package channeldb import ( "bytes" "encoding/binary" "fmt" "net" "os" "time" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcwallet/walletdb" "github.com/go-errors/errors" "github.com/lightningnetwork/lnd/channeldb/kvdb" "github.com/lightningnetwork/lnd/channeldb/migration12" "github.com/lightningnetwork/lnd/channeldb/migration13" "github.com/lightningnetwork/lnd/channeldb/migration_01_to_11" "github.com/lightningnetwork/lnd/clock" "github.com/lightningnetwork/lnd/lnwire" ) const ( dbName = "channel.db" dbFilePermission = 0600 ) var ( // ErrDryRunMigrationOK signals that a migration executed successful, // but we intentionally did not commit the result. ErrDryRunMigrationOK = errors.New("Dry run migration successful") ) // migration is a function which takes a prior outdated version of the database // instances and mutates the key/bucket structure to arrive at a more // up-to-date version of the database. type migration func(tx kvdb.RwTx) error type version struct { number uint32 migration migration } var ( // dbVersions is storing all versions of database. If current version // of database don't match with latest version this list will be used // for retrieving all migration function that are need to apply to the // current db. dbVersions = []version{ { // The base DB version requires no migration. number: 0, migration: nil, }, { // The version of the database where two new indexes // for the update time of node and channel updates were // added. number: 1, migration: migration_01_to_11.MigrateNodeAndEdgeUpdateIndex, }, { // The DB version that added the invoice event time // series. number: 2, migration: migration_01_to_11.MigrateInvoiceTimeSeries, }, { // The DB version that updated the embedded invoice in // outgoing payments to match the new format. number: 3, migration: migration_01_to_11.MigrateInvoiceTimeSeriesOutgoingPayments, }, { // The version of the database where every channel // always has two entries in the edges bucket. If // a policy is unknown, this will be represented // by a special byte sequence. number: 4, migration: migration_01_to_11.MigrateEdgePolicies, }, { // The DB version where we persist each attempt to send // an HTLC to a payment hash, and track whether the // payment is in-flight, succeeded, or failed. number: 5, migration: migration_01_to_11.PaymentStatusesMigration, }, { // The DB version that properly prunes stale entries // from the edge update index. number: 6, migration: migration_01_to_11.MigratePruneEdgeUpdateIndex, }, { // The DB version that migrates the ChannelCloseSummary // to a format where optional fields are indicated with // boolean flags. number: 7, migration: migration_01_to_11.MigrateOptionalChannelCloseSummaryFields, }, { // The DB version that changes the gossiper's message // store keys to account for the message's type and // ShortChannelID. number: 8, migration: migration_01_to_11.MigrateGossipMessageStoreKeys, }, { // The DB version where the payments and payment // statuses are moved to being stored in a combined // bucket. number: 9, migration: migration_01_to_11.MigrateOutgoingPayments, }, { // The DB version where we started to store legacy // payload information for all routes, as well as the // optional TLV records. number: 10, migration: migration_01_to_11.MigrateRouteSerialization, }, { // Add invoice htlc and cltv delta fields. number: 11, migration: migration_01_to_11.MigrateInvoices, }, { // Migrate to TLV invoice bodies, add payment address // and features, remove receipt. number: 12, migration: migration12.MigrateInvoiceTLV, }, { // Migrate to multi-path payments. number: 13, migration: migration13.MigrateMPP, }, } // Big endian is the preferred byte order, due to cursor scans over // integer keys iterating in order. byteOrder = binary.BigEndian ) // DB is the primary datastore for the lnd daemon. The database stores // information related to nodes, routing data, open/closed channels, fee // schedules, and reputation data. type DB struct { kvdb.Backend dbPath string graph *ChannelGraph clock clock.Clock dryRun bool } // Update is a wrapper around walletdb.Update which calls into the extended // backend when available. This call is needed to be able to cast DB to // ExtendedBackend. func (db *DB) Update(f func(tx walletdb.ReadWriteTx) error) error { if v, ok := db.Backend.(kvdb.ExtendedBackend); ok { return v.Update(f) } return walletdb.Update(db, f) } // View is a wrapper around walletdb.View which calls into the extended // backend when available. This call is needed to be able to cast DB to // ExtendedBackend. func (db *DB) View(f func(tx walletdb.ReadTx) error) error { if v, ok := db.Backend.(kvdb.ExtendedBackend); ok { return v.View(f) } return walletdb.View(db, f) } // PrintStats calls into the extended backend if available. This call is needed // to be able to cast DB to ExtendedBackend. func (db *DB) PrintStats() string { if v, ok := db.Backend.(kvdb.ExtendedBackend); ok { return v.PrintStats() } return "unimplemented" } // Open opens or creates channeldb. Any necessary schemas migrations due // to updates will take place as necessary. // TODO(bhandras): deprecate this function. func Open(dbPath string, modifiers ...OptionModifier) (*DB, error) { opts := DefaultOptions() for _, modifier := range modifiers { modifier(&opts) } backend, err := kvdb.GetBoltBackend(dbPath, dbName, opts.NoFreelistSync) if err != nil { return nil, err } db, err := CreateWithBackend(backend, modifiers...) if err == nil { db.dbPath = dbPath } return db, err } // CreateWithBackend creates channeldb instance using the passed kvdb.Backend. // Any necessary schemas migrations due to updates will take place as necessary. func CreateWithBackend(backend kvdb.Backend, modifiers ...OptionModifier) (*DB, error) { if err := initChannelDB(backend); err != nil { return nil, err } opts := DefaultOptions() for _, modifier := range modifiers { modifier(&opts) } chanDB := &DB{ Backend: backend, clock: opts.clock, dryRun: opts.dryRun, } chanDB.graph = newChannelGraph( chanDB, opts.RejectCacheSize, opts.ChannelCacheSize, ) // Synchronize the version of database and apply migrations if needed. if err := chanDB.syncVersions(dbVersions); err != nil { backend.Close() return nil, err } return chanDB, nil } // Path returns the file path to the channel database. func (d *DB) Path() string { return d.dbPath } var topLevelBuckets = [][]byte{ openChannelBucket, closedChannelBucket, forwardingLogBucket, fwdPackagesKey, invoiceBucket, nodeInfoBucket, nodeBucket, edgeBucket, edgeIndexBucket, graphMetaBucket, metaBucket, } // Wipe completely deletes all saved state within all used buckets within the // database. The deletion is done in a single transaction, therefore this // operation is fully atomic. func (d *DB) Wipe() error { return kvdb.Update(d, func(tx kvdb.RwTx) error { for _, tlb := range topLevelBuckets { err := tx.DeleteTopLevelBucket(tlb) if err != nil && err != kvdb.ErrBucketNotFound { return err } } return nil }) } // createChannelDB creates and initializes a fresh version of channeldb. In // the case that the target path has not yet been created or doesn't yet exist, // then the path is created. Additionally, all required top-level buckets used // within the database are created. func initChannelDB(db kvdb.Backend) error { err := kvdb.Update(db, func(tx kvdb.RwTx) error { meta := &Meta{} // Check if DB is already initialized. err := fetchMeta(meta, tx) if err == nil { return nil } for _, tlb := range topLevelBuckets { if _, err := tx.CreateTopLevelBucket(tlb); err != nil { return err } } nodes := tx.ReadWriteBucket(nodeBucket) _, err = nodes.CreateBucket(aliasIndexBucket) if err != nil { return err } _, err = nodes.CreateBucket(nodeUpdateIndexBucket) if err != nil { return err } edges := tx.ReadWriteBucket(edgeBucket) if _, err := edges.CreateBucket(edgeIndexBucket); err != nil { return err } if _, err := edges.CreateBucket(edgeUpdateIndexBucket); err != nil { return err } if _, err := edges.CreateBucket(channelPointBucket); err != nil { return err } if _, err := edges.CreateBucket(zombieBucket); err != nil { return err } graphMeta := tx.ReadWriteBucket(graphMetaBucket) _, err = graphMeta.CreateBucket(pruneLogBucket) if err != nil { return err } meta.DbVersionNumber = getLatestDBVersion(dbVersions) return putMeta(meta, tx) }) if err != nil { return fmt.Errorf("unable to create new channeldb: %v", err) } return nil } // fileExists returns true if the file exists, and false otherwise. func fileExists(path string) bool { if _, err := os.Stat(path); err != nil { if os.IsNotExist(err) { return false } } return true } // FetchOpenChannels starts a new database transaction and returns all stored // currently active/open channels associated with the target nodeID. In the case // that no active channels are known to have been created with this node, then a // zero-length slice is returned. func (d *DB) FetchOpenChannels(nodeID *btcec.PublicKey) ([]*OpenChannel, error) { var channels []*OpenChannel err := kvdb.View(d, func(tx kvdb.ReadTx) error { var err error channels, err = d.fetchOpenChannels(tx, nodeID) return err }) return channels, err } // fetchOpenChannels uses and existing database transaction and returns all // stored currently active/open channels associated with the target nodeID. In // the case that no active channels are known to have been created with this // node, then a zero-length slice is returned. func (db *DB) fetchOpenChannels(tx kvdb.ReadTx, nodeID *btcec.PublicKey) ([]*OpenChannel, error) { // Get the bucket dedicated to storing the metadata for open channels. openChanBucket := tx.ReadBucket(openChannelBucket) if openChanBucket == nil { return nil, nil } // Within this top level bucket, fetch the bucket dedicated to storing // open channel data specific to the remote node. pub := nodeID.SerializeCompressed() nodeChanBucket := openChanBucket.NestedReadBucket(pub) if nodeChanBucket == nil { return nil, nil } // Next, we'll need to go down an additional layer in order to retrieve // the channels for each chain the node knows of. var channels []*OpenChannel err := nodeChanBucket.ForEach(func(chainHash, v []byte) error { // If there's a value, it's not a bucket so ignore it. if v != nil { return nil } // If we've found a valid chainhash bucket, then we'll retrieve // that so we can extract all the channels. chainBucket := nodeChanBucket.NestedReadBucket(chainHash) if chainBucket == nil { return fmt.Errorf("unable to read bucket for chain=%x", chainHash[:]) } // Finally, we both of the necessary buckets retrieved, fetch // all the active channels related to this node. nodeChannels, err := db.fetchNodeChannels(chainBucket) if err != nil { return fmt.Errorf("unable to read channel for "+ "chain_hash=%x, node_key=%x: %v", chainHash[:], pub, err) } channels = append(channels, nodeChannels...) return nil }) return channels, err } // fetchNodeChannels retrieves all active channels from the target chainBucket // which is under a node's dedicated channel bucket. This function is typically // used to fetch all the active channels related to a particular node. func (db *DB) fetchNodeChannels(chainBucket kvdb.ReadBucket) ([]*OpenChannel, error) { var channels []*OpenChannel // A node may have channels on several chains, so for each known chain, // we'll extract all the channels. err := chainBucket.ForEach(func(chanPoint, v []byte) error { // If there's a value, it's not a bucket so ignore it. if v != nil { return nil } // Once we've found a valid channel bucket, we'll extract it // from the node's chain bucket. chanBucket := chainBucket.NestedReadBucket(chanPoint) var outPoint wire.OutPoint err := readOutpoint(bytes.NewReader(chanPoint), &outPoint) if err != nil { return err } oChannel, err := fetchOpenChannel(chanBucket, &outPoint) if err != nil { return fmt.Errorf("unable to read channel data for "+ "chan_point=%v: %v", outPoint, err) } oChannel.Db = db channels = append(channels, oChannel) return nil }) if err != nil { return nil, err } return channels, nil } // FetchChannel attempts to locate a channel specified by the passed channel // point. If the channel cannot be found, then an error will be returned. func (d *DB) FetchChannel(chanPoint wire.OutPoint) (*OpenChannel, error) { var ( targetChan *OpenChannel targetChanPoint bytes.Buffer ) if err := writeOutpoint(&targetChanPoint, &chanPoint); err != nil { return nil, err } // chanScan will traverse the following bucket structure: // * nodePub => chainHash => chanPoint // // At each level we go one further, ensuring that we're traversing the // proper key (that's actually a bucket). By only reading the bucket // structure and skipping fully decoding each channel, we save a good // bit of CPU as we don't need to do things like decompress public // keys. chanScan := func(tx kvdb.ReadTx) error { // Get the bucket dedicated to storing the metadata for open // channels. openChanBucket := tx.ReadBucket(openChannelBucket) if openChanBucket == nil { return ErrNoActiveChannels } // Within the node channel bucket, are the set of node pubkeys // we have channels with, we don't know the entire set, so // we'll check them all. return openChanBucket.ForEach(func(nodePub, v []byte) error { // Ensure that this is a key the same size as a pubkey, // and also that it leads directly to a bucket. if len(nodePub) != 33 || v != nil { return nil } nodeChanBucket := openChanBucket.NestedReadBucket(nodePub) if nodeChanBucket == nil { return nil } // The next layer down is all the chains that this node // has channels on with us. return nodeChanBucket.ForEach(func(chainHash, v []byte) error { // If there's a value, it's not a bucket so // ignore it. if v != nil { return nil } chainBucket := nodeChanBucket.NestedReadBucket( chainHash, ) if chainBucket == nil { return fmt.Errorf("unable to read "+ "bucket for chain=%x", chainHash[:]) } // Finally we reach the leaf bucket that stores // all the chanPoints for this node. chanBucket := chainBucket.NestedReadBucket( targetChanPoint.Bytes(), ) if chanBucket == nil { return nil } channel, err := fetchOpenChannel( chanBucket, &chanPoint, ) if err != nil { return err } targetChan = channel targetChan.Db = d return nil }) }) } err := kvdb.View(d, chanScan) if err != nil { return nil, err } if targetChan != nil { return targetChan, nil } // If we can't find the channel, then we return with an error, as we // have nothing to backup. return nil, ErrChannelNotFound } // FetchAllChannels attempts to retrieve all open channels currently stored // within the database, including pending open, fully open and channels waiting // for a closing transaction to confirm. func (d *DB) FetchAllChannels() ([]*OpenChannel, error) { return fetchChannels(d) } // FetchAllOpenChannels will return all channels that have the funding // transaction confirmed, and is not waiting for a closing transaction to be // confirmed. func (d *DB) FetchAllOpenChannels() ([]*OpenChannel, error) { return fetchChannels( d, pendingChannelFilter(false), waitingCloseFilter(false), ) } // FetchPendingChannels will return channels that have completed the process of // generating and broadcasting funding transactions, but whose funding // transactions have yet to be confirmed on the blockchain. func (d *DB) FetchPendingChannels() ([]*OpenChannel, error) { return fetchChannels(d, pendingChannelFilter(true), waitingCloseFilter(false), ) } // FetchWaitingCloseChannels will return all channels that have been opened, // but are now waiting for a closing transaction to be confirmed. // // NOTE: This includes channels that are also pending to be opened. func (d *DB) FetchWaitingCloseChannels() ([]*OpenChannel, error) { return fetchChannels( d, waitingCloseFilter(true), ) } // fetchChannelsFilter applies a filter to channels retrieved in fetchchannels. // A set of filters can be combined to filter across multiple dimensions. type fetchChannelsFilter func(channel *OpenChannel) bool // pendingChannelFilter returns a filter based on whether channels are pending // (ie, their funding transaction still needs to confirm). If pending is false, // channels with confirmed funding transactions are returned. func pendingChannelFilter(pending bool) fetchChannelsFilter { return func(channel *OpenChannel) bool { return channel.IsPending == pending } } // waitingCloseFilter returns a filter which filters channels based on whether // they are awaiting the confirmation of their closing transaction. If waiting // close is true, channels that have had their closing tx broadcast are // included. If it is false, channels that are not awaiting confirmation of // their close transaction are returned. func waitingCloseFilter(waitingClose bool) fetchChannelsFilter { return func(channel *OpenChannel) bool { // If the channel is in any other state than Default, // then it means it is waiting to be closed. channelWaitingClose := channel.ChanStatus() != ChanStatusDefault // Include the channel if it matches the value for // waiting close that we are filtering on. return channelWaitingClose == waitingClose } } // fetchChannels attempts to retrieve channels currently stored in the // database. It takes a set of filters which are applied to each channel to // obtain a set of channels with the desired set of properties. Only channels // which have a true value returned for *all* of the filters will be returned. // If no filters are provided, every channel in the open channels bucket will // be returned. func fetchChannels(d *DB, filters ...fetchChannelsFilter) ([]*OpenChannel, error) { var channels []*OpenChannel err := kvdb.View(d, func(tx kvdb.ReadTx) error { // Get the bucket dedicated to storing the metadata for open // channels. openChanBucket := tx.ReadBucket(openChannelBucket) if openChanBucket == nil { return ErrNoActiveChannels } // Next, fetch the bucket dedicated to storing metadata related // to all nodes. All keys within this bucket are the serialized // public keys of all our direct counterparties. nodeMetaBucket := tx.ReadBucket(nodeInfoBucket) if nodeMetaBucket == nil { return fmt.Errorf("node bucket not created") } // Finally for each node public key in the bucket, fetch all // the channels related to this particular node. return nodeMetaBucket.ForEach(func(k, v []byte) error { nodeChanBucket := openChanBucket.NestedReadBucket(k) if nodeChanBucket == nil { return nil } return nodeChanBucket.ForEach(func(chainHash, v []byte) error { // If there's a value, it's not a bucket so // ignore it. if v != nil { return nil } // If we've found a valid chainhash bucket, // then we'll retrieve that so we can extract // all the channels. chainBucket := nodeChanBucket.NestedReadBucket( chainHash, ) if chainBucket == nil { return fmt.Errorf("unable to read "+ "bucket for chain=%x", chainHash[:]) } nodeChans, err := d.fetchNodeChannels(chainBucket) if err != nil { return fmt.Errorf("unable to read "+ "channel for chain_hash=%x, "+ "node_key=%x: %v", chainHash[:], k, err) } for _, channel := range nodeChans { // includeChannel indicates whether the channel // meets the criteria specified by our filters. includeChannel := true // Run through each filter and check whether the // channel should be included. for _, f := range filters { // If the channel fails the filter, set // includeChannel to false and don't bother // checking the remaining filters. if !f(channel) { includeChannel = false break } } // If the channel passed every filter, include it in // our set of channels. if includeChannel { channels = append(channels, channel) } } return nil }) }) }) if err != nil { return nil, err } return channels, nil } // FetchClosedChannels attempts to fetch all closed channels from the database. // The pendingOnly bool toggles if channels that aren't yet fully closed should // be returned in the response or not. When a channel was cooperatively closed, // it becomes fully closed after a single confirmation. When a channel was // forcibly closed, it will become fully closed after _all_ the pending funds // (if any) have been swept. func (d *DB) FetchClosedChannels(pendingOnly bool) ([]*ChannelCloseSummary, error) { var chanSummaries []*ChannelCloseSummary if err := kvdb.View(d, func(tx kvdb.ReadTx) error { closeBucket := tx.ReadBucket(closedChannelBucket) if closeBucket == nil { return ErrNoClosedChannels } return closeBucket.ForEach(func(chanID []byte, summaryBytes []byte) error { summaryReader := bytes.NewReader(summaryBytes) chanSummary, err := deserializeCloseChannelSummary(summaryReader) if err != nil { return err } // If the query specified to only include pending // channels, then we'll skip any channels which aren't // currently pending. if !chanSummary.IsPending && pendingOnly { return nil } chanSummaries = append(chanSummaries, chanSummary) return nil }) }); err != nil { return nil, err } return chanSummaries, nil } // ErrClosedChannelNotFound signals that a closed channel could not be found in // the channeldb. var ErrClosedChannelNotFound = errors.New("unable to find closed channel summary") // FetchClosedChannel queries for a channel close summary using the channel // point of the channel in question. func (d *DB) FetchClosedChannel(chanID *wire.OutPoint) (*ChannelCloseSummary, error) { var chanSummary *ChannelCloseSummary if err := kvdb.View(d, func(tx kvdb.ReadTx) error { closeBucket := tx.ReadBucket(closedChannelBucket) if closeBucket == nil { return ErrClosedChannelNotFound } var b bytes.Buffer var err error if err = writeOutpoint(&b, chanID); err != nil { return err } summaryBytes := closeBucket.Get(b.Bytes()) if summaryBytes == nil { return ErrClosedChannelNotFound } summaryReader := bytes.NewReader(summaryBytes) chanSummary, err = deserializeCloseChannelSummary(summaryReader) return err }); err != nil { return nil, err } return chanSummary, nil } // FetchClosedChannelForID queries for a channel close summary using the // channel ID of the channel in question. func (d *DB) FetchClosedChannelForID(cid lnwire.ChannelID) ( *ChannelCloseSummary, error) { var chanSummary *ChannelCloseSummary if err := kvdb.View(d, func(tx kvdb.ReadTx) error { closeBucket := tx.ReadBucket(closedChannelBucket) if closeBucket == nil { return ErrClosedChannelNotFound } // The first 30 bytes of the channel ID and outpoint will be // equal. cursor := closeBucket.ReadCursor() op, c := cursor.Seek(cid[:30]) // We scan over all possible candidates for this channel ID. for ; op != nil && bytes.Compare(cid[:30], op[:30]) <= 0; op, c = cursor.Next() { var outPoint wire.OutPoint err := readOutpoint(bytes.NewReader(op), &outPoint) if err != nil { return err } // If the found outpoint does not correspond to this // channel ID, we continue. if !cid.IsChanPoint(&outPoint) { continue } // Deserialize the close summary and return. r := bytes.NewReader(c) chanSummary, err = deserializeCloseChannelSummary(r) if err != nil { return err } return nil } return ErrClosedChannelNotFound }); err != nil { return nil, err } return chanSummary, nil } // MarkChanFullyClosed marks a channel as fully closed within the database. A // channel should be marked as fully closed if the channel was initially // cooperatively closed and it's reached a single confirmation, or after all // the pending funds in a channel that has been forcibly closed have been // swept. func (d *DB) MarkChanFullyClosed(chanPoint *wire.OutPoint) error { return kvdb.Update(d, func(tx kvdb.RwTx) error { var b bytes.Buffer if err := writeOutpoint(&b, chanPoint); err != nil { return err } chanID := b.Bytes() closedChanBucket, err := tx.CreateTopLevelBucket( closedChannelBucket, ) if err != nil { return err } chanSummaryBytes := closedChanBucket.Get(chanID) if chanSummaryBytes == nil { return fmt.Errorf("no closed channel for "+ "chan_point=%v found", chanPoint) } chanSummaryReader := bytes.NewReader(chanSummaryBytes) chanSummary, err := deserializeCloseChannelSummary( chanSummaryReader, ) if err != nil { return err } chanSummary.IsPending = false var newSummary bytes.Buffer err = serializeChannelCloseSummary(&newSummary, chanSummary) if err != nil { return err } err = closedChanBucket.Put(chanID, newSummary.Bytes()) if err != nil { return err } // Now that the channel is closed, we'll check if we have any // other open channels with this peer. If we don't we'll // garbage collect it to ensure we don't establish persistent // connections to peers without open channels. return d.pruneLinkNode(tx, chanSummary.RemotePub) }) } // pruneLinkNode determines whether we should garbage collect a link node from // the database due to no longer having any open channels with it. If there are // any left, then this acts as a no-op. func (db *DB) pruneLinkNode(tx kvdb.RwTx, remotePub *btcec.PublicKey) error { openChannels, err := db.fetchOpenChannels(tx, remotePub) if err != nil { return fmt.Errorf("unable to fetch open channels for peer %x: "+ "%v", remotePub.SerializeCompressed(), err) } if len(openChannels) > 0 { return nil } log.Infof("Pruning link node %x with zero open channels from database", remotePub.SerializeCompressed()) return db.deleteLinkNode(tx, remotePub) } // PruneLinkNodes attempts to prune all link nodes found within the databse with // whom we no longer have any open channels with. func (d *DB) PruneLinkNodes() error { return kvdb.Update(d, func(tx kvdb.RwTx) error { linkNodes, err := d.fetchAllLinkNodes(tx) if err != nil { return err } for _, linkNode := range linkNodes { err := d.pruneLinkNode(tx, linkNode.IdentityPub) if err != nil { return err } } return nil }) } // ChannelShell is a shell of a channel that is meant to be used for channel // recovery purposes. It contains a minimal OpenChannel instance along with // addresses for that target node. type ChannelShell struct { // NodeAddrs the set of addresses that this node has known to be // reachable at in the past. NodeAddrs []net.Addr // Chan is a shell of an OpenChannel, it contains only the items // required to restore the channel on disk. Chan *OpenChannel } // RestoreChannelShells is a method that allows the caller to reconstruct the // state of an OpenChannel from the ChannelShell. We'll attempt to write the // new channel to disk, create a LinkNode instance with the passed node // addresses, and finally create an edge within the graph for the channel as // well. This method is idempotent, so repeated calls with the same set of // channel shells won't modify the database after the initial call. func (d *DB) RestoreChannelShells(channelShells ...*ChannelShell) error { chanGraph := d.ChannelGraph() // TODO(conner): find way to do this w/o accessing internal members? chanGraph.cacheMu.Lock() defer chanGraph.cacheMu.Unlock() var chansRestored []uint64 err := kvdb.Update(d, func(tx kvdb.RwTx) error { for _, channelShell := range channelShells { channel := channelShell.Chan // When we make a channel, we mark that the channel has // been restored, this will signal to other sub-systems // to not attempt to use the channel as if it was a // regular one. channel.chanStatus |= ChanStatusRestored // First, we'll attempt to create a new open channel // and link node for this channel. If the channel // already exists, then in order to ensure this method // is idempotent, we'll continue to the next step. channel.Db = d err := syncNewChannel( tx, channel, channelShell.NodeAddrs, ) if err != nil { return err } // Next, we'll create an active edge in the graph // database for this channel in order to restore our // partial view of the network. // // TODO(roasbeef): if we restore *after* the channel // has been closed on chain, then need to inform the // router that it should try and prune these values as // we can detect them edgeInfo := ChannelEdgeInfo{ ChannelID: channel.ShortChannelID.ToUint64(), ChainHash: channel.ChainHash, ChannelPoint: channel.FundingOutpoint, Capacity: channel.Capacity, } nodes := tx.ReadWriteBucket(nodeBucket) if nodes == nil { return ErrGraphNotFound } selfNode, err := chanGraph.sourceNode(nodes) if err != nil { return err } // Depending on which pub key is smaller, we'll assign // our roles as "node1" and "node2". chanPeer := channel.IdentityPub.SerializeCompressed() selfIsSmaller := bytes.Compare( selfNode.PubKeyBytes[:], chanPeer, ) == -1 if selfIsSmaller { copy(edgeInfo.NodeKey1Bytes[:], selfNode.PubKeyBytes[:]) copy(edgeInfo.NodeKey2Bytes[:], chanPeer) } else { copy(edgeInfo.NodeKey1Bytes[:], chanPeer) copy(edgeInfo.NodeKey2Bytes[:], selfNode.PubKeyBytes[:]) } // With the edge info shell constructed, we'll now add // it to the graph. err = chanGraph.addChannelEdge(tx, &edgeInfo) if err != nil && err != ErrEdgeAlreadyExist { return err } // Similarly, we'll construct a channel edge shell and // add that itself to the graph. chanEdge := ChannelEdgePolicy{ ChannelID: edgeInfo.ChannelID, LastUpdate: time.Now(), } // If their pubkey is larger, then we'll flip the // direction bit to indicate that us, the "second" node // is updating their policy. if !selfIsSmaller { chanEdge.ChannelFlags |= lnwire.ChanUpdateDirection } _, err = updateEdgePolicy(tx, &chanEdge) if err != nil { return err } chansRestored = append(chansRestored, edgeInfo.ChannelID) } return nil }) if err != nil { return err } for _, chanid := range chansRestored { chanGraph.rejectCache.remove(chanid) chanGraph.chanCache.remove(chanid) } return nil } // AddrsForNode consults the graph and channel database for all addresses known // to the passed node public key. func (d *DB) AddrsForNode(nodePub *btcec.PublicKey) ([]net.Addr, error) { var ( linkNode *LinkNode graphNode LightningNode ) dbErr := kvdb.View(d, func(tx kvdb.ReadTx) error { var err error linkNode, err = fetchLinkNode(tx, nodePub) if err != nil { return err } // We'll also query the graph for this peer to see if they have // any addresses that we don't currently have stored within the // link node database. nodes := tx.ReadBucket(nodeBucket) if nodes == nil { return ErrGraphNotFound } compressedPubKey := nodePub.SerializeCompressed() graphNode, err = fetchLightningNode(nodes, compressedPubKey) if err != nil && err != ErrGraphNodeNotFound { // If the node isn't found, then that's OK, as we still // have the link node data. return err } return nil }) if dbErr != nil { return nil, dbErr } // Now that we have both sources of addrs for this node, we'll use a // map to de-duplicate any addresses between the two sources, and // produce a final list of the combined addrs. addrs := make(map[string]net.Addr) for _, addr := range linkNode.Addresses { addrs[addr.String()] = addr } for _, addr := range graphNode.Addresses { addrs[addr.String()] = addr } dedupedAddrs := make([]net.Addr, 0, len(addrs)) for _, addr := range addrs { dedupedAddrs = append(dedupedAddrs, addr) } return dedupedAddrs, nil } // AbandonChannel attempts to remove the target channel from the open channel // database. If the channel was already removed (has a closed channel entry), // then we'll return a nil error. Otherwise, we'll insert a new close summary // into the database. func (db *DB) AbandonChannel(chanPoint *wire.OutPoint, bestHeight uint32) error { // With the chanPoint constructed, we'll attempt to find the target // channel in the database. If we can't find the channel, then we'll // return the error back to the caller. dbChan, err := db.FetchChannel(*chanPoint) switch { // If the channel wasn't found, then it's possible that it was already // abandoned from the database. case err == ErrChannelNotFound: _, closedErr := db.FetchClosedChannel(chanPoint) if closedErr != nil { return closedErr } // If the channel was already closed, then we don't return an // error as we'd like fro this step to be repeatable. return nil case err != nil: return err } // Now that we've found the channel, we'll populate a close summary for // the channel, so we can store as much information for this abounded // channel as possible. We also ensure that we set Pending to false, to // indicate that this channel has been "fully" closed. summary := &ChannelCloseSummary{ CloseType: Abandoned, ChanPoint: *chanPoint, ChainHash: dbChan.ChainHash, CloseHeight: bestHeight, RemotePub: dbChan.IdentityPub, Capacity: dbChan.Capacity, SettledBalance: dbChan.LocalCommitment.LocalBalance.ToSatoshis(), ShortChanID: dbChan.ShortChanID(), RemoteCurrentRevocation: dbChan.RemoteCurrentRevocation, RemoteNextRevocation: dbChan.RemoteNextRevocation, LocalChanConfig: dbChan.LocalChanCfg, } // Finally, we'll close the channel in the DB, and return back to the // caller. We set ourselves as the close initiator because we abandoned // the channel. return dbChan.CloseChannel(summary, ChanStatusLocalCloseInitiator) } // syncVersions function is used for safe db version synchronization. It // applies migration functions to the current database and recovers the // previous state of db if at least one error/panic appeared during migration. func (d *DB) syncVersions(versions []version) error { meta, err := d.FetchMeta(nil) if err != nil { if err == ErrMetaNotFound { meta = &Meta{} } else { return err } } latestVersion := getLatestDBVersion(versions) log.Infof("Checking for schema update: latest_version=%v, "+ "db_version=%v", latestVersion, meta.DbVersionNumber) switch { // If the database reports a higher version that we are aware of, the // user is probably trying to revert to a prior version of lnd. We fail // here to prevent reversions and unintended corruption. case meta.DbVersionNumber > latestVersion: log.Errorf("Refusing to revert from db_version=%d to "+ "lower version=%d", meta.DbVersionNumber, latestVersion) return ErrDBReversion // If the current database version matches the latest version number, // then we don't need to perform any migrations. case meta.DbVersionNumber == latestVersion: return nil } log.Infof("Performing database schema migration") // Otherwise, we fetch the migrations which need to applied, and // execute them serially within a single database transaction to ensure // the migration is atomic. migrations, migrationVersions := getMigrationsToApply( versions, meta.DbVersionNumber, ) return kvdb.Update(d, func(tx kvdb.RwTx) error { for i, migration := range migrations { if migration == nil { continue } log.Infof("Applying migration #%v", migrationVersions[i]) if err := migration(tx); err != nil { log.Infof("Unable to apply migration #%v", migrationVersions[i]) return err } } meta.DbVersionNumber = latestVersion err := putMeta(meta, tx) if err != nil { return err } // In dry-run mode, return an error to prevent the transaction // from committing. if d.dryRun { return ErrDryRunMigrationOK } return nil }) } // ChannelGraph returns a new instance of the directed channel graph. func (d *DB) ChannelGraph() *ChannelGraph { return d.graph } func getLatestDBVersion(versions []version) uint32 { return versions[len(versions)-1].number } // getMigrationsToApply retrieves the migration function that should be // applied to the database. func getMigrationsToApply(versions []version, version uint32) ([]migration, []uint32) { migrations := make([]migration, 0, len(versions)) migrationVersions := make([]uint32, 0, len(versions)) for _, v := range versions { if v.number > version { migrations = append(migrations, v.migration) migrationVersions = append(migrationVersions, v.number) } } return migrations, migrationVersions } // fetchHistoricalChanBucket returns a the channel bucket for a given outpoint // from the historical channel bucket. If the bucket does not exist, // ErrNoHistoricalBucket is returned. func fetchHistoricalChanBucket(tx kvdb.ReadTx, outPoint *wire.OutPoint) (kvdb.ReadBucket, error) { // First fetch the top level bucket which stores all data related to // historically stored channels. historicalChanBucket := tx.ReadBucket(historicalChannelBucket) if historicalChanBucket == nil { return nil, ErrNoHistoricalBucket } // With the bucket for the node and chain fetched, we can now go down // another level, for the channel itself. var chanPointBuf bytes.Buffer if err := writeOutpoint(&chanPointBuf, outPoint); err != nil { return nil, err } chanBucket := historicalChanBucket.NestedReadBucket(chanPointBuf.Bytes()) if chanBucket == nil { return nil, ErrChannelNotFound } return chanBucket, nil } // FetchHistoricalChannel fetches open channel data from the historical channel // bucket. func (db *DB) FetchHistoricalChannel(outPoint *wire.OutPoint) (*OpenChannel, error) { var channel *OpenChannel err := kvdb.View(db, func(tx kvdb.ReadTx) error { chanBucket, err := fetchHistoricalChanBucket(tx, outPoint) if err != nil { return err } channel, err = fetchOpenChannel(chanBucket, outPoint) return err }) if err != nil { return nil, err } return channel, nil }