package uspv import ( "bytes" "fmt" "log" "github.com/btcsuite/btcd/wire" ) var ( WitMagicBytes = []byte{0x6a, 0x24, 0xaa, 0x21, 0xa9, 0xed} ) // BlockRootOK checks for block self-consistency. // If the block has no wintess txs, and no coinbase witness commitment, // it only checks the tx merkle root. If either a witness commitment or // any witnesses are detected, it also checks that as well. // Returns false if anything goes wrong, true if everything is fine. func BlockOK(blk wire.MsgBlock) bool { var txids, wtxids []*wire.ShaHash // txids and wtxids // witMode true if any tx has a wintess OR coinbase has wit commit var witMode bool for _, tx := range blk.Transactions { // make slice of (w)/txids txid := tx.TxSha() wtxid := tx.WTxSha() if !witMode && !txid.IsEqual(&wtxid) { witMode = true } txids = append(txids, &txid) wtxids = append(wtxids, &wtxid) } var commitBytes []byte // try to extract coinbase witness commitment (even if !witMode) cb := blk.Transactions[0] // get coinbase tx for i := len(cb.TxOut) - 1; i >= 0; i-- { // start at the last txout if bytes.HasPrefix(cb.TxOut[i].PkScript, WitMagicBytes) && len(cb.TxOut[i].PkScript) > 37 { // 38 bytes or more, and starts with WitMagicBytes is a hit commitBytes = cb.TxOut[i].PkScript[6:38] witMode = true // it there is a wit commit it must be valid } } if witMode { // witmode, so check witness tree // first find ways witMode can be disqualified if len(commitBytes) != 32 { // witness in block but didn't find a wintess commitment; fail log.Printf("block %s has witness but no witcommit", blk.BlockSha().String()) return false } if len(cb.TxIn) != 1 { log.Printf("block %s coinbase tx has %d txins (must be 1)", blk.BlockSha().String(), len(cb.TxIn)) return false } if len(cb.TxIn[0].Witness) != 1 { log.Printf("block %s coinbase has %d witnesses (must be 1)", blk.BlockSha().String(), len(cb.TxIn[0].Witness)) return false } if len(cb.TxIn[0].Witness[0]) != 32 { log.Printf("block %s coinbase has %d byte witness nonce (not 32)", blk.BlockSha().String(), len(cb.TxIn[0].Witness[0])) return false } // witness nonce is the cb's witness, subject to above constraints witNonce, err := wire.NewShaHash(cb.TxIn[0].Witness[0]) if err != nil { log.Printf("Witness nonce error: %s", err.Error()) return false // not sure why that'd happen but fail } var empty [32]byte wtxids[0].SetBytes(empty[:]) // coinbase wtxid is 0x00...00 // witness root calculated from wtixds witRoot := calcRoot(wtxids) calcWitCommit := wire.DoubleSha256SH( append(witRoot.Bytes(), witNonce.Bytes()...)) // witness root given in coinbase op_return givenWitCommit, err := wire.NewShaHash(commitBytes) if err != nil { log.Printf("Witness root error: %s", err.Error()) return false // not sure why that'd happen but fail } // they should be the same. If not, fail. if !calcWitCommit.IsEqual(givenWitCommit) { log.Printf("Block %s witRoot error: calc %s given %s", blk.BlockSha().String(), calcWitCommit.String(), givenWitCommit.String()) return false } } // got through witMode check so that should be OK; // check regular txid merkleroot. Which is, like, trivial. return blk.Header.MerkleRoot.IsEqual(calcRoot(txids)) } // calcRoot calculates the merkle root of a slice of hashes. func calcRoot(hashes []*wire.ShaHash) *wire.ShaHash { for len(hashes) < int(nextPowerOfTwo(uint32(len(hashes)))) { hashes = append(hashes, nil) // pad out hash slice to get the full base } for len(hashes) > 1 { // calculate merkle root. Terse, eh? hashes = append(hashes[2:], MakeMerkleParent(hashes[0], hashes[1])) } return hashes[0] } // IngestBlock is like IngestMerkleBlock but aralphic // different enough that it's better to have 2 separate functions func (s *SPVCon) IngestBlock(m *wire.MsgBlock) { var err error // var buf bytes.Buffer // m.SerializeWitness(&buf) // fmt.Printf("block hex %x\n", buf.Bytes()) // for _, tx := range m.Transactions { // fmt.Printf("wtxid: %s\n", tx.WTxSha()) // fmt.Printf(" txid: %s\n", tx.TxSha()) // fmt.Printf("%d %s", i, TxToString(tx)) // } ok := BlockOK(*m) // check block self-consistency if !ok { fmt.Printf("block %s not OK!!11\n", m.BlockSha().String()) return } var hah HashAndHeight select { // select here so we don't block on an unrequested mblock case hah = <-s.blockQueue: // pop height off mblock queue break default: log.Printf("Unrequested full block") return } newBlockSha := m.Header.BlockSha() if !hah.blockhash.IsEqual(&newBlockSha) { log.Printf("full block out of order error") return } // iterate through all txs in the block, looking for matches. // this is slow and can be sped up by doing in-ram filters client side. // kindof a pain to implement though and it's fast enough for now. for i, tx := range m.Transactions { hits, err := s.TS.Ingest(tx, hah.height) if err != nil { log.Printf("Incoming Tx error: %s\n", err.Error()) return } if hits > 0 { log.Printf("block %d tx %d %s ingested and matches %d utxo/adrs.", hah.height, i, tx.TxSha().String(), hits) } } // write to db that we've sync'd to the height indicated in the // merkle block. This isn't QUITE true since we haven't actually gotten // the txs yet but if there are problems with the txs we should backtrack. err = s.TS.SetDBSyncHeight(hah.height) if err != nil { log.Printf("full block sync error: %s\n", err.Error()) return } fmt.Printf("ingested full block %s height %d OK\n", m.Header.BlockSha().String(), hah.height) if hah.final { // check sync end // don't set waitstate; instead, ask for headers again! // this way the only thing that triggers waitstate is asking for headers, // getting 0, calling AskForMerkBlocks(), and seeing you don't need any. // that way you are pretty sure you're synced up. err = s.AskForHeaders() if err != nil { log.Printf("Merkle block error: %s\n", err.Error()) return } } return }