lnd version, "hacked" to enable seedless restore from xprv + scb
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

140 lines
4.3 KiB

package chanbackup
import (
"bytes"
"crypto/rand"
"crypto/sha256"
"fmt"
"io"
"io/ioutil"
"github.com/lightningnetwork/lnd/keychain"
"golang.org/x/crypto/chacha20poly1305"
)
// TODO(roasbeef): interface in front of?
// baseEncryptionKeyLoc is the KeyLocator that we'll use to derive the base
// encryption key used for encrypting all static channel backups. We use this
// to then derive the actual key that we'll use for encryption. We do this
// rather than using the raw key, as we assume that we can't obtain the raw
// keys, and we don't want to require that the HSM know our target cipher for
// encryption.
//
// TODO(roasbeef): possibly unique encrypt?
var baseEncryptionKeyLoc = keychain.KeyLocator{
Family: keychain.KeyFamilyStaticBackup,
Index: 0,
}
// genEncryptionKey derives the key that we'll use to encrypt all of our static
// channel backups. The key itself, is the sha2 of a base key that we get from
// the keyring. We derive the key this way as we don't force the HSM (or any
// future abstractions) to be able to derive and know of the cipher that we'll
// use within our protocol.
func genEncryptionKey(keyRing keychain.KeyRing) ([]byte, error) {
// key = SHA256(baseKey)
baseKey, err := keyRing.DeriveKey(
baseEncryptionKeyLoc,
)
if err != nil {
return nil, err
}
encryptionKey := sha256.Sum256(
baseKey.PubKey.SerializeCompressed(),
)
// TODO(roasbeef): throw back in ECDH?
return encryptionKey[:], nil
}
// encryptPayloadToWriter attempts to write the set of bytes contained within
// the passed byes.Buffer into the passed io.Writer in an encrypted form. We
// use a 24-byte chachapoly AEAD instance with a randomized nonce that's
// pre-pended to the final payload and used as associated data in the AEAD. We
// use the passed keyRing to generate the encryption key, see genEncryptionKey
// for further details.
func encryptPayloadToWriter(payload bytes.Buffer, w io.Writer,
keyRing keychain.KeyRing) error {
// First, we'll derive the key that we'll use to encrypt the payload
// for safe storage without giving away the details of any of our
// channels. The final operation is:
//
// key = SHA256(baseKey)
encryptionKey, err := genEncryptionKey(keyRing)
if err != nil {
return err
}
// Before encryption, we'll initialize our cipher with the target
// encryption key, and also read out our random 24-byte nonce we use
// for encryption. Note that we use NewX, not New, as the latter
// version requires a 12-byte nonce, not a 24-byte nonce.
cipher, err := chacha20poly1305.NewX(encryptionKey)
if err != nil {
return err
}
var nonce [chacha20poly1305.NonceSizeX]byte
if _, err := rand.Read(nonce[:]); err != nil {
return err
}
// Finally, we encrypted the final payload, and write out our
// ciphertext with nonce pre-pended.
ciphertext := cipher.Seal(nil, nonce[:], payload.Bytes(), nonce[:])
if _, err := w.Write(nonce[:]); err != nil {
return err
}
if _, err := w.Write(ciphertext); err != nil {
return err
}
return nil
}
// decryptPayloadFromReader attempts to decrypt the encrypted bytes within the
// passed io.Reader instance using the key derived from the passed keyRing. For
// further details regarding the key derivation protocol, see the
// genEncryptionKey method.
func decryptPayloadFromReader(payload io.Reader,
keyRing keychain.KeyRing) ([]byte, error) {
// First, we'll re-generate the encryption key that we use for all the
// SCBs.
encryptionKey, err := genEncryptionKey(keyRing)
if err != nil {
return nil, err
}
// Next, we'll read out the entire blob as we need to isolate the nonce
// from the rest of the ciphertext.
packedBackup, err := ioutil.ReadAll(payload)
if err != nil {
return nil, err
}
if len(packedBackup) < chacha20poly1305.NonceSizeX {
return nil, fmt.Errorf("payload size too small, must be at "+
"least %v bytes", chacha20poly1305.NonceSizeX)
}
nonce := packedBackup[:chacha20poly1305.NonceSizeX]
ciphertext := packedBackup[chacha20poly1305.NonceSizeX:]
// Now that we have the cipher text and the nonce separated, we can go
// ahead and decrypt the final blob so we can properly serialized the
// SCB.
cipher, err := chacha20poly1305.NewX(encryptionKey)
if err != nil {
return nil, err
}
plaintext, err := cipher.Open(nil, nonce, ciphertext, nonce)
if err != nil {
return nil, err
}
return plaintext, nil
}