lnd version, "hacked" to enable seedless restore from xprv + scb
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

2261 lines
56 KiB

package sweep
import (
"os"
"reflect"
"runtime/debug"
"runtime/pprof"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lntest/mock"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/stretchr/testify/require"
)
var (
testLog = build.NewSubLogger("SWPR_TEST", nil)
testMaxSweepAttempts = 3
testMaxInputsPerTx = 3
defaultFeePref = Params{Fee: FeePreference{ConfTarget: 1}}
)
type sweeperTestContext struct {
t *testing.T
sweeper *UtxoSweeper
notifier *MockNotifier
estimator *mockFeeEstimator
backend *mockBackend
store *MockSweeperStore
timeoutChan chan chan time.Time
publishChan chan wire.MsgTx
}
var (
spendableInputs []*input.BaseInput
testInputCount int
testPubKey, _ = btcec.ParsePubKey([]byte{
0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
}, btcec.S256())
)
func createTestInput(value int64, witnessType input.WitnessType) input.BaseInput {
hash := chainhash.Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
byte(testInputCount + 1)}
input := input.MakeBaseInput(
&wire.OutPoint{
Hash: hash,
},
witnessType,
&input.SignDescriptor{
Output: &wire.TxOut{
Value: value,
},
KeyDesc: keychain.KeyDescriptor{
PubKey: testPubKey,
},
},
0,
nil,
)
testInputCount++
return input
}
func init() {
// Create a set of test spendable inputs.
for i := 0; i < 20; i++ {
input := createTestInput(int64(10000+i*500),
input.CommitmentTimeLock)
spendableInputs = append(spendableInputs, &input)
}
}
func createSweeperTestContext(t *testing.T) *sweeperTestContext {
notifier := NewMockNotifier(t)
store := NewMockSweeperStore()
backend := newMockBackend(t, notifier)
backend.walletUtxos = []*lnwallet.Utxo{
{
Value: btcutil.Amount(1_000_000),
AddressType: lnwallet.WitnessPubKey,
},
}
estimator := newMockFeeEstimator(10000, chainfee.FeePerKwFloor)
ctx := &sweeperTestContext{
notifier: notifier,
publishChan: backend.publishChan,
t: t,
estimator: estimator,
backend: backend,
store: store,
timeoutChan: make(chan chan time.Time, 1),
}
var outputScriptCount byte
ctx.sweeper = New(&UtxoSweeperConfig{
Notifier: notifier,
Wallet: backend,
NewBatchTimer: func() <-chan time.Time {
c := make(chan time.Time, 1)
ctx.timeoutChan <- c
return c
},
Store: store,
Signer: &mock.DummySigner{},
GenSweepScript: func() ([]byte, error) {
script := []byte{outputScriptCount}
outputScriptCount++
return script, nil
},
FeeEstimator: estimator,
MaxInputsPerTx: testMaxInputsPerTx,
MaxSweepAttempts: testMaxSweepAttempts,
NextAttemptDeltaFunc: func(attempts int) int32 {
// Use delta func without random factor.
return 1 << uint(attempts-1)
},
MaxFeeRate: DefaultMaxFeeRate,
FeeRateBucketSize: DefaultFeeRateBucketSize,
})
ctx.sweeper.Start()
return ctx
}
func (ctx *sweeperTestContext) restartSweeper() {
ctx.t.Helper()
ctx.sweeper.Stop()
ctx.sweeper = New(ctx.sweeper.cfg)
ctx.sweeper.Start()
}
func (ctx *sweeperTestContext) tick() {
testLog.Trace("Waiting for tick to be consumed")
select {
case c := <-ctx.timeoutChan:
select {
case c <- time.Time{}:
testLog.Trace("Tick")
case <-time.After(defaultTestTimeout):
debug.PrintStack()
ctx.t.Fatal("tick timeout - tick not consumed")
}
case <-time.After(defaultTestTimeout):
debug.PrintStack()
ctx.t.Fatal("tick timeout - no new timer created")
}
}
// assertNoTick asserts that the sweeper does not wait for a tick.
func (ctx *sweeperTestContext) assertNoTick() {
ctx.t.Helper()
select {
case <-ctx.timeoutChan:
ctx.t.Fatal("unexpected tick")
case <-time.After(processingDelay):
}
}
func (ctx *sweeperTestContext) assertNoNewTimer() {
select {
case <-ctx.timeoutChan:
ctx.t.Fatal("no new timer expected")
default:
}
}
func (ctx *sweeperTestContext) finish(expectedGoroutineCount int) {
// We assume that when finish is called, sweeper has finished all its
// goroutines. This implies that the waitgroup is empty.
signalChan := make(chan struct{})
go func() {
ctx.sweeper.wg.Wait()
close(signalChan)
}()
// Simulate exits of the expected number of running goroutines.
for i := 0; i < expectedGoroutineCount; i++ {
ctx.sweeper.wg.Done()
}
// We now expect the Wait to succeed.
select {
case <-signalChan:
case <-time.After(time.Second):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
ctx.t.Fatalf("lingering goroutines detected after test " +
"is finished")
}
// Restore waitgroup state to what it was before.
ctx.sweeper.wg.Add(expectedGoroutineCount)
// Stop sweeper.
ctx.sweeper.Stop()
// We should have consumed and asserted all published transactions in
// our unit tests.
ctx.assertNoTx()
ctx.assertNoNewTimer()
if !ctx.backend.isDone() {
ctx.t.Fatal("unconfirmed txes remaining")
}
}
func (ctx *sweeperTestContext) assertNoTx() {
ctx.t.Helper()
select {
case <-ctx.publishChan:
ctx.t.Fatalf("unexpected transactions published")
default:
}
}
func (ctx *sweeperTestContext) receiveTx() wire.MsgTx {
ctx.t.Helper()
var tx wire.MsgTx
select {
case tx = <-ctx.publishChan:
return tx
case <-time.After(5 * time.Second):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
ctx.t.Fatalf("tx not published")
}
return tx
}
func (ctx *sweeperTestContext) expectResult(c chan Result, expected error) {
ctx.t.Helper()
select {
case result := <-c:
if result.Err != expected {
ctx.t.Fatalf("expected %v result, but got %v",
expected, result.Err,
)
}
case <-time.After(defaultTestTimeout):
ctx.t.Fatalf("no result received")
}
}
func (ctx *sweeperTestContext) assertPendingInputs(inputs ...input.Input) {
ctx.t.Helper()
inputSet := make(map[wire.OutPoint]struct{}, len(inputs))
for _, input := range inputs {
inputSet[*input.OutPoint()] = struct{}{}
}
pendingInputs, err := ctx.sweeper.PendingInputs()
if err != nil {
ctx.t.Fatal(err)
}
if len(pendingInputs) != len(inputSet) {
ctx.t.Fatalf("expected %d pending inputs, got %d",
len(inputSet), len(pendingInputs))
}
for input := range pendingInputs {
if _, ok := inputSet[input]; !ok {
ctx.t.Fatalf("found unexpected input %v", input)
}
}
}
// assertTxSweepsInputs ensures that the transaction returned within the value
// received from resultChan spends the given inputs.
func assertTxSweepsInputs(t *testing.T, sweepTx *wire.MsgTx,
inputs ...input.Input) {
t.Helper()
if len(sweepTx.TxIn) != len(inputs) {
t.Fatalf("expected sweep tx to contain %d inputs, got %d",
len(inputs), len(sweepTx.TxIn))
}
m := make(map[wire.OutPoint]struct{}, len(inputs))
for _, input := range inputs {
m[*input.OutPoint()] = struct{}{}
}
for _, txIn := range sweepTx.TxIn {
if _, ok := m[txIn.PreviousOutPoint]; !ok {
t.Fatalf("expected tx %v to spend input %v",
txIn.PreviousOutPoint, sweepTx.TxHash())
}
}
}
// assertTxFeeRate asserts that the transaction was created with the given
// inputs and fee rate.
//
// NOTE: This assumes that transactions only have one output, as this is the
// only type of transaction the UtxoSweeper can create at the moment.
func assertTxFeeRate(t *testing.T, tx *wire.MsgTx,
expectedFeeRate chainfee.SatPerKWeight, inputs ...input.Input) {
t.Helper()
if len(tx.TxIn) != len(inputs) {
t.Fatalf("expected %d inputs, got %d", len(tx.TxIn), len(inputs))
}
m := make(map[wire.OutPoint]input.Input, len(inputs))
for _, input := range inputs {
m[*input.OutPoint()] = input
}
var inputAmt int64
for _, txIn := range tx.TxIn {
input, ok := m[txIn.PreviousOutPoint]
if !ok {
t.Fatalf("expected input %v to be provided",
txIn.PreviousOutPoint)
}
inputAmt += input.SignDesc().Output.Value
}
outputAmt := tx.TxOut[0].Value
fee := btcutil.Amount(inputAmt - outputAmt)
_, estimator := getWeightEstimate(inputs, nil, 0)
txWeight := estimator.weight()
expectedFee := expectedFeeRate.FeeForWeight(int64(txWeight))
if fee != expectedFee {
t.Fatalf("expected fee rate %v results in %v fee, got %v fee",
expectedFeeRate, expectedFee, fee)
}
}
// TestSuccess tests the sweeper happy flow.
func TestSuccess(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweeping an input without a fee preference should result in an error.
_, err := ctx.sweeper.SweepInput(spendableInputs[0], Params{})
if err != ErrNoFeePreference {
t.Fatalf("expected ErrNoFeePreference, got %v", err)
}
resultChan, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
ctx.backend.mine()
select {
case result := <-resultChan:
if result.Err != nil {
t.Fatalf("expected successful spend, but received "+
"error %v instead", result.Err)
}
if result.Tx.TxHash() != sweepTx.TxHash() {
t.Fatalf("expected sweep tx ")
}
case <-time.After(5 * time.Second):
t.Fatalf("no result received")
}
ctx.finish(1)
// Assert that last tx is stored in the database so we can republish
// on restart.
lastTx, err := ctx.store.GetLastPublishedTx()
if err != nil {
t.Fatal(err)
}
if lastTx == nil || sweepTx.TxHash() != lastTx.TxHash() {
t.Fatalf("last tx not stored")
}
}
// TestDust asserts that inputs that are not big enough to raise above the dust
// limit, are held back until the total set does surpass the limit.
func TestDust(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweeping a single output produces a tx of 486 weight units. With the
// test fee rate, the sweep tx will pay 4860 sat in fees.
//
// Create an input so that the output after paying fees is still
// positive (400 sat), but less than the dust limit (537 sat) for the
// sweep tx output script (P2WPKH).
dustInput := createTestInput(5260, input.CommitmentTimeLock)
_, err := ctx.sweeper.SweepInput(&dustInput, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// No sweep transaction is expected now. The sweeper should recognize
// that the sweep output will not be relayed and not generate the tx. It
// isn't possible to attach a wallet utxo either, because the added
// weight would create a negatively yielding transaction at this fee
// rate.
// Sweep another input that brings the tx output above the dust limit.
largeInput := createTestInput(100000, input.CommitmentTimeLock)
_, err = ctx.sweeper.SweepInput(&largeInput, defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// The second input brings the sweep output above the dust limit. We
// expect a sweep tx now.
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 2 {
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx.TxIn))
}
ctx.backend.mine()
ctx.finish(1)
}
// TestWalletUtxo asserts that inputs that are not big enough to raise above the
// dust limit are accompanied by a wallet utxo to make them sweepable.
func TestWalletUtxo(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweeping a single output produces a tx of 439 weight units. At the
// fee floor, the sweep tx will pay 439*253/1000 = 111 sat in fees.
//
// Create an input so that the output after paying fees is still
// positive (183 sat), but less than the dust limit (537 sat) for the
// sweep tx output script (P2WPKH).
//
// What we now expect is that the sweeper will attach a utxo from the
// wallet. This increases the tx weight to 712 units with a fee of 180
// sats. The tx yield becomes then 294-180 = 114 sats.
dustInput := createTestInput(294, input.WitnessKeyHash)
_, err := ctx.sweeper.SweepInput(
&dustInput,
Params{Fee: FeePreference{FeeRate: chainfee.FeePerKwFloor}},
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 2 {
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx.TxIn))
}
// Calculate expected output value based on wallet utxo of 1_000_000
// sats.
expectedOutputValue := int64(294 + 1_000_000 - 180)
if sweepTx.TxOut[0].Value != expectedOutputValue {
t.Fatalf("Expected output value of %v, but got %v",
expectedOutputValue, sweepTx.TxOut[0].Value)
}
ctx.backend.mine()
ctx.finish(1)
}
// TestNegativeInput asserts that no inputs with a negative yield are swept.
// Negative yield means that the value minus the added fee is negative.
func TestNegativeInput(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep an input large enough to cover fees, so in any case the tx
// output will be above the dust limit.
largeInput := createTestInput(100000, input.CommitmentNoDelay)
largeInputResult, err := ctx.sweeper.SweepInput(
&largeInput, defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
// Sweep an additional input with a negative net yield. The weight of
// the HtlcAcceptedRemoteSuccess input type adds more in fees than its
// value at the current fee level.
negInput := createTestInput(2900, input.HtlcOfferedRemoteTimeout)
negInputResult, err := ctx.sweeper.SweepInput(&negInput, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Sweep a third input that has a smaller output than the previous one,
// but yields positively because of its lower weight.
positiveInput := createTestInput(2800, input.CommitmentNoDelay)
positiveInputResult, err := ctx.sweeper.SweepInput(
&positiveInput, defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect that a sweep tx is published now, but it should only
// contain the large input. The negative input should stay out of sweeps
// until fees come down to get a positive net yield.
sweepTx1 := ctx.receiveTx()
assertTxSweepsInputs(t, &sweepTx1, &largeInput, &positiveInput)
ctx.backend.mine()
ctx.expectResult(largeInputResult, nil)
ctx.expectResult(positiveInputResult, nil)
// Lower fee rate so that the negative input is no longer negative.
ctx.estimator.updateFees(1000, 1000)
// Create another large input.
secondLargeInput := createTestInput(100000, input.CommitmentNoDelay)
secondLargeInputResult, err := ctx.sweeper.SweepInput(
&secondLargeInput, defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx2 := ctx.receiveTx()
assertTxSweepsInputs(t, &sweepTx2, &secondLargeInput, &negInput)
ctx.backend.mine()
ctx.expectResult(secondLargeInputResult, nil)
ctx.expectResult(negInputResult, nil)
ctx.finish(1)
}
// TestChunks asserts that large sets of inputs are split into multiple txes.
func TestChunks(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep five inputs.
for _, input := range spendableInputs[:5] {
_, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
}
ctx.tick()
// We expect two txes to be published because of the max input count of
// three.
sweepTx1 := ctx.receiveTx()
if len(sweepTx1.TxIn) != 3 {
t.Fatalf("Expected first tx to sweep 3 inputs, but contains %v "+
"inputs instead", len(sweepTx1.TxIn))
}
sweepTx2 := ctx.receiveTx()
if len(sweepTx2.TxIn) != 2 {
t.Fatalf("Expected first tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx1.TxIn))
}
ctx.backend.mine()
ctx.finish(1)
}
// TestRemoteSpend asserts that remote spends are properly detected and handled
// both before the sweep is published as well as after.
func TestRemoteSpend(t *testing.T) {
t.Run("pre-sweep", func(t *testing.T) {
testRemoteSpend(t, false)
})
t.Run("post-sweep", func(t *testing.T) {
testRemoteSpend(t, true)
})
}
func testRemoteSpend(t *testing.T, postSweep bool) {
ctx := createSweeperTestContext(t)
resultChan1, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
resultChan2, err := ctx.sweeper.SweepInput(
spendableInputs[1], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
// Spend the input with an unknown tx.
remoteTx := &wire.MsgTx{
TxIn: []*wire.TxIn{
{
PreviousOutPoint: *(spendableInputs[0].OutPoint()),
},
},
}
err = ctx.backend.publishTransaction(remoteTx)
if err != nil {
t.Fatal(err)
}
if postSweep {
ctx.tick()
// Tx publication by sweeper returns ErrDoubleSpend. Sweeper
// will retry the inputs without reporting a result. It could be
// spent by the remote party.
ctx.receiveTx()
}
ctx.backend.mine()
select {
case result := <-resultChan1:
if result.Err != ErrRemoteSpend {
t.Fatalf("expected remote spend")
}
if result.Tx.TxHash() != remoteTx.TxHash() {
t.Fatalf("expected remote spend tx")
}
case <-time.After(5 * time.Second):
t.Fatalf("no result received")
}
if !postSweep {
// Assert that the sweeper sweeps the remaining input.
ctx.tick()
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 1 {
t.Fatal("expected sweep to only sweep the one remaining output")
}
ctx.backend.mine()
ctx.expectResult(resultChan2, nil)
ctx.finish(1)
} else {
// Expected sweeper to be still listening for spend of the
// error input.
ctx.finish(2)
select {
case <-resultChan2:
t.Fatalf("no result expected for error input")
default:
}
}
}
// TestIdempotency asserts that offering the same input multiple times is
// handled correctly.
func TestIdempotency(t *testing.T) {
ctx := createSweeperTestContext(t)
input := spendableInputs[0]
resultChan1, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
resultChan2, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
resultChan3, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Spend the input of the sweep tx.
ctx.backend.mine()
ctx.expectResult(resultChan1, nil)
ctx.expectResult(resultChan2, nil)
ctx.expectResult(resultChan3, nil)
// Offer the same input again. The sweeper will register a spend ntfn
// for this input. Because the input has already been spent, it will
// immediately receive the spend notification with a spending tx hash.
// Because the sweeper kept track of all of its sweep txes, it will
// recognize the spend as its own.
resultChan4, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.expectResult(resultChan4, nil)
// Timer is still running, but spend notification was delivered before
// it expired.
ctx.tick()
ctx.finish(1)
}
// TestNoInputs asserts that nothing happens if nothing happens.
func TestNoInputs(t *testing.T) {
ctx := createSweeperTestContext(t)
// No tx should appear. This is asserted in finish().
ctx.finish(1)
}
// TestRestart asserts that the sweeper picks up sweeping properly after
// a restart.
func TestRestart(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input and expect sweep tx.
input1 := spendableInputs[0]
if _, err := ctx.sweeper.SweepInput(input1, defaultFeePref); err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
// Restart sweeper.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
// Simulate other subsystem (e.g. contract resolver) re-offering inputs.
spendChan1, err := ctx.sweeper.SweepInput(input1, defaultFeePref)
if err != nil {
t.Fatal(err)
}
input2 := spendableInputs[1]
spendChan2, err := ctx.sweeper.SweepInput(input2, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Spend inputs of sweep txes and verify that spend channels signal
// spends.
ctx.backend.mine()
// Sweeper should recognize that its sweep tx of the previous run is
// spending the input.
select {
case result := <-spendChan1:
if result.Err != nil {
t.Fatalf("expected successful sweep")
}
case <-time.After(defaultTestTimeout):
t.Fatalf("no result received")
}
// Timer tick should trigger republishing a sweep for the remaining
// input.
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
select {
case result := <-spendChan2:
if result.Err != nil {
t.Fatalf("expected successful sweep")
}
case <-time.After(defaultTestTimeout):
t.Fatalf("no result received")
}
// Restart sweeper again. No action is expected.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
ctx.finish(1)
}
// TestRestartRemoteSpend asserts that the sweeper picks up sweeping properly after
// a restart with remote spend.
func TestRestartRemoteSpend(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input.
input1 := spendableInputs[0]
if _, err := ctx.sweeper.SweepInput(input1, defaultFeePref); err != nil {
t.Fatal(err)
}
// Sweep another input.
input2 := spendableInputs[1]
if _, err := ctx.sweeper.SweepInput(input2, defaultFeePref); err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
// Restart sweeper.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
// Replace the sweep tx with a remote tx spending input 1.
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
remoteTx := &wire.MsgTx{
TxIn: []*wire.TxIn{
{
PreviousOutPoint: *(input2.OutPoint()),
},
},
}
if err := ctx.backend.publishTransaction(remoteTx); err != nil {
t.Fatal(err)
}
// Mine remote spending tx.
ctx.backend.mine()
// Simulate other subsystem (e.g. contract resolver) re-offering input 0.
spendChan, err := ctx.sweeper.SweepInput(input1, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Expect sweeper to construct a new tx, because input 1 was spend
// remotely.
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(spendChan, nil)
ctx.finish(1)
}
// TestRestartConfirmed asserts that the sweeper picks up sweeping properly after
// a restart with a confirm of our own sweep tx.
func TestRestartConfirmed(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input.
input := spendableInputs[0]
if _, err := ctx.sweeper.SweepInput(input, defaultFeePref); err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
// Restart sweeper.
ctx.restartSweeper()
// Expect last tx to be republished.
ctx.receiveTx()
// Mine the sweep tx.
ctx.backend.mine()
// Simulate other subsystem (e.g. contract resolver) re-offering input 0.
spendChan, err := ctx.sweeper.SweepInput(input, defaultFeePref)
if err != nil {
t.Fatal(err)
}
// Here we expect again a successful sweep.
ctx.expectResult(spendChan, nil)
// Timer started but not needed because spend ntfn was sent.
ctx.tick()
ctx.finish(1)
}
// TestRestartRepublish asserts that sweeper republishes the last published
// tx on restart.
func TestRestartRepublish(t *testing.T) {
ctx := createSweeperTestContext(t)
_, err := ctx.sweeper.SweepInput(spendableInputs[0], defaultFeePref)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
// Restart sweeper again. No action is expected.
ctx.restartSweeper()
republishedTx := ctx.receiveTx()
if sweepTx.TxHash() != republishedTx.TxHash() {
t.Fatalf("last tx not republished")
}
// Mine the tx to conclude the test properly.
ctx.backend.mine()
ctx.finish(1)
}
// TestRetry tests the sweeper retry flow.
func TestRetry(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan0, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect a sweep to be published.
ctx.receiveTx()
// New block arrives. This should trigger a new sweep attempt timer
// start.
ctx.notifier.NotifyEpoch(1000)
// Offer a fresh input.
resultChan1, err := ctx.sweeper.SweepInput(
spendableInputs[1], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// Two txes are expected to be published, because new and retry inputs
// are separated.
ctx.receiveTx()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(resultChan0, nil)
ctx.expectResult(resultChan1, nil)
ctx.finish(1)
}
// TestGiveUp asserts that the sweeper gives up on an input if it can't be swept
// after a configured number of attempts.a
func TestGiveUp(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan0, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect a sweep to be published at height 100 (mockChainIOHeight).
ctx.receiveTx()
// Because of MaxSweepAttemps, two more sweeps will be attempted. We
// configured exponential back-off without randomness for the test. The
// second attempt, we expect to happen at 101. The third attempt at 103.
// At that point, the input is expected to be failed.
// Second attempt
ctx.notifier.NotifyEpoch(101)
ctx.tick()
ctx.receiveTx()
// Third attempt
ctx.notifier.NotifyEpoch(103)
ctx.tick()
ctx.receiveTx()
ctx.expectResult(resultChan0, ErrTooManyAttempts)
ctx.backend.mine()
ctx.finish(1)
}
// TestDifferentFeePreferences ensures that the sweeper can have different
// transactions for different fee preferences. These transactions should be
// broadcast from highest to lowest fee rate.
func TestDifferentFeePreferences(t *testing.T) {
ctx := createSweeperTestContext(t)
// Throughout this test, we'll be attempting to sweep three inputs, two
// with the higher fee preference, and the last with the lower. We do
// this to ensure the sweeper can broadcast distinct transactions for
// each sweep with a different fee preference.
lowFeePref := FeePreference{ConfTarget: 12}
lowFeeRate := chainfee.SatPerKWeight(5000)
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
highFeePref := FeePreference{ConfTarget: 6}
highFeeRate := chainfee.SatPerKWeight(10000)
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
input1 := spendableInputs[0]
resultChan1, err := ctx.sweeper.SweepInput(
input1, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input2 := spendableInputs[1]
resultChan2, err := ctx.sweeper.SweepInput(
input2, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input3 := spendableInputs[2]
resultChan3, err := ctx.sweeper.SweepInput(
input3, Params{Fee: lowFeePref},
)
if err != nil {
t.Fatal(err)
}
// Start the sweeper's batch ticker, which should cause the sweep
// transactions to be broadcast in order of high to low fee preference.
ctx.tick()
// The first transaction broadcast should be the one spending the higher
// fee rate inputs.
sweepTx1 := ctx.receiveTx()
assertTxFeeRate(t, &sweepTx1, highFeeRate, input1, input2)
// The second should be the one spending the lower fee rate inputs.
sweepTx2 := ctx.receiveTx()
assertTxFeeRate(t, &sweepTx2, lowFeeRate, input3)
// With the transactions broadcast, we'll mine a block to so that the
// result is delivered to each respective client.
ctx.backend.mine()
resultChans := []chan Result{resultChan1, resultChan2, resultChan3}
for _, resultChan := range resultChans {
ctx.expectResult(resultChan, nil)
}
ctx.finish(1)
}
// TestPendingInputs ensures that the sweeper correctly determines the inputs
// pending to be swept.
func TestPendingInputs(t *testing.T) {
ctx := createSweeperTestContext(t)
// Throughout this test, we'll be attempting to sweep three inputs, two
// with the higher fee preference, and the last with the lower. We do
// this to ensure the sweeper can return all pending inputs, even those
// with different fee preferences.
const (
lowFeeRate = 5000
highFeeRate = 10000
)
lowFeePref := FeePreference{
ConfTarget: 12,
}
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
highFeePref := FeePreference{
ConfTarget: 6,
}
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
input1 := spendableInputs[0]
resultChan1, err := ctx.sweeper.SweepInput(
input1, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input2 := spendableInputs[1]
_, err = ctx.sweeper.SweepInput(
input2, Params{Fee: highFeePref},
)
if err != nil {
t.Fatal(err)
}
input3 := spendableInputs[2]
resultChan3, err := ctx.sweeper.SweepInput(
input3, Params{Fee: lowFeePref},
)
if err != nil {
t.Fatal(err)
}
// We should expect to see all inputs pending.
ctx.assertPendingInputs(input1, input2, input3)
// We should expect to see both sweep transactions broadcast. The higher
// fee rate sweep should be broadcast first. We'll remove the lower fee
// rate sweep to ensure we can detect pending inputs after a sweep.
// Once the higher fee rate sweep confirms, we should no longer see
// those inputs pending.
ctx.tick()
ctx.receiveTx()
lowFeeRateTx := ctx.receiveTx()
ctx.backend.deleteUnconfirmed(lowFeeRateTx.TxHash())
ctx.backend.mine()
ctx.expectResult(resultChan1, nil)
ctx.assertPendingInputs(input3)
// We'll then trigger a new block to rebroadcast the lower fee rate
// sweep. Once again we'll ensure those inputs are no longer pending
// once the sweep transaction confirms.
ctx.backend.notifier.NotifyEpoch(101)
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(resultChan3, nil)
ctx.assertPendingInputs()
ctx.finish(1)
}
// TestBumpFeeRBF ensures that the UtxoSweeper can properly handle a fee bump
// request for an input it is currently attempting to sweep. When sweeping the
// input with the higher fee rate, a replacement transaction is created.
func TestBumpFeeRBF(t *testing.T) {
ctx := createSweeperTestContext(t)
lowFeePref := FeePreference{ConfTarget: 144}
lowFeeRate := chainfee.FeePerKwFloor
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
// We'll first try to bump the fee of an output currently unknown to the
// UtxoSweeper. Doing so should result in a lnwallet.ErrNotMine error.
_, err := ctx.sweeper.UpdateParams(
wire.OutPoint{}, ParamsUpdate{Fee: lowFeePref},
)
if err != lnwallet.ErrNotMine {
t.Fatalf("expected error lnwallet.ErrNotMine, got \"%v\"", err)
}
// We'll then attempt to sweep an input, which we'll use to bump its fee
// later on.
input := createTestInput(
btcutil.SatoshiPerBitcoin, input.CommitmentTimeLock,
)
sweepResult, err := ctx.sweeper.SweepInput(
&input, Params{Fee: lowFeePref},
)
if err != nil {
t.Fatal(err)
}
// Ensure that a transaction is broadcast with the lower fee preference.
ctx.tick()
lowFeeTx := ctx.receiveTx()
assertTxFeeRate(t, &lowFeeTx, lowFeeRate, &input)
// We'll then attempt to bump its fee rate.
highFeePref := FeePreference{ConfTarget: 6}
highFeeRate := DefaultMaxFeeRate
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
// We should expect to see an error if a fee preference isn't provided.
_, err = ctx.sweeper.UpdateParams(*input.OutPoint(), ParamsUpdate{})
if err != ErrNoFeePreference {
t.Fatalf("expected ErrNoFeePreference, got %v", err)
}
bumpResult, err := ctx.sweeper.UpdateParams(
*input.OutPoint(), ParamsUpdate{Fee: highFeePref},
)
if err != nil {
t.Fatalf("unable to bump input's fee: %v", err)
}
// A higher fee rate transaction should be immediately broadcast.
ctx.tick()
highFeeTx := ctx.receiveTx()
assertTxFeeRate(t, &highFeeTx, highFeeRate, &input)
// We'll finish our test by mining the sweep transaction.
ctx.backend.mine()
ctx.expectResult(sweepResult, nil)
ctx.expectResult(bumpResult, nil)
ctx.finish(1)
}
// TestExclusiveGroup tests the sweeper exclusive group functionality.
func TestExclusiveGroup(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep three inputs in the same exclusive group.
var results []chan Result
for i := 0; i < 3; i++ {
exclusiveGroup := uint64(1)
result, err := ctx.sweeper.SweepInput(
spendableInputs[i], Params{
Fee: FeePreference{ConfTarget: 6},
ExclusiveGroup: &exclusiveGroup,
},
)
if err != nil {
t.Fatal(err)
}
results = append(results, result)
}
// We expect all inputs to be published in separate transactions, even
// though they share the same fee preference.
ctx.tick()
for i := 0; i < 3; i++ {
sweepTx := ctx.receiveTx()
if len(sweepTx.TxOut) != 1 {
t.Fatal("expected a single tx out in the sweep tx")
}
// Remove all txes except for the one that sweeps the first
// input. This simulates the sweeps being conflicting.
if sweepTx.TxIn[0].PreviousOutPoint !=
*spendableInputs[0].OutPoint() {
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
}
}
// Mine the first sweep tx.
ctx.backend.mine()
// Expect the first input to be swept by the confirmed sweep tx.
result0 := <-results[0]
if result0.Err != nil {
t.Fatal("expected first input to be swept")
}
// Expect the other two inputs to return an error. They have no chance
// of confirming.
result1 := <-results[1]
if result1.Err != ErrExclusiveGroupSpend {
t.Fatal("expected second input to be canceled")
}
result2 := <-results[2]
if result2.Err != ErrExclusiveGroupSpend {
t.Fatal("expected third input to be canceled")
}
}
// TestCpfp tests that the sweeper spends cpfp inputs at a fee rate that exceeds
// the parent tx fee rate.
func TestCpfp(t *testing.T) {
ctx := createSweeperTestContext(t)
ctx.estimator.updateFees(1000, chainfee.FeePerKwFloor)
// Offer an input with an unconfirmed parent tx to the sweeper. The
// parent tx pays 3000 sat/kw.
hash := chainhash.Hash{1}
input := input.MakeBaseInput(
&wire.OutPoint{Hash: hash},
input.CommitmentTimeLock,
&input.SignDescriptor{
Output: &wire.TxOut{
Value: 330,
},
KeyDesc: keychain.KeyDescriptor{
PubKey: testPubKey,
},
},
0,
&input.TxInfo{
Weight: 300,
Fee: 900,
},
)
feePref := FeePreference{ConfTarget: 6}
result, err := ctx.sweeper.SweepInput(
&input, Params{Fee: feePref, Force: true},
)
require.NoError(t, err)
// Because we sweep at 1000 sat/kw, the parent cannot be paid for. We
// expect the sweeper to remain idle.
ctx.assertNoTick()
// Increase the fee estimate to above the parent tx fee rate.
ctx.estimator.updateFees(5000, chainfee.FeePerKwFloor)
// Signal a new block. This is a trigger for the sweeper to refresh fee
// estimates.
ctx.notifier.NotifyEpoch(1000)
// Now we do expect a sweep transaction to be published with our input
// and an attached wallet utxo.
ctx.tick()
tx := ctx.receiveTx()
require.Len(t, tx.TxIn, 2)
require.Len(t, tx.TxOut, 1)
// As inputs we have 10000 sats from the wallet and 330 sats from the
// cpfp input. The sweep tx is weight expected to be 759 units. There is
// an additional 300 weight units from the parent to include in the
// package, making a total of 1059. At 5000 sat/kw, the required fee for
// the package is 5295 sats. The parent already paid 900 sats, so there
// is 4395 sat remaining to be paid. The expected output value is
// therefore: 1_000_000 + 330 - 4395 = 995 935.
require.Equal(t, int64(995_935), tx.TxOut[0].Value)
// Mine the tx and assert that the result is passed back.
ctx.backend.mine()
ctx.expectResult(result, nil)
ctx.finish(1)
}
var (
testInputsA = pendingInputs{
wire.OutPoint{Hash: chainhash.Hash{}, Index: 0}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 1}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 2}: &pendingInput{},
}
testInputsB = pendingInputs{
wire.OutPoint{Hash: chainhash.Hash{}, Index: 10}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 11}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 12}: &pendingInput{},
}
testInputsC = pendingInputs{
wire.OutPoint{Hash: chainhash.Hash{}, Index: 0}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 1}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 2}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 10}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 11}: &pendingInput{},
wire.OutPoint{Hash: chainhash.Hash{}, Index: 12}: &pendingInput{},
}
)
// TestMergeClusters check that we properly can merge clusters together,
// according to their required locktime.
func TestMergeClusters(t *testing.T) {
t.Parallel()
lockTime1 := uint32(100)
lockTime2 := uint32(200)
testCases := []struct {
name string
a inputCluster
b inputCluster
res []inputCluster
}{
{
name: "max fee rate",
a: inputCluster{
sweepFeeRate: 5000,
inputs: testInputsA,
},
b: inputCluster{
sweepFeeRate: 7000,
inputs: testInputsB,
},
res: []inputCluster{
{
sweepFeeRate: 7000,
inputs: testInputsC,
},
},
},
{
name: "same locktime",
a: inputCluster{
lockTime: &lockTime1,
sweepFeeRate: 5000,
inputs: testInputsA,
},
b: inputCluster{
lockTime: &lockTime1,
sweepFeeRate: 7000,
inputs: testInputsB,
},
res: []inputCluster{
{
lockTime: &lockTime1,
sweepFeeRate: 7000,
inputs: testInputsC,
},
},
},
{
name: "diff locktime",
a: inputCluster{
lockTime: &lockTime1,
sweepFeeRate: 5000,
inputs: testInputsA,
},
b: inputCluster{
lockTime: &lockTime2,
sweepFeeRate: 7000,
inputs: testInputsB,
},
res: []inputCluster{
{
lockTime: &lockTime1,
sweepFeeRate: 5000,
inputs: testInputsA,
},
{
lockTime: &lockTime2,
sweepFeeRate: 7000,
inputs: testInputsB,
},
},
},
}
for _, test := range testCases {
merged := mergeClusters(test.a, test.b)
if !reflect.DeepEqual(merged, test.res) {
t.Fatalf("[%s] unexpected result: %v",
test.name, spew.Sdump(merged))
}
}
}
// TestZipClusters tests that we can merge lists of inputs clusters correctly.
func TestZipClusters(t *testing.T) {
t.Parallel()
createCluster := func(inp pendingInputs, f chainfee.SatPerKWeight) inputCluster {
return inputCluster{
sweepFeeRate: f,
inputs: inp,
}
}
testCases := []struct {
name string
as []inputCluster
bs []inputCluster
res []inputCluster
}{
{
name: "merge A into B",
as: []inputCluster{
createCluster(testInputsA, 5000),
},
bs: []inputCluster{
createCluster(testInputsB, 7000),
},
res: []inputCluster{
createCluster(testInputsC, 7000),
},
},
{
name: "A can't merge with B",
as: []inputCluster{
createCluster(testInputsA, 7000),
},
bs: []inputCluster{
createCluster(testInputsB, 5000),
},
res: []inputCluster{
createCluster(testInputsA, 7000),
createCluster(testInputsB, 5000),
},
},
{
name: "empty bs",
as: []inputCluster{
createCluster(testInputsA, 7000),
},
bs: []inputCluster{},
res: []inputCluster{
createCluster(testInputsA, 7000),
},
},
{
name: "empty as",
as: []inputCluster{},
bs: []inputCluster{
createCluster(testInputsB, 5000),
},
res: []inputCluster{
createCluster(testInputsB, 5000),
},
},
{
name: "zip 3xA into 3xB",
as: []inputCluster{
createCluster(testInputsA, 5000),
createCluster(testInputsA, 5000),
createCluster(testInputsA, 5000),
},
bs: []inputCluster{
createCluster(testInputsB, 7000),
createCluster(testInputsB, 7000),
createCluster(testInputsB, 7000),
},
res: []inputCluster{
createCluster(testInputsC, 7000),
createCluster(testInputsC, 7000),
createCluster(testInputsC, 7000),
},
},
{
name: "zip A into 3xB",
as: []inputCluster{
createCluster(testInputsA, 2500),
},
bs: []inputCluster{
createCluster(testInputsB, 3000),
createCluster(testInputsB, 2000),
createCluster(testInputsB, 1000),
},
res: []inputCluster{
createCluster(testInputsC, 3000),
createCluster(testInputsB, 2000),
createCluster(testInputsB, 1000),
},
},
}
for _, test := range testCases {
zipped := zipClusters(test.as, test.bs)
if !reflect.DeepEqual(zipped, test.res) {
t.Fatalf("[%s] unexpected result: %v",
test.name, spew.Sdump(zipped))
}
}
}
type testInput struct {
*input.BaseInput
locktime *uint32
reqTxOut *wire.TxOut
}
func (i *testInput) RequiredLockTime() (uint32, bool) {
if i.locktime != nil {
return *i.locktime, true
}
return 0, false
}
func (i *testInput) RequiredTxOut() *wire.TxOut {
return i.reqTxOut
}
// CraftInputScript is a custom sign method for the testInput type that will
// encode the spending outpoint and the tx input index as part of the returned
// witness.
func (i *testInput) CraftInputScript(_ input.Signer, txn *wire.MsgTx,
hashCache *txscript.TxSigHashes, txinIdx int) (*input.Script, error) {
// We'll encode the outpoint in the witness, so we can assert that the
// expected input was signed at the correct index.
op := i.OutPoint()
return &input.Script{
Witness: [][]byte{
// We encode the hash of the outpoint...
op.Hash[:],
// ..the outpoint index...
{byte(op.Index)},
// ..and finally the tx input index.
{byte(txinIdx)},
},
}, nil
}
// assertSignedIndex goes through all inputs to the tx and checks that all
// testInputs have witnesses corresponding to the outpoints they are spending,
// and are signed at the correct tx input index. All found testInputs are
// returned such that we can sum up and sanity check that all testInputs were
// part of the sweep.
func assertSignedIndex(t *testing.T, tx *wire.MsgTx,
testInputs map[wire.OutPoint]*testInput) map[wire.OutPoint]struct{} {
found := make(map[wire.OutPoint]struct{})
for idx, txIn := range tx.TxIn {
op := txIn.PreviousOutPoint
// Not a testInput, it won't have the test encoding we require
// to check outpoint and index.
if _, ok := testInputs[op]; !ok {
continue
}
if _, ok := found[op]; ok {
t.Fatalf("input already used")
}
// Check it was signes spending the correct outpoint, and at
// the expected tx input index.
require.Equal(t, txIn.Witness[0], op.Hash[:])
require.Equal(t, txIn.Witness[1], []byte{byte(op.Index)})
require.Equal(t, txIn.Witness[2], []byte{byte(idx)})
found[op] = struct{}{}
}
return found
}
// TestLockTimes checks that the sweeper properly groups inputs requiring the
// same locktime together into sweep transactions.
func TestLockTimes(t *testing.T) {
ctx := createSweeperTestContext(t)
// We increase the number of max inputs to a tx so that won't
// impact our test.
ctx.sweeper.cfg.MaxInputsPerTx = 100
// We will set up the lock times in such a way that we expect the
// sweeper to divide the inputs into 4 diffeerent transactions.
const numSweeps = 4
// Sweep 8 inputs, using 4 different lock times.
var (
results []chan Result
inputs = make(map[wire.OutPoint]input.Input)
)
for i := 0; i < numSweeps*2; i++ {
lt := uint32(10 + (i % numSweeps))
inp := &testInput{
BaseInput: spendableInputs[i],
locktime: &lt,
}
result, err := ctx.sweeper.SweepInput(
inp, Params{
Fee: FeePreference{ConfTarget: 6},
},
)
if err != nil {
t.Fatal(err)
}
results = append(results, result)
op := inp.OutPoint()
inputs[*op] = inp
}
// We also add 3 regular inputs that don't require any specific lock
// time.
for i := 0; i < 3; i++ {
inp := spendableInputs[i+numSweeps*2]
result, err := ctx.sweeper.SweepInput(
inp, Params{
Fee: FeePreference{ConfTarget: 6},
},
)
if err != nil {
t.Fatal(err)
}
results = append(results, result)
op := inp.OutPoint()
inputs[*op] = inp
}
// We expect all inputs to be published in separate transactions, even
// though they share the same fee preference.
ctx.tick()
// Check the sweeps transactions, ensuring all inputs are there, and
// all the locktimes are satisfied.
for i := 0; i < numSweeps; i++ {
sweepTx := ctx.receiveTx()
if len(sweepTx.TxOut) != 1 {
t.Fatal("expected a single tx out in the sweep tx")
}
for _, txIn := range sweepTx.TxIn {
op := txIn.PreviousOutPoint
inp, ok := inputs[op]
if !ok {
t.Fatalf("Unexpected outpoint: %v", op)
}
delete(inputs, op)
// If this input had a required locktime, ensure the tx
// has that set correctly.
lt, ok := inp.RequiredLockTime()
if !ok {
continue
}
if lt != sweepTx.LockTime {
t.Fatalf("Input required locktime %v, sweep "+
"tx had locktime %v", lt, sweepTx.LockTime)
}
}
}
// The should be no inputs not foud in any of the sweeps.
if len(inputs) != 0 {
t.Fatalf("had unsweeped inputs")
}
// Mine the first sweeps
ctx.backend.mine()
// Results should all come back.
for i := range results {
result := <-results[i]
if result.Err != nil {
t.Fatal("expected input to be swept")
}
}
}
// TestRequiredTxOuts checks that inputs having a required TxOut gets swept with
// sweep transactions paying into these outputs.
func TestRequiredTxOuts(t *testing.T) {
// Create some test inputs and locktime vars.
var inputs []*input.BaseInput
for i := 0; i < 20; i++ {
input := createTestInput(
int64(btcutil.SatoshiPerBitcoin+i*500),
input.CommitmentTimeLock,
)
inputs = append(inputs, &input)
}
locktime1 := uint32(51)
locktime2 := uint32(52)
locktime3 := uint32(53)
testCases := []struct {
name string
inputs []*testInput
assertSweeps func(*testing.T, map[wire.OutPoint]*testInput,
[]*wire.MsgTx)
}{
{
// Single input with a required TX out that is smaller.
// We expect a change output to be added.
name: "single input, leftover change",
inputs: []*testInput{
{
BaseInput: inputs[0],
reqTxOut: &wire.TxOut{
PkScript: []byte("aaa"),
Value: 100000,
},
},
},
// Since the required output value is small, we expect
// the rest after fees to go into a change output.
assertSweeps: func(t *testing.T,
_ map[wire.OutPoint]*testInput,
txs []*wire.MsgTx) {
require.Equal(t, 1, len(txs))
tx := txs[0]
require.Equal(t, 1, len(tx.TxIn))
// We should have two outputs, the required
// output must be the first one.
require.Equal(t, 2, len(tx.TxOut))
out := tx.TxOut[0]
require.Equal(t, []byte("aaa"), out.PkScript)
require.Equal(t, int64(100000), out.Value)
},
},
{
// An input committing to a slightly smaller output, so
// it will pay its own fees.
name: "single input, no change",
inputs: []*testInput{
{
BaseInput: inputs[0],
reqTxOut: &wire.TxOut{
PkScript: []byte("aaa"),
// Fee will be about 5340 sats.
// Subtract a bit more to
// ensure no dust change output
// is manifested.
Value: inputs[0].SignDesc().Output.Value - 5600,
},
},
},
// We expect this single input/output pair.
assertSweeps: func(t *testing.T,
_ map[wire.OutPoint]*testInput,
txs []*wire.MsgTx) {
require.Equal(t, 1, len(txs))
tx := txs[0]
require.Equal(t, 1, len(tx.TxIn))
require.Equal(t, 1, len(tx.TxOut))
out := tx.TxOut[0]
require.Equal(t, []byte("aaa"), out.PkScript)
require.Equal(
t,
inputs[0].SignDesc().Output.Value-5600,
out.Value,
)
},
},
{
// Two inputs, where the first one required no tx out.
name: "two inputs, one with required tx out",
inputs: []*testInput{
{
// We add a normal, non-requiredTxOut
// input. We use test input 10, to make
// sure this has a higher yield than
// the other input, and will be
// attempted added first to the sweep
// tx.
BaseInput: inputs[10],
},
{
// The second input requires a TxOut.
BaseInput: inputs[0],
reqTxOut: &wire.TxOut{
PkScript: []byte("aaa"),
Value: inputs[0].SignDesc().Output.Value,
},
},
},
// We expect the inputs to have been reordered.
assertSweeps: func(t *testing.T,
_ map[wire.OutPoint]*testInput,
txs []*wire.MsgTx) {
require.Equal(t, 1, len(txs))
tx := txs[0]
require.Equal(t, 2, len(tx.TxIn))
require.Equal(t, 2, len(tx.TxOut))
// The required TxOut should be the first one.
out := tx.TxOut[0]
require.Equal(t, []byte("aaa"), out.PkScript)
require.Equal(
t, inputs[0].SignDesc().Output.Value,
out.Value,
)
// The first input should be the one having the
// required TxOut.
require.Len(t, tx.TxIn, 2)
require.Equal(
t, inputs[0].OutPoint(),
&tx.TxIn[0].PreviousOutPoint,
)
// Second one is the one without a required tx
// out.
require.Equal(
t, inputs[10].OutPoint(),
&tx.TxIn[1].PreviousOutPoint,
)
},
},
{
// An input committing to an output of equal value, just
// add input to pay fees.
name: "single input, extra fee input",
inputs: []*testInput{
{
BaseInput: inputs[0],
reqTxOut: &wire.TxOut{
PkScript: []byte("aaa"),
Value: inputs[0].SignDesc().Output.Value,
},
},
},
// We expect an extra input and output.
assertSweeps: func(t *testing.T,
_ map[wire.OutPoint]*testInput,
txs []*wire.MsgTx) {
require.Equal(t, 1, len(txs))
tx := txs[0]
require.Equal(t, 2, len(tx.TxIn))
require.Equal(t, 2, len(tx.TxOut))
out := tx.TxOut[0]
require.Equal(t, []byte("aaa"), out.PkScript)
require.Equal(
t, inputs[0].SignDesc().Output.Value,
out.Value,
)
},
},
{
// Three inputs added, should be combined into a single
// sweep.
name: "three inputs",
inputs: []*testInput{
{
BaseInput: inputs[0],
reqTxOut: &wire.TxOut{
PkScript: []byte("aaa"),
Value: inputs[0].SignDesc().Output.Value,
},
},
{
BaseInput: inputs[1],
reqTxOut: &wire.TxOut{
PkScript: []byte("bbb"),
Value: inputs[1].SignDesc().Output.Value,
},
},
{
BaseInput: inputs[2],
reqTxOut: &wire.TxOut{
PkScript: []byte("ccc"),
Value: inputs[2].SignDesc().Output.Value,
},
},
},
// We expect an extra input and output to pay fees.
assertSweeps: func(t *testing.T,
testInputs map[wire.OutPoint]*testInput,
txs []*wire.MsgTx) {
require.Equal(t, 1, len(txs))
tx := txs[0]
require.Equal(t, 4, len(tx.TxIn))
require.Equal(t, 4, len(tx.TxOut))
// The inputs and outputs must be in the same
// order.
for i, in := range tx.TxIn {
// Last one is the change input/output
// pair, so we'll skip it.
if i == 3 {
continue
}
// Get this input to ensure the output
// on index i coresponsd to this one.
inp := testInputs[in.PreviousOutPoint]
require.NotNil(t, inp)
require.Equal(
t, tx.TxOut[i].Value,
inp.SignDesc().Output.Value,
)
}
},
},
{
// Six inputs added, which 3 different locktimes.
// Should result in 3 sweeps.
name: "six inputs",
inputs: []*testInput{
{
BaseInput: inputs[0],
locktime: &locktime1,
reqTxOut: &wire.TxOut{
PkScript: []byte("aaa"),
Value: inputs[0].SignDesc().Output.Value,
},
},
{
BaseInput: inputs[1],
locktime: &locktime1,
reqTxOut: &wire.TxOut{
PkScript: []byte("bbb"),
Value: inputs[1].SignDesc().Output.Value,
},
},
{
BaseInput: inputs[2],
locktime: &locktime2,
reqTxOut: &wire.TxOut{
PkScript: []byte("ccc"),
Value: inputs[2].SignDesc().Output.Value,
},
},
{
BaseInput: inputs[3],
locktime: &locktime2,
reqTxOut: &wire.TxOut{
PkScript: []byte("ddd"),
Value: inputs[3].SignDesc().Output.Value,
},
},
{
BaseInput: inputs[4],
locktime: &locktime3,
reqTxOut: &wire.TxOut{
PkScript: []byte("eee"),
Value: inputs[4].SignDesc().Output.Value,
},
},
{
BaseInput: inputs[5],
locktime: &locktime3,
reqTxOut: &wire.TxOut{
PkScript: []byte("fff"),
Value: inputs[5].SignDesc().Output.Value,
},
},
},
// We expect three sweeps, each having two of our
// inputs, one extra input and output to pay fees.
assertSweeps: func(t *testing.T,
testInputs map[wire.OutPoint]*testInput,
txs []*wire.MsgTx) {
require.Equal(t, 3, len(txs))
for _, tx := range txs {
require.Equal(t, 3, len(tx.TxIn))
require.Equal(t, 3, len(tx.TxOut))
// The inputs and outputs must be in
// the same order.
for i, in := range tx.TxIn {
// Last one is the change
// output, so we'll skip it.
if i == 2 {
continue
}
// Get this input to ensure the
// output on index i coresponsd
// to this one.
inp := testInputs[in.PreviousOutPoint]
require.NotNil(t, inp)
require.Equal(
t, tx.TxOut[i].Value,
inp.SignDesc().Output.Value,
)
// Check that the locktimes are
// kept intact.
require.Equal(
t, tx.LockTime,
*inp.locktime,
)
}
}
},
},
}
for _, testCase := range testCases {
testCase := testCase
t.Run(testCase.name, func(t *testing.T) {
ctx := createSweeperTestContext(t)
// We increase the number of max inputs to a tx so that
// won't impact our test.
ctx.sweeper.cfg.MaxInputsPerTx = 100
// Sweep all test inputs.
var (
inputs = make(map[wire.OutPoint]*testInput)
results = make(map[wire.OutPoint]chan Result)
)
for _, inp := range testCase.inputs {
result, err := ctx.sweeper.SweepInput(
inp, Params{
Fee: FeePreference{ConfTarget: 6},
},
)
if err != nil {
t.Fatal(err)
}
op := inp.OutPoint()
results[*op] = result
inputs[*op] = inp
}
// Tick, which should trigger a sweep of all inputs.
ctx.tick()
// Check the sweeps transactions, ensuring all inputs
// are there, and all the locktimes are satisfied.
var sweeps []*wire.MsgTx
Loop:
for {
select {
case tx := <-ctx.publishChan:
sweeps = append(sweeps, &tx)
case <-time.After(200 * time.Millisecond):
break Loop
}
}
// Mine the sweeps.
ctx.backend.mine()
// Results should all come back.
for _, resultChan := range results {
result := <-resultChan
if result.Err != nil {
t.Fatalf("expected input to be "+
"swept: %v", result.Err)
}
}
// Assert the transactions are what we expect.
testCase.assertSweeps(t, inputs, sweeps)
// Finally we assert that all our test inputs were part
// of the sweeps, and that they were signed correctly.
sweptInputs := make(map[wire.OutPoint]struct{})
for _, sweep := range sweeps {
swept := assertSignedIndex(t, sweep, inputs)
for op := range swept {
if _, ok := sweptInputs[op]; ok {
t.Fatalf("outpoint %v part of "+
"previous sweep", op)
}
sweptInputs[op] = struct{}{}
}
}
require.Equal(t, len(inputs), len(sweptInputs))
for op := range sweptInputs {
_, ok := inputs[op]
if !ok {
t.Fatalf("swept input %v not part of "+
"test inputs", op)
}
}
})
}
}
// TestSweeperShutdownHandling tests that we notify callers when the sweeper
// cannot handle requests since it's in the process of shutting down.
func TestSweeperShutdownHandling(t *testing.T) {
ctx := createSweeperTestContext(t)
// Make the backing notifier break down. This is what happens during
// lnd shut down, since the notifier is stopped before the sweeper.
require.Len(t, ctx.notifier.epochChan, 1)
for epochChan := range ctx.notifier.epochChan {
close(epochChan)
}
// Give the collector some time to exit.
time.Sleep(50 * time.Millisecond)
// Now trying to sweep inputs should return an error on the error
// channel.
resultChan, err := ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
require.NoError(t, err)
select {
case res := <-resultChan:
require.Equal(t, ErrSweeperShuttingDown, res.Err)
case <-time.After(defaultTestTimeout):
t.Fatalf("no result arrived")
}
// Stop the sweeper properly.
err = ctx.sweeper.Stop()
require.NoError(t, err)
// Now attempting to sweep an input should error out immediately.
_, err = ctx.sweeper.SweepInput(
spendableInputs[0], defaultFeePref,
)
require.Error(t, err)
}