch, 1),
|
|
SpendChan: make(chan *chainntnfs.SpendDetail, 1),
|
|
ConfChan: make(chan *chainntnfs.TxConfirmation, 1),
|
|
}
|
|
|
|
testCtx := &htlcResolverTestContext{
|
|
checkpoint: nil,
|
|
notifier: notifier,
|
|
resolutionChan: make(chan ResolutionMsg, 1),
|
|
t: t,
|
|
}
|
|
|
|
witnessBeacon := newMockWitnessBeacon()
|
|
chainCfg := ChannelArbitratorConfig{
|
|
ChainArbitratorConfig: ChainArbitratorConfig{
|
|
Notifier: notifier,
|
|
PreimageDB: witnessBeacon,
|
|
PublishTx: func(_ *wire.MsgTx, _ string) error {
|
|
return nil
|
|
},
|
|
Sweeper: newMockSweeper(),
|
|
IncubateOutputs: func(wire.OutPoint, *lnwallet.OutgoingHtlcResolution,
|
|
*lnwallet.IncomingHtlcResolution, uint32) error {
|
|
return nil
|
|
},
|
|
DeliverResolutionMsg: func(msgs ...ResolutionMsg) error {
|
|
if len(msgs) != 1 {
|
|
return fmt.Errorf("expected 1 "+
|
|
"resolution msg, instead got %v",
|
|
len(msgs))
|
|
}
|
|
|
|
testCtx.resolutionChan <- msgs[0]
|
|
return nil
|
|
},
|
|
},
|
|
PutResolverReport: func(_ kvdb.RwTx,
|
|
report *channeldb.ResolverReport) error {
|
|
|
|
return nil
|
|
},
|
|
}
|
|
// Since we want to replace this checkpoint method later in the test,
|
|
// we wrap the call to it in a closure. The linter will complain about
|
|
// this so set nolint directive.
|
|
checkpointFunc := func(c ContractResolver, // nolint
|
|
r ...*channeldb.ResolverReport) error {
|
|
return testCtx.checkpoint(c, r...)
|
|
}
|
|
|
|
cfg := ResolverConfig{
|
|
ChannelArbitratorConfig: chainCfg,
|
|
Checkpoint: checkpointFunc,
|
|
}
|
|
|
|
htlc := channeldb.HTLC{
|
|
RHash: testResHash,
|
|
OnionBlob: testOnionBlob,
|
|
Amt: testHtlcAmt,
|
|
}
|
|
|
|
testCtx.resolver = newResolver(htlc, cfg)
|
|
|
|
return testCtx
|
|
}
|
|
|
|
func (i *htlcResolverTestContext) resolve() {
|
|
// Start resolver.
|
|
i.resolverResultChan = make(chan resolveResult, 1)
|
|
go func() {
|
|
nextResolver, err := i.resolver.Resolve()
|
|
i.resolverResultChan <- resolveResult{
|
|
nextResolver: nextResolver,
|
|
err: err,
|
|
}
|
|
}()
|
|
}
|
|
|
|
func (i *htlcResolverTestContext) waitForResult() {
|
|
i.t.Helper()
|
|
|
|
result := <-i.resolverResultChan
|
|
if result.err != nil {
|
|
i.t.Fatal(result.err)
|
|
}
|
|
|
|
if result.nextResolver != nil {
|
|
i.t.Fatal("expected no next resolver")
|
|
}
|
|
}
|
|
|
|
// TestHtlcSuccessSingleStage tests successful sweep of a single stage htlc
|
|
// claim.
|
|
func TestHtlcSuccessSingleStage(t *testing.T) {
|
|
htlcOutpoint := wire.OutPoint{Index: 3}
|
|
|
|
sweepTx := &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{{}},
|
|
TxOut: []*wire.TxOut{{}},
|
|
}
|
|
|
|
// singleStageResolution is a resolution for a htlc on the remote
|
|
// party's commitment.
|
|
singleStageResolution := lnwallet.IncomingHtlcResolution{
|
|
SweepSignDesc: testSignDesc,
|
|
ClaimOutpoint: htlcOutpoint,
|
|
}
|
|
|
|
sweepTxid := sweepTx.TxHash()
|
|
claim := &channeldb.ResolverReport{
|
|
OutPoint: htlcOutpoint,
|
|
Amount: btcutil.Amount(testSignDesc.Output.Value),
|
|
ResolverType: channeldb.ResolverTypeIncomingHtlc,
|
|
ResolverOutcome: channeldb.ResolverOutcomeClaimed,
|
|
SpendTxID: &sweepTxid,
|
|
}
|
|
|
|
checkpoints := []checkpoint{
|
|
{
|
|
// We send a confirmation for our sweep tx to indicate
|
|
// that our sweep succeeded.
|
|
preCheckpoint: func(ctx *htlcResolverTestContext,
|
|
_ bool) error {
|
|
// The resolver will create and publish a sweep
|
|
// tx.
|
|
resolver := ctx.resolver.(*htlcSuccessResolver)
|
|
resolver.Sweeper.(*mockSweeper).
|
|
createSweepTxChan <- sweepTx
|
|
|
|
// Confirm the sweep, which should resolve it.
|
|
ctx.notifier.ConfChan <- &chainntnfs.TxConfirmation{
|
|
Tx: sweepTx,
|
|
BlockHeight: testInitialBlockHeight - 1,
|
|
}
|
|
|
|
return nil
|
|
},
|
|
|
|
// After the sweep has confirmed, we expect the
|
|
// checkpoint to be resolved, and with the above
|
|
// report.
|
|
resolved: true,
|
|
reports: []*channeldb.ResolverReport{
|
|
claim,
|
|
},
|
|
},
|
|
}
|
|
|
|
testHtlcSuccess(
|
|
t, singleStageResolution, checkpoints,
|
|
)
|
|
}
|
|
|
|
// TestSecondStageResolution tests successful sweep of a second stage htlc
|
|
// claim, going through the Nursery.
|
|
func TestHtlcSuccessSecondStageResolution(t *testing.T) {
|
|
commitOutpoint := wire.OutPoint{Index: 2}
|
|
htlcOutpoint := wire.OutPoint{Index: 3}
|
|
|
|
sweepTx := &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{{}},
|
|
TxOut: []*wire.TxOut{{}},
|
|
}
|
|
sweepHash := sweepTx.TxHash()
|
|
|
|
// twoStageResolution is a resolution for htlc on our own commitment
|
|
// which is spent from the signed success tx.
|
|
twoStageResolution := lnwallet.IncomingHtlcResolution{
|
|
Preimage: [32]byte{},
|
|
SignedSuccessTx: &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{
|
|
{
|
|
PreviousOutPoint: commitOutpoint,
|
|
},
|
|
},
|
|
TxOut: []*wire.TxOut{
|
|
{
|
|
Value: 111,
|
|
PkScript: []byte{0xaa, 0xaa},
|
|
},
|
|
},
|
|
},
|
|
ClaimOutpoint: htlcOutpoint,
|
|
SweepSignDesc: testSignDesc,
|
|
}
|
|
|
|
successTx := twoStageResolution.SignedSuccessTx.TxHash()
|
|
firstStage := &channeldb.ResolverReport{
|
|
OutPoint: commitOutpoint,
|
|
Amount: testHtlcAmt.ToSatoshis(),
|
|
ResolverType: channeldb.ResolverTypeIncomingHtlc,
|
|
ResolverOutcome: channeldb.ResolverOutcomeFirstStage,
|
|
SpendTxID: &successTx,
|
|
}
|
|
|
|
secondStage := &channeldb.ResolverReport{
|
|
OutPoint: htlcOutpoint,
|
|
Amount: btcutil.Amount(testSignDesc.Output.Value),
|
|
ResolverType: channeldb.ResolverTypeIncomingHtlc,
|
|
ResolverOutcome: channeldb.ResolverOutcomeClaimed,
|
|
SpendTxID: &sweepHash,
|
|
}
|
|
|
|
checkpoints := []checkpoint{
|
|
{
|
|
// The resolver will send the output to the Nursery.
|
|
incubating: true,
|
|
},
|
|
{
|
|
// It will then wait for the Nursery to spend the
|
|
// output. We send a spend notification for our output
|
|
// to resolve our htlc.
|
|
preCheckpoint: func(ctx *htlcResolverTestContext,
|
|
_ bool) error {
|
|
ctx.notifier.SpendChan <- &chainntnfs.SpendDetail{
|
|
SpendingTx: sweepTx,
|
|
SpenderTxHash: &sweepHash,
|
|
}
|
|
|
|
return nil
|
|
},
|
|
incubating: true,
|
|
resolved: true,
|
|
reports: []*channeldb.ResolverReport{
|
|
secondStage,
|
|
firstStage,
|
|
},
|
|
},
|
|
}
|
|
|
|
testHtlcSuccess(
|
|
t, twoStageResolution, checkpoints,
|
|
)
|
|
}
|
|
|
|
// TestHtlcSuccessSecondStageResolutionSweeper test that a resolver with
|
|
// non-nil SignDetails will offer the second-level transaction to the sweeper
|
|
// for re-signing.
|
|
func TestHtlcSuccessSecondStageResolutionSweeper(t *testing.T) {
|
|
commitOutpoint := wire.OutPoint{Index: 2}
|
|
htlcOutpoint := wire.OutPoint{Index: 3}
|
|
|
|
successTx := &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{
|
|
{
|
|
PreviousOutPoint: commitOutpoint,
|
|
},
|
|
},
|
|
TxOut: []*wire.TxOut{
|
|
{
|
|
Value: 123,
|
|
PkScript: []byte{0xff, 0xff},
|
|
},
|
|
},
|
|
}
|
|
|
|
reSignedSuccessTx := &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{
|
|
{
|
|
PreviousOutPoint: wire.OutPoint{
|
|
Hash: chainhash.Hash{0xaa, 0xbb},
|
|
Index: 0,
|
|
},
|
|
},
|
|
successTx.TxIn[0],
|
|
{
|
|
PreviousOutPoint: wire.OutPoint{
|
|
Hash: chainhash.Hash{0xaa, 0xbb},
|
|
Index: 2,
|
|
},
|
|
},
|
|
},
|
|
|
|
TxOut: []*wire.TxOut{
|
|
{
|
|
Value: 111,
|
|
PkScript: []byte{0xaa, 0xaa},
|
|
},
|
|
successTx.TxOut[0],
|
|
},
|
|
}
|
|
reSignedHash := successTx.TxHash()
|
|
|
|
sweepTx := &wire.MsgTx{
|
|
TxIn: []*wire.TxIn{
|
|
|
|
{
|
|
PreviousOutPoint: wire.OutPoint{
|
|
Hash: reSignedHash,
|
|
Index: 1,
|
|
},
|
|
},
|
|
},
|
|
TxOut: []*wire.TxOut{{}},
|
|
}
|
|
sweepHash := sweepTx.TxHash()
|
|
|
|
// twoStageResolution is a resolution for htlc on our own commitment
|
|
// which is spent from the signed success tx.
|
|
twoStageResolution := lnwallet.IncomingHtlcResolution{
|
|
Preimage: [32]byte{},
|
|
CsvDelay: 4,
|
|
SignedSuccessTx: successTx,
|
|
SignDetails: &input.SignDetails{
|
|
SignDesc: testSignDesc,
|
|
PeerSig: testSig,
|
|
},
|
|
ClaimOutpoint: htlcOutpoint,
|
|
SweepSignDesc: testSignDesc,
|
|
}
|
|
|
|
firstStage := &channeldb.ResolverReport{
|
|
OutPoint: commitOutpoint,
|
|
Amount: testHtlcAmt.ToSatoshis(),
|
|
ResolverType: channeldb.ResolverTypeIncomingHtlc,
|
|
ResolverOutcome: channeldb.ResolverOutcomeFirstStage,
|
|
SpendTxID: &reSignedHash,
|
|
}
|
|
|
|
secondStage := &channeldb.ResolverReport{
|
|
OutPoint: htlcOutpoint,
|
|
Amount: btcutil.Amount(testSignDesc.Output.Value),
|
|
ResolverType: channeldb.ResolverTypeIncomingHtlc,
|
|
ResolverOutcome: channeldb.ResolverOutcomeClaimed,
|
|
SpendTxID: &sweepHash,
|
|
}
|
|
|
|
checkpoints := []checkpoint{
|
|
{
|
|
// The HTLC output on the commitment should be offered
|
|
// to the sweeper. We'll notify that it gets spent.
|
|
preCheckpoint: func(ctx *htlcResolverTestContext,
|
|
_ bool) error {
|
|
|
|
resolver := ctx.resolver.(*htlcSuccessResolver)
|
|
inp := <-resolver.Sweeper.(*mockSweeper).sweptInputs
|
|
op := inp.OutPoint()
|
|
if *op != commitOutpoint {
|
|
return fmt.Errorf("outpoint %v swept, "+
|
|
"expected %v", op,
|
|
commitOutpoint)
|
|
}
|
|
|
|
ctx.notifier.SpendChan <- &chainntnfs.SpendDetail{
|
|
SpendingTx: reSignedSuccessTx,
|
|
SpenderTxHash: &reSignedHash,
|
|
SpenderInputIndex: 1,
|
|
SpendingHeight: 10,
|
|
}
|
|
return nil
|
|
|
|
},
|
|
// incubating=true is used to signal that the
|
|
// second-level transaction was confirmed.
|
|
incubating: true,
|
|
},
|
|
{
|
|
// The resolver will wait for the second-level's CSV
|
|
// lock to expire.
|
|
preCheckpoint: func(ctx *htlcResolverTestContext,
|
|
resumed bool) error {
|
|
|
|
// If we are resuming from a checkpoint, we
|
|
// expect the resolver to re-subscribe to a
|
|
// spend, hence we must resend it.
|
|
if resumed {
|
|
ctx.notifier.SpendChan <- &chainntnfs.SpendDetail{
|
|
SpendingTx: reSignedSuccessTx,
|
|
SpenderTxHash: &reSignedHash,
|
|
SpenderInputIndex: 1,
|
|
SpendingHeight: 10,
|
|
}
|
|
}
|
|
|
|
ctx.notifier.EpochChan <- &chainntnfs.BlockEpoch{
|
|
Height: 13,
|
|
}
|
|
|
|
// We expect it to sweep the second-level
|
|
// transaction we notfied about above.
|
|
resolver := ctx.resolver.(*htlcSuccessResolver)
|
|
inp := <-resolver.Sweeper.(*mockSweeper).sweptInputs
|
|
op := inp.OutPoint()
|
|
exp := wire.OutPoint{
|
|
Hash: reSignedHash,
|
|
Index: 1,
|
|
}
|
|
if *op != exp {
|
|
return fmt.Errorf("swept outpoint %v, expected %v",
|
|
op, exp)
|
|
}
|
|
|
|
// Notify about the spend, which should resolve
|
|
// the resolver.
|
|
ctx.notifier.SpendChan <- &chainntnfs.SpendDetail{
|
|
SpendingTx: sweepTx,
|
|
SpenderTxHash: &sweepHash,
|
|
SpendingHeight: 14,
|
|
}
|
|
|
|
return nil
|
|
},
|
|
|
|
incubating: true,
|
|
resolved: true,
|
|
reports: []*channeldb.ResolverReport{
|
|
secondStage,
|
|
firstStage,
|
|
},
|
|
},
|
|
}
|
|
|
|
testHtlcSuccess(t, twoStageResolution, checkpoints)
|
|
}
|
|
|
|
// checkpoint holds expected data we expect the resolver to checkpoint itself
|
|
// to the DB next.
|
|
type checkpoint struct {
|
|
// preCheckpoint is a method that will be called before we reach the
|
|
// checkpoint, to carry out any needed operations to drive the resolver
|
|
// in this stage.
|
|
preCheckpoint func(*htlcResolverTestContext, bool) error
|
|
|
|
// data we expect the resolver to be checkpointed with next.
|
|
incubating bool
|
|
resolved bool
|
|
reports []*channeldb.ResolverReport
|
|
}
|
|
|
|
// testHtlcSuccess tests resolution of a success resolver. It takes a a list of
|
|
// checkpoints that it expects the resolver to go through. And will run the
|
|
// resolver all the way through these checkpoints, and also attempt to resume
|
|
// the resolver from every checkpoint.
|
|
func testHtlcSuccess(t *testing.T, resolution lnwallet.IncomingHtlcResolution,
|
|
checkpoints []checkpoint) {
|
|
|
|
defer timeout(t)()
|
|
|
|
// We first run the resolver from start to finish, ensuring it gets
|
|
// checkpointed at every expected stage. We store the checkpointed data
|
|
// for the next portion of the test.
|
|
ctx := newHtlcResolverTestContext(t,
|
|
func(htlc channeldb.HTLC, cfg ResolverConfig) ContractResolver {
|
|
return &htlcSuccessResolver{
|
|
contractResolverKit: *newContractResolverKit(cfg),
|
|
htlc: htlc,
|
|
htlcResolution: resolution,
|
|
}
|
|
},
|
|
)
|
|
|
|
checkpointedState := runFromCheckpoint(t, ctx, checkpoints)
|
|
|
|
// Now, from every checkpoint created, we re-create the resolver, and
|
|
// run the test from that checkpoint.
|
|
for i := range checkpointedState {
|
|
cp := bytes.NewReader(checkpointedState[i])
|
|
ctx := newHtlcResolverTestContext(t,
|
|
func(htlc channeldb.HTLC, cfg ResolverConfig) ContractResolver {
|
|
resolver, err := newSuccessResolverFromReader(cp, cfg)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
resolver.Supplement(htlc)
|
|
resolver.htlcResolution = resolution
|
|
return resolver
|
|
},
|
|
)
|
|
|
|
// Run from the given checkpoint, ensuring we'll hit the rest.
|
|
_ = runFromCheckpoint(t, ctx, checkpoints[i+1:])
|
|
}
|
|
}
|
|
|
|
// runFromCheckpoint executes the Resolve method on the success resolver, and
|
|
// asserts that it checkpoints itself according to the expected checkpoints.
|
|
func runFromCheckpoint(t *testing.T, ctx *htlcResolverTestContext,
|
|
expectedCheckpoints []checkpoint) [][]byte {
|
|
|
|
defer timeout(t)()
|
|
|
|
var checkpointedState [][]byte
|
|
|
|
// Replace our checkpoint method with one which we'll use to assert the
|
|
// checkpointed state and reports are equal to what we expect.
|
|
nextCheckpoint := 0
|
|
checkpointChan := make(chan struct{})
|
|
ctx.checkpoint = func(resolver ContractResolver,
|
|
reports ...*channeldb.ResolverReport) error {
|
|
|
|
if nextCheckpoint >= len(expectedCheckpoints) {
|
|
t.Fatal("did not expect more checkpoints")
|
|
}
|
|
|
|
var resolved, incubating bool
|
|
if h, ok := resolver.(*htlcSuccessResolver); ok {
|
|
resolved = h.resolved
|
|
incubating = h.outputIncubating
|
|
}
|
|
if h, ok := resolver.(*htlcTimeoutResolver); ok {
|
|
resolved = h.resolved
|
|
incubating = h.outputIncubating
|
|
}
|
|
|
|
cp := expectedCheckpoints[nextCheckpoint]
|
|
|
|
if resolved != cp.resolved {
|
|
t.Fatalf("expected checkpoint to be resolve=%v, had %v",
|
|
cp.resolved, resolved)
|
|
}
|
|
|
|
if !reflect.DeepEqual(incubating, cp.incubating) {
|
|
t.Fatalf("expected checkpoint to be have "+
|
|
"incubating=%v, had %v", cp.incubating,
|
|
incubating)
|
|
|
|
}
|
|
|
|
// Check we go the expected reports.
|
|
if len(reports) != len(cp.reports) {
|
|
t.Fatalf("unexpected number of reports. Expected %v "+
|
|
"got %v", len(cp.reports), len(reports))
|
|
}
|
|
|
|
for i, report := range reports {
|
|
if !reflect.DeepEqual(report, cp.reports[i]) {
|
|
t.Fatalf("expected: %v, got: %v",
|
|
spew.Sdump(cp.reports[i]),
|
|
spew.Sdump(report))
|
|
}
|
|
}
|
|
|
|
// Finally encode the resolver, and store it for later use.
|
|
b := bytes.Buffer{}
|
|
if err := resolver.Encode(&b); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
checkpointedState = append(checkpointedState, b.Bytes())
|
|
nextCheckpoint++
|
|
checkpointChan <- struct{}{}
|
|
return nil
|
|
}
|
|
|
|
// Start the htlc success resolver.
|
|
ctx.resolve()
|
|
|
|
// Go through our list of expected checkpoints, so we can run the
|
|
// preCheckpoint logic if needed.
|
|
resumed := true
|
|
for i, cp := range expectedCheckpoints {
|
|
if cp.preCheckpoint != nil {
|
|
if err := cp.preCheckpoint(ctx, resumed); err != nil {
|
|
t.Fatalf("failure at stage %d: %v", i, err)
|
|
}
|
|
|
|
}
|
|
resumed = false
|
|
|
|
// Wait for the resolver to have checkpointed its state.
|
|
<-checkpointChan
|
|
}
|
|
|
|
// Wait for the resolver to fully complete.
|
|
ctx.waitForResult()
|
|
|
|
if nextCheckpoint < len(expectedCheckpoints) {
|
|
t.Fatalf("not all checkpoints hit")
|
|
}
|
|
|
|
return checkpointedState
|
|
}
|