lnd.xprv/lntest/itest/lnd_multi-hop-error-propagation_test.go

434 lines
14 KiB
Go

package itest
import (
"context"
"math"
"strings"
"time"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lnwire"
)
func testHtlcErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// In this test we wish to exercise the daemon's correct parsing,
// handling, and propagation of errors that occur while processing a
// multi-hop payment.
const chanAmt = funding.MaxBtcFundingAmount
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
cType, err := channelCommitType(net.Alice, chanPointAlice)
if err != nil {
t.Fatalf("unable to get channel type: %v", err)
}
commitFee := cType.calcStaticFee(0)
assertBaseBalance := func() {
// Alice has opened a channel with Bob with zero push amount, so
// it's remote balance is zero.
expBalanceAlice := &lnrpc.ChannelBalanceResponse{
LocalBalance: &lnrpc.Amount{
Sat: uint64(chanAmt - commitFee),
Msat: uint64(lnwire.NewMSatFromSatoshis(
chanAmt - commitFee,
)),
},
RemoteBalance: &lnrpc.Amount{},
UnsettledLocalBalance: &lnrpc.Amount{},
UnsettledRemoteBalance: &lnrpc.Amount{},
PendingOpenLocalBalance: &lnrpc.Amount{},
PendingOpenRemoteBalance: &lnrpc.Amount{},
// Deprecated fields.
Balance: int64(chanAmt - commitFee),
}
assertChannelBalanceResp(t, net.Alice, expBalanceAlice)
// Bob has a channel with Alice and another with Carol, so it's
// local and remote balances are both chanAmt - commitFee.
expBalanceBob := &lnrpc.ChannelBalanceResponse{
LocalBalance: &lnrpc.Amount{
Sat: uint64(chanAmt - commitFee),
Msat: uint64(lnwire.NewMSatFromSatoshis(
chanAmt - commitFee,
)),
},
RemoteBalance: &lnrpc.Amount{
Sat: uint64(chanAmt - commitFee),
Msat: uint64(lnwire.NewMSatFromSatoshis(
chanAmt - commitFee,
)),
},
UnsettledLocalBalance: &lnrpc.Amount{},
UnsettledRemoteBalance: &lnrpc.Amount{},
PendingOpenLocalBalance: &lnrpc.Amount{},
PendingOpenRemoteBalance: &lnrpc.Amount{},
// Deprecated fields.
Balance: int64(chanAmt - commitFee),
}
assertChannelBalanceResp(t, net.Bob, expBalanceBob)
}
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol := net.NewNode(t.t, "Carol", nil)
// Next, we'll create a connection from Bob to Carol, and open a
// channel between them so we have the topology: Alice -> Bob -> Carol.
// The channel created will be of lower capacity that the one created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.ConnectNodes(ctxt, t.t, net.Bob, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
const bobChanAmt = funding.MaxBtcFundingAmount
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Ensure that Alice has Carol in her routing table before proceeding.
nodeInfoReq := &lnrpc.NodeInfoRequest{
PubKey: carol.PubKeyStr,
}
checkTableTimeout := time.After(time.Second * 10)
checkTableTicker := time.NewTicker(100 * time.Millisecond)
defer checkTableTicker.Stop()
out:
// TODO(roasbeef): make into async hook for node announcements
for {
select {
case <-checkTableTicker.C:
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err := net.Alice.GetNodeInfo(ctxt, nodeInfoReq)
if err != nil && strings.Contains(err.Error(),
"unable to find") {
continue
}
break out
case <-checkTableTimeout:
t.Fatalf("carol's node announcement didn't propagate within " +
"the timeout period")
}
}
// With the channels, open we can now start to test our multi-hop error
// scenarios. First, we'll generate an invoice from carol that we'll
// use to test some error cases.
const payAmt = 10000
invoiceReq := &lnrpc.Invoice{
Memo: "kek99",
Value: payAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
carolPayReq, err := carol.DecodePayReq(ctxb,
&lnrpc.PayReqString{
PayReq: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to decode generated payment request: %v", err)
}
// Before we send the payment, ensure that the announcement of the new
// channel has been processed by Alice.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// Before we start sending payments, subscribe to htlc events for each
// node.
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
aliceEvents, err := net.Alice.RouterClient.SubscribeHtlcEvents(
ctxt, &routerrpc.SubscribeHtlcEventsRequest{},
)
if err != nil {
t.Fatalf("could not subscribe events: %v", err)
}
bobEvents, err := net.Bob.RouterClient.SubscribeHtlcEvents(
ctxt, &routerrpc.SubscribeHtlcEventsRequest{},
)
if err != nil {
t.Fatalf("could not subscribe events: %v", err)
}
carolEvents, err := carol.RouterClient.SubscribeHtlcEvents(
ctxt, &routerrpc.SubscribeHtlcEventsRequest{},
)
if err != nil {
t.Fatalf("could not subscribe events: %v", err)
}
// For the first scenario, we'll test the cancellation of an HTLC with
// an unknown payment hash.
// TODO(roasbeef): return failure response rather than failing entire
// stream on payment error.
sendReq := &routerrpc.SendPaymentRequest{
PaymentHash: makeFakePayHash(t),
Dest: carol.PubKey[:],
Amt: payAmt,
FinalCltvDelta: int32(carolPayReq.CltvExpiry),
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
MaxParts: 1,
}
sendAndAssertFailure(
t, net.Alice,
sendReq, lnrpc.PaymentFailureReason_FAILURE_REASON_INCORRECT_PAYMENT_DETAILS,
)
assertLastHTLCError(
t, net.Alice,
lnrpc.Failure_INCORRECT_OR_UNKNOWN_PAYMENT_DETAILS,
)
// We expect alice and bob to each have one forward and one forward
// fail event at this stage.
assertHtlcEvents(t, 1, 1, 0, routerrpc.HtlcEvent_SEND, aliceEvents)
assertHtlcEvents(t, 1, 1, 0, routerrpc.HtlcEvent_FORWARD, bobEvents)
// Carol should have a link failure because the htlc failed on her
// incoming link.
assertLinkFailure(
t, routerrpc.HtlcEvent_RECEIVE,
routerrpc.FailureDetail_UNKNOWN_INVOICE, carolEvents,
)
// The balances of all parties should be the same as initially since
// the HTLC was canceled.
assertBaseBalance()
// Next, we'll test the case of a recognized payHash but, an incorrect
// value on the extended HTLC.
htlcAmt := lnwire.NewMSatFromSatoshis(1000)
sendReq = &routerrpc.SendPaymentRequest{
PaymentHash: carolInvoice.RHash,
Dest: carol.PubKey[:],
Amt: int64(htlcAmt.ToSatoshis()), // 10k satoshis are expected.
FinalCltvDelta: int32(carolPayReq.CltvExpiry),
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
MaxParts: 1,
}
sendAndAssertFailure(
t, net.Alice,
sendReq, lnrpc.PaymentFailureReason_FAILURE_REASON_INCORRECT_PAYMENT_DETAILS,
)
assertLastHTLCError(
t, net.Alice,
lnrpc.Failure_INCORRECT_OR_UNKNOWN_PAYMENT_DETAILS,
)
// We expect alice and bob to each have one forward and one forward
// fail event at this stage.
assertHtlcEvents(t, 1, 1, 0, routerrpc.HtlcEvent_SEND, aliceEvents)
assertHtlcEvents(t, 1, 1, 0, routerrpc.HtlcEvent_FORWARD, bobEvents)
// Carol should have a link failure because the htlc failed on her
// incoming link.
assertLinkFailure(
t, routerrpc.HtlcEvent_RECEIVE,
routerrpc.FailureDetail_INVOICE_UNDERPAID, carolEvents,
)
// The balances of all parties should be the same as initially since
// the HTLC was canceled.
assertBaseBalance()
// Next we'll test an error that occurs mid-route due to an outgoing
// link having insufficient capacity. In order to do so, we'll first
// need to unbalance the link connecting Bob<->Carol.
//
// To do so, we'll push most of the funds in the channel over to
// Alice's side, leaving on 10k satoshis of available balance for bob.
// There's a max payment amount, so we'll have to do this
// incrementally.
chanReserve := int64(chanAmt / 100)
amtToSend := int64(chanAmt) - chanReserve - 20000
amtSent := int64(0)
for amtSent != amtToSend {
// We'll send in chunks of the max payment amount. If we're
// about to send too much, then we'll only send the amount
// remaining.
toSend := int64(math.MaxUint32)
if toSend+amtSent > amtToSend {
toSend = amtToSend - amtSent
}
invoiceReq = &lnrpc.Invoice{
Value: toSend,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice2, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
sendAndAssertSuccess(
ctxt, t, net.Bob,
&routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice2.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
MaxParts: 1,
},
)
// For each send bob makes, we need to check that bob has a
// forward and settle event for his send, and carol has a
// settle event for her receive.
assertHtlcEvents(
t, 1, 0, 1, routerrpc.HtlcEvent_SEND, bobEvents,
)
assertHtlcEvents(
t, 0, 0, 1, routerrpc.HtlcEvent_RECEIVE, carolEvents,
)
amtSent += toSend
}
// At this point, Alice has 50mil satoshis on her side of the channel,
// but Bob only has 10k available on his side of the channel. So a
// payment from Alice to Carol worth 100k satoshis should fail.
invoiceReq = &lnrpc.Invoice{
Value: 100000,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice3, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
sendReq = &routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice3.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
MaxParts: 1,
}
sendAndAssertFailure(
t, net.Alice,
sendReq, lnrpc.PaymentFailureReason_FAILURE_REASON_NO_ROUTE,
)
assertLastHTLCError(
t, net.Alice, lnrpc.Failure_TEMPORARY_CHANNEL_FAILURE,
)
// Alice should have a forwarding event and a forwarding failure.
assertHtlcEvents(t, 1, 1, 0, routerrpc.HtlcEvent_SEND, aliceEvents)
// Bob should have a link failure because the htlc failed on his
// outgoing link.
assertLinkFailure(
t, routerrpc.HtlcEvent_FORWARD,
routerrpc.FailureDetail_INSUFFICIENT_BALANCE, bobEvents,
)
// Generate new invoice to not pay same invoice twice.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err = carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// For our final test, we'll ensure that if a target link isn't
// available for what ever reason then the payment fails accordingly.
//
// We'll attempt to complete the original invoice we created with Carol
// above, but before we do so, Carol will go offline, resulting in a
// failed payment.
shutdownAndAssert(net, t, carol)
// Reset mission control to forget the temporary channel failure above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = net.Alice.RouterClient.ResetMissionControl(
ctxt, &routerrpc.ResetMissionControlRequest{},
)
if err != nil {
t.Fatalf("unable to reset mission control: %v", err)
}
sendAndAssertFailure(
t, net.Alice,
&routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
MaxParts: 1,
},
lnrpc.PaymentFailureReason_FAILURE_REASON_NO_ROUTE,
)
assertLastHTLCError(t, net.Alice, lnrpc.Failure_UNKNOWN_NEXT_PEER)
// Alice should have a forwarding event and subsequent fail.
assertHtlcEvents(t, 1, 1, 0, routerrpc.HtlcEvent_SEND, aliceEvents)
// Bob should have a link failure because he could not find the next
// peer.
assertLinkFailure(
t, routerrpc.HtlcEvent_FORWARD,
routerrpc.FailureDetail_NO_DETAIL, bobEvents,
)
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
// Force close Bob's final channel.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Bob, chanPointBob)
}
// assertLinkFailure checks that the stream provided has a single link failure
// the the failure detail provided.
func assertLinkFailure(t *harnessTest,
eventType routerrpc.HtlcEvent_EventType,
failureDetail routerrpc.FailureDetail,
client routerrpc.Router_SubscribeHtlcEventsClient) {
event := assertEventAndType(t, eventType, client)
linkFail, ok := event.Event.(*routerrpc.HtlcEvent_LinkFailEvent)
if !ok {
t.Fatalf("expected forwarding failure, got: %T", linkFail)
}
if linkFail.LinkFailEvent.FailureDetail != failureDetail {
t.Fatalf("expected: %v, got: %v", failureDetail,
linkFail.LinkFailEvent.FailureDetail)
}
}