lnd.xprv/sweep/txgenerator.go
Johan T. Halseth 0cba47dac0
sweep/tx_input_set: account for required outputs in input set
If inputs require outputs to be added at the same time, this will
change the weight and amount calculations, so we must account for that.

We wait to get the weight estimator for the sweep tx until needed,
such that we can easily choose whether to include a change output or not
in the estimate. This is needed for the case where the second level
transactions can pay for their own fee, so no change output is needed.
2020-11-20 13:06:54 +01:00

303 lines
9.5 KiB
Go

package sweep
import (
"fmt"
"sort"
"strings"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
)
var (
// DefaultMaxInputsPerTx specifies the default maximum number of inputs
// allowed in a single sweep tx. If more need to be swept, multiple txes
// are created and published.
DefaultMaxInputsPerTx = 100
)
// txInput is an interface that provides the input data required for tx
// generation.
type txInput interface {
input.Input
parameters() Params
}
// inputSet is a set of inputs that can be used as the basis to generate a tx
// on.
type inputSet []input.Input
// generateInputPartitionings goes through all given inputs and constructs sets
// of inputs that can be used to generate a sensible transaction. Each set
// contains up to the configured maximum number of inputs. Negative yield
// inputs are skipped. No input sets with a total value after fees below the
// dust limit are returned.
func generateInputPartitionings(sweepableInputs []txInput,
relayFeePerKW, feePerKW chainfee.SatPerKWeight,
maxInputsPerTx int, wallet Wallet) ([]inputSet, error) {
// Sort input by yield. We will start constructing input sets starting
// with the highest yield inputs. This is to prevent the construction
// of a set with an output below the dust limit, causing the sweep
// process to stop, while there are still higher value inputs
// available. It also allows us to stop evaluating more inputs when the
// first input in this ordering is encountered with a negative yield.
//
// Yield is calculated as the difference between value and added fee
// for this input. The fee calculation excludes fee components that are
// common to all inputs, as those wouldn't influence the order. The
// single component that is differentiating is witness size.
//
// For witness size, the upper limit is taken. The actual size depends
// on the signature length, which is not known yet at this point.
yields := make(map[wire.OutPoint]int64)
for _, input := range sweepableInputs {
size, _, err := input.WitnessType().SizeUpperBound()
if err != nil {
return nil, fmt.Errorf(
"failed adding input weight: %v", err)
}
yields[*input.OutPoint()] = input.SignDesc().Output.Value -
int64(feePerKW.FeeForWeight(int64(size)))
}
sort.Slice(sweepableInputs, func(i, j int) bool {
// Because of the specific ordering and termination condition
// that is described above, we place force sweeps at the start
// of the list. Otherwise we can't be sure that they will be
// included in an input set.
if sweepableInputs[i].parameters().Force {
return true
}
return yields[*sweepableInputs[i].OutPoint()] >
yields[*sweepableInputs[j].OutPoint()]
})
// Select blocks of inputs up to the configured maximum number.
var sets []inputSet
for len(sweepableInputs) > 0 {
// Start building a set of positive-yield tx inputs under the
// condition that the tx will be published with the specified
// fee rate.
txInputs := newTxInputSet(
wallet, feePerKW, relayFeePerKW, maxInputsPerTx,
)
// From the set of sweepable inputs, keep adding inputs to the
// input set until the tx output value no longer goes up or the
// maximum number of inputs is reached.
txInputs.addPositiveYieldInputs(sweepableInputs)
// If there are no positive yield inputs, we can stop here.
inputCount := len(txInputs.inputs)
if inputCount == 0 {
return sets, nil
}
// Check the current output value and add wallet utxos if
// needed to push the output value to the lower limit.
if err := txInputs.tryAddWalletInputsIfNeeded(); err != nil {
return nil, err
}
// If the output value of this block of inputs does not reach
// the dust limit, stop sweeping. Because of the sorting,
// continuing with the remaining inputs will only lead to sets
// with an even lower output value.
if !txInputs.enoughInput() {
log.Debugf("Set value %v (r=%v, c=%v) below dust "+
"limit of %v", txInputs.totalOutput(),
txInputs.requiredOutput, txInputs.changeOutput,
txInputs.dustLimit)
return sets, nil
}
log.Infof("Candidate sweep set of size=%v (+%v wallet inputs), "+
"has yield=%v, weight=%v",
inputCount, len(txInputs.inputs)-inputCount,
txInputs.totalOutput()-txInputs.walletInputTotal,
txInputs.weightEstimate(true).weight())
sets = append(sets, txInputs.inputs)
sweepableInputs = sweepableInputs[inputCount:]
}
return sets, nil
}
// createSweepTx builds a signed tx spending the inputs to a the output script.
func createSweepTx(inputs []input.Input, outputPkScript []byte,
currentBlockHeight uint32, feePerKw chainfee.SatPerKWeight,
dustLimit btcutil.Amount, signer input.Signer) (*wire.MsgTx, error) {
inputs, estimator := getWeightEstimate(inputs, feePerKw)
txFee := estimator.fee()
// Create the sweep transaction that we will be building. We use
// version 2 as it is required for CSV.
sweepTx := wire.NewMsgTx(2)
// Track whether any of the inputs require a certain locktime.
locktime := int32(-1)
// Sum up the total value contained in the inputs, and add all inputs
// to the sweep transaction. Ensure that for each csvInput, we set the
// sequence number properly.
var totalSum btcutil.Amount
for _, o := range inputs {
sweepTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *o.OutPoint(),
Sequence: o.BlocksToMaturity(),
})
if lt, ok := o.RequiredLockTime(); ok {
// If another input commits to a different locktime,
// they cannot be combined in the same transcation.
if locktime != -1 && locktime != int32(lt) {
return nil, fmt.Errorf("incompatible locktime")
}
locktime = int32(lt)
}
totalSum += btcutil.Amount(o.SignDesc().Output.Value)
}
// Sweep as much possible, after subtracting txn fees.
sweepAmt := totalSum - txFee
// The txn will sweep the amount after fees to the pkscript generated
// above.
if sweepAmt >= dustLimit {
sweepTx.AddTxOut(&wire.TxOut{
PkScript: outputPkScript,
Value: int64(sweepAmt),
})
}
// We'll default to using the current block height as locktime, if none
// of the inputs commits to a different locktime.
sweepTx.LockTime = currentBlockHeight
if locktime != -1 {
sweepTx.LockTime = uint32(locktime)
}
// Before signing the transaction, check to ensure that it meets some
// basic validity requirements.
//
// TODO(conner): add more control to sanity checks, allowing us to
// delay spending "problem" outputs, e.g. possibly batching with other
// classes if fees are too low.
btx := btcutil.NewTx(sweepTx)
if err := blockchain.CheckTransactionSanity(btx); err != nil {
return nil, err
}
hashCache := txscript.NewTxSigHashes(sweepTx)
// With all the inputs in place, use each output's unique input script
// function to generate the final witness required for spending.
addInputScript := func(idx int, tso input.Input) error {
inputScript, err := tso.CraftInputScript(
signer, sweepTx, hashCache, idx,
)
if err != nil {
return err
}
sweepTx.TxIn[idx].Witness = inputScript.Witness
if len(inputScript.SigScript) != 0 {
sweepTx.TxIn[idx].SignatureScript = inputScript.SigScript
}
return nil
}
// Finally we'll attach a valid input script to each csv and cltv input
// within the sweeping transaction.
for i, input := range inputs {
if err := addInputScript(i, input); err != nil {
return nil, err
}
}
log.Infof("Creating sweep transaction %v for %v inputs (%s) "+
"using %v sat/kw, tx_weight=%v, tx_fee=%v, parents_count=%v, "+
"parents_fee=%v, parents_weight=%v",
sweepTx.TxHash(), len(inputs),
inputTypeSummary(inputs), int64(feePerKw),
estimator.weight(), txFee,
len(estimator.parents), estimator.parentsFee,
estimator.parentsWeight,
)
return sweepTx, nil
}
// getWeightEstimate returns a weight estimate for the given inputs.
// Additionally, it returns counts for the number of csv and cltv inputs.
func getWeightEstimate(inputs []input.Input, feeRate chainfee.SatPerKWeight) (
[]input.Input, *weightEstimator) {
// We initialize a weight estimator so we can accurately asses the
// amount of fees we need to pay for this sweep transaction.
//
// TODO(roasbeef): can be more intelligent about buffering outputs to
// be more efficient on-chain.
weightEstimate := newWeightEstimator(feeRate)
// Our sweep transaction will pay to a single segwit p2wkh address,
// ensure it contributes to our weight estimate.
weightEstimate.addP2WKHOutput()
// For each output, use its witness type to determine the estimate
// weight of its witness, and add it to the proper set of spendable
// outputs.
var sweepInputs []input.Input
for i := range inputs {
inp := inputs[i]
err := weightEstimate.add(inp)
if err != nil {
log.Warn(err)
// Skip inputs for which no weight estimate can be
// given.
continue
}
sweepInputs = append(sweepInputs, inp)
}
return sweepInputs, weightEstimate
}
// inputSummary returns a string containing a human readable summary about the
// witness types of a list of inputs.
func inputTypeSummary(inputs []input.Input) string {
// Sort inputs by witness type.
sortedInputs := make([]input.Input, len(inputs))
copy(sortedInputs, inputs)
sort.Slice(sortedInputs, func(i, j int) bool {
return sortedInputs[i].WitnessType().String() <
sortedInputs[j].WitnessType().String()
})
var parts []string
for _, i := range sortedInputs {
part := fmt.Sprintf("%v (%v)",
*i.OutPoint(), i.WitnessType())
parts = append(parts, part)
}
return strings.Join(parts, ", ")
}