lnd version, "hacked" to enable seedless restore from xprv + scb
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

3119 lines
98 KiB

package peer
import (
"bytes"
"container/list"
"errors"
"fmt"
"net"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/connmgr"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/buffer"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channelnotifier"
"github.com/lightningnetwork/lnd/contractcourt"
"github.com/lightningnetwork/lnd/discovery"
"github.com/lightningnetwork/lnd/feature"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/htlcswitch/hodl"
"github.com/lightningnetwork/lnd/htlcswitch/hop"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/invoices"
"github.com/lightningnetwork/lnd/lnpeer"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwallet/chancloser"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/netann"
"github.com/lightningnetwork/lnd/pool"
"github.com/lightningnetwork/lnd/queue"
"github.com/lightningnetwork/lnd/ticker"
"github.com/lightningnetwork/lnd/watchtower/wtclient"
)
const (
// pingInterval is the interval at which ping messages are sent.
pingInterval = 1 * time.Minute
// idleTimeout is the duration of inactivity before we time out a peer.
idleTimeout = 5 * time.Minute
// writeMessageTimeout is the timeout used when writing a message to the
// peer.
writeMessageTimeout = 5 * time.Second
// readMessageTimeout is the timeout used when reading a message from a
// peer.
readMessageTimeout = 5 * time.Second
// handshakeTimeout is the timeout used when waiting for the peer's init
// message.
handshakeTimeout = 15 * time.Second
// outgoingQueueLen is the buffer size of the channel which houses
// messages to be sent across the wire, requested by objects outside
// this struct.
outgoingQueueLen = 50
// ErrorBufferSize is the number of historic peer errors that we store.
ErrorBufferSize = 10
)
var (
// ErrChannelNotFound is an error returned when a channel is queried and
// either the Brontide doesn't know of it, or the channel in question
// is pending.
ErrChannelNotFound = fmt.Errorf("channel not found")
)
// outgoingMsg packages an lnwire.Message to be sent out on the wire, along with
// a buffered channel which will be sent upon once the write is complete. This
// buffered channel acts as a semaphore to be used for synchronization purposes.
type outgoingMsg struct {
priority bool
msg lnwire.Message
errChan chan error // MUST be buffered.
}
// newChannelMsg packages a channeldb.OpenChannel with a channel that allows
// the receiver of the request to report when the channel creation process has
// completed.
type newChannelMsg struct {
channel *channeldb.OpenChannel
err chan error
}
// closeMsg is a wrapper struct around any wire messages that deal with the
// cooperative channel closure negotiation process. This struct includes the
// raw channel ID targeted along with the original message.
type closeMsg struct {
cid lnwire.ChannelID
msg lnwire.Message
}
// PendingUpdate describes the pending state of a closing channel.
type PendingUpdate struct {
Txid []byte
OutputIndex uint32
}
// ChannelCloseUpdate contains the outcome of the close channel operation.
type ChannelCloseUpdate struct {
ClosingTxid []byte
Success bool
}
// TimestampedError is a timestamped error that is used to store the most recent
// errors we have experienced with our peers.
type TimestampedError struct {
Error error
Timestamp time.Time
}
// Config defines configuration fields that are necessary for a peer object
// to function.
type Config struct {
// Conn is the underlying network connection for this peer.
Conn MessageConn
// ConnReq stores information related to the persistent connection request
// for this peer.
ConnReq *connmgr.ConnReq
// PubKeyBytes is the serialized, compressed public key of this peer.
PubKeyBytes [33]byte
// Addr is the network address of the peer.
Addr *lnwire.NetAddress
// Inbound indicates whether or not the peer is an inbound peer.
Inbound bool
// Features is the set of features that we advertise to the remote party.
Features *lnwire.FeatureVector
// LegacyFeatures is the set of features that we advertise to the remote
// peer for backwards compatibility. Nodes that have not implemented
// flat features will still be able to read our feature bits from the
// legacy global field, but we will also advertise everything in the
// default features field.
LegacyFeatures *lnwire.FeatureVector
// OutgoingCltvRejectDelta defines the number of blocks before expiry of
// an htlc where we don't offer it anymore.
OutgoingCltvRejectDelta uint32
// ChanActiveTimeout specifies the duration the peer will wait to request
// a channel reenable, beginning from the time the peer was started.
ChanActiveTimeout time.Duration
// ErrorBuffer stores a set of errors related to a peer. It contains error
// messages that our peer has recently sent us over the wire and records of
// unknown messages that were sent to us so that we can have a full track
// record of the communication errors we have had with our peer. If we
// choose to disconnect from a peer, it also stores the reason we had for
// disconnecting.
ErrorBuffer *queue.CircularBuffer
// WritePool is the task pool that manages reuse of write buffers. Write
// tasks are submitted to the pool in order to conserve the total number of
// write buffers allocated at any one time, and decouple write buffer
// allocation from the peer life cycle.
WritePool *pool.Write
// ReadPool is the task pool that manages reuse of read buffers.
ReadPool *pool.Read
// Switch is a pointer to the htlcswitch. It is used to setup, get, and
// tear-down ChannelLinks.
Switch *htlcswitch.Switch
// InterceptSwitch is a pointer to the InterceptableSwitch, a wrapper around
// the regular Switch. We only export it here to pass ForwardPackets to the
// ChannelLinkConfig.
InterceptSwitch *htlcswitch.InterceptableSwitch
// ChannelDB is used to fetch opened channels, and closed channels.
ChannelDB *channeldb.DB
// ChannelGraph is a pointer to the channel graph which is used to
// query information about the set of known active channels.
ChannelGraph *channeldb.ChannelGraph
// ChainArb is used to subscribe to channel events, update contract signals,
// and force close channels.
ChainArb *contractcourt.ChainArbitrator
// AuthGossiper is needed so that the Brontide impl can register with the
// gossiper and process remote channel announcements.
AuthGossiper *discovery.AuthenticatedGossiper
// ChanStatusMgr is used to set or un-set the disabled bit in channel
// updates.
ChanStatusMgr *netann.ChanStatusManager
// ChainIO is used to retrieve the best block.
ChainIO lnwallet.BlockChainIO
// FeeEstimator is used to compute our target ideal fee-per-kw when
// initializing the coop close process.
FeeEstimator chainfee.Estimator
// Signer is used when creating *lnwallet.LightningChannel instances.
Signer input.Signer
// SigPool is used when creating *lnwallet.LightningChannel instances.
SigPool *lnwallet.SigPool
// Wallet is used to publish transactions and generates delivery
// scripts during the coop close process.
Wallet *lnwallet.LightningWallet
// ChainNotifier is used to receive confirmations of a coop close
// transaction.
ChainNotifier chainntnfs.ChainNotifier
// RoutingPolicy is used to set the forwarding policy for links created by
// the Brontide.
RoutingPolicy htlcswitch.ForwardingPolicy
// Sphinx is used when setting up ChannelLinks so they can decode sphinx
// onion blobs.
Sphinx *hop.OnionProcessor
// WitnessBeacon is used when setting up ChannelLinks so they can add any
// preimages that they learn.
WitnessBeacon contractcourt.WitnessBeacon
// Invoices is passed to the ChannelLink on creation and handles all
// invoice-related logic.
Invoices *invoices.InvoiceRegistry
// ChannelNotifier is used by the link to notify other sub-systems about
// channel-related events and by the Brontide to subscribe to
// ActiveLinkEvents.
ChannelNotifier *channelnotifier.ChannelNotifier
// HtlcNotifier is used when creating a ChannelLink.
HtlcNotifier *htlcswitch.HtlcNotifier
// TowerClient is used by legacy channels to backup revoked states.
TowerClient wtclient.Client
// AnchorTowerClient is used by anchor channels to backup revoked
// states.
AnchorTowerClient wtclient.Client
// DisconnectPeer is used to disconnect this peer if the cooperative close
// process fails.
DisconnectPeer func(*btcec.PublicKey) error
// GenNodeAnnouncement is used to send our node announcement to the remote
// on startup.
GenNodeAnnouncement func(bool,
...netann.NodeAnnModifier) (lnwire.NodeAnnouncement, error)
// PrunePersistentPeerConnection is used to remove all internal state
// related to this peer in the server.
PrunePersistentPeerConnection func([33]byte)
// FetchLastChanUpdate fetches our latest channel update for a target
// channel.
FetchLastChanUpdate func(lnwire.ShortChannelID) (*lnwire.ChannelUpdate,
error)
// FundingManager is an implementation of the funding.Controller interface.
FundingManager funding.Controller
// Hodl is used when creating ChannelLinks to specify HodlFlags as
// breakpoints in dev builds.
Hodl *hodl.Config
// UnsafeReplay is used when creating ChannelLinks to specify whether or
// not to replay adds on its commitment tx.
UnsafeReplay bool
// MaxOutgoingCltvExpiry is used when creating ChannelLinks and is the max
// number of blocks that funds could be locked up for when forwarding
// payments.
MaxOutgoingCltvExpiry uint32
// MaxChannelFeeAllocation is used when creating ChannelLinks and is the
// maximum percentage of total funds that can be allocated to a channel's
// commitment fee. This only applies for the initiator of the channel.
MaxChannelFeeAllocation float64
// MaxAnchorsCommitFeeRate is the maximum fee rate we'll use as an
// initiator for anchor channel commitments.
MaxAnchorsCommitFeeRate chainfee.SatPerKWeight
// CoopCloseTargetConfs is the confirmation target that will be used
// to estimate the fee rate to use during a cooperative channel
// closure initiated by the remote peer.
CoopCloseTargetConfs uint32
// ServerPubKey is the serialized, compressed public key of our lnd node.
// It is used to determine which policy (channel edge) to pass to the
// ChannelLink.
ServerPubKey [33]byte
// ChannelCommitInterval is the maximum time that is allowed to pass between
// receiving a channel state update and signing the next commitment.
// Setting this to a longer duration allows for more efficient channel
// operations at the cost of latency.
ChannelCommitInterval time.Duration
// ChannelCommitBatchSize is the maximum number of channel state updates
// that is accumulated before signing a new commitment.
ChannelCommitBatchSize uint32
// Quit is the server's quit channel. If this is closed, we halt operation.
Quit chan struct{}
}
// Brontide is an active peer on the Lightning Network. This struct is responsible
// for managing any channel state related to this peer. To do so, it has
// several helper goroutines to handle events such as HTLC timeouts, new
// funding workflow, and detecting an uncooperative closure of any active
// channels.
// TODO(roasbeef): proper reconnection logic
type Brontide struct {
// MUST be used atomically.
started int32
disconnect int32
// MUST be used atomically.
bytesReceived uint64
bytesSent uint64
// pingTime is a rough estimate of the RTT (round-trip-time) between us
// and the connected peer. This time is expressed in microseconds.
// To be used atomically.
// TODO(roasbeef): also use a WMA or EMA?
pingTime int64
// pingLastSend is the Unix time expressed in nanoseconds when we sent
// our last ping message. To be used atomically.
pingLastSend int64
cfg Config
// activeSignal when closed signals that the peer is now active and
// ready to process messages.
activeSignal chan struct{}
// startTime is the time this peer connection was successfully established.
// It will be zero for peers that did not successfully call Start().
startTime time.Time
// sendQueue is the channel which is used to queue outgoing messages to be
// written onto the wire. Note that this channel is unbuffered.
sendQueue chan outgoingMsg
// outgoingQueue is a buffered channel which allows second/third party
// objects to queue messages to be sent out on the wire.
outgoingQueue chan outgoingMsg
// activeChanMtx protects access to the activeChannels and
// addedChannels maps.
activeChanMtx sync.RWMutex
// activeChannels is a map which stores the state machines of all
// active channels. Channels are indexed into the map by the txid of
// the funding transaction which opened the channel.
//
// NOTE: On startup, pending channels are stored as nil in this map.
// Confirmed channels have channel data populated in the map. This means
// that accesses to this map should nil-check the LightningChannel to
// see if this is a pending channel or not. The tradeoff here is either
// having two maps everywhere (one for pending, one for confirmed chans)
// or having an extra nil-check per access.
activeChannels map[lnwire.ChannelID]*lnwallet.LightningChannel
// addedChannels tracks any new channels opened during this peer's
// lifecycle. We use this to filter out these new channels when the time
// comes to request a reenable for active channels, since they will have
// waited a shorter duration.
addedChannels map[lnwire.ChannelID]struct{}
// newChannels is used by the fundingManager to send fully opened
// channels to the source peer which handled the funding workflow.
newChannels chan *newChannelMsg
// activeMsgStreams is a map from channel id to the channel streams that
// proxy messages to individual, active links.
activeMsgStreams map[lnwire.ChannelID]*msgStream
// activeChanCloses is a map that keeps track of all the active
// cooperative channel closures. Any channel closing messages are directed
// to one of these active state machines. Once the channel has been closed,
// the state machine will be deleted from the map.
activeChanCloses map[lnwire.ChannelID]*chancloser.ChanCloser
// localCloseChanReqs is a channel in which any local requests to close
// a particular channel are sent over.
localCloseChanReqs chan *htlcswitch.ChanClose
// linkFailures receives all reported channel failures from the switch,
// and instructs the channelManager to clean remaining channel state.
linkFailures chan linkFailureReport
// chanCloseMsgs is a channel that any message related to channel
// closures are sent over. This includes lnwire.Shutdown message as
// well as lnwire.ClosingSigned messages.
chanCloseMsgs chan *closeMsg
// remoteFeatures is the feature vector received from the peer during
// the connection handshake.
remoteFeatures *lnwire.FeatureVector
// resentChanSyncMsg is a set that keeps track of which channels we
// have re-sent channel reestablishment messages for. This is done to
// avoid getting into loop where both peers will respond to the other
// peer's chansync message with its own over and over again.
resentChanSyncMsg map[lnwire.ChannelID]struct{}
queueQuit chan struct{}
quit chan struct{}
wg sync.WaitGroup
}
// A compile-time check to ensure that Brontide satisfies the lnpeer.Peer interface.
var _ lnpeer.Peer = (*Brontide)(nil)
// NewBrontide creates a new Brontide from a peer.Config struct.
func NewBrontide(cfg Config) *Brontide {
p := &Brontide{
cfg: cfg,
activeSignal: make(chan struct{}),
sendQueue: make(chan outgoingMsg),
outgoingQueue: make(chan outgoingMsg),
addedChannels: make(map[lnwire.ChannelID]struct{}),
activeChannels: make(map[lnwire.ChannelID]*lnwallet.LightningChannel),
newChannels: make(chan *newChannelMsg, 1),
activeMsgStreams: make(map[lnwire.ChannelID]*msgStream),
activeChanCloses: make(map[lnwire.ChannelID]*chancloser.ChanCloser),
localCloseChanReqs: make(chan *htlcswitch.ChanClose),
linkFailures: make(chan linkFailureReport),
chanCloseMsgs: make(chan *closeMsg),
resentChanSyncMsg: make(map[lnwire.ChannelID]struct{}),
queueQuit: make(chan struct{}),
quit: make(chan struct{}),
}
return p
}
// Start starts all helper goroutines the peer needs for normal operations. In
// the case this peer has already been started, then this function is a noop.
func (p *Brontide) Start() error {
if atomic.AddInt32(&p.started, 1) != 1 {
return nil
}
peerLog.Tracef("Peer %v starting", p)
// Fetch and then load all the active channels we have with this remote
// peer from the database.
activeChans, err := p.cfg.ChannelDB.FetchOpenChannels(
p.cfg.Addr.IdentityKey,
)
if err != nil {
peerLog.Errorf("Unable to fetch active chans "+
"for peer %v: %v", p, err)
return err
}
if len(activeChans) == 0 {
p.cfg.PrunePersistentPeerConnection(p.cfg.PubKeyBytes)
}
// Quickly check if we have any existing legacy channels with this
// peer.
haveLegacyChan := false
for _, c := range activeChans {
if c.ChanType.IsTweakless() {
continue
}
haveLegacyChan = true
break
}
// Exchange local and global features, the init message should be very
// first between two nodes.
if err := p.sendInitMsg(haveLegacyChan); err != nil {
return fmt.Errorf("unable to send init msg: %v", err)
}
// Before we launch any of the helper goroutines off the peer struct,
// we'll first ensure proper adherence to the p2p protocol. The init
// message MUST be sent before any other message.
readErr := make(chan error, 1)
msgChan := make(chan lnwire.Message, 1)
p.wg.Add(1)
go func() {
defer p.wg.Done()
msg, err := p.readNextMessage()
if err != nil {
readErr <- err
msgChan <- nil
return
}
readErr <- nil
msgChan <- msg
}()
select {
// In order to avoid blocking indefinitely, we'll give the other peer
// an upper timeout to respond before we bail out early.
case <-time.After(handshakeTimeout):
return fmt.Errorf("peer did not complete handshake within %v",
handshakeTimeout)
case err := <-readErr:
if err != nil {
return fmt.Errorf("unable to read init msg: %v", err)
}
}
// Once the init message arrives, we can parse it so we can figure out
// the negotiation of features for this session.
msg := <-msgChan
if msg, ok := msg.(*lnwire.Init); ok {
if err := p.handleInitMsg(msg); err != nil {
p.storeError(err)
return err
}
} else {
return errors.New("very first message between nodes " +
"must be init message")
}
// Next, load all the active channels we have with this peer,
// registering them with the switch and launching the necessary
// goroutines required to operate them.
peerLog.Debugf("Loaded %v active channels from database with "+
"NodeKey(%x)", len(activeChans), p.PubKey())
msgs, err := p.loadActiveChannels(activeChans)
if err != nil {
return fmt.Errorf("unable to load channels: %v", err)
}
p.startTime = time.Now()
p.wg.Add(5)
go p.queueHandler()
go p.writeHandler()
go p.readHandler()
go p.channelManager()
go p.pingHandler()
// Signal to any external processes that the peer is now active.
close(p.activeSignal)
// Now that the peer has started up, we send any channel sync messages
// that must be resent for borked channels.
if len(msgs) > 0 {
peerLog.Infof("Sending %d channel sync messages to peer after "+
"loading active channels", len(msgs))
if err := p.SendMessage(true, msgs...); err != nil {
peerLog.Warnf("Failed sending channel sync "+
"messages to peer %v: %v", p, err)
}
}
// Node announcements don't propagate very well throughout the network
// as there isn't a way to efficiently query for them through their
// timestamp, mostly affecting nodes that were offline during the time
// of broadcast. We'll resend our node announcement to the remote peer
// as a best-effort delivery such that it can also propagate to their
// peers. To ensure they can successfully process it in most cases,
// we'll only resend it as long as we have at least one confirmed
// advertised channel with the remote peer.
//
// TODO(wilmer): Remove this once we're able to query for node
// announcements through their timestamps.
p.maybeSendNodeAnn(activeChans)
return nil
}
// initGossipSync initializes either a gossip syncer or an initial routing
// dump, depending on the negotiated synchronization method.
func (p *Brontide) initGossipSync() {
// If the remote peer knows of the new gossip queries feature, then
// we'll create a new gossipSyncer in the AuthenticatedGossiper for it.
if p.remoteFeatures.HasFeature(lnwire.GossipQueriesOptional) {
peerLog.Infof("Negotiated chan series queries with %x",
p.cfg.PubKeyBytes[:])
// Register the peer's gossip syncer with the gossiper.
// This blocks synchronously to ensure the gossip syncer is
// registered with the gossiper before attempting to read
// messages from the remote peer.
//
// TODO(wilmer): Only sync updates from non-channel peers. This
// requires an improved version of the current network
// bootstrapper to ensure we can find and connect to non-channel
// peers.
p.cfg.AuthGossiper.InitSyncState(p)
}
}
// QuitSignal is a method that should return a channel which will be sent upon
// or closed once the backing peer exits. This allows callers using the
// interface to cancel any processing in the event the backing implementation
// exits.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) QuitSignal() <-chan struct{} {
return p.quit
}
// loadActiveChannels creates indexes within the peer for tracking all active
// channels returned by the database. It returns a slice of channel reestablish
// messages that should be sent to the peer immediately, in case we have borked
// channels that haven't been closed yet.
func (p *Brontide) loadActiveChannels(chans []*channeldb.OpenChannel) (
[]lnwire.Message, error) {
// Return a slice of messages to send to the peers in case the channel
// cannot be loaded normally.
var msgs []lnwire.Message
for _, dbChan := range chans {
lnChan, err := lnwallet.NewLightningChannel(
p.cfg.Signer, dbChan, p.cfg.SigPool,
)
if err != nil {
return nil, err
}
chanPoint := &dbChan.FundingOutpoint
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
peerLog.Infof("NodeKey(%x) loading ChannelPoint(%v)",
p.PubKey(), chanPoint)
// Skip adding any permanently irreconcilable channels to the
// htlcswitch.
if !dbChan.HasChanStatus(channeldb.ChanStatusDefault) &&
!dbChan.HasChanStatus(channeldb.ChanStatusRestored) {
peerLog.Warnf("ChannelPoint(%v) has status %v, won't "+
"start.", chanPoint, dbChan.ChanStatus())
// To help our peer recover from a potential data loss,
// we resend our channel reestablish message if the
// channel is in a borked state. We won't process any
// channel reestablish message sent from the peer, but
// that's okay since the assumption is that we did when
// marking the channel borked.
chanSync, err := dbChan.ChanSyncMsg()
if err != nil {
peerLog.Errorf("Unable to create channel "+
"reestablish message for channel %v: "+
"%v", chanPoint, err)
continue
}
msgs = append(msgs, chanSync)
continue
}
// Before we register this new link with the HTLC Switch, we'll
// need to fetch its current link-layer forwarding policy from
// the database.
graph := p.cfg.ChannelGraph
info, p1, p2, err := graph.FetchChannelEdgesByOutpoint(chanPoint)
if err != nil && err != channeldb.ErrEdgeNotFound {
return nil, err
}
// We'll filter out our policy from the directional channel
// edges based whom the edge connects to. If it doesn't connect
// to us, then we know that we were the one that advertised the
// policy.
//
// TODO(roasbeef): can add helper method to get policy for
// particular channel.
var selfPolicy *channeldb.ChannelEdgePolicy
if info != nil && bytes.Equal(info.NodeKey1Bytes[:],
p.cfg.ServerPubKey[:]) {
selfPolicy = p1
} else {
selfPolicy = p2
}
// If we don't yet have an advertised routing policy, then
// we'll use the current default, otherwise we'll translate the
// routing policy into a forwarding policy.
var forwardingPolicy *htlcswitch.ForwardingPolicy
if selfPolicy != nil {
forwardingPolicy = &htlcswitch.ForwardingPolicy{
MinHTLCOut: selfPolicy.MinHTLC,
MaxHTLC: selfPolicy.MaxHTLC,
BaseFee: selfPolicy.FeeBaseMSat,
FeeRate: selfPolicy.FeeProportionalMillionths,
TimeLockDelta: uint32(selfPolicy.TimeLockDelta),
}
} else {
peerLog.Warnf("Unable to find our forwarding policy "+
"for channel %v, using default values",
chanPoint)
forwardingPolicy = &p.cfg.RoutingPolicy
}
peerLog.Tracef("Using link policy of: %v",
spew.Sdump(forwardingPolicy))
// If the channel is pending, set the value to nil in the
// activeChannels map. This is done to signify that the channel is
// pending. We don't add the link to the switch here - it's the funding
// manager's responsibility to spin up pending channels. Adding them
// here would just be extra work as we'll tear them down when creating
// + adding the final link.
if lnChan.IsPending() {
p.activeChanMtx.Lock()
p.activeChannels[chanID] = nil
p.activeChanMtx.Unlock()
continue
}
// Subscribe to the set of on-chain events for this channel.
chainEvents, err := p.cfg.ChainArb.SubscribeChannelEvents(
*chanPoint,
)
if err != nil {
return nil, err
}
err = p.addLink(
chanPoint, lnChan, forwardingPolicy, chainEvents,
true,
)
if err != nil {
return nil, fmt.Errorf("unable to add link %v to "+
"switch: %v", chanPoint, err)
}
p.activeChanMtx.Lock()
p.activeChannels[chanID] = lnChan
p.activeChanMtx.Unlock()
}
return msgs, nil
}
// addLink creates and adds a new ChannelLink from the specified channel.
func (p *Brontide) addLink(chanPoint *wire.OutPoint,
lnChan *lnwallet.LightningChannel,
forwardingPolicy *htlcswitch.ForwardingPolicy,
chainEvents *contractcourt.ChainEventSubscription,
syncStates bool) error {
// onChannelFailure will be called by the link in case the channel
// fails for some reason.
onChannelFailure := func(chanID lnwire.ChannelID,
shortChanID lnwire.ShortChannelID,
linkErr htlcswitch.LinkFailureError) {
failure := linkFailureReport{
chanPoint: *chanPoint,
chanID: chanID,
shortChanID: shortChanID,
linkErr: linkErr,
}
select {
case p.linkFailures <- failure:
case <-p.quit:
case <-p.cfg.Quit:
}
}
updateContractSignals := func(signals *contractcourt.ContractSignals) error {
return p.cfg.ChainArb.UpdateContractSignals(*chanPoint, signals)
}
chanType := lnChan.State().ChanType
// Select the appropriate tower client based on the channel type. It's
// okay if the clients are disabled altogether and these values are nil,
// as the link will check for nilness before using either.
var towerClient htlcswitch.TowerClient
if chanType.HasAnchors() {
towerClient = p.cfg.AnchorTowerClient
} else {
towerClient = p.cfg.TowerClient
}
linkCfg := htlcswitch.ChannelLinkConfig{
Peer: p,
DecodeHopIterators: p.cfg.Sphinx.DecodeHopIterators,
ExtractErrorEncrypter: p.cfg.Sphinx.ExtractErrorEncrypter,
FetchLastChannelUpdate: p.cfg.FetchLastChanUpdate,
HodlMask: p.cfg.Hodl.Mask(),
Registry: p.cfg.Invoices,
Switch: p.cfg.Switch,
Circuits: p.cfg.Switch.CircuitModifier(),
ForwardPackets: p.cfg.InterceptSwitch.ForwardPackets,
FwrdingPolicy: *forwardingPolicy,
FeeEstimator: p.cfg.FeeEstimator,
PreimageCache: p.cfg.WitnessBeacon,
ChainEvents: chainEvents,
UpdateContractSignals: updateContractSignals,
OnChannelFailure: onChannelFailure,
SyncStates: syncStates,
BatchTicker: ticker.New(p.cfg.ChannelCommitInterval),
FwdPkgGCTicker: ticker.New(time.Hour),
PendingCommitTicker: ticker.New(time.Minute),
BatchSize: p.cfg.ChannelCommitBatchSize,
UnsafeReplay: p.cfg.UnsafeReplay,
MinFeeUpdateTimeout: htlcswitch.DefaultMinLinkFeeUpdateTimeout,
MaxFeeUpdateTimeout: htlcswitch.DefaultMaxLinkFeeUpdateTimeout,
OutgoingCltvRejectDelta: p.cfg.OutgoingCltvRejectDelta,
TowerClient: towerClient,
MaxOutgoingCltvExpiry: p.cfg.MaxOutgoingCltvExpiry,
MaxFeeAllocation: p.cfg.MaxChannelFeeAllocation,
MaxAnchorsCommitFeeRate: p.cfg.MaxAnchorsCommitFeeRate,
NotifyActiveLink: p.cfg.ChannelNotifier.NotifyActiveLinkEvent,
NotifyActiveChannel: p.cfg.ChannelNotifier.NotifyActiveChannelEvent,
NotifyInactiveChannel: p.cfg.ChannelNotifier.NotifyInactiveChannelEvent,
HtlcNotifier: p.cfg.HtlcNotifier,
}
link := htlcswitch.NewChannelLink(linkCfg, lnChan)
// Before adding our new link, purge the switch of any pending or live
// links going by the same channel id. If one is found, we'll shut it
// down to ensure that the mailboxes are only ever under the control of
// one link.
p.cfg.Switch.RemoveLink(link.ChanID())
// With the channel link created, we'll now notify the htlc switch so
// this channel can be used to dispatch local payments and also
// passively forward payments.
return p.cfg.Switch.AddLink(link)
}
// maybeSendNodeAnn sends our node announcement to the remote peer if at least
// one confirmed public channel exists with them.
func (p *Brontide) maybeSendNodeAnn(channels []*channeldb.OpenChannel) {
hasConfirmedPublicChan := false
for _, channel := range channels {
if channel.IsPending {
continue
}
if channel.ChannelFlags&lnwire.FFAnnounceChannel == 0 {
continue
}
hasConfirmedPublicChan = true
break
}
if !hasConfirmedPublicChan {
return
}
ourNodeAnn, err := p.cfg.GenNodeAnnouncement(false)
if err != nil {
peerLog.Debugf("Unable to retrieve node announcement: %v", err)
return
}
if err := p.SendMessageLazy(false, &ourNodeAnn); err != nil {
peerLog.Debugf("Unable to resend node announcement to %x: %v",
p.cfg.PubKeyBytes, err)
}
}
// WaitForDisconnect waits until the peer has disconnected. A peer may be
// disconnected if the local or remote side terminates the connection, or an
// irrecoverable protocol error has been encountered. This method will only
// begin watching the peer's waitgroup after the ready channel or the peer's
// quit channel are signaled. The ready channel should only be signaled if a
// call to Start returns no error. Otherwise, if the peer fails to start,
// calling Disconnect will signal the quit channel and the method will not
// block, since no goroutines were spawned.
func (p *Brontide) WaitForDisconnect(ready chan struct{}) {
select {
case <-ready:
case <-p.quit:
}
p.wg.Wait()
}
// Disconnect terminates the connection with the remote peer. Additionally, a
// signal is sent to the server and htlcSwitch indicating the resources
// allocated to the peer can now be cleaned up.
func (p *Brontide) Disconnect(reason error) {
if !atomic.CompareAndSwapInt32(&p.disconnect, 0, 1) {
return
}
err := fmt.Errorf("disconnecting %s, reason: %v", p, reason)
p.storeError(err)
peerLog.Infof(err.Error())
// Ensure that the TCP connection is properly closed before continuing.
p.cfg.Conn.Close()
close(p.quit)
}
// String returns the string representation of this peer.
func (p *Brontide) String() string {
return fmt.Sprintf("%x@%s", p.cfg.PubKeyBytes, p.cfg.Conn.RemoteAddr())
}
// readNextMessage reads, and returns the next message on the wire along with
// any additional raw payload.
func (p *Brontide) readNextMessage() (lnwire.Message, error) {
noiseConn := p.cfg.Conn
err := noiseConn.SetReadDeadline(time.Time{})
if err != nil {
return nil, err
}
pktLen, err := noiseConn.ReadNextHeader()
if err != nil {
return nil, err
}
// First we'll read the next _full_ message. We do this rather than
// reading incrementally from the stream as the Lightning wire protocol
// is message oriented and allows nodes to pad on additional data to
// the message stream.
var rawMsg []byte
err = p.cfg.ReadPool.Submit(func(buf *buffer.Read) error {
// Before reading the body of the message, set the read timeout
// accordingly to ensure we don't block other readers using the
// pool. We do so only after the task has been scheduled to
// ensure the deadline doesn't expire while the message is in
// the process of being scheduled.
readDeadline := time.Now().Add(readMessageTimeout)
readErr := noiseConn.SetReadDeadline(readDeadline)
if readErr != nil {
return readErr
}
rawMsg, readErr = noiseConn.ReadNextBody(buf[:pktLen])
return readErr
})
atomic.AddUint64(&p.bytesReceived, uint64(len(rawMsg)))
if err != nil {
return nil, err
}
// Next, create a new io.Reader implementation from the raw message,
// and use this to decode the message directly from.
msgReader := bytes.NewReader(rawMsg)
nextMsg, err := lnwire.ReadMessage(msgReader, 0)
if err != nil {
return nil, err
}
p.logWireMessage(nextMsg, true)
return nextMsg, nil
}
// msgStream implements a goroutine-safe, in-order stream of messages to be
// delivered via closure to a receiver. These messages MUST be in order due to
// the nature of the lightning channel commitment and gossiper state machines.
// TODO(conner): use stream handler interface to abstract out stream
// state/logging
type msgStream struct {
streamShutdown int32 // To be used atomically.
peer *Brontide
apply func(lnwire.Message)
startMsg string
stopMsg string
msgCond *sync.Cond
msgs []lnwire.Message
mtx sync.Mutex
producerSema chan struct{}
wg sync.WaitGroup
quit chan struct{}
}
// newMsgStream creates a new instance of a chanMsgStream for a particular
// channel identified by its channel ID. bufSize is the max number of messages
// that should be buffered in the internal queue. Callers should set this to a
// sane value that avoids blocking unnecessarily, but doesn't allow an
// unbounded amount of memory to be allocated to buffer incoming messages.
func newMsgStream(p *Brontide, startMsg, stopMsg string, bufSize uint32,
apply func(lnwire.Message)) *msgStream {
stream := &msgStream{
peer: p,
apply: apply,
startMsg: startMsg,
stopMsg: stopMsg,
producerSema: make(chan struct{}, bufSize),
quit: make(chan struct{}),
}
stream.msgCond = sync.NewCond(&stream.mtx)
// Before we return the active stream, we'll populate the producer's
// semaphore channel. We'll use this to ensure that the producer won't
// attempt to allocate memory in the queue for an item until it has
// sufficient extra space.
for i := uint32(0); i < bufSize; i++ {
stream.producerSema <- struct{}{}
}
return stream
}
// Start starts the chanMsgStream.
func (ms *msgStream) Start() {
ms.wg.Add(1)
go ms.msgConsumer()
}
// Stop stops the chanMsgStream.
func (ms *msgStream) Stop() {
// TODO(roasbeef): signal too?
close(ms.quit)
// Now that we've closed the channel, we'll repeatedly signal the msg
// consumer until we've detected that it has exited.
for atomic.LoadInt32(&ms.streamShutdown) == 0 {
ms.msgCond.Signal()
time.Sleep(time.Millisecond * 100)
}
ms.wg.Wait()
}
// msgConsumer is the main goroutine that streams messages from the peer's
// readHandler directly to the target channel.
func (ms *msgStream) msgConsumer() {
defer ms.wg.Done()
defer peerLog.Tracef(ms.stopMsg)
defer atomic.StoreInt32(&ms.streamShutdown, 1)
peerLog.Tracef(ms.startMsg)
for {
// First, we'll check our condition. If the queue of messages
// is empty, then we'll wait until a new item is added.
ms.msgCond.L.Lock()
for len(ms.msgs) == 0 {
ms.msgCond.Wait()
// If we woke up in order to exit, then we'll do so.
// Otherwise, we'll check the message queue for any new
// items.
select {
case <-ms.peer.quit:
ms.msgCond.L.Unlock()
return
case <-ms.quit:
ms.msgCond.L.Unlock()
return
default:
}
}
// Grab the message off the front of the queue, shifting the
// slice's reference down one in order to remove the message
// from the queue.
msg := ms.msgs[0]
ms.msgs[0] = nil // Set to nil to prevent GC leak.
ms.msgs = ms.msgs[1:]
ms.msgCond.L.Unlock()
ms.apply(msg)
// We've just successfully processed an item, so we'll signal
// to the producer that a new slot in the buffer. We'll use
// this to bound the size of the buffer to avoid allowing it to
// grow indefinitely.
select {
case ms.producerSema <- struct{}{}:
case <-ms.peer.quit:
return
case <-ms.quit:
return
}
}
}
// AddMsg adds a new message to the msgStream. This function is safe for
// concurrent access.
func (ms *msgStream) AddMsg(msg lnwire.Message) {
// First, we'll attempt to receive from the producerSema struct. This
// acts as a sempahore to prevent us from indefinitely buffering
// incoming items from the wire. Either the msg queue isn't full, and
// we'll not block, or the queue is full, and we'll block until either
// we're signalled to quit, or a slot is freed up.
select {
case <-ms.producerSema:
case <-ms.peer.quit:
return
case <-ms.quit:
return
}
// Next, we'll lock the condition, and add the message to the end of
// the message queue.
ms.msgCond.L.Lock()
ms.msgs = append(ms.msgs, msg)
ms.msgCond.L.Unlock()
// With the message added, we signal to the msgConsumer that there are
// additional messages to consume.
ms.msgCond.Signal()
}
// waitUntilLinkActive waits until the target link is active and returns a
// ChannelLink to pass messages to. It accomplishes this by subscribing to
// an ActiveLinkEvent which is emitted by the link when it first starts up.
func waitUntilLinkActive(p *Brontide,
cid lnwire.ChannelID) htlcswitch.ChannelLink {
// Subscribe to receive channel events.
//
// NOTE: If the link is already active by SubscribeChannelEvents, then
// GetLink will retrieve the link and we can send messages. If the link
// becomes active between SubscribeChannelEvents and GetLink, then GetLink
// will retrieve the link. If the link becomes active after GetLink, then
// we will get an ActiveLinkEvent notification and retrieve the link. If
// the call to GetLink is before SubscribeChannelEvents, however, there
// will be a race condition.
sub, err := p.cfg.ChannelNotifier.SubscribeChannelEvents()
if err != nil {
// If we have a non-nil error, then the server is shutting down and we
// can exit here and return nil. This means no message will be delivered
// to the link.
return nil
}
defer sub.Cancel()
// The link may already be active by this point, and we may have missed the
// ActiveLinkEvent. Check if the link exists.
link, _ := p.cfg.Switch.GetLink(cid)
if link != nil {
return link
}
// If the link is nil, we must wait for it to be active.
for {
select {
// A new event has been sent by the ChannelNotifier. We first check
// whether the event is an ActiveLinkEvent. If it is, we'll check
// that the event is for this channel. Otherwise, we discard the
// message.
case e := <-sub.Updates():
event, ok := e.(channelnotifier.ActiveLinkEvent)
if !ok {
// Ignore this notification.
continue
}
chanPoint := event.ChannelPoint
// Check whether the retrieved chanPoint matches the target
// channel id.
if !cid.IsChanPoint(chanPoint) {
continue
}
// The link shouldn't be nil as we received an
// ActiveLinkEvent. If it is nil, we return nil and the
// calling function should catch it.
link, _ = p.cfg.Switch.GetLink(cid)
return link
case <-p.quit:
return nil
}
}
}
// newChanMsgStream is used to create a msgStream between the peer and
// particular channel link in the htlcswitch. We utilize additional
// synchronization with the fundingManager to ensure we don't attempt to
// dispatch a message to a channel before it is fully active. A reference to the
// channel this stream forwards to is held in scope to prevent unnecessary
// lookups.
func newChanMsgStream(p *Brontide, cid lnwire.ChannelID) *msgStream {
var chanLink htlcswitch.ChannelLink
apply := func(msg lnwire.Message) {
// This check is fine because if the link no longer exists, it will
// be removed from the activeChannels map and subsequent messages
// shouldn't reach the chan msg stream.
if chanLink == nil {
chanLink = waitUntilLinkActive(p, cid)
// If the link is still not active and the calling function
// errored out, just return.
if chanLink == nil {
return
}
}
// In order to avoid unnecessarily delivering message
// as the peer is exiting, we'll check quickly to see
// if we need to exit.
select {
case <-p.quit:
return
default:
}
chanLink.HandleChannelUpdate(msg)
}
return newMsgStream(p,
fmt.Sprintf("Update stream for ChannelID(%x) created", cid[:]),
fmt.Sprintf("Update stream for ChannelID(%x) exiting", cid[:]),
1000,
apply,
)
}
// newDiscMsgStream is used to setup a msgStream between the peer and the
// authenticated gossiper. This stream should be used to forward all remote
// channel announcements.
func newDiscMsgStream(p *Brontide) *msgStream {
apply := func(msg lnwire.Message) {
p.cfg.AuthGossiper.ProcessRemoteAnnouncement(msg, p)
}
return newMsgStream(
p,
"Update stream for gossiper created",
"Update stream for gossiper exited",
1000,
apply,
)
}
// readHandler is responsible for reading messages off the wire in series, then
// properly dispatching the handling of the message to the proper subsystem.
//
// NOTE: This method MUST be run as a goroutine.
func (p *Brontide) readHandler() {
defer p.wg.Done()
// We'll stop the timer after a new messages is received, and also
// reset it after we process the next message.
idleTimer := time.AfterFunc(idleTimeout, func() {
err := fmt.Errorf("peer %s no answer for %s -- disconnecting",
p, idleTimeout)
p.Disconnect(err)
})
// Initialize our negotiated gossip sync method before reading messages
// off the wire. When using gossip queries, this ensures a gossip
// syncer is active by the time query messages arrive.
//
// TODO(conner): have peer store gossip syncer directly and bypass
// gossiper?
p.initGossipSync()
discStream := newDiscMsgStream(p)
discStream.Start()
defer discStream.Stop()
out:
for atomic.LoadInt32(&p.disconnect) == 0 {
nextMsg, err := p.readNextMessage()
if !idleTimer.Stop() {
select {
case <-idleTimer.C:
default:
}
}
if err != nil {
peerLog.Infof("unable to read message from %v: %v",
p, err)
// If we could not read our peer's message due to an
// unknown type or invalid alias, we continue processing
// as normal. We store unknown message and address
// types, as they may provide debugging insight.
switch e := err.(type) {
// If this is just a message we don't yet recognize,
// we'll continue processing as normal as this allows
// us to introduce new messages in a forwards
// compatible manner.
case *lnwire.UnknownMessage:
p.storeError(e)
idleTimer.Reset(idleTimeout)
continue
// If they sent us an address type that we don't yet
// know of, then this isn't a wire error, so we'll
// simply continue parsing the remainder of their
// messages.
case *lnwire.ErrUnknownAddrType:
p.storeError(e)
idleTimer.Reset(idleTimeout)
continue
// If the NodeAnnouncement has an invalid alias, then
// we'll log that error above and continue so we can
// continue to read messages from the peer. We do not
// store this error because it is of little debugging
// value.
case *lnwire.ErrInvalidNodeAlias:
idleTimer.Reset(idleTimeout)
continue
// If the error we encountered wasn't just a message we
// didn't recognize, then we'll stop all processing as
// this is a fatal error.
default:
break out
}
}
var (
targetChan lnwire.ChannelID
isLinkUpdate bool
)
switch msg := nextMsg.(type) {
case *lnwire.Pong:
// When we receive a Pong message in response to our
// last ping message, we'll use the time in which we
// sent the ping message to measure a rough estimate of
// round trip time.
pingSendTime := atomic.LoadInt64(&p.pingLastSend)
delay := (time.Now().UnixNano() - pingSendTime) / 1000
atomic.StoreInt64(&p.pingTime, delay)
case *lnwire.Ping:
pongBytes := make([]byte, msg.NumPongBytes)
p.queueMsg(lnwire.NewPong(pongBytes), nil)
case *lnwire.OpenChannel,
*lnwire.AcceptChannel,
*lnwire.FundingCreated,
*lnwire.FundingSigned,
*lnwire.FundingLocked:
p.cfg.FundingManager.ProcessFundingMsg(msg, p)
case *lnwire.Shutdown:
select {
case p.chanCloseMsgs <- &closeMsg{msg.ChannelID, msg}:
case <-p.quit:
break out
}
case *lnwire.ClosingSigned:
select {
case p.chanCloseMsgs <- &closeMsg{msg.ChannelID, msg}:
case <-p.quit:
break out
}
case *lnwire.Error:
targetChan = msg.ChanID
isLinkUpdate = p.handleError(msg)
case *lnwire.ChannelReestablish:
targetChan = msg.ChanID
isLinkUpdate = p.isActiveChannel(targetChan)
// If we failed to find the link in question, and the
// message received was a channel sync message, then
// this might be a peer trying to resync closed channel.
// In this case we'll try to resend our last channel
// sync message, such that the peer can recover funds
// from the closed channel.
if !isLinkUpdate {
err := p.resendChanSyncMsg(targetChan)
if err != nil {
// TODO(halseth): send error to peer?
peerLog.Errorf("resend failed: %v",
err)
}
}
case LinkUpdater:
targetChan = msg.TargetChanID()
isLinkUpdate = p.isActiveChannel(targetChan)
case *lnwire.ChannelUpdate,
*lnwire.ChannelAnnouncement,
*lnwire.NodeAnnouncement,
*lnwire.AnnounceSignatures,
*lnwire.GossipTimestampRange,
*lnwire.QueryShortChanIDs,
*lnwire.QueryChannelRange,
*lnwire.ReplyChannelRange,
*lnwire.ReplyShortChanIDsEnd:
discStream.AddMsg(msg)
default:
// If the message we received is unknown to us, store
// the type to track the failure.
err := fmt.Errorf("unknown message type %v received",
uint16(msg.MsgType()))
p.storeError(err)
peerLog.Errorf("peer: %v, %v", p, err)
}
if isLinkUpdate {
// If this is a channel update, then we need to feed it
// into the channel's in-order message stream.
chanStream, ok := p.activeMsgStreams[targetChan]
if !ok {
// If a stream hasn't yet been created, then
// we'll do so, add it to the map, and finally
// start it.
chanStream = newChanMsgStream(p, targetChan)
p.activeMsgStreams[targetChan] = chanStream
chanStream.Start()
defer chanStream.Stop()
}
// With the stream obtained, add the message to the
// stream so we can continue processing message.
chanStream.AddMsg(nextMsg)
}
idleTimer.Reset(idleTimeout)
}
p.Disconnect(errors.New("read handler closed"))
peerLog.Tracef("readHandler for peer %v done", p)
}
// isActiveChannel returns true if the provided channel id is active, otherwise
// returns false.
func (p *Brontide) isActiveChannel(chanID lnwire.ChannelID) bool {
p.activeChanMtx.RLock()
_, ok := p.activeChannels[chanID]
p.activeChanMtx.RUnlock()
return ok
}
// storeError stores an error in our peer's buffer of recent errors with the
// current timestamp. Errors are only stored if we have at least one active
// channel with the peer to mitigate a dos vector where a peer costlessly
// connects to us and spams us with errors.
func (p *Brontide) storeError(err error) {
var haveChannels bool
p.activeChanMtx.RLock()
for _, channel := range p.activeChannels {
// Pending channels will be nil in the activeChannels map.
if channel == nil {
continue
}
haveChannels = true
break
}
p.activeChanMtx.RUnlock()
// If we do not have any active channels with the peer, we do not store
// errors as a dos mitigation.
if !haveChannels {
peerLog.Tracef("no channels with peer: %v, not storing err", p)
return
}
p.cfg.ErrorBuffer.Add(
&TimestampedError{Timestamp: time.Now(), Error: err},
)
}
// handleError processes an error message read from the remote peer. The boolean
// returns indicates whether the message should be delivered to a targeted peer.
// It stores the error we received from the peer in memory if we have a channel
// open with the peer.
//
// NOTE: This method should only be called from within the readHandler.
func (p *Brontide) handleError(msg *lnwire.Error) bool {
// Store the error we have received.
p.storeError(msg)
switch {
// In the case of an all-zero channel ID we want to forward the error to
// all channels with this peer.
case msg.ChanID == lnwire.ConnectionWideID:
for _, chanStream := range p.activeMsgStreams {
chanStream.AddMsg(msg)
}
return false
// If the channel ID for the error message corresponds to a pending
// channel, then the funding manager will handle the error.
case p.cfg.FundingManager.IsPendingChannel(msg.ChanID, p):
p.cfg.FundingManager.ProcessFundingMsg(msg, p)
return false
// If not we hand the error to the channel link for this channel.
case p.isActiveChannel(msg.ChanID):
return true
default:
return false
}
}
// messageSummary returns a human-readable string that summarizes a
// incoming/outgoing message. Not all messages will have a summary, only those
// which have additional data that can be informative at a glance.
func messageSummary(msg lnwire.Message) string {
switch msg := msg.(type) {
case *lnwire.Init:
// No summary.
return ""
case *lnwire.OpenChannel:
return fmt.Sprintf("temp_chan_id=%x, chain=%v, csv=%v, amt=%v, "+
"push_amt=%v, reserve=%v, flags=%v",
msg.PendingChannelID[:], msg.ChainHash,
msg.CsvDelay, msg.FundingAmount, msg.PushAmount,
msg.ChannelReserve, msg.ChannelFlags)
case *lnwire.AcceptChannel:
return fmt.Sprintf("temp_chan_id=%x, reserve=%v, csv=%v, num_confs=%v",
msg.PendingChannelID[:], msg.ChannelReserve, msg.CsvDelay,
msg.MinAcceptDepth)
case *lnwire.FundingCreated:
return fmt.Sprintf("temp_chan_id=%x, chan_point=%v",
msg.PendingChannelID[:], msg.FundingPoint)
case *lnwire.FundingSigned:
return fmt.Sprintf("chan_id=%v", msg.ChanID)
case *lnwire.FundingLocked:
return fmt.Sprintf("chan_id=%v, next_point=%x",
msg.ChanID, msg.NextPerCommitmentPoint.SerializeCompressed())
case *lnwire.Shutdown:
return fmt.Sprintf("chan_id=%v, script=%x", msg.ChannelID,
msg.Address[:])
case *lnwire.ClosingSigned:
return fmt.Sprintf("chan_id=%v, fee_sat=%v", msg.ChannelID,
msg.FeeSatoshis)
case *lnwire.UpdateAddHTLC:
return fmt.Sprintf("chan_id=%v, id=%v, amt=%v, expiry=%v, hash=%x",
msg.ChanID, msg.ID, msg.Amount, msg.Expiry, msg.PaymentHash[:])
case *lnwire.UpdateFailHTLC:
return fmt.Sprintf("chan_id=%v, id=%v, reason=%x", msg.ChanID,
msg.ID, msg.Reason)
case *lnwire.UpdateFulfillHTLC:
return fmt.Sprintf("chan_id=%v, id=%v, pre_image=%x",
msg.ChanID, msg.ID, msg.PaymentPreimage[:])
case *lnwire.CommitSig:
return fmt.Sprintf("chan_id=%v, num_htlcs=%v", msg.ChanID,
len(msg.HtlcSigs))
case *lnwire.RevokeAndAck:
return fmt.Sprintf("chan_id=%v, rev=%x, next_point=%x",
msg.ChanID, msg.Revocation[:],
msg.NextRevocationKey.SerializeCompressed())
case *lnwire.UpdateFailMalformedHTLC:
return fmt.Sprintf("chan_id=%v, id=%v, fail_code=%v",
msg.ChanID, msg.ID, msg.FailureCode)
case *lnwire.Error:
return fmt.Sprintf("%v", msg.Error())
case *lnwire.AnnounceSignatures:
return fmt.Sprintf("chan_id=%v, short_chan_id=%v", msg.ChannelID,
msg.ShortChannelID.ToUint64())
case *lnwire.ChannelAnnouncement:
return fmt.Sprintf("chain_hash=%v, short_chan_id=%v",
msg.ChainHash, msg.ShortChannelID.ToUint64())
case *lnwire.ChannelUpdate:
return fmt.Sprintf("chain_hash=%v, short_chan_id=%v, "+
"mflags=%v, cflags=%v, update_time=%v", msg.ChainHash,
msg.ShortChannelID.ToUint64(), msg.MessageFlags,
msg.ChannelFlags, time.Unix(int64(msg.Timestamp), 0))
case *lnwire.NodeAnnouncement:
return fmt.Sprintf("node=%x, update_time=%v",
msg.NodeID, time.Unix(int64(msg.Timestamp), 0))
case *lnwire.Ping:
// No summary.
return ""
case *lnwire.Pong:
// No summary.
return ""
case *lnwire.UpdateFee:
return fmt.Sprintf("chan_id=%v, fee_update_sat=%v",
msg.ChanID, int64(msg.FeePerKw))
case *lnwire.ChannelReestablish:
return fmt.Sprintf("next_local_height=%v, remote_tail_height=%v",
msg.NextLocalCommitHeight, msg.RemoteCommitTailHeight)
case *lnwire.ReplyShortChanIDsEnd:
return fmt.Sprintf("chain_hash=%v, complete=%v", msg.ChainHash,
msg.Complete)
case *lnwire.ReplyChannelRange:
return fmt.Sprintf("start_height=%v, end_height=%v, "+
"num_chans=%v, encoding=%v", msg.FirstBlockHeight,
msg.LastBlockHeight(), len(msg.ShortChanIDs),
msg.EncodingType)
case *lnwire.QueryShortChanIDs:
return fmt.Sprintf("chain_hash=%v, encoding=%v, num_chans=%v",
msg.ChainHash, msg.EncodingType, len(msg.ShortChanIDs))
case *lnwire.QueryChannelRange:
return fmt.Sprintf("chain_hash=%v, start_height=%v, "+
"end_height=%v", msg.ChainHash, msg.FirstBlockHeight,
msg.LastBlockHeight())
case *lnwire.GossipTimestampRange:
return fmt.Sprintf("chain_hash=%v, first_stamp=%v, "+
"stamp_range=%v", msg.ChainHash,
time.Unix(int64(msg.FirstTimestamp), 0),
msg.TimestampRange)
}
return ""
}
// logWireMessage logs the receipt or sending of particular wire message. This
// function is used rather than just logging the message in order to produce
// less spammy log messages in trace mode by setting the 'Curve" parameter to
// nil. Doing this avoids printing out each of the field elements in the curve
// parameters for secp256k1.
func (p *Brontide) logWireMessage(msg lnwire.Message, read bool) {
summaryPrefix := "Received"
if !read {
summaryPrefix = "Sending"
}
peerLog.Debugf("%v", newLogClosure(func() string {
// Debug summary of message.
summary := messageSummary(msg)
if len(summary) > 0 {
summary = "(" + summary + ")"
}
preposition := "to"
if read {
preposition = "from"
}
return fmt.Sprintf("%v %v%s %v %s", summaryPrefix,
msg.MsgType(), summary, preposition, p)
}))
switch m := msg.(type) {
case *lnwire.ChannelReestablish:
if m.LocalUnrevokedCommitPoint != nil {
m.LocalUnrevokedCommitPoint.Curve = nil
}
case *lnwire.RevokeAndAck:
m.NextRevocationKey.Curve = nil
case *lnwire.AcceptChannel:
m.FundingKey.Curve = nil
m.RevocationPoint.Curve = nil
m.PaymentPoint.Curve = nil
m.DelayedPaymentPoint.Curve = nil
m.HtlcPoint.Curve = nil
m.FirstCommitmentPoint.Curve = nil
case *lnwire.OpenChannel:
m.FundingKey.Curve = nil
m.RevocationPoint.Curve = nil
m.PaymentPoint.Curve = nil
m.DelayedPaymentPoint.Curve = nil
m.HtlcPoint.Curve = nil
m.FirstCommitmentPoint.Curve = nil
case *lnwire.FundingLocked:
m.NextPerCommitmentPoint.Curve = nil
}
prefix := "readMessage from"
if !read {
prefix = "writeMessage to"
}
peerLog.Tracef(prefix+" %v: %v", p, newLogClosure(func() string {
return spew.Sdump(msg)
}))
}
// writeMessage writes and flushes the target lnwire.Message to the remote peer.
// If the passed message is nil, this method will only try to flush an existing
// message buffered on the connection. It is safe to call this method again
// with a nil message iff a timeout error is returned. This will continue to
// flush the pending message to the wire.
func (p *Brontide) writeMessage(msg lnwire.Message) error {
// Simply exit if we're shutting down.
if atomic.LoadInt32(&p.disconnect) != 0 {
return lnpeer.ErrPeerExiting
}
// Only log the message on the first attempt.
if msg != nil {
p.logWireMessage(msg, false)
}
noiseConn := p.cfg.Conn
flushMsg := func() error {
// Ensure the write deadline is set before we attempt to send
// the message.
writeDeadline := time.Now().Add(writeMessageTimeout)
err := noiseConn.SetWriteDeadline(writeDeadline)
if err != nil {
return err
}
// Flush the pending message to the wire. If an error is
// encountered, e.g. write timeout, the number of bytes written
// so far will be returned.
n, err := noiseConn.Flush()
// Record the number of bytes written on the wire, if any.
if n > 0 {
atomic.AddUint64(&p.bytesSent, uint64(n))
}
return err
}
// If the current message has already been serialized, encrypted, and
// buffered on the underlying connection we will skip straight to
// flushing it to the wire.
if msg == nil {
return flushMsg()
}
// Otherwise, this is a new message. We'll acquire a write buffer to
// serialize the message and buffer the ciphertext on the connection.
err := p.cfg.WritePool.Submit(func(buf *bytes.Buffer) error {
// Using a buffer allocated by the write pool, encode the
// message directly into the buffer.
_, writeErr := lnwire.WriteMessage(buf, msg, 0)
if writeErr != nil {
return writeErr
}
// Finally, write the message itself in a single swoop. This
// will buffer the ciphertext on the underlying connection. We
// will defer flushing the message until the write pool has been
// released.
return noiseConn.WriteMessage(buf.Bytes())
})
if err != nil {
return err
}
return flushMsg()
}
// writeHandler is a goroutine dedicated to reading messages off of an incoming
// queue, and writing them out to the wire. This goroutine coordinates with the
// queueHandler in order to ensure the incoming message queue is quickly
// drained.
//
// NOTE: This method MUST be run as a goroutine.
func (p *Brontide) writeHandler() {
// We'll stop the timer after a new messages is sent, and also reset it
// after we process the next message.
idleTimer := time.AfterFunc(idleTimeout, func() {
err := fmt.Errorf("peer %s no write for %s -- disconnecting",
p, idleTimeout)
p.Disconnect(err)
})
var exitErr error
out:
for {
select {
case outMsg := <-p.sendQueue:
// If we're about to send a ping message, then log the
// exact time in which we send the message so we can
// use the delay as a rough estimate of latency to the
// remote peer.
if _, ok := outMsg.msg.(*lnwire.Ping); ok {
// TODO(roasbeef): do this before the write?
// possibly account for processing within func?
now := time.Now().UnixNano()
atomic.StoreInt64(&p.pingLastSend, now)
}
// Record the time at which we first attempt to send the
// message.
startTime := time.Now()
retry:
// Write out the message to the socket. If a timeout
// error is encountered, we will catch this and retry
// after backing off in case the remote peer is just
// slow to process messages from the wire.
err := p.writeMessage(outMsg.msg)
if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
peerLog.Debugf("Write timeout detected for "+
"peer %s, first write for message "+
"attempted %v ago", p,
time.Since(startTime))
// If we received a timeout error, this implies
// that the message was buffered on the
// connection successfully and that a flush was
// attempted. We'll set the message to nil so
// that on a subsequent pass we only try to
// flush the buffered message, and forgo
// reserializing or reencrypting it.
outMsg.msg = nil
goto retry
}
// The write succeeded, reset the idle timer to prevent
// us from disconnecting the peer.
if !idleTimer.Stop() {
select {
case <-idleTimer.C:
default:
}
}
idleTimer.Reset(idleTimeout)
// If the peer requested a synchronous write, respond
// with the error.
if outMsg.errChan != nil {
outMsg.errChan <- err
}
if err != nil {
exitErr = fmt.Errorf("unable to write "+
"message: %v", err)
break out
}
case <-p.quit:
exitErr = lnpeer.ErrPeerExiting
break out
}
}
// Avoid an exit deadlock by ensuring WaitGroups are decremented before
// disconnect.
p.wg.Done()
p.Disconnect(exitErr)
peerLog.Tracef("writeHandler for peer %v done", p)
}
// queueHandler is responsible for accepting messages from outside subsystems
// to be eventually sent out on the wire by the writeHandler.
//
// NOTE: This method MUST be run as a goroutine.
func (p *Brontide) queueHandler() {
defer p.wg.Done()
// priorityMsgs holds an in order list of messages deemed high-priority
// to be added to the sendQueue. This predominately includes messages
// from the funding manager and htlcswitch.
priorityMsgs := list.New()
// lazyMsgs holds an in order list of messages deemed low-priority to be
// added to the sendQueue only after all high-priority messages have
// been queued. This predominately includes messages from the gossiper.
lazyMsgs := list.New()
for {
// Examine the front of the priority queue, if it is empty check
// the low priority queue.
elem := priorityMsgs.Front()
if elem == nil {
elem = lazyMsgs.Front()
}
if elem != nil {
front := elem.Value.(outgoingMsg)
// There's an element on the queue, try adding
// it to the sendQueue. We also watch for
// messages on the outgoingQueue, in case the
// writeHandler cannot accept messages on the
// sendQueue.
select {
case p.sendQueue <- front:
if front.priority {
priorityMsgs.Remove(elem)
} else {
lazyMsgs.Remove(elem)
}
case msg := <-p.outgoingQueue:
if msg.priority {
priorityMsgs.PushBack(msg)
} else {
lazyMsgs.PushBack(msg)
}
case <-p.quit:
return
}
} else {
// If there weren't any messages to send to the
// writeHandler, then we'll accept a new message
// into the queue from outside sub-systems.
select {
case msg := <-p.outgoingQueue:
if msg.priority {
priorityMsgs.PushBack(msg)
} else {
lazyMsgs.PushBack(msg)
}
case <-p.quit:
return
}
}
}
}
// pingHandler is responsible for periodically sending ping messages to the
// remote peer in order to keep the connection alive and/or determine if the
// connection is still active.
//
// NOTE: This method MUST be run as a goroutine.
func (p *Brontide) pingHandler() {
defer p.wg.Done()
pingTicker := time.NewTicker(pingInterval)
defer pingTicker.Stop()
// TODO(roasbeef): make dynamic in order to create fake cover traffic
const numPingBytes = 16
out:
for {
select {
case <-pingTicker.C:
p.queueMsg(lnwire.NewPing(numPingBytes), nil)
case <-p.quit:
break out
}
}
}
// PingTime returns the estimated ping time to the peer in microseconds.
func (p *Brontide) PingTime() int64 {
return atomic.LoadInt64(&p.pingTime)
}
// queueMsg adds the lnwire.Message to the back of the high priority send queue.
// If the errChan is non-nil, an error is sent back if the msg failed to queue
// or failed to write, and nil otherwise.
func (p *Brontide) queueMsg(msg lnwire.Message, errChan chan error) {
p.queue(true, msg, errChan)
}
// queueMsgLazy adds the lnwire.Message to the back of the low priority send
// queue. If the errChan is non-nil, an error is sent back if the msg failed to
// queue or failed to write, and nil otherwise.
func (p *Brontide) queueMsgLazy(msg lnwire.Message, errChan chan error) {
p.queue(false, msg, errChan)
}
// queue sends a given message to the queueHandler using the passed priority. If
// the errChan is non-nil, an error is sent back if the msg failed to queue or
// failed to write, and nil otherwise.
func (p *Brontide) queue(priority bool, msg lnwire.Message,
errChan chan error) {
select {
case p.outgoingQueue <- outgoingMsg{priority, msg, errChan}:
case <-p.quit:
peerLog.Tracef("Peer shutting down, could not enqueue msg: %v.",
spew.Sdump(msg))
if errChan != nil {
errChan <- lnpeer.ErrPeerExiting
}
}
}
// ChannelSnapshots returns a slice of channel snapshots detailing all
// currently active channels maintained with the remote peer.
func (p *Brontide) ChannelSnapshots() []*channeldb.ChannelSnapshot {
p.activeChanMtx.RLock()
defer p.activeChanMtx.RUnlock()
snapshots := make([]*channeldb.ChannelSnapshot, 0, len(p.activeChannels))
for _, activeChan := range p.activeChannels {
// If the activeChan is nil, then we skip it as the channel is pending.
if activeChan == nil {
continue
}
// We'll only return a snapshot for channels that are
// *immedately* available for routing payments over.
if activeChan.RemoteNextRevocation() == nil {
continue
}
snapshot := activeChan.StateSnapshot()
snapshots = append(snapshots, snapshot)
}
return snapshots
}
// genDeliveryScript returns a new script to be used to send our funds to in
// the case of a cooperative channel close negotiation.
func (p *Brontide) genDeliveryScript() ([]byte, error) {
deliveryAddr, err := p.cfg.Wallet.NewAddress(
lnwallet.WitnessPubKey, false, lnwallet.DefaultAccountName,
)
if err != nil {
return nil, err
}
peerLog.Infof("Delivery addr for channel close: %v",
deliveryAddr)
return txscript.PayToAddrScript(deliveryAddr)
}
// channelManager is goroutine dedicated to handling all requests/signals
// pertaining to the opening, cooperative closing, and force closing of all
// channels maintained with the remote peer.
//
// NOTE: This method MUST be run as a goroutine.
func (p *Brontide) channelManager() {
defer p.wg.Done()
// reenableTimeout will fire once after the configured channel status
// interval has elapsed. This will trigger us to sign new channel
// updates and broadcast them with the "disabled" flag unset.
reenableTimeout := time.After(p.cfg.ChanActiveTimeout)
out:
for {
select {
// A new channel has arrived which means we've just completed a
// funding workflow. We'll initialize the necessary local
// state, and notify the htlc switch of a new link.
case newChanReq := <-p.newChannels:
newChan := newChanReq.channel
chanPoint := &newChan.FundingOutpoint
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
// Only update RemoteNextRevocation if the channel is in the
// activeChannels map and if we added the link to the switch.
// Only active channels will be added to the switch.
p.activeChanMtx.Lock()
currentChan, ok := p.activeChannels[chanID]
if ok && currentChan != nil {
peerLog.Infof("Already have ChannelPoint(%v), "+
"ignoring.", chanPoint)
p.activeChanMtx.Unlock()
close(newChanReq.err)
// If we're being sent a new channel, and our
// existing channel doesn't have the next
// revocation, then we need to update the
// current existing channel.
if currentChan.RemoteNextRevocation() != nil {
continue
}
peerLog.Infof("Processing retransmitted "+
"FundingLocked for ChannelPoint(%v)",
chanPoint)
nextRevoke := newChan.RemoteNextRevocation
err := currentChan.InitNextRevocation(nextRevoke)
if err != nil {
peerLog.Errorf("unable to init chan "+
"revocation: %v", err)
continue
}
continue
}
// If not already active, we'll add this channel to the
// set of active channels, so we can look it up later
// easily according to its channel ID.
lnChan, err := lnwallet.NewLightningChannel(
p.cfg.Signer, newChan, p.cfg.SigPool,
)
if err != nil {
p.activeChanMtx.Unlock()
err := fmt.Errorf("unable to create "+
"LightningChannel: %v", err)
peerLog.Errorf(err.Error())
newChanReq.err <- err
continue
}
// This refreshes the activeChannels entry if the link was not in
// the switch, also populates for new entries.
p.activeChannels[chanID] = lnChan
p.addedChannels[chanID] = struct{}{}
p.activeChanMtx.Unlock()
peerLog.Infof("New channel active ChannelPoint(%v) "+
"with NodeKey(%x)", chanPoint, p.PubKey())
// Next, we'll assemble a ChannelLink along with the
// necessary items it needs to function.
//
// TODO(roasbeef): panic on below?
chainEvents, err := p.cfg.ChainArb.SubscribeChannelEvents(
*chanPoint,
)
if err != nil {
err := fmt.Errorf("unable to subscribe to "+
"chain events: %v", err)
peerLog.Errorf(err.Error())
newChanReq.err <- err
continue
}
// We'll query the localChanCfg of the new channel to determine the
// minimum HTLC value that can be forwarded. For the maximum HTLC
// value that can be forwarded and fees we'll use the default
// values, as they currently are always set to the default values
// at initial channel creation. Note that the maximum HTLC value
// defaults to the cap on the total value of outstanding HTLCs.
fwdMinHtlc := lnChan.FwdMinHtlc()
defaultPolicy := p.cfg.RoutingPolicy
forwardingPolicy := &htlcswitch.ForwardingPolicy{
MinHTLCOut: fwdMinHtlc,
MaxHTLC: newChan.LocalChanCfg.MaxPendingAmount,
BaseFee: defaultPolicy.BaseFee,
FeeRate: defaultPolicy.FeeRate,
TimeLockDelta: defaultPolicy.TimeLockDelta,
}
// If we've reached this point, there are two possible scenarios.
// If the channel was in the active channels map as nil, then it
// was loaded from disk and we need to send reestablish. Else,
// it was not loaded from disk and we don't need to send
// reestablish as this is a fresh channel.
shouldReestablish := ok
// Create the link and add it to the switch.
err = p.addLink(
chanPoint, lnChan, forwardingPolicy,
chainEvents, shouldReestablish,
)
if err != nil {
err := fmt.Errorf("can't register new channel "+
"link(%v) with NodeKey(%x)", chanPoint,
p.PubKey())
peerLog.Errorf(err.Error())
newChanReq.err <- err
continue
}
close(newChanReq.err)
// We've just received a local request to close an active
// channel. It will either kick of a cooperative channel
// closure negotiation, or be a notification of a breached
// contract that should be abandoned.
case req := <-p.localCloseChanReqs:
p.handleLocalCloseReq(req)
// We've received a link failure from a link that was added to
// the switch. This will initiate the teardown of the link, and
// initiate any on-chain closures if necessary.
case failure := <-p.linkFailures:
p.handleLinkFailure(failure)
// We've received a new cooperative channel closure related
// message from the remote peer, we'll use this message to
// advance the chan closer state machine.
case closeMsg := <-p.chanCloseMsgs:
p.handleCloseMsg(closeMsg)
// The channel reannounce delay has elapsed, broadcast the
// reenabled channel updates to the network. This should only
// fire once, so we set the reenableTimeout channel to nil to
// mark it for garbage collection. If the peer is torn down
// before firing, reenabling will not be attempted.
// TODO(conner): consolidate reenables timers inside chan status
// manager
case <-reenableTimeout:
p.reenableActiveChannels()
// Since this channel will never fire again during the
// lifecycle of the peer, we nil the channel to mark it
// eligible for garbage collection, and make this
// explicitly ineligible to receive in future calls to
// select. This also shaves a few CPU cycles since the
// select will ignore this case entirely.
reenableTimeout = nil
case <-p.quit:
// As, we've been signalled to exit, we'll reset all
// our active channel back to their default state.
p.activeChanMtx.Lock()
for _, channel := range p.activeChannels {
// If the channel is nil, continue as it's a pending channel.
if channel == nil {
continue
}
channel.ResetState()
}
p.activeChanMtx.Unlock()
break out
}
}
}
// reenableActiveChannels searches the index of channels maintained with this
// peer, and reenables each public, non-pending channel. This is done at the
// gossip level by broadcasting a new ChannelUpdate with the disabled bit unset.
// No message will be sent if the channel is already enabled.
func (p *Brontide) reenableActiveChannels() {
// First, filter all known channels with this peer for ones that are
// both public and not pending.
var activePublicChans []wire.OutPoint
p.activeChanMtx.RLock()
for chanID, lnChan := range p.activeChannels {
// If the lnChan is nil, continue as this is a pending channel.
if lnChan == nil {
continue
}
dbChan := lnChan.State()
isPublic := dbChan.ChannelFlags&lnwire.FFAnnounceChannel != 0
if !isPublic || dbChan.IsPending {
continue
}
// We'll also skip any channels added during this peer's
// lifecycle since they haven't waited out the timeout. Their
// first announcement will be enabled, and the chan status
// manager will begin monitoring them passively since they exist
// in the database.
if _, ok := p.addedChannels[chanID]; ok {
continue
}
activePublicChans = append(
activePublicChans, dbChan.FundingOutpoint,
)
}
p.activeChanMtx.RUnlock()
// For each of the public, non-pending channels, set the channel
// disabled bit to false and send out a new ChannelUpdate. If this
// channel is already active, the update won't be sent.
for _, chanPoint := range activePublicChans {
err := p.cfg.ChanStatusMgr.RequestEnable(chanPoint, false)
if err == netann.ErrEnableManuallyDisabledChan {
peerLog.Debugf("Channel(%v) was manually disabled, ignoring "+
"automatic enable request", chanPoint)
} else if err != nil {
peerLog.Errorf("Unable to enable channel %v: %v",
chanPoint, err)
}
}
}
// fetchActiveChanCloser attempts to fetch the active chan closer state machine
// for the target channel ID. If the channel isn't active an error is returned.
// Otherwise, either an existing state machine will be returned, or a new one
// will be created.
func (p *Brontide) fetchActiveChanCloser(chanID lnwire.ChannelID) (
*chancloser.ChanCloser, error) {
// First, we'll ensure that we actually know of the target channel. If
// not, we'll ignore this message.
p.activeChanMtx.RLock()
channel, ok := p.activeChannels[chanID]
p.activeChanMtx.RUnlock()
// If the channel isn't in the map or the channel is nil, return
// ErrChannelNotFound as the channel is pending.
if !ok || channel == nil {
return nil, ErrChannelNotFound
}
// We'll attempt to look up the matching state machine, if we can't
// find one then this means that the remote party is initiating a
// cooperative channel closure.
chanCloser, ok := p.activeChanCloses[chanID]
if !ok {
// If we need to create a chan closer for the first time, then
// we'll check to ensure that the channel is even in the proper
// state to allow a co-op channel closure.
if len(channel.ActiveHtlcs()) != 0 {
return nil, fmt.Errorf("cannot co-op close " +
"channel w/ active htlcs")
}
// We'll create a valid closing state machine in order to
// respond to the initiated cooperative channel closure. First,
// we set the delivery script that our funds will be paid out
// to. If an upfront shutdown script was set, we will use it.
// Otherwise, we get a fresh delivery script.
//
// TODO: Expose option to allow upfront shutdown script from
// watch-only accounts.
deliveryScript := channel.LocalUpfrontShutdownScript()
if len(deliveryScript) == 0 {
var err error
deliveryScript, err = p.genDeliveryScript()
if err != nil {
peerLog.Errorf("unable to gen delivery script: %v", err)
return nil, fmt.Errorf("close addr unavailable")
}
}
// In order to begin fee negotiations, we'll first compute our
// target ideal fee-per-kw.
feePerKw, err := p.cfg.FeeEstimator.EstimateFeePerKW(
p.cfg.CoopCloseTargetConfs,
)
if err != nil {
peerLog.Errorf("unable to query fee estimator: %v", err)
return nil, fmt.Errorf("unable to estimate fee")
}
_, startingHeight, err := p.cfg.ChainIO.GetBestBlock()
if err != nil {
peerLog.Errorf("unable to obtain best block: %v", err)
return nil, fmt.Errorf("cannot obtain best block")
}
chanCloser = chancloser.NewChanCloser(
chancloser.ChanCloseCfg{
Channel: channel,
UnregisterChannel: p.cfg.Switch.RemoveLink,
BroadcastTx: p.cfg.Wallet.PublishTransaction,
DisableChannel: func(chanPoint wire.OutPoint) error {
return p.cfg.ChanStatusMgr.RequestDisable(chanPoint, false)
},
Disconnect: func() error {
return p.cfg.DisconnectPeer(p.IdentityKey())
},
Quit: p.quit,
},
deliveryScript,
feePerKw,
uint32(startingHeight),
nil,
false,
)
p.activeChanCloses[chanID] = chanCloser
}
return chanCloser, nil
}
// chooseDeliveryScript takes two optionally set shutdown scripts and returns
// a suitable script to close out to. This may be nil if neither script is
// set. If both scripts are set, this function will error if they do not match.
func chooseDeliveryScript(upfront,
requested lnwire.DeliveryAddress) (lnwire.DeliveryAddress, error) {
// If no upfront shutdown script was provided, return the user
// requested address (which may be nil).
if len(upfront) == 0 {
return requested, nil
}
// If an upfront shutdown script was provided, and the user did not request
// a custom shutdown script, return the upfront address.
if len(requested) == 0 {
return upfront, nil
}
// If both an upfront shutdown script and a custom close script were
// provided, error if the user provided shutdown script does not match
// the upfront shutdown script (because closing out to a different script
// would violate upfront shutdown).
if !bytes.Equal(upfront, requested) {
return nil, chancloser.ErrUpfrontShutdownScriptMismatch
}
// The user requested script matches the upfront shutdown script, so we
// can return it without error.
return upfront, nil
}
// handleLocalCloseReq kicks-off the workflow to execute a cooperative or
// forced unilateral closure of the channel initiated by a local subsystem.
func (p *Brontide) handleLocalCloseReq(req *htlcswitch.ChanClose) {
chanID := lnwire.NewChanIDFromOutPoint(req.ChanPoint)
p.activeChanMtx.RLock()
channel, ok := p.activeChannels[chanID]
p.activeChanMtx.RUnlock()
// Though this function can't be called for pending channels, we still
// check whether channel is nil for safety.
if !ok || channel == nil {
err := fmt.Errorf("unable to close channel, ChannelID(%v) is "+
"unknown", chanID)
peerLog.Errorf(err.Error())
req.Err <- err
return
}
switch req.CloseType {
// A type of CloseRegular indicates that the user has opted to close
// out this channel on-chain, so we execute the cooperative channel
// closure workflow.
case htlcswitch.CloseRegular:
// First, we'll choose a delivery address that we'll use to send the
// funds to in the case of a successful negotiation.
// An upfront shutdown and user provided script are both optional,
// but must be equal if both set (because we cannot serve a request
// to close out to a script which violates upfront shutdown). Get the
// appropriate address to close out to (which may be nil if neither
// are set) and error if they are both set and do not match.
deliveryScript, err := chooseDeliveryScript(
channel.LocalUpfrontShutdownScript(), req.DeliveryScript,
)
if err != nil {
peerLog.Errorf("cannot close channel %v: %v", req.ChanPoint, err)
req.Err <- err
return
}
// If neither an upfront address or a user set address was
// provided, generate a fresh script.
if len(deliveryScript) == 0 {
deliveryScript, err = p.genDeliveryScript()
if err != nil {
peerLog.Errorf(err.Error())
req.Err <- err
return
}
}
// Next, we'll create a new channel closer state machine to
// handle the close negotiation.
_, startingHeight, err := p.cfg.ChainIO.GetBestBlock()
if err != nil {
peerLog.Errorf(err.Error())
req.Err <- err
return
}
chanCloser := chancloser.NewChanCloser(
chancloser.ChanCloseCfg{
Channel: channel,
UnregisterChannel: p.cfg.Switch.RemoveLink,
BroadcastTx: p.cfg.Wallet.PublishTransaction,
DisableChannel: func(chanPoint wire.OutPoint) error {
return p.cfg.ChanStatusMgr.RequestDisable(chanPoint, false)
},
Disconnect: func() error {
return p.cfg.DisconnectPeer(p.IdentityKey())
},
Quit: p.quit,
},
deliveryScript,
req.TargetFeePerKw,
uint32(startingHeight),
req,
true,
)
p.activeChanCloses[chanID] = chanCloser
// Finally, we'll initiate the channel shutdown within the
// chanCloser, and send the shutdown message to the remote
// party to kick things off.
shutdownMsg, err := chanCloser.ShutdownChan()
if err != nil {
peerLog.Errorf(err.Error())
req.Err <- err
delete(p.activeChanCloses, chanID)
// As we were unable to shutdown the channel, we'll
// return it back to its normal state.
channel.ResetState()
return
}
p.queueMsg(shutdownMsg, nil)
// A type of CloseBreach indicates that the counterparty has breached
// the channel therefore we need to clean up our local state.
case htlcswitch.CloseBreach:
// TODO(roasbeef): no longer need with newer beach logic?
peerLog.Infof("ChannelPoint(%v) has been breached, wiping "+
"channel", req.ChanPoint)
p.WipeChannel(req.ChanPoint)
}
}
// linkFailureReport is sent to the channelManager whenever a link reports a
// link failure, and is forced to exit. The report houses the necessary
// information to clean up the channel state, send back the error message, and
// force close if necessary.
type linkFailureReport struct {
chanPoint wire.OutPoint
chanID lnwire.ChannelID
shortChanID lnwire.ShortChannelID
linkErr htlcswitch.LinkFailureError
}
// handleLinkFailure processes a link failure report when a link in the switch
// fails. It facilitates the removal of all channel state within the peer,
// force closing the channel depending on severity, and sending the error
// message back to the remote party.
func (p *Brontide) handleLinkFailure(failure linkFailureReport) {
// Retrieve the channel from the map of active channels. We do this to
// have access to it even after WipeChannel remove it from the map.
chanID := lnwire.NewChanIDFromOutPoint(&failure.chanPoint)
p.activeChanMtx.Lock()
lnChan := p.activeChannels[chanID]
p.activeChanMtx.Unlock()
// We begin by wiping the link, which will remove it from the switch,
// such that it won't be attempted used for any more updates.
//
// TODO(halseth): should introduce a way to atomically stop/pause the
// link and cancel back any adds in its mailboxes such that we can
// safely force close without the link being added again and updates
// being applied.
p.WipeChannel(&failure.chanPoint)
// If the error encountered was severe enough, we'll now force close the
// channel to prevent reading it to the switch in the future.
if failure.linkErr.ForceClose {
peerLog.Warnf("Force closing link(%v)",
failure.shortChanID)
closeTx, err := p.cfg.ChainArb.ForceCloseContract(
failure.chanPoint,
)
if err != nil {
peerLog.Errorf("unable to force close "+
"link(%v): %v", failure.shortChanID, err)
} else {
peerLog.Infof("channel(%v) force "+
"closed with txid %v",
failure.shortChanID, closeTx.TxHash())
}
}
// If this is a permanent failure, we will mark the channel borked.
if failure.linkErr.PermanentFailure && lnChan != nil {
peerLog.Warnf("Marking link(%v) borked due to permanent "+
"failure", failure.shortChanID)
if err := lnChan.State().MarkBorked(); err != nil {
peerLog.Errorf("Unable to mark channel %v borked: %v",
failure.shortChanID, err)
}
}
// Send an error to the peer, why we failed the channel.
if failure.linkErr.ShouldSendToPeer() {
// If SendData is set, send it to the peer. If not, we'll use
// the standard error messages in the payload. We only include
// sendData in the cases where the error data does not contain
// sensitive information.
data := []byte(failure.linkErr.Error())
if failure.linkErr.SendData != nil {
data = failure.linkErr.SendData
}
err := p.SendMessage(true, &lnwire.Error{
ChanID: failure.chanID,
Data: data,
})
if err != nil {
peerLog.Errorf("unable to send msg to "+
"remote peer: %v", err)
}
}
}
// finalizeChanClosure performs the final clean up steps once the cooperative
// closure transaction has been fully broadcast. The finalized closing state
// machine should be passed in. Once the transaction has been sufficiently
// confirmed, the channel will be marked as fully closed within the database,
// and any clients will be notified of updates to the closing state.
func (p *Brontide) finalizeChanClosure(chanCloser *chancloser.ChanCloser) {
closeReq := chanCloser.CloseRequest()
// First, we'll clear all indexes related to the channel in question.
chanPoint := chanCloser.Channel().ChannelPoint()
p.WipeChannel(chanPoint)
// Next, we'll launch a goroutine which will request to be notified by
// the ChainNotifier once the closure transaction obtains a single
// confirmation.
notifier := p.cfg.ChainNotifier
// If any error happens during waitForChanToClose, forward it to
// closeReq. If this channel closure is not locally initiated, closeReq
// will be nil, so just ignore the error.
errChan := make(chan error, 1)
if closeReq != nil {
errChan = closeReq.Err
}
closingTx, err := chanCloser.ClosingTx()
if err != nil {
if closeReq != nil {
peerLog.Error(err)
closeReq.Err <- err
}
}
closingTxid := closingTx.TxHash()
// If this is a locally requested shutdown, update the caller with a
// new event detailing the current pending state of this request.
if closeReq != nil {
closeReq.Updates <- &PendingUpdate{
Txid: closingTxid[:],
}
}
go WaitForChanToClose(chanCloser.NegotiationHeight(), notifier, errChan,
chanPoint, &closingTxid, closingTx.TxOut[0].PkScript, func() {
// Respond to the local subsystem which requested the
// channel closure.
if closeReq != nil {
closeReq.Updates <- &ChannelCloseUpdate{
ClosingTxid: closingTxid[:],
Success: true,
}
}
})
}
// WaitForChanToClose uses the passed notifier to wait until the channel has
// been detected as closed on chain and then concludes by executing the
// following actions: the channel point will be sent over the settleChan, and
// finally the callback will be executed. If any error is encountered within
// the function, then it will be sent over the errChan.
func WaitForChanToClose(bestHeight uint32, notifier chainntnfs.ChainNotifier,
errChan chan error, chanPoint *wire.OutPoint,
closingTxID *chainhash.Hash, closeScript []byte, cb func()) {
peerLog.Infof("Waiting for confirmation of cooperative close of "+
"ChannelPoint(%v) with txid: %v", chanPoint,
closingTxID)
// TODO(roasbeef): add param for num needed confs
confNtfn, err := notifier.RegisterConfirmationsNtfn(
closingTxID, closeScript, 1, bestHeight,
)
if err != nil {
if errChan != nil {
errChan <- err
}
return
}
// In the case that the ChainNotifier is shutting down, all subscriber
// notification channels will be closed, generating a nil receive.
height, ok := <-confNtfn.Confirmed
if !ok {
return
}
// The channel has been closed, remove it from any active indexes, and
// the database state.
peerLog.Infof("ChannelPoint(%v) is now closed at "+
"height %v", chanPoint, height.BlockHeight)
// Finally, execute the closure call back to mark the confirmation of
// the transaction closing the contract.
cb()
}
// WipeChannel removes the passed channel point from all indexes associated with
// the peer and the switch.
func (p *Brontide) WipeChannel(chanPoint *wire.OutPoint) {
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
p.activeChanMtx.Lock()
delete(p.activeChannels, chanID)
p.activeChanMtx.Unlock()
// Instruct the HtlcSwitch to close this link as the channel is no
// longer active.
p.cfg.Switch.RemoveLink(chanID)
}
// handleInitMsg handles the incoming init message which contains global and
// local feature vectors. If feature vectors are incompatible then disconnect.
func (p *Brontide) handleInitMsg(msg *lnwire.Init) error {
// First, merge any features from the legacy global features field into
// those presented in the local features fields.
err := msg.Features.Merge(msg.GlobalFeatures)
if err != nil {
return fmt.Errorf("unable to merge legacy global features: %v",
err)
}
// Then, finalize the remote feature vector providing the flattened
// feature bit namespace.
p.remoteFeatures = lnwire.NewFeatureVector(
msg.Features, lnwire.Features,
)
// Now that we have their features loaded, we'll ensure that they
// didn't set any required bits that we don't know of.
err = feature.ValidateRequired(p.remoteFeatures)
if err != nil {
return fmt.Errorf("invalid remote features: %v", err)
}
// Ensure the remote party's feature vector contains all transitive
// dependencies. We know ours are correct since they are validated
// during the feature manager's instantiation.
err = feature.ValidateDeps(p.remoteFeatures)
if err != nil {
return fmt.Errorf("invalid remote features: %v", err)
}
// Now that we know we understand their requirements, we'll check to
// see if they don't support anything that we deem to be mandatory.
if !p.remoteFeatures.HasFeature(lnwire.DataLossProtectRequired) {
return fmt.Errorf("data loss protection required")
}
return nil
}
// LocalFeatures returns the set of global features that has been advertised by
// the local node. This allows sub-systems that use this interface to gate their
// behavior off the set of negotiated feature bits.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) LocalFeatures() *lnwire.FeatureVector {
return p.cfg.Features
}
// RemoteFeatures returns the set of global features that has been advertised by
// the remote node. This allows sub-systems that use this interface to gate
// their behavior off the set of negotiated feature bits.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) RemoteFeatures() *lnwire.FeatureVector {
return p.remoteFeatures
}
// sendInitMsg sends the Init message to the remote peer. This message contains
// our currently supported local and global features.
func (p *Brontide) sendInitMsg(legacyChan bool) error {
features := p.cfg.Features.Clone()
legacyFeatures := p.cfg.LegacyFeatures.Clone()
// If we have a legacy channel open with a peer, we downgrade static
// remote required to optional in case the peer does not understand the
// required feature bit. If we do not do this, the peer will reject our
// connection because it does not understand a required feature bit, and
// our channel will be unusable.
if legacyChan && features.RequiresFeature(lnwire.StaticRemoteKeyRequired) {
peerLog.Infof("Legacy channel open with peer: %x, "+
"downgrading static remote required feature bit to "+
"optional", p.PubKey())
// Unset and set in both the local and global features to
// ensure both sets are consistent and merge able by old and
// new nodes.
features.Unset(lnwire.StaticRemoteKeyRequired)
legacyFeatures.Unset(lnwire.StaticRemoteKeyRequired)
features.Set(lnwire.StaticRemoteKeyOptional)
legacyFeatures.Set(lnwire.StaticRemoteKeyOptional)
}
msg := lnwire.NewInitMessage(
legacyFeatures.RawFeatureVector,
features.RawFeatureVector,
)
return p.writeMessage(msg)
}
// resendChanSyncMsg will attempt to find a channel sync message for the closed
// channel and resend it to our peer.
func (p *Brontide) resendChanSyncMsg(cid lnwire.ChannelID) error {
// If we already re-sent the mssage for this channel, we won't do it
// again.
if _, ok := p.resentChanSyncMsg[cid]; ok {
return nil
}
// Check if we have any channel sync messages stored for this channel.
c, err := p.cfg.ChannelDB.FetchClosedChannelForID(cid)
if err != nil {
return fmt.Errorf("unable to fetch channel sync messages for "+
"peer %v: %v", p, err)
}
if c.LastChanSyncMsg == nil {
return fmt.Errorf("no chan sync message stored for channel %v",
cid)
}
if !c.RemotePub.IsEqual(p.IdentityKey()) {
return fmt.Errorf("ignoring channel reestablish from "+
"peer=%x", p.IdentityKey())
}
peerLog.Debugf("Re-sending channel sync message for channel %v to "+
"peer %v", cid, p)
if err := p.SendMessage(true, c.LastChanSyncMsg); err != nil {
return fmt.Errorf("failed resending channel sync "+
"message to peer %v: %v", p, err)
}
peerLog.Debugf("Re-sent channel sync message for channel %v to peer "+
"%v", cid, p)
// Note down that we sent the message, so we won't resend it again for
// this connection.
p.resentChanSyncMsg[cid] = struct{}{}
return nil
}
// SendMessage sends a variadic number of high-priority messages to the remote
// peer. The first argument denotes if the method should block until the
// messages have been sent to the remote peer or an error is returned,
// otherwise it returns immediately after queuing.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) SendMessage(sync bool, msgs ...lnwire.Message) error {
return p.sendMessage(sync, true, msgs...)
}
// SendMessageLazy sends a variadic number of low-priority messages to the
// remote peer. The first argument denotes if the method should block until
// the messages have been sent to the remote peer or an error is returned,
// otherwise it returns immediately after queueing.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) SendMessageLazy(sync bool, msgs ...lnwire.Message) error {
return p.sendMessage(sync, false, msgs...)
}
// sendMessage queues a variadic number of messages using the passed priority
// to the remote peer. If sync is true, this method will block until the
// messages have been sent to the remote peer or an error is returned, otherwise
// it returns immediately after queueing.
func (p *Brontide) sendMessage(sync, priority bool, msgs ...lnwire.Message) error {
// Add all incoming messages to the outgoing queue. A list of error
// chans is populated for each message if the caller requested a sync
// send.
var errChans []chan error
if sync {
errChans = make([]chan error, 0, len(msgs))
}
for _, msg := range msgs {
// If a sync send was requested, create an error chan to listen
// for an ack from the writeHandler.
var errChan chan error
if sync {
errChan = make(chan error, 1)
errChans = append(errChans, errChan)
}
if priority {
p.queueMsg(msg, errChan)
} else {
p.queueMsgLazy(msg, errChan)
}
}
// Wait for all replies from the writeHandler. For async sends, this
// will be a NOP as the list of error chans is nil.
for _, errChan := range errChans {
select {
case err := <-errChan:
return err
case <-p.quit:
return lnpeer.ErrPeerExiting
case <-p.cfg.Quit:
return lnpeer.ErrPeerExiting
}
}
return nil
}
// PubKey returns the pubkey of the peer in compressed serialized format.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) PubKey() [33]byte {
return p.cfg.PubKeyBytes
}
// IdentityKey returns the public key of the remote peer.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) IdentityKey() *btcec.PublicKey {
return p.cfg.Addr.IdentityKey
}
// Address returns the network address of the remote peer.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) Address() net.Addr {
return p.cfg.Addr.Address
}
// AddNewChannel adds a new channel to the peer. The channel should fail to be
// added if the cancel channel is closed.
//
// NOTE: Part of the lnpeer.Peer interface.
func (p *Brontide) AddNewChannel(channel *channeldb.OpenChannel,
cancel <-chan struct{}) error {
errChan := make(chan error, 1)
newChanMsg := &newChannelMsg{
channel: channel,
err: errChan,
}
select {
case p.newChannels <- newChanMsg:
case <-cancel:
return errors.New("canceled adding new channel")
case <-p.quit:
return lnpeer.ErrPeerExiting
}
// We pause here to wait for the peer to recognize the new channel
// before we close the channel barrier corresponding to the channel.
select {
case err := <-errChan:
return err
case <-p.quit:
return lnpeer.ErrPeerExiting
}
}
// StartTime returns the time at which the connection was established if the
// peer started successfully, and zero otherwise.
func (p *Brontide) StartTime() time.Time {
return p.startTime
}
// handleCloseMsg is called when a new cooperative channel closure related
// message is received from the remote peer. We'll use this message to advance
// the chan closer state machine.
func (p *Brontide) handleCloseMsg(msg *closeMsg) {
// We'll now fetch the matching closing state machine in order to continue,
// or finalize the channel closure process.
chanCloser, err := p.fetchActiveChanCloser(msg.cid)
if err != nil {
// If the channel is not known to us, we'll simply ignore this message.
if err == ErrChannelNotFound {
return
}
peerLog.Errorf("Unable to respond to remote close msg: %v", err)
errMsg := &lnwire.Error{
ChanID: msg.cid,
Data: lnwire.ErrorData(err.Error()),
}
p.queueMsg(errMsg, nil)
return
}
// Next, we'll process the next message using the target state machine.
// We'll either continue negotiation, or halt.
msgs, closeFin, err := chanCloser.ProcessCloseMsg(
msg.msg,
)
if err != nil {
err := fmt.Errorf("unable to process close msg: %v", err)
peerLog.Error(err)
// As the negotiations failed, we'll reset the channel state machine to
// ensure we act to on-chain events as normal.
chanCloser.Channel().ResetState()
if chanCloser.CloseRequest() != nil {
chanCloser.CloseRequest().Err <- err
}
delete(p.activeChanCloses, msg.cid)
return
}
// Queue any messages to the remote peer that need to be sent as a part of
// this latest round of negotiations.
for _, msg := range msgs {
p.queueMsg(msg, nil)
}
// If we haven't finished close negotiations, then we'll continue as we
// can't yet finalize the closure.
if !closeFin {
return
}
// Otherwise, we've agreed on a closing fee! In this case, we'll wrap up
// the channel closure by notifying relevant sub-systems and launching a
// goroutine to wait for close tx conf.
p.finalizeChanClosure(chanCloser)
}
// HandleLocalCloseChanReqs accepts a *htlcswitch.ChanClose and passes it onto
// the channelManager goroutine, which will shut down the link and possibly
// close the channel.
func (p *Brontide) HandleLocalCloseChanReqs(req *htlcswitch.ChanClose) {
select {
case p.localCloseChanReqs <- req:
peerLog.Infof("Local close channel request delivered to "+
"peer: %x", p.PubKey())
case <-p.quit:
peerLog.Infof("Unable to deliver local close channel request "+
"to peer %x", p.PubKey())
}
}
// NetAddress returns the network of the remote peer as an lnwire.NetAddress.
func (p *Brontide) NetAddress() *lnwire.NetAddress {
return p.cfg.Addr
}
// Inbound is a getter for the Brontide's Inbound boolean in cfg.
func (p *Brontide) Inbound() bool {
return p.cfg.Inbound
}
// ConnReq is a getter for the Brontide's connReq in cfg.
func (p *Brontide) ConnReq() *connmgr.ConnReq {
return p.cfg.ConnReq
}
// ErrorBuffer is a getter for the Brontide's errorBuffer in cfg.
func (p *Brontide) ErrorBuffer() *queue.CircularBuffer {
return p.cfg.ErrorBuffer
}
// SetAddress sets the remote peer's address given an address.
func (p *Brontide) SetAddress(address net.Addr) {
p.cfg.Addr.Address = address
}
// ActiveSignal returns the peer's active signal.
func (p *Brontide) ActiveSignal() chan struct{} {
return p.activeSignal
}
// Conn returns a pointer to the peer's connection struct.
func (p *Brontide) Conn() net.Conn {
return p.cfg.Conn
}
// BytesReceived returns the number of bytes received from the peer.
func (p *Brontide) BytesReceived() uint64 {
return atomic.LoadUint64(&p.bytesReceived)
}
// BytesSent returns the number of bytes sent to the peer.
func (p *Brontide) BytesSent() uint64 {
return atomic.LoadUint64(&p.bytesSent)
}