lnd.xprv/discovery/syncer_test.go
Wilmer Paulino 042241dc48
discovery: allow gossip syncer to perform historical syncs
In this commit, we introduce the ability for gossip syncers to perform
historical syncs. This allows us to reconcile any channels we're missing
that the remote peer has starting from the genesis block of the chain.
This commit serves as a prerequisite to the SyncManager, introduced in a
later commit, where we'll be able to make spot checks by performing
historical syncs with peers to ensure we have as much of the graph as
possible.
2019-04-03 15:08:30 -07:00

2143 lines
60 KiB
Go

package discovery
import (
"math"
"reflect"
"testing"
"time"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/lnwire"
)
const (
defaultEncoding = lnwire.EncodingSortedPlain
latestKnownHeight = 1337
startHeight = latestKnownHeight - chanRangeQueryBuffer
)
var (
defaultChunkSize = encodingTypeToChunkSize[defaultEncoding]
)
type horizonQuery struct {
chain chainhash.Hash
start time.Time
end time.Time
}
type filterRangeReq struct {
startHeight, endHeight uint32
}
type mockChannelGraphTimeSeries struct {
highestID lnwire.ShortChannelID
horizonReq chan horizonQuery
horizonResp chan []lnwire.Message
filterReq chan []lnwire.ShortChannelID
filterResp chan []lnwire.ShortChannelID
filterRangeReqs chan filterRangeReq
filterRangeResp chan []lnwire.ShortChannelID
annReq chan []lnwire.ShortChannelID
annResp chan []lnwire.Message
updateReq chan lnwire.ShortChannelID
updateResp chan []*lnwire.ChannelUpdate
}
func newMockChannelGraphTimeSeries(
hID lnwire.ShortChannelID) *mockChannelGraphTimeSeries {
return &mockChannelGraphTimeSeries{
highestID: hID,
horizonReq: make(chan horizonQuery, 1),
horizonResp: make(chan []lnwire.Message, 1),
filterReq: make(chan []lnwire.ShortChannelID, 1),
filterResp: make(chan []lnwire.ShortChannelID, 1),
filterRangeReqs: make(chan filterRangeReq, 1),
filterRangeResp: make(chan []lnwire.ShortChannelID, 1),
annReq: make(chan []lnwire.ShortChannelID, 1),
annResp: make(chan []lnwire.Message, 1),
updateReq: make(chan lnwire.ShortChannelID, 1),
updateResp: make(chan []*lnwire.ChannelUpdate, 1),
}
}
func (m *mockChannelGraphTimeSeries) HighestChanID(chain chainhash.Hash) (*lnwire.ShortChannelID, error) {
return &m.highestID, nil
}
func (m *mockChannelGraphTimeSeries) UpdatesInHorizon(chain chainhash.Hash,
startTime time.Time, endTime time.Time) ([]lnwire.Message, error) {
m.horizonReq <- horizonQuery{
chain, startTime, endTime,
}
return <-m.horizonResp, nil
}
func (m *mockChannelGraphTimeSeries) FilterKnownChanIDs(chain chainhash.Hash,
superSet []lnwire.ShortChannelID) ([]lnwire.ShortChannelID, error) {
m.filterReq <- superSet
return <-m.filterResp, nil
}
func (m *mockChannelGraphTimeSeries) FilterChannelRange(chain chainhash.Hash,
startHeight, endHeight uint32) ([]lnwire.ShortChannelID, error) {
m.filterRangeReqs <- filterRangeReq{startHeight, endHeight}
return <-m.filterRangeResp, nil
}
func (m *mockChannelGraphTimeSeries) FetchChanAnns(chain chainhash.Hash,
shortChanIDs []lnwire.ShortChannelID) ([]lnwire.Message, error) {
m.annReq <- shortChanIDs
return <-m.annResp, nil
}
func (m *mockChannelGraphTimeSeries) FetchChanUpdates(chain chainhash.Hash,
shortChanID lnwire.ShortChannelID) ([]*lnwire.ChannelUpdate, error) {
m.updateReq <- shortChanID
return <-m.updateResp, nil
}
var _ ChannelGraphTimeSeries = (*mockChannelGraphTimeSeries)(nil)
func newTestSyncer(hID lnwire.ShortChannelID,
encodingType lnwire.ShortChanIDEncoding, chunkSize int32,
) (chan []lnwire.Message, *GossipSyncer, *mockChannelGraphTimeSeries) {
msgChan := make(chan []lnwire.Message, 20)
cfg := gossipSyncerCfg{
channelSeries: newMockChannelGraphTimeSeries(hID),
encodingType: encodingType,
chunkSize: chunkSize,
sendToPeer: func(msgs ...lnwire.Message) error {
msgChan <- msgs
return nil
},
delayedQueryReplyInterval: 2 * time.Second,
}
syncer := newGossipSyncer(cfg)
return msgChan, syncer, cfg.channelSeries.(*mockChannelGraphTimeSeries)
}
// TestGossipSyncerFilterGossipMsgsNoHorizon tests that if the remote peer
// doesn't have a horizon set, then we won't send any incoming messages to it.
func TestGossipSyncerFilterGossipMsgsNoHorizon(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// With the syncer created, we'll create a set of messages to filter
// through the gossiper to the target peer.
msgs := []msgWithSenders{
{
msg: &lnwire.NodeAnnouncement{Timestamp: uint32(time.Now().Unix())},
},
{
msg: &lnwire.NodeAnnouncement{Timestamp: uint32(time.Now().Unix())},
},
}
// We'll then attempt to filter the set of messages through the target
// peer.
syncer.FilterGossipMsgs(msgs...)
// As the remote peer doesn't yet have a gossip timestamp set, we
// shouldn't receive any outbound messages.
select {
case msg := <-msgChan:
t.Fatalf("received message but shouldn't have: %v",
spew.Sdump(msg))
case <-time.After(time.Millisecond * 10):
}
}
func unixStamp(a int64) uint32 {
t := time.Unix(a, 0)
return uint32(t.Unix())
}
// TestGossipSyncerFilterGossipMsgsAll tests that we're able to properly filter
// out a set of incoming messages based on the set remote update horizon for a
// peer. We tests all messages type, and all time straddling. We'll also send a
// channel ann that already has a channel update on disk.
func TestGossipSyncerFilterGossipMsgsAllInMemory(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// We'll create then apply a remote horizon for the target peer with a
// set of manually selected timestamps.
remoteHorizon := &lnwire.GossipTimestampRange{
FirstTimestamp: unixStamp(25000),
TimestampRange: uint32(1000),
}
syncer.remoteUpdateHorizon = remoteHorizon
// With the syncer created, we'll create a set of messages to filter
// through the gossiper to the target peer. Our message will consist of
// one node announcement above the horizon, one below. Additionally,
// we'll include a chan ann with an update below the horizon, one
// with an update timestamp above the horizon, and one without any
// channel updates at all.
msgs := []msgWithSenders{
{
// Node ann above horizon.
msg: &lnwire.NodeAnnouncement{Timestamp: unixStamp(25001)},
},
{
// Node ann below horizon.
msg: &lnwire.NodeAnnouncement{Timestamp: unixStamp(5)},
},
{
// Node ann above horizon.
msg: &lnwire.NodeAnnouncement{Timestamp: unixStamp(999999)},
},
{
// Ann tuple below horizon.
msg: &lnwire.ChannelAnnouncement{
ShortChannelID: lnwire.NewShortChanIDFromInt(10),
},
},
{
msg: &lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(10),
Timestamp: unixStamp(5),
},
},
{
// Ann tuple above horizon.
msg: &lnwire.ChannelAnnouncement{
ShortChannelID: lnwire.NewShortChanIDFromInt(15),
},
},
{
msg: &lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(15),
Timestamp: unixStamp(25002),
},
},
{
// Ann tuple beyond horizon.
msg: &lnwire.ChannelAnnouncement{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
},
},
{
msg: &lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
Timestamp: unixStamp(999999),
},
},
{
// Ann w/o an update at all, the update in the DB will
// be below the horizon.
msg: &lnwire.ChannelAnnouncement{
ShortChannelID: lnwire.NewShortChanIDFromInt(25),
},
},
}
// Before we send off the query, we'll ensure we send the missing
// channel update for that final ann. It will be below the horizon, so
// shouldn't be sent anyway.
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case query := <-chanSeries.updateReq:
// It should be asking for the chan updates of short
// chan ID 25.
expectedID := lnwire.NewShortChanIDFromInt(25)
if expectedID != query {
t.Fatalf("wrong query id: expected %v, got %v",
expectedID, query)
}
// If so, then we'll send back the missing update.
chanSeries.updateResp <- []*lnwire.ChannelUpdate{
{
ShortChannelID: lnwire.NewShortChanIDFromInt(25),
Timestamp: unixStamp(5),
},
}
}
}()
// We'll then instruct the gossiper to filter this set of messages.
syncer.FilterGossipMsgs(msgs...)
// Out of all the messages we sent in, we should only get 2 of them
// back.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msgs := <-msgChan:
if len(msgs) != 3 {
t.Fatalf("expected 3 messages instead got %v "+
"messages: %v", len(msgs), spew.Sdump(msgs))
}
}
}
// TestGossipSyncerApplyGossipFilter tests that once a gossip filter is applied
// for the remote peer, then we send the peer all known messages which are
// within their desired time horizon.
func TestGossipSyncerApplyGossipFilter(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// We'll apply this gossip horizon for the remote peer.
remoteHorizon := &lnwire.GossipTimestampRange{
FirstTimestamp: unixStamp(25000),
TimestampRange: uint32(1000),
}
// Before we apply the horizon, we'll dispatch a response to the query
// that the syncer will issue.
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case query := <-chanSeries.horizonReq:
// The syncer should have translated the time range
// into the proper star time.
if remoteHorizon.FirstTimestamp != uint32(query.start.Unix()) {
t.Fatalf("wrong query stamp: expected %v, got %v",
remoteHorizon.FirstTimestamp, query.start)
}
// For this first response, we'll send back an empty
// set of messages. As result, we shouldn't send any
// messages.
chanSeries.horizonResp <- []lnwire.Message{}
}
}()
// We'll now attempt to apply the gossip filter for the remote peer.
err := syncer.ApplyGossipFilter(remoteHorizon)
if err != nil {
t.Fatalf("unable to apply filter: %v", err)
}
// There should be no messages in the message queue as we didn't send
// the syncer and messages within the horizon.
select {
case msgs := <-msgChan:
t.Fatalf("expected no msgs, instead got %v", spew.Sdump(msgs))
default:
}
// If we repeat the process, but give the syncer a set of valid
// messages, then these should be sent to the remote peer.
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case query := <-chanSeries.horizonReq:
// The syncer should have translated the time range
// into the proper star time.
if remoteHorizon.FirstTimestamp != uint32(query.start.Unix()) {
t.Fatalf("wrong query stamp: expected %v, got %v",
remoteHorizon.FirstTimestamp, query.start)
}
// For this first response, we'll send back a proper
// set of messages that should be echoed back.
chanSeries.horizonResp <- []lnwire.Message{
&lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(25),
Timestamp: unixStamp(5),
},
}
}
}()
err = syncer.ApplyGossipFilter(remoteHorizon)
if err != nil {
t.Fatalf("unable to apply filter: %v", err)
}
// We should get back the exact same message.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msgs := <-msgChan:
if len(msgs) != 1 {
t.Fatalf("wrong messages: expected %v, got %v",
1, len(msgs))
}
}
}
// TestGossipSyncerReplyShortChanIDsWrongChainHash tests that if we get a chan
// ID query for the wrong chain, then we send back only a short ID end with
// complete=0.
func TestGossipSyncerReplyShortChanIDsWrongChainHash(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// We'll now ask the syncer to reply to a chan ID query, but for a
// chain that it isn't aware of.
err := syncer.replyShortChanIDs(&lnwire.QueryShortChanIDs{
ChainHash: *chaincfg.SimNetParams.GenesisHash,
})
if err != nil {
t.Fatalf("unable to process short chan ID's: %v", err)
}
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msgs := <-msgChan:
// We should get back exactly one message, that's a
// ReplyShortChanIDsEnd with a matching chain hash, and a
// complete value of zero.
if len(msgs) != 1 {
t.Fatalf("wrong messages: expected %v, got %v",
1, len(msgs))
}
msg, ok := msgs[0].(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("expected lnwire.ReplyShortChanIDsEnd "+
"instead got %T", msg)
}
if msg.ChainHash != *chaincfg.SimNetParams.GenesisHash {
t.Fatalf("wrong chain hash: expected %v, got %v",
msg.ChainHash, chaincfg.SimNetParams.GenesisHash)
}
if msg.Complete != 0 {
t.Fatalf("complete set incorrectly")
}
}
}
// TestGossipSyncerReplyShortChanIDs tests that in the case of a known chain
// hash for a QueryShortChanIDs, we'll return the set of matching
// announcements, as well as an ending ReplyShortChanIDsEnd message.
func TestGossipSyncerReplyShortChanIDs(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
queryChanIDs := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
}
queryReply := []lnwire.Message{
&lnwire.ChannelAnnouncement{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
},
&lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
Timestamp: unixStamp(999999),
},
&lnwire.NodeAnnouncement{Timestamp: unixStamp(25001)},
}
// We'll then craft a reply to the upcoming query for all the matching
// channel announcements for a particular set of short channel ID's.
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case chanIDs := <-chanSeries.annReq:
// The set of chan ID's should match exactly.
if !reflect.DeepEqual(chanIDs, queryChanIDs) {
t.Fatalf("wrong chan IDs: expected %v, got %v",
queryChanIDs, chanIDs)
}
// If they do, then we'll send back a response with
// some canned messages.
chanSeries.annResp <- queryReply
}
}()
// With our set up above complete, we'll now attempt to obtain a reply
// from the channel syncer for our target chan ID query.
err := syncer.replyShortChanIDs(&lnwire.QueryShortChanIDs{
ShortChanIDs: queryChanIDs,
})
if err != nil {
t.Fatalf("unable to query for chan IDs: %v", err)
}
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
// We should get back exactly 4 messages. The first 3 are the same
// messages we sent above, and the query end message.
case msgs := <-msgChan:
if len(msgs) != 4 {
t.Fatalf("wrong messages: expected %v, got %v",
4, len(msgs))
}
if !reflect.DeepEqual(queryReply, msgs[:3]) {
t.Fatalf("wrong set of messages: expected %v, got %v",
spew.Sdump(queryReply), spew.Sdump(msgs[:3]))
}
finalMsg, ok := msgs[3].(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("expected lnwire.ReplyShortChanIDsEnd "+
"instead got %T", msgs[3])
}
if finalMsg.Complete != 1 {
t.Fatalf("complete wasn't set")
}
}
}
// TestGossipSyncerReplyChanRangeQuery tests that if we receive a
// QueryChannelRange message, then we'll properly send back a chunked reply to
// the remote peer.
func TestGossipSyncerReplyChanRangeQuery(t *testing.T) {
t.Parallel()
// We'll use a smaller chunk size so we can easily test all the edge
// cases.
const chunkSize = 2
// We'll now create our test gossip syncer that will shortly respond to
// our canned query.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding, chunkSize,
)
// Next, we'll craft a query to ask for all the new chan ID's after
// block 100.
query := &lnwire.QueryChannelRange{
FirstBlockHeight: 100,
NumBlocks: 50,
}
// We'll then launch a goroutine to reply to the query with a set of 5
// responses. This will ensure we get two full chunks, and one partial
// chunk.
resp := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
lnwire.NewShortChanIDFromInt(4),
lnwire.NewShortChanIDFromInt(5),
}
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case filterReq := <-chanSeries.filterRangeReqs:
// We should be querying for block 100 to 150.
if filterReq.startHeight != 100 && filterReq.endHeight != 150 {
t.Fatalf("wrong height range: %v", spew.Sdump(filterReq))
}
// If the proper request was sent, then we'll respond
// with our set of short channel ID's.
chanSeries.filterRangeResp <- resp
}
}()
// With our goroutine active, we'll now issue the query.
if err := syncer.replyChanRangeQuery(query); err != nil {
t.Fatalf("unable to issue query: %v", err)
}
// At this point, we'll now wait for the syncer to send the chunked
// reply. We should get three sets of messages as two of them should be
// full, while the other is the final fragment.
const numExpectedChunks = 3
respMsgs := make([]lnwire.ShortChannelID, 0, 5)
for i := 0; i < numExpectedChunks; i++ {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
resp := msg[0]
rangeResp, ok := resp.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("expected ReplyChannelRange instead got %T", msg)
}
// If this is not the last chunk, then Complete should
// be set to zero. Otherwise, it should be one.
switch {
case i < 2 && rangeResp.Complete != 0:
t.Fatalf("non-final chunk should have "+
"Complete=0: %v", spew.Sdump(rangeResp))
case i == 2 && rangeResp.Complete != 1:
t.Fatalf("final chunk should have "+
"Complete=1: %v", spew.Sdump(rangeResp))
}
respMsgs = append(respMsgs, rangeResp.ShortChanIDs...)
}
}
// We should get back exactly 5 short chan ID's, and they should match
// exactly the ID's we sent as a reply.
if len(respMsgs) != len(resp) {
t.Fatalf("expected %v chan ID's, instead got %v",
len(resp), spew.Sdump(respMsgs))
}
if !reflect.DeepEqual(resp, respMsgs) {
t.Fatalf("mismatched response: expected %v, got %v",
spew.Sdump(resp), spew.Sdump(respMsgs))
}
}
// TestGossipSyncerReplyChanRangeQueryNoNewChans tests that if we issue a reply
// for a channel range query, and we don't have any new channels, then we send
// back a single response that signals completion.
func TestGossipSyncerReplyChanRangeQueryNoNewChans(t *testing.T) {
t.Parallel()
// We'll now create our test gossip syncer that will shortly respond to
// our canned query.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// Next, we'll craft a query to ask for all the new chan ID's after
// block 100.
query := &lnwire.QueryChannelRange{
FirstBlockHeight: 100,
NumBlocks: 50,
}
// We'll then launch a goroutine to reply to the query no new channels.
resp := []lnwire.ShortChannelID{}
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case filterReq := <-chanSeries.filterRangeReqs:
// We should be querying for block 100 to 150.
if filterReq.startHeight != 100 && filterReq.endHeight != 150 {
t.Fatalf("wrong height range: %v",
spew.Sdump(filterReq))
}
// If the proper request was sent, then we'll respond
// with our blank set of short chan ID's.
chanSeries.filterRangeResp <- resp
}
}()
// With our goroutine active, we'll now issue the query.
if err := syncer.replyChanRangeQuery(query); err != nil {
t.Fatalf("unable to issue query: %v", err)
}
// We should get back exactly one message, and the message should
// indicate that this is the final in the series.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
resp := msg[0]
rangeResp, ok := resp.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("expected ReplyChannelRange instead got %T", msg)
}
if len(rangeResp.ShortChanIDs) != 0 {
t.Fatalf("expected no chan ID's, instead "+
"got: %v", spew.Sdump(rangeResp.ShortChanIDs))
}
if rangeResp.Complete != 1 {
t.Fatalf("complete wasn't set")
}
}
}
// TestGossipSyncerGenChanRangeQuery tests that given the current best known
// channel ID, we properly generate an correct initial channel range response.
func TestGossipSyncerGenChanRangeQuery(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
const startingHeight = 200
_, syncer, _ := newTestSyncer(
lnwire.ShortChannelID{BlockHeight: startingHeight},
defaultEncoding, defaultChunkSize,
)
// If we now ask the syncer to generate an initial range query, it
// should return a start height that's back chanRangeQueryBuffer
// blocks.
rangeQuery, err := syncer.genChanRangeQuery(false)
if err != nil {
t.Fatalf("unable to resp: %v", err)
}
firstHeight := uint32(startingHeight - chanRangeQueryBuffer)
if rangeQuery.FirstBlockHeight != firstHeight {
t.Fatalf("incorrect chan range query: expected %v, %v",
rangeQuery.FirstBlockHeight,
startingHeight-chanRangeQueryBuffer)
}
if rangeQuery.NumBlocks != math.MaxUint32-firstHeight {
t.Fatalf("wrong num blocks: expected %v, got %v",
math.MaxUint32-firstHeight, rangeQuery.NumBlocks)
}
// Generating a historical range query should result in a start height
// of 0.
rangeQuery, err = syncer.genChanRangeQuery(true)
if err != nil {
t.Fatalf("unable to resp: %v", err)
}
if rangeQuery.FirstBlockHeight != 0 {
t.Fatalf("incorrect chan range query: expected %v, %v", 0,
rangeQuery.FirstBlockHeight)
}
if rangeQuery.NumBlocks != math.MaxUint32 {
t.Fatalf("wrong num blocks: expected %v, got %v",
math.MaxUint32, rangeQuery.NumBlocks)
}
}
// TestGossipSyncerProcessChanRangeReply tests that we'll properly buffer
// replied channel replies until we have the complete version. If no new
// channels were discovered, then we should go directly to the chanSsSynced
// state. Otherwise, we should go to the queryNewChannels states.
func TestGossipSyncerProcessChanRangeReply(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
_, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding, defaultChunkSize,
)
startingState := syncer.state
replies := []*lnwire.ReplyChannelRange{
{
ShortChanIDs: []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(10),
},
},
{
ShortChanIDs: []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(11),
},
},
{
Complete: 1,
ShortChanIDs: []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(12),
},
},
}
// We'll begin by sending the syncer a set of non-complete channel
// range replies.
if err := syncer.processChanRangeReply(replies[0]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
if err := syncer.processChanRangeReply(replies[1]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
// At this point, we should still be in our starting state as the query
// hasn't finished.
if syncer.state != startingState {
t.Fatalf("state should not have transitioned")
}
expectedReq := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(10),
lnwire.NewShortChanIDFromInt(11),
lnwire.NewShortChanIDFromInt(12),
}
// As we're about to send the final response, we'll launch a goroutine
// to respond back with a filtered set of chan ID's.
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case req := <-chanSeries.filterReq:
// We should get a request for the entire range of short
// chan ID's.
if !reflect.DeepEqual(expectedReq, req) {
t.Fatalf("wrong request: expected %v, got %v",
expectedReq, req)
}
// We'll send back only the last two to simulate filtering.
chanSeries.filterResp <- expectedReq[1:]
}
}()
// If we send the final message, then we should transition to
// queryNewChannels as we've sent a non-empty set of new channels.
if err := syncer.processChanRangeReply(replies[2]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
if syncer.syncState() != queryNewChannels {
t.Fatalf("wrong state: expected %v instead got %v",
queryNewChannels, syncer.state)
}
if !reflect.DeepEqual(syncer.newChansToQuery, expectedReq[1:]) {
t.Fatalf("wrong set of chans to query: expected %v, got %v",
syncer.newChansToQuery, expectedReq[1:])
}
// We'll repeat our final reply again, but this time we won't send any
// new channels. As a result, we should transition over to the
// chansSynced state.
go func() {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no query recvd")
case req := <-chanSeries.filterReq:
// We should get a request for the entire range of short
// chan ID's.
if !reflect.DeepEqual(expectedReq[2], req[0]) {
t.Fatalf("wrong request: expected %v, got %v",
expectedReq[2], req[0])
}
// We'll send back only the last two to simulate filtering.
chanSeries.filterResp <- []lnwire.ShortChannelID{}
}
}()
if err := syncer.processChanRangeReply(replies[2]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
if syncer.syncState() != chansSynced {
t.Fatalf("wrong state: expected %v instead got %v",
chansSynced, syncer.state)
}
}
// TestGossipSyncerSynchronizeChanIDs tests that we properly request chunks of
// the short chan ID's which were unknown to us. We'll ensure that we request
// chunk by chunk, and after the last chunk, we return true indicating that we
// can transition to the synced stage.
func TestGossipSyncerSynchronizeChanIDs(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, so we can ensure
// our chunk parsing works properly. With this value we should get 3
// queries: two full chunks, and one lingering chunk.
const chunkSize = 2
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding, chunkSize,
)
// Next, we'll construct a set of chan ID's that we should query for,
// and set them as newChansToQuery within the state machine.
newChanIDs := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
lnwire.NewShortChanIDFromInt(4),
lnwire.NewShortChanIDFromInt(5),
}
syncer.newChansToQuery = newChanIDs
for i := 0; i < chunkSize*2; i += 2 {
// With our set up complete, we'll request a sync of chan ID's.
done, err := syncer.synchronizeChanIDs()
if err != nil {
t.Fatalf("unable to sync chan IDs: %v", err)
}
// At this point, we shouldn't yet be done as only 2 items
// should have been queried for.
if done {
t.Fatalf("syncer shown as done, but shouldn't be!")
}
// We should've received a new message from the syncer.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
queryMsg, ok := msg[0].(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("expected QueryShortChanIDs instead "+
"got %T", msg)
}
// The query message should have queried for the first
// two chan ID's, and nothing more.
if !reflect.DeepEqual(queryMsg.ShortChanIDs, newChanIDs[i:i+chunkSize]) {
t.Fatalf("wrong query: expected %v, got %v",
spew.Sdump(newChanIDs[i:i+chunkSize]),
queryMsg.ShortChanIDs)
}
}
// With the proper message sent out, the internal state of the
// syncer should reflect that it still has more channels to
// query for.
if !reflect.DeepEqual(syncer.newChansToQuery, newChanIDs[i+chunkSize:]) {
t.Fatalf("incorrect chans to query for: expected %v, got %v",
spew.Sdump(newChanIDs[i+chunkSize:]),
syncer.newChansToQuery)
}
}
// At this point, only one more channel should be lingering for the
// syncer to query for.
if !reflect.DeepEqual(newChanIDs[chunkSize*2:], syncer.newChansToQuery) {
t.Fatalf("wrong chans to query: expected %v, got %v",
newChanIDs[chunkSize*2:], syncer.newChansToQuery)
}
// If we issue another query, the syncer should tell us that it's done.
done, err := syncer.synchronizeChanIDs()
if err != nil {
t.Fatalf("unable to sync chan IDs: %v", err)
}
if done {
t.Fatalf("syncer should be finished!")
}
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
queryMsg, ok := msg[0].(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("expected QueryShortChanIDs instead "+
"got %T", msg)
}
// The query issued should simply be the last item.
if !reflect.DeepEqual(queryMsg.ShortChanIDs, newChanIDs[chunkSize*2:]) {
t.Fatalf("wrong query: expected %v, got %v",
spew.Sdump(newChanIDs[chunkSize*2:]),
queryMsg.ShortChanIDs)
}
// There also should be no more channels to query.
if len(syncer.newChansToQuery) != 0 {
t.Fatalf("should be no more chans to query for, "+
"instead have %v",
spew.Sdump(syncer.newChansToQuery))
}
}
}
// TestGossipSyncerDelayDOS tests that the gossip syncer will begin delaying
// queries after its prescribed allotment of undelayed query responses. Once
// this happens, all query replies should be delayed by the configurated
// interval.
func TestGossipSyncerDelayDOS(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, since we'll be
// sending a modest number of queries. After exhausting our undelayed
// gossip queries, we'll send two extra queries and ensure that they are
// delayed properly.
const chunkSize = 2
const numDelayedQueries = 2
const delayTolerance = time.Millisecond * 200
// First, we'll create two GossipSyncer instances with a canned
// sendToPeer message to allow us to intercept their potential sends.
startHeight := lnwire.ShortChannelID{
BlockHeight: 1144,
}
msgChan1, syncer1, chanSeries1 := newTestSyncer(
startHeight, defaultEncoding, chunkSize,
)
syncer1.Start()
defer syncer1.Stop()
msgChan2, syncer2, chanSeries2 := newTestSyncer(
startHeight, defaultEncoding, chunkSize,
)
syncer2.Start()
defer syncer2.Stop()
// Record the delayed query reply interval used by each syncer.
delayedQueryInterval := syncer1.cfg.delayedQueryReplyInterval
// Record the number of undelayed queries allowed by the syncers.
numUndelayedQueries := syncer1.cfg.maxUndelayedQueryReplies
// We will send enough queries to exhaust the undelayed responses, and
// then send two more queries which should be delayed.
numQueryResponses := numUndelayedQueries + numDelayedQueries
// The total number of responses must include the initial reply each
// syner will make to QueryChannelRange.
numTotalQueries := 1 + numQueryResponses
// The total number of channels each syncer needs to request must be
// scaled by the chunk size being used.
numTotalChans := numQueryResponses * chunkSize
// Although both nodes are at the same height, they'll have a
// completely disjoint set of chan ID's that they know of.
var syncer1Chans []lnwire.ShortChannelID
for i := 0; i < numTotalChans; i++ {
syncer1Chans = append(
syncer1Chans, lnwire.NewShortChanIDFromInt(uint64(i)),
)
}
var syncer2Chans []lnwire.ShortChannelID
for i := numTotalChans; i < numTotalChans+numTotalChans; i++ {
syncer2Chans = append(
syncer2Chans, lnwire.NewShortChanIDFromInt(uint64(i)),
)
}
// We'll kick off the test by passing over the QueryChannelRange
// messages from one node to the other.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
// At this point, we'll need to send responses to both nodes from their
// respective channel series. Both nodes will simply request the entire
// set of channels from the other. This will count as the first
// undelayed response for each syncer.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterRangeReqs:
// We'll send all the channels that it should know of.
chanSeries1.filterRangeResp <- syncer1Chans
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterRangeReqs:
// We'll send back all the channels that it should know of.
chanSeries2.filterRangeResp <- syncer2Chans
}
// At this point, we'll forward the ReplyChannelRange messages to both
// parties. After receiving the set of channels known to the remote peer
for i := 0; i < numQueryResponses; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// We'll now send back a chunked response for both parties of the known
// short chan ID's.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterReq:
chanSeries1.filterResp <- syncer2Chans
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterReq:
chanSeries2.filterResp <- syncer1Chans
}
// At this point, both parties should start to send out initial
// requests to query the chan IDs of the remote party. We'll keep track
// of the number of queries made using the iterated value, which starts
// at one due the initial contribution of the QueryChannelRange msgs.
for i := 1; i < numTotalQueries; i++ {
// Both parties should now have sent out the initial requests
// to query the chan IDs of the other party.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryShortChanIDs message.
_, ok := msg.(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryShortChanIDs for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a QueryShortChanIDs message.
_, ok := msg.(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryShortChanIDs for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
// We'll then respond to both parties with an empty set of
// replies (as it doesn't affect the test).
switch {
// If this query has surpassed the undelayed query threshold, we
// will impose stricter timing constraints on the response
// times. We'll first test that the peers don't immediately
// receive a query, and then check that both queries haven't
// gone unanswered entirely.
case i >= numUndelayedQueries:
// Create a before and after timeout to test, our test
// will ensure the messages are delivered to the peers
// in this timeframe.
before := time.After(
delayedQueryInterval - delayTolerance,
)
after := time.After(
delayedQueryInterval + delayTolerance,
)
// First, ensure neither peer tries to respond up until
// the before time fires.
select {
case <-before:
// Queries are delayed, proceed.
case <-chanSeries1.annReq:
t.Fatalf("DOSy query was not delayed")
case <-chanSeries2.annReq:
t.Fatalf("DOSy query was not delayed")
}
// Next, we'll need to test that both queries are
// received before the after timer expires. To account
// for ordering, we will try to pull a message from both
// peers, and then test that the opposite peer also
// receives the message promptly.
var (
firstChanSeries *mockChannelGraphTimeSeries
laterChanSeries *mockChannelGraphTimeSeries
)
// If neither peer attempts a response within the
// allowed interval, then the messages are probably
// lost. Otherwise, process the message and record the
// induced ordering.
select {
case <-after:
t.Fatalf("no delayed query received")
case <-chanSeries1.annReq:
chanSeries1.annResp <- []lnwire.Message{}
firstChanSeries = chanSeries1
laterChanSeries = chanSeries2
case <-chanSeries2.annReq:
chanSeries2.annResp <- []lnwire.Message{}
firstChanSeries = chanSeries2
laterChanSeries = chanSeries1
}
// Finally, using the same interval timeout as before,
// ensure the later peer also responds promptly. We also
// assert that the first peer doesn't attempt another
// response.
select {
case <-after:
t.Fatalf("no delayed query received")
case <-firstChanSeries.annReq:
t.Fatalf("spurious undelayed response")
case <-laterChanSeries.annReq:
laterChanSeries.annResp <- []lnwire.Message{}
}
// Otherwise, we still haven't exceeded our undelayed query
// limit. Assert that both peers promptly attempt a response to
// the queries.
default:
select {
case <-time.After(50 * time.Millisecond):
t.Fatalf("no query recvd")
case <-chanSeries1.annReq:
chanSeries1.annResp <- []lnwire.Message{}
}
select {
case <-time.After(50 * time.Millisecond):
t.Fatalf("no query recvd")
case <-chanSeries2.annReq:
chanSeries2.annResp <- []lnwire.Message{}
}
}
// Finally, both sides should then receive a
// ReplyShortChanIDsEnd as the first chunk has been replied to.
select {
case <-time.After(50 * time.Millisecond):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a ReplyShortChanIDsEnd message.
_, ok := msg.(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(50 * time.Millisecond):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyShortChanIDsEnd message.
_, ok := msg.(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("wrong message: expected "+
"ReplyShortChanIDsEnd for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
}
// TestGossipSyncerRoutineSync tests all state transitions of the main syncer
// goroutine. This ensures that given an encounter with a peer that has a set
// of distinct channels, then we'll properly synchronize our channel state with
// them.
func TestGossipSyncerRoutineSync(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, so we can ensure
// our chunk parsing works properly. With this value we should get 3
// queries: two full chunks, and one lingering chunk.
const chunkSize = 2
// First, we'll create two GossipSyncer instances with a canned
// sendToPeer message to allow us to intercept their potential sends.
startHeight := lnwire.ShortChannelID{
BlockHeight: 1144,
}
msgChan1, syncer1, chanSeries1 := newTestSyncer(
startHeight, defaultEncoding, chunkSize,
)
syncer1.Start()
defer syncer1.Stop()
msgChan2, syncer2, chanSeries2 := newTestSyncer(
startHeight, defaultEncoding, chunkSize,
)
syncer2.Start()
defer syncer2.Stop()
// Although both nodes are at the same height, they'll have a
// completely disjoint set of 3 chan ID's that they know of.
syncer1Chans := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
}
syncer2Chans := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(4),
lnwire.NewShortChanIDFromInt(5),
lnwire.NewShortChanIDFromInt(6),
}
// We'll kick off the test by passing over the QueryChannelRange
// messages from one node to the other.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
// At this point, we'll need to send responses to both nodes from their
// respective channel series. Both nodes will simply request the entire
// set of channels from the other.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterRangeReqs:
// We'll send all the channels that it should know of.
chanSeries1.filterRangeResp <- syncer1Chans
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterRangeReqs:
// We'll send back all the channels that it should know of.
chanSeries2.filterRangeResp <- syncer2Chans
}
// At this point, we'll forward the ReplyChannelRange messages to both
// parties. Two replies are expected since the chunk size is 2, and we
// need to query for 3 channels.
for i := 0; i < chunkSize; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
}
for i := 0; i < chunkSize; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// We'll now send back a chunked response for both parties of the known
// short chan ID's.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterReq:
chanSeries1.filterResp <- syncer2Chans
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterReq:
chanSeries2.filterResp <- syncer1Chans
}
// At this point, both parties should start to send out initial
// requests to query the chan IDs of the remote party. As the chunk
// size is 2, they'll need 2 rounds in order to fully reconcile the
// state.
for i := 0; i < chunkSize; i++ {
// Both parties should now have sent out the initial requests
// to query the chan IDs of the other party.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryShortChanIDs message.
_, ok := msg.(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryShortChanIDs for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a QueryShortChanIDs message.
_, ok := msg.(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryShortChanIDs for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
// We'll then respond to both parties with an empty set of replies (as
// it doesn't affect the test).
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.annReq:
chanSeries1.annResp <- []lnwire.Message{}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.annReq:
chanSeries2.annResp <- []lnwire.Message{}
}
// Both sides should then receive a ReplyShortChanIDsEnd as the first
// chunk has been replied to.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a ReplyShortChanIDsEnd message.
_, ok := msg.(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyShortChanIDsEnd message.
_, ok := msg.(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("wrong message: expected "+
"ReplyShortChanIDsEnd for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// At this stage both parties should now be sending over their initial
// GossipTimestampRange messages as they should both be fully synced.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a GossipTimestampRange message.
_, ok := msg.(*lnwire.GossipTimestampRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a GossipTimestampRange message.
_, ok := msg.(*lnwire.GossipTimestampRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// TestGossipSyncerAlreadySynced tests that if we attempt to synchronize two
// syncers that have the exact same state, then they'll skip straight to the
// final state and not perform any channel queries.
func TestGossipSyncerAlreadySynced(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, so we can ensure
// our chunk parsing works properly. With this value we should get 3
// queries: two full chunks, and one lingering chunk.
const chunkSize = 2
// First, we'll create two GossipSyncer instances with a canned
// sendToPeer message to allow us to intercept their potential sends.
startHeight := lnwire.ShortChannelID{
BlockHeight: 1144,
}
msgChan1, syncer1, chanSeries1 := newTestSyncer(
startHeight, defaultEncoding, chunkSize,
)
syncer1.Start()
defer syncer1.Stop()
msgChan2, syncer2, chanSeries2 := newTestSyncer(
startHeight, defaultEncoding, chunkSize,
)
syncer2.Start()
defer syncer2.Stop()
// The channel state of both syncers will be identical. They should
// recognize this, and skip the sync phase below.
syncer1Chans := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
}
syncer2Chans := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
}
// We'll now kick off the test by allowing both side to send their
// QueryChannelRange messages to each other.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
// We'll now send back the range each side should send over: the set of
// channels they already know about.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterRangeReqs:
// We'll send all the channels that it should know of.
chanSeries1.filterRangeResp <- syncer1Chans
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterRangeReqs:
// We'll send back all the channels that it should know of.
chanSeries2.filterRangeResp <- syncer2Chans
}
// Next, we'll thread through the replies of both parties. As the chunk
// size is 2, and they both know of 3 channels, it'll take two around
// and two chunks.
for i := 0; i < chunkSize; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
}
for i := 0; i < chunkSize; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// Now that both sides have the full responses, we'll send over the
// channels that they need to filter out. As both sides have the exact
// same set of channels, they should skip to the final state.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterReq:
chanSeries1.filterResp <- []lnwire.ShortChannelID{}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterReq:
chanSeries2.filterResp <- []lnwire.ShortChannelID{}
}
// As both parties are already synced, the next message they send to
// each other should be the GossipTimestampRange message.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a GossipTimestampRange message.
_, ok := msg.(*lnwire.GossipTimestampRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a GossipTimestampRange message.
_, ok := msg.(*lnwire.GossipTimestampRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// TestGossipSyncerSyncTransitions ensures that the gossip syncer properly
// carries out its duties when accepting a new sync transition request.
func TestGossipSyncerSyncTransitions(t *testing.T) {
t.Parallel()
assertMsgSent := func(t *testing.T, msgChan chan []lnwire.Message,
msg lnwire.Message) {
t.Helper()
var msgSent lnwire.Message
select {
case msgs := <-msgChan:
if len(msgs) != 1 {
t.Fatal("expected to send a single message at "+
"a time, got %d", len(msgs))
}
msgSent = msgs[0]
case <-time.After(time.Second):
t.Fatalf("expected to send %T message", msg)
}
if !reflect.DeepEqual(msgSent, msg) {
t.Fatalf("expected to send message: %v\ngot: %v",
spew.Sdump(msg), spew.Sdump(msgSent))
}
}
tests := []struct {
name string
entrySyncType SyncerType
finalSyncType SyncerType
assert func(t *testing.T, msgChan chan []lnwire.Message,
syncer *GossipSyncer)
}{
{
name: "active to passive",
entrySyncType: ActiveSync,
finalSyncType: PassiveSync,
assert: func(t *testing.T, msgChan chan []lnwire.Message,
g *GossipSyncer) {
// When transitioning from active to passive, we
// should expect to see a new local update
// horizon sent to the remote peer indicating
// that it would not like to receive any future
// updates.
assertMsgSent(t, msgChan, &lnwire.GossipTimestampRange{
FirstTimestamp: uint32(zeroTimestamp.Unix()),
TimestampRange: 0,
})
syncState := g.syncState()
if syncState != chansSynced {
t.Fatalf("expected syncerState %v, "+
"got %v", chansSynced,
syncState)
}
},
},
{
name: "passive to active",
entrySyncType: PassiveSync,
finalSyncType: ActiveSync,
assert: func(t *testing.T, msgChan chan []lnwire.Message,
g *GossipSyncer) {
// When transitioning from historical to active,
// we should expect to see a new local update
// horizon sent to the remote peer indicating
// that it would like to receive any future
// updates.
firstTimestamp := uint32(time.Now().Unix())
assertMsgSent(t, msgChan, &lnwire.GossipTimestampRange{
FirstTimestamp: firstTimestamp,
TimestampRange: math.MaxUint32,
})
// The local update horizon should be followed
// by a QueryChannelRange message sent to the
// remote peer requesting all channels it
// knows of from the highest height the syncer
// knows of.
assertMsgSent(t, msgChan, &lnwire.QueryChannelRange{
FirstBlockHeight: startHeight,
NumBlocks: math.MaxUint32 - startHeight,
})
syncState := g.syncState()
if syncState != waitingQueryRangeReply {
t.Fatalf("expected syncerState %v, "+
"got %v", waitingQueryRangeReply,
syncState)
}
},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
t.Parallel()
// We'll start each test by creating our syncer. We'll
// initialize it with a state of chansSynced, as that's
// the only time when it can process sync transitions.
msgChan, syncer, _ := newTestSyncer(
lnwire.ShortChannelID{
BlockHeight: latestKnownHeight,
},
defaultEncoding, defaultChunkSize,
)
syncer.setSyncState(chansSynced)
// We'll set the initial syncType to what the test
// demands.
syncer.setSyncType(test.entrySyncType)
// We'll then start the syncer in order to process the
// request.
syncer.Start()
defer syncer.Stop()
syncer.ProcessSyncTransition(test.finalSyncType)
// The syncer should now have the expected final
// SyncerType that the test expects.
syncType := syncer.SyncType()
if syncType != test.finalSyncType {
t.Fatalf("expected syncType %v, got %v",
test.finalSyncType, syncType)
}
// Finally, we'll run a set of assertions for each test
// to ensure the syncer performed its expected duties
// after processing its sync transition.
test.assert(t, msgChan, syncer)
})
}
}
// TestGossipSyncerHistoricalSync tests that a gossip syncer can perform a
// historical sync with the remote peer.
func TestGossipSyncerHistoricalSync(t *testing.T) {
t.Parallel()
// We'll create a new gossip syncer and manually override its state to
// chansSynced. This is necessary as the syncer can only process
// historical sync requests in this state.
msgChan, syncer, _ := newTestSyncer(
lnwire.ShortChannelID{BlockHeight: latestKnownHeight},
defaultEncoding, defaultChunkSize,
)
syncer.setSyncType(PassiveSync)
syncer.setSyncState(chansSynced)
syncer.Start()
defer syncer.Stop()
syncer.historicalSync()
// We should expect to see a single lnwire.QueryChannelRange message be
// sent to the remote peer with a FirstBlockHeight of 0.
expectedMsg := &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
}
select {
case msgs := <-msgChan:
if len(msgs) != 1 {
t.Fatalf("expected to send a single "+
"lnwire.QueryChannelRange message, got %d",
len(msgs))
}
if !reflect.DeepEqual(msgs[0], expectedMsg) {
t.Fatalf("expected to send message: %v\ngot: %v",
spew.Sdump(expectedMsg), spew.Sdump(msgs[0]))
}
case <-time.After(time.Second):
t.Fatalf("expected to send a lnwire.QueryChannelRange message")
}
}