lnd.xprv/lnwallet/chanfunding/wallet_assembler.go

375 lines
12 KiB
Go

package chanfunding
import (
"fmt"
"math"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/txsort"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
)
// FullIntent is an intent that is fully backed by the internal wallet. This
// intent differs from the ShimIntent, in that the funding transaction will be
// constructed internally, and will consist of only inputs we wholly control.
// This Intent implements a basic state machine that must be executed in order
// before CompileFundingTx can be called.
//
// Steps to final channel provisioning:
// 1. Call BindKeys to notify the intent which keys to use when constructing
// the multi-sig output.
// 2. Call CompileFundingTx afterwards to obtain the funding transaction.
//
// If either of these steps fail, then the Cancel method MUST be called.
type FullIntent struct {
ShimIntent
// InputCoins are the set of coins selected as inputs to this funding
// transaction.
InputCoins []Coin
// ChangeOutputs are the set of outputs that the Assembler will use as
// change from the main funding transaction.
ChangeOutputs []*wire.TxOut
// coinLocker is the Assembler's instance of the OutpointLocker
// interface.
coinLocker OutpointLocker
// coinSource is the Assembler's instance of the CoinSource interface.
coinSource CoinSource
// signer is the Assembler's instance of the Singer interface.
signer input.Signer
}
// BindKeys is a method unique to the FullIntent variant. This allows the
// caller to decide precisely which keys are used in the final funding
// transaction. This is kept out of the main Assembler as these may may not
// necessarily be under full control of the wallet. Only after this method has
// been executed will CompileFundingTx succeed.
func (f *FullIntent) BindKeys(localKey *keychain.KeyDescriptor,
remoteKey *btcec.PublicKey) {
f.localKey = localKey
f.remoteKey = remoteKey
}
// CompileFundingTx is to be called after BindKeys on the sub-intent has been
// called. This method will construct the final funding transaction, and fully
// sign all inputs that are known by the backing CoinSource. After this method
// returns, the Intent is assumed to be complete, as the output can be created
// at any point.
func (f *FullIntent) CompileFundingTx(extraInputs []*wire.TxIn,
extraOutputs []*wire.TxOut) (*wire.MsgTx, error) {
// Create a blank, fresh transaction. Soon to be a complete funding
// transaction which will allow opening a lightning channel.
fundingTx := wire.NewMsgTx(2)
// Add all multi-party inputs and outputs to the transaction.
for _, coin := range f.InputCoins {
fundingTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: coin.OutPoint,
})
}
for _, theirInput := range extraInputs {
fundingTx.AddTxIn(theirInput)
}
for _, ourChangeOutput := range f.ChangeOutputs {
fundingTx.AddTxOut(ourChangeOutput)
}
for _, theirChangeOutput := range extraOutputs {
fundingTx.AddTxOut(theirChangeOutput)
}
_, fundingOutput, err := f.FundingOutput()
if err != nil {
return nil, err
}
// Sort the transaction. Since both side agree to a canonical ordering,
// by sorting we no longer need to send the entire transaction. Only
// signatures will be exchanged.
fundingTx.AddTxOut(fundingOutput)
txsort.InPlaceSort(fundingTx)
// Now that the funding tx has been fully assembled, we'll locate the
// index of the funding output so we can create our final channel
// point.
_, multiSigIndex := input.FindScriptOutputIndex(
fundingTx, fundingOutput.PkScript,
)
// Next, sign all inputs that are ours, collecting the signatures in
// order of the inputs.
signDesc := input.SignDescriptor{
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(fundingTx),
}
for i, txIn := range fundingTx.TxIn {
// We can only sign this input if it's ours, so we'll ask the
// coin source if it can map this outpoint into a coin we own.
// If not, then we'll continue as it isn't our input.
info, err := f.coinSource.CoinFromOutPoint(
txIn.PreviousOutPoint,
)
if err != nil {
continue
}
// Now that we know the input is ours, we'll populate the
// signDesc with the per input unique information.
signDesc.Output = &wire.TxOut{
Value: info.Value,
PkScript: info.PkScript,
}
signDesc.InputIndex = i
// Finally, we'll sign the input as is, and populate the input
// with the witness and sigScript (if needed).
inputScript, err := f.signer.ComputeInputScript(
fundingTx, &signDesc,
)
if err != nil {
return nil, err
}
txIn.SignatureScript = inputScript.SigScript
txIn.Witness = inputScript.Witness
}
// Finally, we'll populate the chanPoint now that we've fully
// constructed the funding transaction.
f.chanPoint = &wire.OutPoint{
Hash: fundingTx.TxHash(),
Index: multiSigIndex,
}
return fundingTx, nil
}
// Inputs returns all inputs to the final funding transaction that we
// know about. Since this funding transaction is created all from our wallet,
// it will be all inputs.
func (f *FullIntent) Inputs() []wire.OutPoint {
var ins []wire.OutPoint
for _, coin := range f.InputCoins {
ins = append(ins, coin.OutPoint)
}
return ins
}
// Outputs returns all outputs of the final funding transaction that we
// know about. This will be the funding output and the change outputs going
// back to our wallet.
func (f *FullIntent) Outputs() []*wire.TxOut {
outs := f.ShimIntent.Outputs()
outs = append(outs, f.ChangeOutputs...)
return outs
}
// Cancel allows the caller to cancel a funding Intent at any time. This will
// return any resources such as coins back to the eligible pool to be used in
// order channel fundings.
//
// NOTE: Part of the chanfunding.Intent interface.
func (f *FullIntent) Cancel() {
for _, coin := range f.InputCoins {
f.coinLocker.UnlockOutpoint(coin.OutPoint)
}
f.ShimIntent.Cancel()
}
// A compile-time check to ensure FullIntent meets the Intent interface.
var _ Intent = (*FullIntent)(nil)
// WalletConfig is the main config of the WalletAssembler.
type WalletConfig struct {
// CoinSource is what the WalletAssembler uses to list/locate coins.
CoinSource CoinSource
// CoinSelectionLocker allows the WalletAssembler to gain exclusive
// access to the current set of coins returned by the CoinSource.
CoinSelectLocker CoinSelectionLocker
// CoinLocker is what the WalletAssembler uses to lock coins that may
// be used as inputs for a new funding transaction.
CoinLocker OutpointLocker
// Signer allows the WalletAssembler to sign inputs on any potential
// funding transactions.
Signer input.Signer
// DustLimit is the current dust limit. We'll use this to ensure that
// we don't make dust outputs on the funding transaction.
DustLimit btcutil.Amount
}
// WalletAssembler is an instance of the Assembler interface that is backed by
// a full wallet. This variant of the Assembler interface will produce the
// entirety of the funding transaction within the wallet. This implements the
// typical funding flow that is initiated either on the p2p level or using the
// CLi.
type WalletAssembler struct {
cfg WalletConfig
}
// NewWalletAssembler creates a new instance of the WalletAssembler from a
// fully populated wallet config.
func NewWalletAssembler(cfg WalletConfig) *WalletAssembler {
return &WalletAssembler{
cfg: cfg,
}
}
// ProvisionChannel is the main entry point to begin a funding workflow given a
// fully populated request. The internal WalletAssembler will perform coin
// selection in a goroutine safe manner, returning an Intent that will allow
// the caller to finalize the funding process.
//
// NOTE: To cancel the funding flow the Cancel() method on the returned Intent,
// MUST be called.
//
// NOTE: This is a part of the chanfunding.Assembler interface.
func (w *WalletAssembler) ProvisionChannel(r *Request) (Intent, error) {
var intent Intent
// We hold the coin select mutex while querying for outputs, and
// performing coin selection in order to avoid inadvertent double
// spends across funding transactions.
err := w.cfg.CoinSelectLocker.WithCoinSelectLock(func() error {
log.Infof("Performing funding tx coin selection using %v "+
"sat/kw as fee rate", int64(r.FeeRate))
// Find all unlocked unspent witness outputs that satisfy the
// minimum number of confirmations required.
coins, err := w.cfg.CoinSource.ListCoins(
r.MinConfs, math.MaxInt32,
)
if err != nil {
return err
}
var (
selectedCoins []Coin
localContributionAmt btcutil.Amount
changeAmt btcutil.Amount
)
// Perform coin selection over our available, unlocked unspent
// outputs in order to find enough coins to meet the funding
// amount requirements.
switch {
// If there's no funding amount at all (receiving an inbound
// single funder request), then we don't need to perform any
// coin selection at all.
case r.LocalAmt == 0:
break
// In case this request want the fees subtracted from the local
// amount, we'll call the specialized method for that. This
// ensures that we won't deduct more that the specified balance
// from our wallet.
case r.SubtractFees:
dustLimit := w.cfg.DustLimit
selectedCoins, localContributionAmt, changeAmt, err = CoinSelectSubtractFees(
r.FeeRate, r.LocalAmt, dustLimit, coins,
)
if err != nil {
return err
}
// Otherwise do a normal coin selection where we target a given
// funding amount.
default:
dustLimit := w.cfg.DustLimit
localContributionAmt = r.LocalAmt
selectedCoins, changeAmt, err = CoinSelect(
r.FeeRate, r.LocalAmt, dustLimit, coins,
)
if err != nil {
return err
}
}
// Sanity check: The addition of the outputs should not lead to the
// creation of dust.
if changeAmt != 0 && changeAmt <= w.cfg.DustLimit {
return fmt.Errorf("change amount(%v) after coin "+
"select is below dust limit(%v)", changeAmt,
w.cfg.DustLimit)
}
// Record any change output(s) generated as a result of the
// coin selection.
var changeOutput *wire.TxOut
if changeAmt != 0 {
changeAddr, err := r.ChangeAddr()
if err != nil {
return err
}
changeScript, err := txscript.PayToAddrScript(changeAddr)
if err != nil {
return err
}
changeOutput = &wire.TxOut{
Value: int64(changeAmt),
PkScript: changeScript,
}
}
// Lock the selected coins. These coins are now "reserved",
// this prevents concurrent funding requests from referring to
// and this double-spending the same set of coins.
for _, coin := range selectedCoins {
outpoint := coin.OutPoint
w.cfg.CoinLocker.LockOutpoint(outpoint)
}
newIntent := &FullIntent{
ShimIntent: ShimIntent{
localFundingAmt: localContributionAmt,
remoteFundingAmt: r.RemoteAmt,
},
InputCoins: selectedCoins,
coinLocker: w.cfg.CoinLocker,
coinSource: w.cfg.CoinSource,
signer: w.cfg.Signer,
}
if changeOutput != nil {
newIntent.ChangeOutputs = []*wire.TxOut{changeOutput}
}
intent = newIntent
return nil
})
if err != nil {
return nil, err
}
return intent, nil
}
// FundingTxAvailable is an empty method that an assembler can implement to
// signal to callers that its able to provide the funding transaction for the
// channel via the intent it returns.
//
// NOTE: This method is a part of the FundingTxAssembler interface.
func (w *WalletAssembler) FundingTxAvailable() {}
// A compile-time assertion to ensure the WalletAssembler meets the
// FundingTxAssembler interface.
var _ FundingTxAssembler = (*WalletAssembler)(nil)