lnd.xprv/routing/pathfind_test.go
Olaoluwa Osuntokun f494433cbf
routing+server: add new QueryBandwidth method to reduce outbound failures
In this commit, we introduce a new method to the channel router's config
struct: QueryBandwidth. This method allows the channel router to query
for the up-to-date available bandwidth of a particular link. In the case
that this link emanates from/to us, then we can query the switch to see
if the link is active (if not bandwidth is zero), and return the current
best estimate for the available bandwidth of the link. If the link,
isn't one of ours, then we can thread through the total maximal
capacity of the link.

In order to implement this, the missionControl struct will now query the
switch upon creation to obtain a fresh bandwidth snapshot. We take care
to do this in a distinct db transaction in order to now introduced a
circular waiting condition between the mutexes in bolt, and the channel
state machine.

The aim of this change is to reduce the number of unnecessary failures
during HTLC payment routing as we'll now skip any links that are
inactive, or just don't have enough bandwidth for the payment. Nodes
that have several hundred channels (all of which in various states of
activity and available bandwidth) should see a nice gain from this w.r.t
payment latency.
2018-05-14 16:23:54 -07:00

1053 lines
32 KiB
Go

package routing
import (
"bytes"
"encoding/binary"
"encoding/hex"
"encoding/json"
"errors"
"io/ioutil"
"math/big"
"net"
"os"
"strings"
"testing"
"time"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
prand "math/rand"
)
const (
// basicGraphFilePath is the file path for a basic graph used within
// the tests. The basic graph consists of 5 nodes with 5 channels
// connecting them.
basicGraphFilePath = "testdata/basic_graph.json"
// excessiveHopsGraphFilePath is a file path which stores the JSON dump
// of a graph which was previously triggering an erroneous excessive
// hops error. The error has since been fixed, but a test case
// exercising it is kept around to guard against regressions.
excessiveHopsGraphFilePath = "testdata/excessive_hops.json"
// specExampleFilePath is a file path which stores an example which
// implementations will use in order to ensure that they're calculating
// the payload for each hop in path properly.
specExampleFilePath = "testdata/spec_example.json"
)
var (
randSource = prand.NewSource(time.Now().Unix())
randInts = prand.New(randSource)
testSig = &btcec.Signature{
R: new(big.Int),
S: new(big.Int),
}
_, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10)
_, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10)
testAuthProof = channeldb.ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
}
)
// testGraph is the struct which corresponds to the JSON format used to encode
// graphs within the files in the testdata directory.
//
// TODO(roasbeef): add test graph auto-generator
type testGraph struct {
Info []string `json:"info"`
Nodes []testNode `json:"nodes"`
Edges []testChan `json:"edges"`
}
// testNode represents a node within the test graph above. We skip certain
// information such as the node's IP address as that information isn't needed
// for our tests.
type testNode struct {
Source bool `json:"source"`
PubKey string `json:"pubkey"`
Alias string `json:"alias"`
}
// testChan represents the JSON version of a payment channel. This struct
// matches the Json that's encoded under the "edges" key within the test graph.
type testChan struct {
Node1 string `json:"node_1"`
Node2 string `json:"node_2"`
ChannelID uint64 `json:"channel_id"`
ChannelPoint string `json:"channel_point"`
Flags uint16 `json:"flags"`
Expiry uint16 `json:"expiry"`
MinHTLC int64 `json:"min_htlc"`
FeeBaseMsat int64 `json:"fee_base_msat"`
FeeRate int64 `json:"fee_rate"`
Capacity int64 `json:"capacity"`
}
// makeTestGraph creates a new instance of a channeldb.ChannelGraph for testing
// purposes. A callback which cleans up the created temporary directories is
// also returned and intended to be executed after the test completes.
func makeTestGraph() (*channeldb.ChannelGraph, func(), error) {
// First, create a temporary directory to be used for the duration of
// this test.
tempDirName, err := ioutil.TempDir("", "channeldb")
if err != nil {
return nil, nil, err
}
// Next, create channeldb for the first time.
cdb, err := channeldb.Open(tempDirName)
if err != nil {
return nil, nil, err
}
cleanUp := func() {
cdb.Close()
os.RemoveAll(tempDirName)
}
return cdb.ChannelGraph(), cleanUp, nil
}
// aliasMap is a map from a node's alias to its public key. This type is
// provided in order to allow easily look up from the human memorable alias
// to an exact node's public key.
type aliasMap map[string]*btcec.PublicKey
// parseTestGraph returns a fully populated ChannelGraph given a path to a JSON
// file which encodes a test graph.
func parseTestGraph(path string) (*channeldb.ChannelGraph, func(), aliasMap, error) {
graphJSON, err := ioutil.ReadFile(path)
if err != nil {
return nil, nil, nil, err
}
// First unmarshal the JSON graph into an instance of the testGraph
// struct. Using the struct tags created above in the struct, the JSON
// will be properly parsed into the struct above.
var g testGraph
if err := json.Unmarshal(graphJSON, &g); err != nil {
return nil, nil, nil, err
}
// We'll use this fake address for the IP address of all the nodes in
// our tests. This value isn't needed for path finding so it doesn't
// need to be unique.
var testAddrs []net.Addr
testAddr, err := net.ResolveTCPAddr("tcp", "192.0.0.1:8888")
if err != nil {
return nil, nil, nil, err
}
testAddrs = append(testAddrs, testAddr)
// Next, create a temporary graph database for usage within the test.
graph, cleanUp, err := makeTestGraph()
if err != nil {
return nil, nil, nil, err
}
aliasMap := make(map[string]*btcec.PublicKey)
var source *channeldb.LightningNode
// First we insert all the nodes within the graph as vertexes.
for _, node := range g.Nodes {
pubBytes, err := hex.DecodeString(node.PubKey)
if err != nil {
return nil, nil, nil, err
}
dbNode := &channeldb.LightningNode{
HaveNodeAnnouncement: true,
AuthSigBytes: testSig.Serialize(),
LastUpdate: time.Now(),
Addresses: testAddrs,
Alias: node.Alias,
Features: testFeatures,
}
copy(dbNode.PubKeyBytes[:], pubBytes)
// We require all aliases within the graph to be unique for our
// tests.
if _, ok := aliasMap[node.Alias]; ok {
return nil, nil, nil, errors.New("aliases for nodes " +
"must be unique!")
}
pub, err := btcec.ParsePubKey(pubBytes, btcec.S256())
if err != nil {
return nil, nil, nil, err
}
// If the alias is unique, then add the node to the
// alias map for easy lookup.
aliasMap[node.Alias] = pub
// If the node is tagged as the source, then we create a
// pointer to is so we can mark the source in the graph
// properly.
if node.Source {
// If we come across a node that's marked as the
// source, and we've already set the source in a prior
// iteration, then the JSON has an error as only ONE
// node can be the source in the graph.
if source != nil {
return nil, nil, nil, errors.New("JSON is invalid " +
"multiple nodes are tagged as the source")
}
source = dbNode
}
// With the node fully parsed, add it as a vertex within the
// graph.
if err := graph.AddLightningNode(dbNode); err != nil {
return nil, nil, nil, err
}
}
if source != nil {
// Set the selected source node
if err := graph.SetSourceNode(source); err != nil {
return nil, nil, nil, err
}
}
// With all the vertexes inserted, we can now insert the edges into the
// test graph.
for _, edge := range g.Edges {
node1Bytes, err := hex.DecodeString(edge.Node1)
if err != nil {
return nil, nil, nil, err
}
node2Bytes, err := hex.DecodeString(edge.Node2)
if err != nil {
return nil, nil, nil, err
}
fundingTXID := strings.Split(edge.ChannelPoint, ":")[0]
txidBytes, err := chainhash.NewHashFromStr(fundingTXID)
if err != nil {
return nil, nil, nil, err
}
fundingPoint := wire.OutPoint{
Hash: *txidBytes,
Index: 0,
}
// We first insert the existence of the edge between the two
// nodes.
edgeInfo := channeldb.ChannelEdgeInfo{
ChannelID: edge.ChannelID,
AuthProof: &testAuthProof,
ChannelPoint: fundingPoint,
Capacity: btcutil.Amount(edge.Capacity),
}
copy(edgeInfo.NodeKey1Bytes[:], node1Bytes)
copy(edgeInfo.NodeKey2Bytes[:], node2Bytes)
copy(edgeInfo.BitcoinKey1Bytes[:], node1Bytes)
copy(edgeInfo.BitcoinKey2Bytes[:], node2Bytes)
err = graph.AddChannelEdge(&edgeInfo)
if err != nil && err != channeldb.ErrEdgeAlreadyExist {
return nil, nil, nil, err
}
edgePolicy := &channeldb.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
Flags: lnwire.ChanUpdateFlag(edge.Flags),
ChannelID: edge.ChannelID,
LastUpdate: time.Now(),
TimeLockDelta: edge.Expiry,
MinHTLC: lnwire.MilliSatoshi(edge.MinHTLC),
FeeBaseMSat: lnwire.MilliSatoshi(edge.FeeBaseMsat),
FeeProportionalMillionths: lnwire.MilliSatoshi(edge.FeeRate),
}
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
return nil, nil, nil, err
}
}
return graph, cleanUp, aliasMap, nil
}
func TestBasicGraphPathFinding(t *testing.T) {
t.Parallel()
graph, cleanUp, aliases, err := parseTestGraph(basicGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
sourceVertex := Vertex(sourceNode.PubKeyBytes)
ignoredEdges := make(map[uint64]struct{})
ignoredVertexes := make(map[Vertex]struct{})
// With the test graph loaded, we'll test some basic path finding using
// the pre-generated graph. Consult the testdata/basic_graph.json file
// to follow along with the assumptions we'll use to test the path
// finding.
const (
startingHeight = 100
finalHopCLTV = 1
)
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := aliases["sophon"]
path, err := findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, paymentAmt, nil,
)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
route, err := newRoute(paymentAmt, sourceVertex, path, startingHeight,
finalHopCLTV)
if err != nil {
t.Fatalf("unable to create path: %v", err)
}
// The length of the route selected should be of exactly length two.
if len(route.Hops) != 2 {
t.Fatalf("route is of incorrect length, expected %v got %v", 2,
len(route.Hops))
}
// As each hop only decrements a single block from the time-lock, the
// total time lock value should two more than our starting block
// height.
if route.TotalTimeLock != 102 {
t.Fatalf("expected time lock of %v, instead have %v", 2,
route.TotalTimeLock)
}
// The first hop in the path should be an edge from roasbeef to goku.
if !bytes.Equal(route.Hops[0].Channel.Node.PubKeyBytes[:],
aliases["songoku"].SerializeCompressed()) {
t.Fatalf("first hop should be goku, is instead: %v",
route.Hops[0].Channel.Node.Alias)
}
// The second hop should be from goku to sophon.
if !bytes.Equal(route.Hops[1].Channel.Node.PubKeyBytes[:],
aliases["sophon"].SerializeCompressed()) {
t.Fatalf("second hop should be sophon, is instead: %v",
route.Hops[0].Channel.Node.Alias)
}
// Next, we'll assert that the "next hop" field in each route payload
// properly points to the channel ID that the HTLC should be forwarded
// along.
hopPayloads := route.ToHopPayloads()
if len(hopPayloads) != 2 {
t.Fatalf("incorrect number of hop payloads: expected %v, got %v",
2, len(hopPayloads))
}
// The first hop should point to the second hop.
var expectedHop [8]byte
binary.BigEndian.PutUint64(expectedHop[:], route.Hops[1].Channel.ChannelID)
if !bytes.Equal(hopPayloads[0].NextAddress[:], expectedHop[:]) {
t.Fatalf("first hop has incorrect next hop: expected %x, got %x",
expectedHop[:], hopPayloads[0].NextAddress)
}
// The second hop should have a next hop value of all zeroes in order
// to indicate it's the exit hop.
var exitHop [8]byte
if !bytes.Equal(hopPayloads[1].NextAddress[:], exitHop[:]) {
t.Fatalf("first hop has incorrect next hop: expected %x, got %x",
exitHop[:], hopPayloads[0].NextAddress)
}
// We'll also assert that the outgoing CLTV value for each hop was set
// accordingly.
if route.Hops[0].OutgoingTimeLock != 101 {
t.Fatalf("expected outgoing time-lock of %v, instead have %v",
1, route.Hops[0].OutgoingTimeLock)
}
if route.Hops[1].OutgoingTimeLock != 101 {
t.Fatalf("outgoing time-lock for final hop is incorrect: "+
"expected %v, got %v", 1, route.Hops[1].OutgoingTimeLock)
}
// Additionally, we'll ensure that the amount to forward, and fees
// computed for each hop are correct.
firstHopFee := computeFee(
paymentAmt, route.Hops[1].Channel.ChannelEdgePolicy,
)
if route.Hops[0].Fee != firstHopFee {
t.Fatalf("first hop fee incorrect: expected %v, got %v",
firstHopFee, route.Hops[0].Fee)
}
if route.TotalAmount != paymentAmt+firstHopFee {
t.Fatalf("first hop forwarding amount incorrect: expected %v, got %v",
paymentAmt+firstHopFee, route.TotalAmount)
}
if route.Hops[1].Fee != 0 {
t.Fatalf("first hop fee incorrect: expected %v, got %v",
firstHopFee, 0)
}
if route.Hops[1].AmtToForward != paymentAmt {
t.Fatalf("second hop forwarding amount incorrect: expected %v, got %v",
paymentAmt+firstHopFee, route.Hops[1].AmtToForward)
}
// Finally, the next and prev hop maps should be properly set.
//
// The previous hop from goku should be the channel from roasbeef, and
// the next hop should be the channel to sophon.
gokuPrevChan, ok := route.prevHopChannel(aliases["songoku"])
if !ok {
t.Fatalf("goku didn't have next chan but should have")
}
if gokuPrevChan.ChannelID != route.Hops[0].Channel.ChannelID {
t.Fatalf("incorrect prev chan: expected %v, got %v",
gokuPrevChan.ChannelID, route.Hops[0].Channel.ChannelID)
}
gokuNextChan, ok := route.nextHopChannel(aliases["songoku"])
if !ok {
t.Fatalf("goku didn't have prev chan but should have")
}
if gokuNextChan.ChannelID != route.Hops[1].Channel.ChannelID {
t.Fatalf("incorrect prev chan: expected %v, got %v",
gokuNextChan.ChannelID, route.Hops[1].Channel.ChannelID)
}
// Sophon shouldn't have a next chan, but she should have a prev chan.
if _, ok := route.nextHopChannel(aliases["sophon"]); ok {
t.Fatalf("incorrect next hop map, no vertexes should " +
"be after sophon")
}
sophonPrevEdge, ok := route.prevHopChannel(aliases["sophon"])
if !ok {
t.Fatalf("sophon didn't have prev chan but should have")
}
if sophonPrevEdge.ChannelID != route.Hops[1].Channel.ChannelID {
t.Fatalf("incorrect prev chan: expected %v, got %v",
sophonPrevEdge.ChannelID, route.Hops[1].Channel.ChannelID)
}
// Next, attempt to query for a path to Luo Ji for 100 satoshis, there
// exist two possible paths in the graph, but the shorter (1 hop) path
// should be selected.
target = aliases["luoji"]
path, err = findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, paymentAmt, nil,
)
if err != nil {
t.Fatalf("unable to find route: %v", err)
}
route, err = newRoute(paymentAmt, sourceVertex, path, startingHeight,
finalHopCLTV)
if err != nil {
t.Fatalf("unable to create path: %v", err)
}
// The length of the path should be exactly one hop as it's the
// "shortest" known path in the graph.
if len(route.Hops) != 1 {
t.Fatalf("shortest path not selected, should be of length 1, "+
"is instead: %v", len(route.Hops))
}
// As we have a direct path, the total time lock value should be
// exactly the current block height plus one.
if route.TotalTimeLock != 101 {
t.Fatalf("expected time lock of %v, instead have %v", 1,
route.TotalTimeLock)
}
// Additionally, since this is a single-hop payment, we shouldn't have
// to pay any fees in total, so the total amount should be the payment
// amount.
if route.TotalAmount != paymentAmt {
t.Fatalf("incorrect total amount, expected %v got %v",
paymentAmt, route.TotalAmount)
}
}
func TestPathFindingWithAdditionalEdges(t *testing.T) {
t.Parallel()
graph, cleanUp, aliases, err := parseTestGraph(basicGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
paymentAmt := lnwire.NewMSatFromSatoshis(100)
// In this test, we'll test that we're able to find paths through
// private channels when providing them as additional edges in our path
// finding algorithm. To do so, we'll create a new node, doge, and
// create a private channel between it and songoku. We'll then attempt
// to find a path from our source node, roasbeef, to doge.
dogePubKeyHex := "03dd46ff29a6941b4a2607525b043ec9b020b3f318a1bf281536fd7011ec59c882"
dogePubKeyBytes, err := hex.DecodeString(dogePubKeyHex)
if err != nil {
t.Fatalf("unable to decode public key: %v", err)
}
dogePubKey, err := btcec.ParsePubKey(dogePubKeyBytes, btcec.S256())
if err != nil {
t.Fatalf("unable to parse public key from bytes: %v", err)
}
doge := &channeldb.LightningNode{}
doge.AddPubKey(dogePubKey)
doge.Alias = "doge"
// Create the channel edge going from songoku to doge and include it in
// our map of additional edges.
songokuToDoge := &channeldb.ChannelEdgePolicy{
Node: doge,
ChannelID: 1337,
FeeBaseMSat: 1,
FeeProportionalMillionths: 1000,
TimeLockDelta: 9,
}
additionalEdges := map[Vertex][]*channeldb.ChannelEdgePolicy{
NewVertex(aliases["songoku"]): {songokuToDoge},
}
// We should now be able to find a path from roasbeef to doge.
path, err := findPath(
nil, graph, additionalEdges, sourceNode, dogePubKey, nil, nil,
paymentAmt, nil,
)
if err != nil {
t.Fatalf("unable to find private path to doge: %v", err)
}
// The path should represent the following hops:
// roasbeef -> songoku -> doge
assertExpectedPath(t, path, "songoku", "doge")
}
func TestKShortestPathFinding(t *testing.T) {
t.Parallel()
graph, cleanUp, aliases, err := parseTestGraph(basicGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
// In this test we'd like to ensure that our algorithm to find the
// k-shortest paths from a given source node to any destination node
// works as expected.
// In our basic_graph.json, there exist two paths from roasbeef to luo
// ji. Our algorithm should properly find both paths, and also rank
// them in order of their total "distance".
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := aliases["luoji"]
paths, err := findPaths(
nil, graph, sourceNode, target, paymentAmt, 100,
nil,
)
if err != nil {
t.Fatalf("unable to find paths between roasbeef and "+
"luo ji: %v", err)
}
// The algorithm should have found two paths from roasbeef to luo ji.
if len(paths) != 2 {
t.Fatalf("two path shouldn't been found, instead %v were",
len(paths))
}
// Additionally, the total hop length of the first path returned should
// be _less_ than that of the second path returned.
if len(paths[0]) > len(paths[1]) {
t.Fatalf("paths found not ordered properly")
}
// The first route should be a direct route to luo ji.
assertExpectedPath(t, paths[0], "roasbeef", "luoji")
// The second route should be a route to luo ji via satoshi.
assertExpectedPath(t, paths[1], "roasbeef", "satoshi", "luoji")
}
func TestNewRoutePathTooLong(t *testing.T) {
t.Skip()
// Ensure that potential paths which are over the maximum hop-limit are
// rejected.
graph, cleanUp, aliases, err := parseTestGraph(excessiveHopsGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
ignoredEdges := make(map[uint64]struct{})
ignoredVertexes := make(map[Vertex]struct{})
paymentAmt := lnwire.NewMSatFromSatoshis(100)
// We start by confirming that routing a payment 20 hops away is possible.
// Alice should be able to find a valid route to ursula.
target := aliases["ursula"]
_, err = findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, paymentAmt, nil,
)
if err != nil {
t.Fatalf("path should have been found")
}
// Vincent is 21 hops away from Alice, and thus no valid route should be
// presented to Alice.
target = aliases["vincent"]
path, err := findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, paymentAmt, nil,
)
if err == nil {
t.Fatalf("should not have been able to find path, supposed to be "+
"greater than 20 hops, found route with %v hops",
len(path))
}
}
func TestPathNotAvailable(t *testing.T) {
t.Parallel()
graph, cleanUp, _, err := parseTestGraph(basicGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
ignoredEdges := make(map[uint64]struct{})
ignoredVertexes := make(map[Vertex]struct{})
// With the test graph loaded, we'll test that queries for target that
// are either unreachable within the graph, or unknown result in an
// error.
unknownNodeStr := "03dd46ff29a6941b4a2607525b043ec9b020b3f318a1bf281536fd7011ec59c882"
unknownNodeBytes, err := hex.DecodeString(unknownNodeStr)
if err != nil {
t.Fatalf("unable to parse bytes: %v", err)
}
unknownNode, err := btcec.ParsePubKey(unknownNodeBytes, btcec.S256())
if err != nil {
t.Fatalf("unable to parse pubkey: %v", err)
}
_, err = findPath(
nil, graph, nil, sourceNode, unknownNode, ignoredVertexes,
ignoredEdges, 100, nil,
)
if !IsError(err, ErrNoPathFound) {
t.Fatalf("path shouldn't have been found: %v", err)
}
}
func TestPathInsufficientCapacity(t *testing.T) {
t.Parallel()
graph, cleanUp, aliases, err := parseTestGraph(basicGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
ignoredEdges := make(map[uint64]struct{})
ignoredVertexes := make(map[Vertex]struct{})
// Next, test that attempting to find a path in which the current
// channel graph cannot support due to insufficient capacity triggers
// an error.
// To test his we'll attempt to make a payment of 1 BTC, or 100 million
// satoshis. The largest channel in the basic graph is of size 100k
// satoshis, so we shouldn't be able to find a path to sophon even
// though we have a 2-hop link.
target := aliases["sophon"]
payAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
_, err = findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, payAmt, nil,
)
if !IsError(err, ErrNoPathFound) {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
}
// TestRouteFailMinHTLC tests that if we attempt to route an HTLC which is
// smaller than the advertised minHTLC of an edge, then path finding fails.
func TestRouteFailMinHTLC(t *testing.T) {
graph, cleanUp, aliases, err := parseTestGraph(basicGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
ignoredEdges := make(map[uint64]struct{})
ignoredVertexes := make(map[Vertex]struct{})
// We'll not attempt to route an HTLC of 10 SAT from roasbeef to Son
// Goku. However, the min HTLC of Son Goku is 1k SAT, as a result, this
// attempt should fail.
target := aliases["songoku"]
payAmt := lnwire.MilliSatoshi(10)
_, err = findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, payAmt, nil,
)
if !IsError(err, ErrNoPathFound) {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
}
// TestRouteFailDisabledEdge tests that if we attempt to route to an edge
// that's disabled, then that edge is disqualified, and the routing attempt
// will fail.
func TestRouteFailDisabledEdge(t *testing.T) {
graph, cleanUp, aliases, err := parseTestGraph(basicGraphFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
ignoredEdges := make(map[uint64]struct{})
ignoredVertexes := make(map[Vertex]struct{})
// First, we'll try to route from roasbeef -> songoku. This should
// succeed without issue, and return a single path.
target := aliases["songoku"]
payAmt := lnwire.NewMSatFromSatoshis(10000)
_, err = findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, payAmt, nil,
)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
// First, we'll modify the edge from roasbeef -> songoku, to read that
// it's disabled.
_, gokuEdge, _, err := graph.FetchChannelEdgesByID(12345)
if err != nil {
t.Fatalf("unable to fetch goku's edge: %v", err)
}
gokuEdge.Flags = lnwire.ChanUpdateDisabled
if err := graph.UpdateEdgePolicy(gokuEdge); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// Now, if we attempt to route through that edge, we should get a
// failure as it is no longer eligible.
_, err = findPath(
nil, graph, nil, sourceNode, target, ignoredVertexes,
ignoredEdges, payAmt, nil,
)
if !IsError(err, ErrNoPathFound) {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
}
func TestPathInsufficientCapacityWithFee(t *testing.T) {
t.Parallel()
// TODO(roasbeef): encode live graph to json
// TODO(roasbeef): need to add a case, or modify the fee ratio for one
// to ensure that has going forward, but when fees are applied doesn't
// work
}
func TestPathFindSpecExample(t *testing.T) {
t.Parallel()
// All our path finding tests will assume a starting height of 100, so
// we'll pass that in to ensure that the router uses 100 as the current
// height.
const startingHeight = 100
ctx, cleanUp, err := createTestCtx(startingHeight, specExampleFilePath)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
const (
aliceFinalCLTV = 10
bobFinalCLTV = 20
carolFinalCLTV = 30
daveFinalCLTV = 40
)
// We'll first exercise the scenario of a direct payment from Bob to
// Carol, so we set "B" as the source node so path finding starts from
// Bob.
bob := ctx.aliases["B"]
bobNode, err := ctx.graph.FetchLightningNode(bob)
if err != nil {
t.Fatalf("unable to find bob: %v", err)
}
if err := ctx.graph.SetSourceNode(bobNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
// Query for a route of 4,999,999 mSAT to carol.
carol := ctx.aliases["C"]
const amt lnwire.MilliSatoshi = 4999999
routes, err := ctx.router.FindRoutes(carol, amt, 100)
if err != nil {
t.Fatalf("unable to find route: %v", err)
}
// We should come back with _exactly_ two routes.
if len(routes) != 2 {
t.Fatalf("expected %v routes, instead have: %v", 2,
len(routes))
}
// Now we'll examine the first route returned for correctness.
//
// It should be sending the exact payment amount as there are no
// additional hops.
firstRoute := routes[0]
if firstRoute.TotalAmount != amt {
t.Fatalf("wrong total amount: got %v, expected %v",
firstRoute.TotalAmount, amt)
}
if firstRoute.Hops[0].AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
firstRoute.Hops[0].AmtToForward, amt)
}
if firstRoute.Hops[0].Fee != 0 {
t.Fatalf("wrong hop fee: got %v, expected %v",
firstRoute.Hops[0].Fee, 0)
}
// The CLTV expiry should be the current height plus 9 (the expiry for
// the B -> C channel.
if firstRoute.TotalTimeLock !=
startingHeight+DefaultFinalCLTVDelta {
t.Fatalf("wrong total time lock: got %v, expecting %v",
firstRoute.TotalTimeLock,
startingHeight+DefaultFinalCLTVDelta)
}
// Next, we'll set A as the source node so we can assert that we create
// the proper route for any queries starting with Alice.
alice := ctx.aliases["A"]
aliceNode, err := ctx.graph.FetchLightningNode(alice)
if err != nil {
t.Fatalf("unable to find alice: %v", err)
}
if err := ctx.graph.SetSourceNode(aliceNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
ctx.router.selfNode = aliceNode
source, err := ctx.graph.SourceNode()
if err != nil {
t.Fatalf("unable to retrieve source node: %v", err)
}
if !bytes.Equal(source.PubKeyBytes[:], alice.SerializeCompressed()) {
t.Fatalf("source node not set")
}
// We'll now request a route from A -> B -> C.
ctx.router.routeCache = make(map[routeTuple][]*Route)
routes, err = ctx.router.FindRoutes(carol, amt, 100)
if err != nil {
t.Fatalf("unable to find routes: %v", err)
}
// We should come back with _exactly_ two routes.
if len(routes) != 2 {
t.Fatalf("expected %v routes, instead have: %v", 2,
len(routes))
}
// Both routes should be two hops.
if len(routes[0].Hops) != 2 {
t.Fatalf("route should be %v hops, is instead %v", 2,
len(routes[0].Hops))
}
if len(routes[1].Hops) != 2 {
t.Fatalf("route should be %v hops, is instead %v", 2,
len(routes[1].Hops))
}
// The total amount should factor in a fee of 10199 and also use a CLTV
// delta total of 29 (20 + 9),
expectedAmt := lnwire.MilliSatoshi(5010198)
if routes[0].TotalAmount != expectedAmt {
t.Fatalf("wrong amount: got %v, expected %v",
routes[0].TotalAmount, expectedAmt)
}
if routes[0].TotalTimeLock != startingHeight+29 {
t.Fatalf("wrong total time lock: got %v, expecting %v",
routes[0].TotalTimeLock, startingHeight+29)
}
// Ensure that the hops of the first route are properly crafted.
//
// After taking the fee, Bob should be forwarding the remainder which
// is the exact payment to Bob.
if routes[0].Hops[0].AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
routes[0].Hops[0].AmtToForward, amt)
}
// We shouldn't pay any fee for the first, hop, but the fee for the
// second hop posted fee should be exactly:
// The fee that we pay for the second hop will be "applied to the first
// hop, so we should get a fee of exactly:
//
// * 200 + 4999999 * 2000 / 1000000 = 10199
if routes[0].Hops[0].Fee != 10199 {
t.Fatalf("wrong hop fee: got %v, expected %v",
routes[0].Hops[0].Fee, 10199)
}
// While for the final hop, as there's no additional hop afterwards, we
// pay no fee.
if routes[0].Hops[1].Fee != 0 {
t.Fatalf("wrong hop fee: got %v, expected %v",
routes[0].Hops[0].Fee, 0)
}
// The outgoing CLTV value itself should be the current height plus 30
// to meet Carol's requirements.
if routes[0].Hops[0].OutgoingTimeLock !=
startingHeight+DefaultFinalCLTVDelta {
t.Fatalf("wrong total time lock: got %v, expecting %v",
routes[0].Hops[0].OutgoingTimeLock,
startingHeight+DefaultFinalCLTVDelta)
}
// For B -> C, we assert that the final hop also has the proper
// parameters.
lastHop := routes[0].Hops[1]
if lastHop.AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
lastHop.AmtToForward, amt)
}
if lastHop.OutgoingTimeLock !=
startingHeight+DefaultFinalCLTVDelta {
t.Fatalf("wrong total time lock: got %v, expecting %v",
lastHop.OutgoingTimeLock,
startingHeight+DefaultFinalCLTVDelta)
}
// We'll also make similar assertions for the second route from A to C
// via D.
secondRoute := routes[1]
expectedAmt = 5020398
if secondRoute.TotalAmount != expectedAmt {
t.Fatalf("wrong amount: got %v, expected %v",
secondRoute.TotalAmount, expectedAmt)
}
expectedTimeLock := startingHeight + daveFinalCLTV + DefaultFinalCLTVDelta
if secondRoute.TotalTimeLock != uint32(expectedTimeLock) {
t.Fatalf("wrong total time lock: got %v, expecting %v",
secondRoute.TotalTimeLock, expectedTimeLock)
}
onionPayload := secondRoute.Hops[0]
if onionPayload.AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
onionPayload.AmtToForward, amt)
}
expectedTimeLock = startingHeight + DefaultFinalCLTVDelta
if onionPayload.OutgoingTimeLock != uint32(expectedTimeLock) {
t.Fatalf("wrong outgoing time lock: got %v, expecting %v",
onionPayload.OutgoingTimeLock,
expectedTimeLock)
}
// The B -> C hop should also be identical as the prior cases.
lastHop = secondRoute.Hops[1]
if lastHop.AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
lastHop.AmtToForward, amt)
}
if lastHop.OutgoingTimeLock !=
startingHeight+DefaultFinalCLTVDelta {
t.Fatalf("wrong total time lock: got %v, expecting %v",
lastHop.OutgoingTimeLock,
startingHeight+DefaultFinalCLTVDelta)
}
}
func assertExpectedPath(t *testing.T, path []*ChannelHop, nodeAliases ...string) {
if len(path) != len(nodeAliases) {
t.Fatal("number of hops and number of aliases do not match")
}
for i, hop := range path {
if hop.Node.Alias != nodeAliases[i] {
t.Fatalf("expected %v to be pos #%v in hop, instead "+
"%v was", nodeAliases[i], i, hop.Node.Alias)
}
}
}