package routing import ( "bytes" "fmt" "image/color" "math/rand" "strings" "testing" "time" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/davecgh/go-spew/spew" sphinx "github.com/lightningnetwork/lightning-onion" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/htlcswitch" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/zpay32" ) // defaultNumRoutes is the default value for the maximum number of routes to // be returned by FindRoutes const defaultNumRoutes = 10 type testCtx struct { router *ChannelRouter graph *channeldb.ChannelGraph aliases map[string]Vertex chain *mockChain chainView *mockChainView } func (c *testCtx) RestartRouter() error { // First, we'll reset the chainView's state as it doesn't persist the // filter between restarts. c.chainView.Reset() // With the chainView reset, we'll now re-create the router itself, and // start it. router, err := New(Config{ Graph: c.graph, Chain: c.chain, ChainView: c.chainView, SendToSwitch: func(_ lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { return [32]byte{}, nil }, ChannelPruneExpiry: time.Hour * 24, GraphPruneInterval: time.Hour * 2, }) if err != nil { return fmt.Errorf("unable to create router %v", err) } if err := router.Start(); err != nil { return fmt.Errorf("unable to start router: %v", err) } // Finally, we'll swap out the pointer in the testCtx with this fresh // instance of the router. c.router = router return nil } func copyPubKey(pub *btcec.PublicKey) *btcec.PublicKey { return &btcec.PublicKey{ Curve: btcec.S256(), X: pub.X, Y: pub.Y, } } func createTestCtxFromGraphInstance(startingHeight uint32, graphInstance *testGraphInstance) ( *testCtx, func(), error) { // We'll initialize an instance of the channel router with mock // versions of the chain and channel notifier. As we don't need to test // any p2p functionality, the peer send and switch send messages won't // be populated. chain := newMockChain(startingHeight) chainView := newMockChainView(chain) router, err := New(Config{ Graph: graphInstance.graph, Chain: chain, ChainView: chainView, SendToSwitch: func(_ lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { return [32]byte{}, nil }, ChannelPruneExpiry: time.Hour * 24, GraphPruneInterval: time.Hour * 2, QueryBandwidth: func(e *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi { return lnwire.NewMSatFromSatoshis(e.Capacity) }, }) if err != nil { return nil, nil, fmt.Errorf("unable to create router %v", err) } if err := router.Start(); err != nil { return nil, nil, fmt.Errorf("unable to start router: %v", err) } ctx := &testCtx{ router: router, graph: graphInstance.graph, aliases: graphInstance.aliasMap, chain: chain, chainView: chainView, } cleanUp := func() { ctx.router.Stop() graphInstance.cleanUp() } return ctx, cleanUp, nil } func createTestCtxSingleNode(startingHeight uint32) (*testCtx, func(), error) { var ( graph *channeldb.ChannelGraph sourceNode *channeldb.LightningNode cleanup func() err error ) graph, cleanup, err = makeTestGraph() if err != nil { return nil, nil, fmt.Errorf("unable to create test graph: %v", err) } sourceNode, err = createTestNode() if err != nil { return nil, nil, fmt.Errorf("unable to create source node: %v", err) } if err = graph.SetSourceNode(sourceNode); err != nil { return nil, nil, fmt.Errorf("unable to set source node: %v", err) } graphInstance := &testGraphInstance{ graph: graph, cleanUp: cleanup, } return createTestCtxFromGraphInstance(startingHeight, graphInstance) } func createTestCtxFromFile(startingHeight uint32, testGraph string) (*testCtx, func(), error) { // We'll attempt to locate and parse out the file // that encodes the graph that our tests should be run against. graphInstance, err := parseTestGraph(testGraph) if err != nil { return nil, nil, fmt.Errorf("unable to create test graph: %v", err) } return createTestCtxFromGraphInstance(startingHeight, graphInstance) } // TestFindRoutesFeeSorting asserts that routes found by the FindRoutes method // within the channel router are properly returned in a sorted order, with the // lowest fee route coming first. func TestFindRoutesFeeSorting(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // In this test we'd like to ensure proper integration of the various // functions that are involved in path finding, and also route // selection. // Execute a query for all possible routes between roasbeef and luo ji. paymentAmt := lnwire.NewMSatFromSatoshis(100) target := ctx.aliases["luoji"] routes, err := ctx.router.FindRoutes( ctx.router.selfNode.PubKeyBytes, target, paymentAmt, noRestrictions, defaultNumRoutes, zpay32.DefaultFinalCLTVDelta, ) if err != nil { t.Fatalf("unable to find any routes: %v", err) } // Exactly, two such paths should be found. if len(routes) != 2 { t.Fatalf("2 routes should've been selected, instead %v were: %v", len(routes), spew.Sdump(routes)) } // We shouldn't pay a fee for the fist route, but the second route // should have a fee intact. if routes[0].TotalFees != 0 { t.Fatalf("incorrect fees for first route, expected 0 got: %v", routes[0].TotalFees) } if routes[1].TotalFees == 0 { t.Fatalf("total fees not set in second route: %v", spew.Sdump(routes[0])) } // The paths should properly be ranked according to their total fee // rate. if routes[0].TotalFees > routes[1].TotalFees { t.Fatalf("routes not ranked by total fee: %v", spew.Sdump(routes)) } } // TestFindRoutesWithFeeLimit asserts that routes found by the FindRoutes method // within the channel router contain a total fee less than or equal to the fee // limit. func TestFindRoutesWithFeeLimit(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile( startingBlockHeight, basicGraphFilePath, ) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // This test will attempt to find routes from roasbeef to sophon for 100 // satoshis with a fee limit of 10 satoshis. There are two routes from // roasbeef to sophon: // 1. roasbeef -> songoku -> sophon // 2. roasbeef -> phamnuwen -> sophon // The second route violates our fee limit, so we should only expect to // see the first route. target := ctx.aliases["sophon"] paymentAmt := lnwire.NewMSatFromSatoshis(100) restrictions := &RestrictParams{ FeeLimit: lnwire.NewMSatFromSatoshis(10), } routes, err := ctx.router.FindRoutes( ctx.router.selfNode.PubKeyBytes, target, paymentAmt, restrictions, defaultNumRoutes, zpay32.DefaultFinalCLTVDelta, ) if err != nil { t.Fatalf("unable to find any routes: %v", err) } if len(routes) != 1 { t.Fatalf("expected 1 route, got %d", len(routes)) } if routes[0].TotalFees > restrictions.FeeLimit { t.Fatalf("route exceeded fee limit: %v", spew.Sdump(routes[0])) } hops := routes[0].Hops if len(hops) != 2 { t.Fatalf("expected 2 hops, got %d", len(hops)) } if hops[0].PubKeyBytes != ctx.aliases["songoku"] { t.Fatalf("expected first hop through songoku, got %s", getAliasFromPubKey(hops[0].PubKeyBytes, ctx.aliases)) } } // TestSendPaymentRouteFailureFallback tests that when sending a payment, if // one of the target routes is seen as unavailable, then the next route in the // queue is used instead. This process should continue until either a payment // succeeds, or all routes have been exhausted. func TestSendPaymentRouteFailureFallback(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // Craft a LightningPayment struct that'll send a payment from roasbeef // to luo ji for 1000 satoshis, with a maximum of 1000 satoshis in fees. var payHash [32]byte paymentAmt := lnwire.NewMSatFromSatoshis(1000) payment := LightningPayment{ Target: ctx.aliases["luoji"], Amount: paymentAmt, FeeLimit: noFeeLimit, PaymentHash: payHash, } var preImage [32]byte copy(preImage[:], bytes.Repeat([]byte{9}, 32)) sourceNode := ctx.router.selfNode // We'll modify the SendToSwitch method that's been set within the // router's configuration to ignore the path that has luo ji as the // first hop. This should force the router to instead take the // available two hop path (through satoshi). ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { roasbeefLuoji := lnwire.NewShortChanIDFromInt(689530843) if firstHop == roasbeefLuoji { pub, err := sourceNode.PubKey() if err != nil { return preImage, err } return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: pub, // TODO(roasbeef): temp node failure should be? FailureMessage: &lnwire.FailTemporaryChannelFailure{}, } } return preImage, nil } // Send off the payment request to the router, route through satoshi // should've been selected as a fall back and succeeded correctly. paymentPreImage, route, err := ctx.router.SendPayment(&payment) if err != nil { t.Fatalf("unable to send payment: %v", err) } // The route selected should have two hops if len(route.Hops) != 2 { t.Fatalf("incorrect route length: expected %v got %v", 2, len(route.Hops)) } // The preimage should match up with the once created above. if !bytes.Equal(paymentPreImage[:], preImage[:]) { t.Fatalf("incorrect preimage used: expected %x got %x", preImage[:], paymentPreImage[:]) } // The route should have satoshi as the first hop. if route.Hops[0].PubKeyBytes != ctx.aliases["satoshi"] { t.Fatalf("route should go through satoshi as first hop, "+ "instead passes through: %v", getAliasFromPubKey(route.Hops[0].PubKeyBytes, ctx.aliases)) } } // TestChannelUpdateValidation tests that a failed payment with an associated // channel update will only be applied to the graph when the update contains a // valid signature. func TestChannelUpdateValidation(t *testing.T) { t.Parallel() // Setup a three node network. chanCapSat := btcutil.Amount(100000) testChannels := []*testChannel{ symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{ Expiry: 144, FeeRate: 400, MinHTLC: 1, MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat), }, 1), symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{ Expiry: 144, FeeRate: 400, MinHTLC: 1, MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat), }, 2), } testGraph, err := createTestGraphFromChannels(testChannels) defer testGraph.cleanUp() if err != nil { t.Fatalf("unable to create graph: %v", err) } const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromGraphInstance(startingBlockHeight, testGraph) defer cleanUp() if err != nil { t.Fatalf("unable to create router: %v", err) } // Assert that the initially configured fee is retrieved correctly. _, policy, _, err := ctx.router.GetChannelByID( lnwire.NewShortChanIDFromInt(1)) if err != nil { t.Fatalf("cannot retrieve channel") } if policy.FeeProportionalMillionths != 400 { t.Fatalf("invalid fee") } // Setup a route from source a to destination c. The route will be used // in a call to SendToRoute. SendToRoute also applies channel updates, // but it saves us from including RequestRoute in the test scope too. hop1 := ctx.aliases["b"] hop2 := ctx.aliases["c"] hops := []*Hop{ { ChannelID: 1, PubKeyBytes: hop1, }, { ChannelID: 2, PubKeyBytes: hop2, }, } route, err := NewRouteFromHops( lnwire.MilliSatoshi(10000), 100, ctx.aliases["a"], hops, ) if err != nil { t.Fatalf("unable to create route: %v", err) } // Set up a channel update message with an invalid signature to be // returned to the sender. var invalidSignature [64]byte errChanUpdate := lnwire.ChannelUpdate{ Signature: invalidSignature, FeeRate: 500, ShortChannelID: lnwire.NewShortChanIDFromInt(1), Timestamp: uint32(testTime.Add(time.Minute).Unix()), } // We'll modify the SendToSwitch method so that it simulates a failed // payment with an error originating from the first hop of the route. // The unsigned channel update is attached to the failure message. ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { v := ctx.aliases["b"] source, err := btcec.ParsePubKey( v[:], btcec.S256(), ) if err != nil { t.Fatal(err) } return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: source, FailureMessage: &lnwire.FailFeeInsufficient{ Update: errChanUpdate, }, } } // The payment parameter is mostly redundant in SendToRoute. Can be left // empty for this test. payment := &LightningPayment{} // Send off the payment request to the router. The specified route // should be attempted and the channel update should be received by // router and ignored because it is missing a valid signature. _, _, err = ctx.router.SendToRoute([]*Route{route}, payment) if err == nil { t.Fatalf("expected route to fail with channel update") } _, policy, _, err = ctx.router.GetChannelByID( lnwire.NewShortChanIDFromInt(1)) if err != nil { t.Fatalf("cannot retrieve channel") } if policy.FeeProportionalMillionths != 400 { t.Fatalf("fee updated without valid signature") } // Next, add a signature to the channel update. chanUpdateMsg, err := errChanUpdate.DataToSign() if err != nil { t.Fatal(err) } digest := chainhash.DoubleHashB(chanUpdateMsg) sig, err := testGraph.privKeyMap["b"].Sign(digest) if err != nil { t.Fatal(err) } errChanUpdate.Signature, err = lnwire.NewSigFromSignature(sig) if err != nil { t.Fatal(err) } // Retry the payment using the same route as before. _, _, err = ctx.router.SendToRoute([]*Route{route}, payment) if err == nil { t.Fatalf("expected route to fail with channel update") } // This time a valid signature was supplied and the policy change should // have been applied to the graph. _, policy, _, err = ctx.router.GetChannelByID( lnwire.NewShortChanIDFromInt(1)) if err != nil { t.Fatalf("cannot retrieve channel") } if policy.FeeProportionalMillionths != 500 { t.Fatalf("fee not updated even though signature is valid") } } // TestSendPaymentErrorRepeatedFeeInsufficient tests that if we receive // multiple fee related errors from a channel that we're attempting to route // through, then we'll prune the channel after the second attempt. func TestSendPaymentErrorRepeatedFeeInsufficient(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // Craft a LightningPayment struct that'll send a payment from roasbeef // to luo ji for 100 satoshis. var payHash [32]byte amt := lnwire.NewMSatFromSatoshis(1000) payment := LightningPayment{ Target: ctx.aliases["sophon"], Amount: amt, FeeLimit: noFeeLimit, PaymentHash: payHash, } var preImage [32]byte copy(preImage[:], bytes.Repeat([]byte{9}, 32)) // We'll also fetch the first outgoing channel edge from roasbeef to // son goku. We'll obtain this as we'll need to to generate the // FeeInsufficient error that we'll send back. chanID := uint64(12345) _, _, edgeUpdateToFail, err := ctx.graph.FetchChannelEdgesByID(chanID) if err != nil { t.Fatalf("unable to fetch chan id: %v", err) } errChanUpdate := lnwire.ChannelUpdate{ ShortChannelID: lnwire.NewShortChanIDFromInt(chanID), Timestamp: uint32(edgeUpdateToFail.LastUpdate.Unix()), MessageFlags: edgeUpdateToFail.MessageFlags, ChannelFlags: edgeUpdateToFail.ChannelFlags, TimeLockDelta: edgeUpdateToFail.TimeLockDelta, HtlcMinimumMsat: edgeUpdateToFail.MinHTLC, HtlcMaximumMsat: edgeUpdateToFail.MaxHTLC, BaseFee: uint32(edgeUpdateToFail.FeeBaseMSat), FeeRate: uint32(edgeUpdateToFail.FeeProportionalMillionths), } // The error will be returned by Son Goku. sourceNode := ctx.aliases["songoku"] // We'll now modify the SendToSwitch method to return an error for the // outgoing channel to Son goku. This will be a fee related error, so // it should only cause the edge to be pruned after the second attempt. ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { roasbeefSongoku := lnwire.NewShortChanIDFromInt(chanID) if firstHop == roasbeefSongoku { sourceKey, err := btcec.ParsePubKey( sourceNode[:], btcec.S256(), ) if err != nil { t.Fatal(err) } return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: sourceKey, // Within our error, we'll add a channel update // which is meant to reflect he new fee // schedule for the node/channel. FailureMessage: &lnwire.FailFeeInsufficient{ Update: errChanUpdate, }, } } return preImage, nil } // Send off the payment request to the router, route through satoshi // should've been selected as a fall back and succeeded correctly. paymentPreImage, route, err := ctx.router.SendPayment(&payment) if err != nil { t.Fatalf("unable to send payment: %v", err) } // The route selected should have two hops if len(route.Hops) != 2 { t.Fatalf("incorrect route length: expected %v got %v", 2, len(route.Hops)) } // The preimage should match up with the once created above. if !bytes.Equal(paymentPreImage[:], preImage[:]) { t.Fatalf("incorrect preimage used: expected %x got %x", preImage[:], paymentPreImage[:]) } // The route should have pham nuwen as the first hop. if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] { t.Fatalf("route should go through satoshi as first hop, "+ "instead passes through: %v", getAliasFromPubKey(route.Hops[0].PubKeyBytes, ctx.aliases)) } } // TestSendPaymentErrorNonFinalTimeLockErrors tests that if we receive either // an ExpiryTooSoon or a IncorrectCltvExpiry error from a node, then we prune // that node from the available graph witin a mission control session. This // test ensures that we'll route around errors due to nodes not knowing the // current block height. func TestSendPaymentErrorNonFinalTimeLockErrors(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // Craft a LightningPayment struct that'll send a payment from roasbeef // to sophon for 1k satoshis. var payHash [32]byte amt := lnwire.NewMSatFromSatoshis(1000) payment := LightningPayment{ Target: ctx.aliases["sophon"], Amount: amt, FeeLimit: noFeeLimit, PaymentHash: payHash, } var preImage [32]byte copy(preImage[:], bytes.Repeat([]byte{9}, 32)) // We'll also fetch the first outgoing channel edge from roasbeef to // son goku. This edge will be included in the time lock related expiry // errors that we'll get back due to disagrements in what the current // block height is. chanID := uint64(12345) roasbeefSongoku := lnwire.NewShortChanIDFromInt(chanID) _, _, edgeUpdateToFail, err := ctx.graph.FetchChannelEdgesByID(chanID) if err != nil { t.Fatalf("unable to fetch chan id: %v", err) } errChanUpdate := lnwire.ChannelUpdate{ ShortChannelID: lnwire.NewShortChanIDFromInt(chanID), Timestamp: uint32(edgeUpdateToFail.LastUpdate.Unix()), MessageFlags: edgeUpdateToFail.MessageFlags, ChannelFlags: edgeUpdateToFail.ChannelFlags, TimeLockDelta: edgeUpdateToFail.TimeLockDelta, HtlcMinimumMsat: edgeUpdateToFail.MinHTLC, HtlcMaximumMsat: edgeUpdateToFail.MaxHTLC, BaseFee: uint32(edgeUpdateToFail.FeeBaseMSat), FeeRate: uint32(edgeUpdateToFail.FeeProportionalMillionths), } // The error will be returned by Son Goku. sourceNode := ctx.aliases["songoku"] // We'll now modify the SendToSwitch method to return an error for the // outgoing channel to son goku. Since this is a time lock related // error, we should fail the payment flow all together, as Goku is the // only channel to Sophon. ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { if firstHop == roasbeefSongoku { sourceKey, err := btcec.ParsePubKey( sourceNode[:], btcec.S256(), ) if err != nil { t.Fatal(err) } return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: sourceKey, FailureMessage: &lnwire.FailExpiryTooSoon{ Update: errChanUpdate, }, } } return preImage, nil } // assertExpectedPath is a helper function that asserts the returned // route properly routes around the failure we've introduced in the // graph. assertExpectedPath := func(retPreImage [32]byte, route *Route) { // The route selected should have two hops if len(route.Hops) != 2 { t.Fatalf("incorrect route length: expected %v got %v", 2, len(route.Hops)) } // The preimage should match up with the once created above. if !bytes.Equal(retPreImage[:], preImage[:]) { t.Fatalf("incorrect preimage used: expected %x got %x", preImage[:], retPreImage[:]) } // The route should have satoshi as the first hop. if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] { t.Fatalf("route should go through phamnuwen as first hop, "+ "instead passes through: %v", getAliasFromPubKey(route.Hops[0].PubKeyBytes, ctx.aliases)) } } // Send off the payment request to the router, this payment should // succeed as we should actually go through Pham Nuwen in order to get // to Sophon, even though he has higher fees. paymentPreImage, route, err := ctx.router.SendPayment(&payment) if err != nil { t.Fatalf("unable to send payment: %v", err) } assertExpectedPath(paymentPreImage, route) // We'll now modify the error return an IncorrectCltvExpiry error // instead, this should result in the same behavior of roasbeef routing // around the faulty Son Goku node. ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { if firstHop == roasbeefSongoku { sourceKey, err := btcec.ParsePubKey( sourceNode[:], btcec.S256(), ) if err != nil { t.Fatal(err) } return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: sourceKey, FailureMessage: &lnwire.FailIncorrectCltvExpiry{ Update: errChanUpdate, }, } } return preImage, nil } // Once again, Roasbeef should route around Goku since they disagree // w.r.t to the block height, and instead go through Pham Nuwen. paymentPreImage, route, err = ctx.router.SendPayment(&payment) if err != nil { t.Fatalf("unable to send payment: %v", err) } assertExpectedPath(paymentPreImage, route) } // TestSendPaymentErrorPathPruning tests that the send of candidate routes // properly gets pruned in response to ForwardingError response from the // underlying SendToSwitch function. func TestSendPaymentErrorPathPruning(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // Craft a LightningPayment struct that'll send a payment from roasbeef // to luo ji for 1000 satoshis, with a maximum of 1000 satoshis in fees. var payHash [32]byte paymentAmt := lnwire.NewMSatFromSatoshis(1000) payment := LightningPayment{ Target: ctx.aliases["luoji"], Amount: paymentAmt, FeeLimit: noFeeLimit, PaymentHash: payHash, } var preImage [32]byte copy(preImage[:], bytes.Repeat([]byte{9}, 32)) sourceNode, err := ctx.graph.SourceNode() if err != nil { t.Fatalf("unable to fetch source node: %v", err) } sourcePub, err := sourceNode.PubKey() if err != nil { t.Fatalf("unable to fetch source node pub: %v", err) } roasbeefLuoji := lnwire.NewShortChanIDFromInt(689530843) // First, we'll modify the SendToSwitch method to return an error // indicating that the channel from roasbeef to luoji is not operable // with an UnknownNextPeer. // // TODO(roasbeef): filtering should be intelligent enough so just not // go through satoshi at all at this point. ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { if firstHop == roasbeefLuoji { // We'll first simulate an error from the first // outgoing link to simulate the channel from luo ji to // roasbeef not having enough capacity. return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: sourcePub, FailureMessage: &lnwire.FailTemporaryChannelFailure{}, } } // Next, we'll create an error from satoshi to indicate // that the luoji node is not longer online, which should // prune out the rest of the routes. roasbeefSatoshi := lnwire.NewShortChanIDFromInt(2340213491) if firstHop == roasbeefSatoshi { vertex := ctx.aliases["satoshi"] key, err := btcec.ParsePubKey( vertex[:], btcec.S256(), ) if err != nil { t.Fatal(err) } return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: key, FailureMessage: &lnwire.FailUnknownNextPeer{}, } } return preImage, nil } ctx.router.missionControl.ResetHistory() // When we try to dispatch that payment, we should receive an error as // both attempts should fail and cause both routes to be pruned. _, _, err = ctx.router.SendPayment(&payment) if err == nil { t.Fatalf("payment didn't return error") } // The final error returned should also indicate that the peer wasn't // online (the last error we returned). if !strings.Contains(err.Error(), "UnknownNextPeer") { t.Fatalf("expected UnknownNextPeer instead got: %v", err) } ctx.router.missionControl.ResetHistory() // Next, we'll modify the SendToSwitch method to indicate that luo ji // wasn't originally online. This should also halt the send all // together as all paths contain luoji and he can't be reached. ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { if firstHop == roasbeefLuoji { return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: sourcePub, FailureMessage: &lnwire.FailUnknownNextPeer{}, } } return preImage, nil } // This shouldn't return an error, as we'll make a payment attempt via // the satoshi channel based on the assumption that there might be an // intermittent issue with the roasbeef <-> lioji channel. paymentPreImage, route, err := ctx.router.SendPayment(&payment) if err != nil { t.Fatalf("unable send payment: %v", err) } // This path should go: roasbeef -> satoshi -> luoji if len(route.Hops) != 2 { t.Fatalf("incorrect route length: expected %v got %v", 2, len(route.Hops)) } if !bytes.Equal(paymentPreImage[:], preImage[:]) { t.Fatalf("incorrect preimage used: expected %x got %x", preImage[:], paymentPreImage[:]) } if route.Hops[0].PubKeyBytes != ctx.aliases["satoshi"] { t.Fatalf("route should go through satoshi as first hop, "+ "instead passes through: %v", getAliasFromPubKey(route.Hops[0].PubKeyBytes, ctx.aliases)) } ctx.router.missionControl.ResetHistory() // Finally, we'll modify the SendToSwitch function to indicate that the // roasbeef -> luoji channel has insufficient capacity. This should // again cause us to instead go via the satoshi route. ctx.router.cfg.SendToSwitch = func(firstHop lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { if firstHop == roasbeefLuoji { // We'll first simulate an error from the first // outgoing link to simulate the channel from luo ji to // roasbeef not having enough capacity. return [32]byte{}, &htlcswitch.ForwardingError{ ErrorSource: sourcePub, FailureMessage: &lnwire.FailTemporaryChannelFailure{}, } } return preImage, nil } paymentPreImage, route, err = ctx.router.SendPayment(&payment) if err != nil { t.Fatalf("unable to send payment: %v", err) } // This should succeed finally. The route selected should have two // hops. if len(route.Hops) != 2 { t.Fatalf("incorrect route length: expected %v got %v", 2, len(route.Hops)) } // The preimage should match up with the once created above. if !bytes.Equal(paymentPreImage[:], preImage[:]) { t.Fatalf("incorrect preimage used: expected %x got %x", preImage[:], paymentPreImage[:]) } // The route should have satoshi as the first hop. if route.Hops[0].PubKeyBytes != ctx.aliases["satoshi"] { t.Fatalf("route should go through satoshi as first hop, "+ "instead passes through: %v", getAliasFromPubKey(route.Hops[0].PubKeyBytes, ctx.aliases)) } } // TestAddProof checks that we can update the channel proof after channel // info was added to the database. func TestAddProof(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtxSingleNode(0) if err != nil { t.Fatal(err) } defer cleanup() // Before creating out edge, we'll create two new nodes within the // network that the channel will connect. node1, err := createTestNode() if err != nil { t.Fatal(err) } node2, err := createTestNode() if err != nil { t.Fatal(err) } // In order to be able to add the edge we should have a valid funding // UTXO within the blockchain. fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), 100, 0) if err != nil { t.Fatalf("unable create channel edge: %v", err) } fundingBlock := &wire.MsgBlock{ Transactions: []*wire.MsgTx{fundingTx}, } ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight) // After utxo was recreated adding the edge without the proof. edge := &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), NodeKey1Bytes: node1.PubKeyBytes, NodeKey2Bytes: node2.PubKeyBytes, AuthProof: nil, } copy(edge.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed()) copy(edge.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed()) if err := ctx.router.AddEdge(edge); err != nil { t.Fatalf("unable to add edge: %v", err) } // Now we'll attempt to update the proof and check that it has been // properly updated. if err := ctx.router.AddProof(*chanID, &testAuthProof); err != nil { t.Fatalf("unable to add proof: %v", err) } info, _, _, err := ctx.router.GetChannelByID(*chanID) if info.AuthProof == nil { t.Fatal("proof have been updated") } } // TestIgnoreNodeAnnouncement tests that adding a node to the router that is // not known from any channel announcement, leads to the announcement being // ignored. func TestIgnoreNodeAnnouncement(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() pub := priv1.PubKey() node := &channeldb.LightningNode{ HaveNodeAnnouncement: true, LastUpdate: time.Unix(123, 0), Addresses: testAddrs, Color: color.RGBA{1, 2, 3, 0}, Alias: "node11", AuthSigBytes: testSig.Serialize(), Features: testFeatures, } copy(node.PubKeyBytes[:], pub.SerializeCompressed()) err = ctx.router.AddNode(node) if !IsError(err, ErrIgnored) { t.Fatalf("expected to get ErrIgnore, instead got: %v", err) } } // TestIgnoreChannelEdgePolicyForUnknownChannel checks that a router will // ignore a channel policy for a channel not in the graph. func TestIgnoreChannelEdgePolicyForUnknownChannel(t *testing.T) { t.Parallel() const startingBlockHeight = 101 // Setup an initially empty network. testChannels := []*testChannel{} testGraph, err := createTestGraphFromChannels(testChannels) if err != nil { t.Fatalf("unable to create graph: %v", err) } defer testGraph.cleanUp() ctx, cleanUp, err := createTestCtxFromGraphInstance( startingBlockHeight, testGraph, ) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() var pub1 [33]byte copy(pub1[:], priv1.PubKey().SerializeCompressed()) var pub2 [33]byte copy(pub2[:], priv2.PubKey().SerializeCompressed()) // Add the edge between the two unknown nodes to the graph, and check // that the nodes are found after the fact. fundingTx, _, chanID, err := createChannelEdge( ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), 10000, 500, ) if err != nil { t.Fatalf("unable to create channel edge: %v", err) } fundingBlock := &wire.MsgBlock{ Transactions: []*wire.MsgTx{fundingTx}, } ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight) edge := &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), NodeKey1Bytes: pub1, NodeKey2Bytes: pub2, BitcoinKey1Bytes: pub1, BitcoinKey2Bytes: pub2, AuthProof: nil, } edgePolicy := &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: edge.ChannelID, LastUpdate: testTime, TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, } // Attempt to update the edge. This should be ignored, since the edge // is not yet added to the router. err = ctx.router.UpdateEdge(edgePolicy) if !IsError(err, ErrIgnored) { t.Fatalf("expected to get ErrIgnore, instead got: %v", err) } // Add the edge. if err := ctx.router.AddEdge(edge); err != nil { t.Fatalf("expected to be able to add edge to the channel graph,"+ " even though the vertexes were unknown: %v.", err) } // Now updating the edge policy should succeed. if err := ctx.router.UpdateEdge(edgePolicy); err != nil { t.Fatalf("unable to update edge policy: %v", err) } } // TestAddEdgeUnknownVertexes tests that if an edge is added that contains two // vertexes which we don't know of, the edge should be available for use // regardless. This is due to the fact that we don't actually need node // announcements for the channel vertexes to be able to use the channel. func TestAddEdgeUnknownVertexes(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() var pub1 [33]byte copy(pub1[:], priv1.PubKey().SerializeCompressed()) var pub2 [33]byte copy(pub2[:], priv2.PubKey().SerializeCompressed()) // The two nodes we are about to add should not exist yet. _, exists1, err := ctx.graph.HasLightningNode(pub1) if err != nil { t.Fatalf("unable to query graph: %v", err) } if exists1 { t.Fatalf("node already existed") } _, exists2, err := ctx.graph.HasLightningNode(pub2) if err != nil { t.Fatalf("unable to query graph: %v", err) } if exists2 { t.Fatalf("node already existed") } // Add the edge between the two unknown nodes to the graph, and check // that the nodes are found after the fact. fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), 10000, 500) if err != nil { t.Fatalf("unable to create channel edge: %v", err) } fundingBlock := &wire.MsgBlock{ Transactions: []*wire.MsgTx{fundingTx}, } ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight) edge := &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), NodeKey1Bytes: pub1, NodeKey2Bytes: pub2, BitcoinKey1Bytes: pub1, BitcoinKey2Bytes: pub2, AuthProof: nil, } if err := ctx.router.AddEdge(edge); err != nil { t.Fatalf("expected to be able to add edge to the channel graph,"+ " even though the vertexes were unknown: %v.", err) } // We must add the edge policy to be able to use the edge for route // finding. edgePolicy := &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: edge.ChannelID, LastUpdate: testTime, TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, } edgePolicy.ChannelFlags = 0 if err := ctx.router.UpdateEdge(edgePolicy); err != nil { t.Fatalf("unable to update edge policy: %v", err) } // Create edge in the other direction as well. edgePolicy = &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: edge.ChannelID, LastUpdate: testTime, TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, } edgePolicy.ChannelFlags = 1 if err := ctx.router.UpdateEdge(edgePolicy); err != nil { t.Fatalf("unable to update edge policy: %v", err) } // After adding the edge between the two previously unknown nodes, they // should have been added to the graph. _, exists1, err = ctx.graph.HasLightningNode(pub1) if err != nil { t.Fatalf("unable to query graph: %v", err) } if !exists1 { t.Fatalf("node1 was not added to the graph") } _, exists2, err = ctx.graph.HasLightningNode(pub2) if err != nil { t.Fatalf("unable to query graph: %v", err) } if !exists2 { t.Fatalf("node2 was not added to the graph") } // We will connect node1 to the rest of the test graph, and make sure // we can find a route to node2, which will use the just added channel // edge. // We will connect node 1 to "sophon" connectNode := ctx.aliases["sophon"] connectNodeKey, err := btcec.ParsePubKey(connectNode[:], btcec.S256()) if err != nil { t.Fatal(err) } var ( pubKey1 *btcec.PublicKey pubKey2 *btcec.PublicKey ) node1Bytes := priv1.PubKey().SerializeCompressed() node2Bytes := connectNode if bytes.Compare(node1Bytes[:], node2Bytes[:]) == -1 { pubKey1 = priv1.PubKey() pubKey2 = connectNodeKey } else { pubKey1 = connectNodeKey pubKey2 = priv1.PubKey() } fundingTx, _, chanID, err = createChannelEdge(ctx, pubKey1.SerializeCompressed(), pubKey2.SerializeCompressed(), 10000, 510) if err != nil { t.Fatalf("unable to create channel edge: %v", err) } fundingBlock = &wire.MsgBlock{ Transactions: []*wire.MsgTx{fundingTx}, } ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight) edge = &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), AuthProof: nil, } copy(edge.NodeKey1Bytes[:], node1Bytes) edge.NodeKey2Bytes = node2Bytes copy(edge.BitcoinKey1Bytes[:], node1Bytes) edge.BitcoinKey2Bytes = node2Bytes if err := ctx.router.AddEdge(edge); err != nil { t.Fatalf("unable to add edge to the channel graph: %v.", err) } edgePolicy = &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: edge.ChannelID, LastUpdate: testTime, TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, } edgePolicy.ChannelFlags = 0 if err := ctx.router.UpdateEdge(edgePolicy); err != nil { t.Fatalf("unable to update edge policy: %v", err) } edgePolicy = &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: edge.ChannelID, LastUpdate: testTime, TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, } edgePolicy.ChannelFlags = 1 if err := ctx.router.UpdateEdge(edgePolicy); err != nil { t.Fatalf("unable to update edge policy: %v", err) } // We should now be able to find two routes to node 2. paymentAmt := lnwire.NewMSatFromSatoshis(100) targetNode := priv2.PubKey() var targetPubKeyBytes Vertex copy(targetPubKeyBytes[:], targetNode.SerializeCompressed()) routes, err := ctx.router.FindRoutes( ctx.router.selfNode.PubKeyBytes, targetPubKeyBytes, paymentAmt, noRestrictions, defaultNumRoutes, zpay32.DefaultFinalCLTVDelta, ) if err != nil { t.Fatalf("unable to find any routes: %v", err) } if len(routes) != 2 { t.Fatalf("expected to find 2 route, found: %v", len(routes)) } // Now check that we can update the node info for the partial node // without messing up the channel graph. n1 := &channeldb.LightningNode{ HaveNodeAnnouncement: true, LastUpdate: time.Unix(123, 0), Addresses: testAddrs, Color: color.RGBA{1, 2, 3, 0}, Alias: "node11", AuthSigBytes: testSig.Serialize(), Features: testFeatures, } copy(n1.PubKeyBytes[:], priv1.PubKey().SerializeCompressed()) if err := ctx.router.AddNode(n1); err != nil { t.Fatalf("could not add node: %v", err) } n2 := &channeldb.LightningNode{ HaveNodeAnnouncement: true, LastUpdate: time.Unix(123, 0), Addresses: testAddrs, Color: color.RGBA{1, 2, 3, 0}, Alias: "node22", AuthSigBytes: testSig.Serialize(), Features: testFeatures, } copy(n2.PubKeyBytes[:], priv2.PubKey().SerializeCompressed()) if err := ctx.router.AddNode(n2); err != nil { t.Fatalf("could not add node: %v", err) } // Should still be able to find the routes, and the info should be // updated. routes, err = ctx.router.FindRoutes( ctx.router.selfNode.PubKeyBytes, targetPubKeyBytes, paymentAmt, noRestrictions, defaultNumRoutes, zpay32.DefaultFinalCLTVDelta, ) if err != nil { t.Fatalf("unable to find any routes: %v", err) } if len(routes) != 2 { t.Fatalf("expected to find 2 route, found: %v", len(routes)) } copy1, err := ctx.graph.FetchLightningNode(priv1.PubKey()) if err != nil { t.Fatalf("unable to fetch node: %v", err) } if copy1.Alias != n1.Alias { t.Fatalf("fetched node not equal to original") } copy2, err := ctx.graph.FetchLightningNode(priv2.PubKey()) if err != nil { t.Fatalf("unable to fetch node: %v", err) } if copy2.Alias != n2.Alias { t.Fatalf("fetched node not equal to original") } } // TestWakeUpOnStaleBranch tests that upon startup of the ChannelRouter, if the // the chain previously reflected in the channel graph is stale (overtaken by a // longer chain), the channel router will prune the graph for any channels // confirmed on the stale chain, and resync to the main chain. func TestWakeUpOnStaleBranch(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() const chanValue = 10000 // chanID1 will not be reorged out. var chanID1 uint64 // chanID2 will be reorged out. var chanID2 uint64 // Create 10 common blocks, confirming chanID1. for i := uint32(1); i <= 10; i++ { block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } height := startingBlockHeight + i if i == 5 { fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), chanValue, height) if err != nil { t.Fatalf("unable create channel edge: %v", err) } block.Transactions = append(block.Transactions, fundingTx) chanID1 = chanID.ToUint64() } ctx.chain.addBlock(block, height, rand.Uint32()) ctx.chain.setBestBlock(int32(height)) ctx.chainView.notifyBlock(block.BlockHash(), height, []*wire.MsgTx{}) } // Give time to process new blocks time.Sleep(time.Millisecond * 500) _, forkHeight, err := ctx.chain.GetBestBlock() if err != nil { t.Fatalf("unable to ge best block: %v", err) } // Create 10 blocks on the minority chain, confirming chanID2. for i := uint32(1); i <= 10; i++ { block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } height := uint32(forkHeight) + i if i == 5 { fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), chanValue, height) if err != nil { t.Fatalf("unable create channel edge: %v", err) } block.Transactions = append(block.Transactions, fundingTx) chanID2 = chanID.ToUint64() } ctx.chain.addBlock(block, height, rand.Uint32()) ctx.chain.setBestBlock(int32(height)) ctx.chainView.notifyBlock(block.BlockHash(), height, []*wire.MsgTx{}) } // Give time to process new blocks time.Sleep(time.Millisecond * 500) // Now add the two edges to the channel graph, and check that they // correctly show up in the database. node1, err := createTestNode() if err != nil { t.Fatalf("unable to create test node: %v", err) } node2, err := createTestNode() if err != nil { t.Fatalf("unable to create test node: %v", err) } edge1 := &channeldb.ChannelEdgeInfo{ ChannelID: chanID1, NodeKey1Bytes: node1.PubKeyBytes, NodeKey2Bytes: node2.PubKeyBytes, AuthProof: &channeldb.ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, } copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed()) copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed()) if err := ctx.router.AddEdge(edge1); err != nil { t.Fatalf("unable to add edge: %v", err) } edge2 := &channeldb.ChannelEdgeInfo{ ChannelID: chanID2, NodeKey1Bytes: node1.PubKeyBytes, NodeKey2Bytes: node2.PubKeyBytes, AuthProof: &channeldb.ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, } copy(edge2.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed()) copy(edge2.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed()) if err := ctx.router.AddEdge(edge2); err != nil { t.Fatalf("unable to add edge: %v", err) } // Check that the fundingTxs are in the graph db. _, _, has, err := ctx.graph.HasChannelEdge(chanID1) if err != nil { t.Fatalf("error looking for edge: %v", chanID1) } if !has { t.Fatalf("could not find edge in graph") } _, _, has, err = ctx.graph.HasChannelEdge(chanID2) if err != nil { t.Fatalf("error looking for edge: %v", chanID2) } if !has { t.Fatalf("could not find edge in graph") } // Stop the router, so we can reorg the chain while its offline. if err := ctx.router.Stop(); err != nil { t.Fatalf("unable to stop router: %v", err) } // Create a 15 block fork. for i := uint32(1); i <= 15; i++ { block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } height := uint32(forkHeight) + i ctx.chain.addBlock(block, height, rand.Uint32()) ctx.chain.setBestBlock(int32(height)) } // Give time to process new blocks. time.Sleep(time.Millisecond * 500) // Create new router with same graph database. router, err := New(Config{ Graph: ctx.graph, Chain: ctx.chain, ChainView: ctx.chainView, SendToSwitch: func(_ lnwire.ShortChannelID, _ *lnwire.UpdateAddHTLC, _ *sphinx.Circuit) ([32]byte, error) { return [32]byte{}, nil }, ChannelPruneExpiry: time.Hour * 24, GraphPruneInterval: time.Hour * 2, }) if err != nil { t.Fatalf("unable to create router %v", err) } // It should resync to the longer chain on startup. if err := router.Start(); err != nil { t.Fatalf("unable to start router: %v", err) } // The channel with chanID2 should not be in the database anymore, // since it is not confirmed on the longest chain. chanID1 should // still be. _, _, has, err = ctx.graph.HasChannelEdge(chanID1) if err != nil { t.Fatalf("error looking for edge: %v", chanID1) } if !has { t.Fatalf("did not find edge in graph") } _, _, has, err = ctx.graph.HasChannelEdge(chanID2) if err != nil { t.Fatalf("error looking for edge: %v", chanID2) } if has { t.Fatalf("found edge in graph") } } // TestDisconnectedBlocks checks that the router handles a reorg happening when // it is active. func TestDisconnectedBlocks(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() const chanValue = 10000 // chanID1 will not be reorged out, while chanID2 will be reorged out. var chanID1, chanID2 uint64 // Create 10 common blocks, confirming chanID1. for i := uint32(1); i <= 10; i++ { block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } height := startingBlockHeight + i if i == 5 { fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), chanValue, height) if err != nil { t.Fatalf("unable create channel edge: %v", err) } block.Transactions = append(block.Transactions, fundingTx) chanID1 = chanID.ToUint64() } ctx.chain.addBlock(block, height, rand.Uint32()) ctx.chain.setBestBlock(int32(height)) ctx.chainView.notifyBlock(block.BlockHash(), height, []*wire.MsgTx{}) } // Give time to process new blocks time.Sleep(time.Millisecond * 500) _, forkHeight, err := ctx.chain.GetBestBlock() if err != nil { t.Fatalf("unable to get best block: %v", err) } // Create 10 blocks on the minority chain, confirming chanID2. var minorityChain []*wire.MsgBlock for i := uint32(1); i <= 10; i++ { block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } height := uint32(forkHeight) + i if i == 5 { fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), chanValue, height) if err != nil { t.Fatalf("unable create channel edge: %v", err) } block.Transactions = append(block.Transactions, fundingTx) chanID2 = chanID.ToUint64() } minorityChain = append(minorityChain, block) ctx.chain.addBlock(block, height, rand.Uint32()) ctx.chain.setBestBlock(int32(height)) ctx.chainView.notifyBlock(block.BlockHash(), height, []*wire.MsgTx{}) } // Give time to process new blocks time.Sleep(time.Millisecond * 500) // Now add the two edges to the channel graph, and check that they // correctly show up in the database. node1, err := createTestNode() if err != nil { t.Fatalf("unable to create test node: %v", err) } node2, err := createTestNode() if err != nil { t.Fatalf("unable to create test node: %v", err) } edge1 := &channeldb.ChannelEdgeInfo{ ChannelID: chanID1, NodeKey1Bytes: node1.PubKeyBytes, NodeKey2Bytes: node2.PubKeyBytes, BitcoinKey1Bytes: node1.PubKeyBytes, BitcoinKey2Bytes: node2.PubKeyBytes, AuthProof: &channeldb.ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, } copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed()) copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed()) if err := ctx.router.AddEdge(edge1); err != nil { t.Fatalf("unable to add edge: %v", err) } edge2 := &channeldb.ChannelEdgeInfo{ ChannelID: chanID2, NodeKey1Bytes: node1.PubKeyBytes, NodeKey2Bytes: node2.PubKeyBytes, BitcoinKey1Bytes: node1.PubKeyBytes, BitcoinKey2Bytes: node2.PubKeyBytes, AuthProof: &channeldb.ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, } copy(edge2.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed()) copy(edge2.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed()) if err := ctx.router.AddEdge(edge2); err != nil { t.Fatalf("unable to add edge: %v", err) } // Check that the fundingTxs are in the graph db. _, _, has, err := ctx.graph.HasChannelEdge(chanID1) if err != nil { t.Fatalf("error looking for edge: %v", chanID1) } if !has { t.Fatalf("could not find edge in graph") } _, _, has, err = ctx.graph.HasChannelEdge(chanID2) if err != nil { t.Fatalf("error looking for edge: %v", chanID2) } if !has { t.Fatalf("could not find edge in graph") } // Create a 15 block fork. We first let the chainView notify the router // about stale blocks, before sending the now connected blocks. We do // this because we expect this order from the chainview. for i := len(minorityChain) - 1; i >= 0; i-- { block := minorityChain[i] height := uint32(forkHeight) + uint32(i) + 1 ctx.chainView.notifyStaleBlock(block.BlockHash(), height, block.Transactions) } for i := uint32(1); i <= 15; i++ { block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } height := uint32(forkHeight) + i ctx.chain.addBlock(block, height, rand.Uint32()) ctx.chain.setBestBlock(int32(height)) ctx.chainView.notifyBlock(block.BlockHash(), height, block.Transactions) } // Give time to process new blocks time.Sleep(time.Millisecond * 500) // chanID2 should not be in the database anymore, since it is not // confirmed on the longest chain. chanID1 should still be. _, _, has, err = ctx.graph.HasChannelEdge(chanID1) if err != nil { t.Fatalf("error looking for edge: %v", chanID1) } if !has { t.Fatalf("did not find edge in graph") } _, _, has, err = ctx.graph.HasChannelEdge(chanID2) if err != nil { t.Fatalf("error looking for edge: %v", chanID2) } if has { t.Fatalf("found edge in graph") } } // TestChansClosedOfflinePruneGraph tests that if channels we know of are // closed while we're offline, then once we resume operation of the // ChannelRouter, then the channels are properly pruned. func TestRouterChansClosedOfflinePruneGraph(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() const chanValue = 10000 // First, we'll create a channel, to be mined shortly at height 102. block102 := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } nextHeight := startingBlockHeight + 1 fundingTx1, chanUTXO, chanID1, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), chanValue, uint32(nextHeight)) if err != nil { t.Fatalf("unable create channel edge: %v", err) } block102.Transactions = append(block102.Transactions, fundingTx1) ctx.chain.addBlock(block102, uint32(nextHeight), rand.Uint32()) ctx.chain.setBestBlock(int32(nextHeight)) ctx.chainView.notifyBlock(block102.BlockHash(), uint32(nextHeight), []*wire.MsgTx{}) // We'll now create the edges and nodes within the database required // for the ChannelRouter to properly recognize the channel we added // above. node1, err := createTestNode() if err != nil { t.Fatalf("unable to create test node: %v", err) } node2, err := createTestNode() if err != nil { t.Fatalf("unable to create test node: %v", err) } edge1 := &channeldb.ChannelEdgeInfo{ ChannelID: chanID1.ToUint64(), NodeKey1Bytes: node1.PubKeyBytes, NodeKey2Bytes: node2.PubKeyBytes, AuthProof: &channeldb.ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, } copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed()) copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed()) if err := ctx.router.AddEdge(edge1); err != nil { t.Fatalf("unable to add edge: %v", err) } // The router should now be aware of the channel we created above. _, _, hasChan, err := ctx.graph.HasChannelEdge(chanID1.ToUint64()) if err != nil { t.Fatalf("error looking for edge: %v", chanID1) } if !hasChan { t.Fatalf("could not find edge in graph") } // With the transaction included, and the router's database state // updated, we'll now mine 5 additional blocks on top of it. for i := 0; i < 5; i++ { nextHeight++ block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } ctx.chain.addBlock(block, uint32(nextHeight), rand.Uint32()) ctx.chain.setBestBlock(int32(nextHeight)) ctx.chainView.notifyBlock(block.BlockHash(), uint32(nextHeight), []*wire.MsgTx{}) } // At this point, our starting height should be 107. _, chainHeight, err := ctx.chain.GetBestBlock() if err != nil { t.Fatalf("unable to get best block: %v", err) } if chainHeight != 107 { t.Fatalf("incorrect chain height: expected %v, got %v", 107, chainHeight) } // Next, we'll "shut down" the router in order to simulate downtime. if err := ctx.router.Stop(); err != nil { t.Fatalf("unable to shutdown router: %v", err) } // While the router is "offline" we'll mine 5 additional blocks, with // the second block closing the channel we created above. for i := 0; i < 5; i++ { nextHeight++ block := &wire.MsgBlock{ Transactions: []*wire.MsgTx{}, } if i == 2 { // For the second block, we'll add a transaction that // closes the channel we created above by spending the // output. closingTx := wire.NewMsgTx(2) closingTx.AddTxIn(&wire.TxIn{ PreviousOutPoint: *chanUTXO, }) block.Transactions = append(block.Transactions, closingTx) } ctx.chain.addBlock(block, uint32(nextHeight), rand.Uint32()) ctx.chain.setBestBlock(int32(nextHeight)) ctx.chainView.notifyBlock(block.BlockHash(), uint32(nextHeight), []*wire.MsgTx{}) } // At this point, our starting height should be 112. _, chainHeight, err = ctx.chain.GetBestBlock() if err != nil { t.Fatalf("unable to get best block: %v", err) } if chainHeight != 112 { t.Fatalf("incorrect chain height: expected %v, got %v", 112, chainHeight) } // Now we'll re-start the ChannelRouter. It should recognize that it's // behind the main chain and prune all the blocks that it missed while // it was down. ctx.RestartRouter() // At this point, the channel that was pruned should no longer be known // by the router. _, _, hasChan, err = ctx.graph.HasChannelEdge(chanID1.ToUint64()) if err != nil { t.Fatalf("error looking for edge: %v", chanID1) } if hasChan { t.Fatalf("channel was found in graph but shouldn't have been") } } // TestFindPathFeeWeighting tests that the findPath method will properly prefer // routes with lower fees over routes with lower time lock values. This is // meant to exercise the fact that the internal findPath method ranks edges // with the square of the total fee in order bias towards lower fees. func TestFindPathFeeWeighting(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() var preImage [32]byte copy(preImage[:], bytes.Repeat([]byte{9}, 32)) sourceNode, err := ctx.graph.SourceNode() if err != nil { t.Fatalf("unable to fetch source node: %v", err) } amt := lnwire.MilliSatoshi(100) target := ctx.aliases["luoji"] // We'll now attempt a path finding attempt using this set up. Due to // the edge weighting, we should select the direct path over the 2 hop // path even though the direct path has a higher potential time lock. path, err := findPath( &graphParams{ graph: ctx.graph, }, &RestrictParams{ FeeLimit: noFeeLimit, }, sourceNode.PubKeyBytes, target, amt, ) if err != nil { t.Fatalf("unable to find path: %v", err) } // The route that was chosen should be exactly one hop, and should be // directly to luoji. if len(path) != 1 { t.Fatalf("expected path length of 1, instead was: %v", len(path)) } if path[0].Node.Alias != "luoji" { t.Fatalf("wrong node: %v", path[0].Node.Alias) } } // TestIsStaleNode tests that the IsStaleNode method properly detects stale // node announcements. func TestIsStaleNode(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // Before we can insert a node in to the database, we need to create a // channel that it's linked to. var ( pub1 [33]byte pub2 [33]byte ) copy(pub1[:], priv1.PubKey().SerializeCompressed()) copy(pub2[:], priv2.PubKey().SerializeCompressed()) fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), 10000, 500) if err != nil { t.Fatalf("unable to create channel edge: %v", err) } fundingBlock := &wire.MsgBlock{ Transactions: []*wire.MsgTx{fundingTx}, } ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight) edge := &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), NodeKey1Bytes: pub1, NodeKey2Bytes: pub2, BitcoinKey1Bytes: pub1, BitcoinKey2Bytes: pub2, AuthProof: nil, } if err := ctx.router.AddEdge(edge); err != nil { t.Fatalf("unable to add edge: %v", err) } // Before we add the node, if we query for staleness, we should get // false, as we haven't added the full node. updateTimeStamp := time.Unix(123, 0) if ctx.router.IsStaleNode(pub1, updateTimeStamp) { t.Fatalf("incorrectly detected node as stale") } // With the node stub in the database, we'll add the fully node // announcement to the database. n1 := &channeldb.LightningNode{ HaveNodeAnnouncement: true, LastUpdate: updateTimeStamp, Addresses: testAddrs, Color: color.RGBA{1, 2, 3, 0}, Alias: "node11", AuthSigBytes: testSig.Serialize(), Features: testFeatures, } copy(n1.PubKeyBytes[:], priv1.PubKey().SerializeCompressed()) if err := ctx.router.AddNode(n1); err != nil { t.Fatalf("could not add node: %v", err) } // If we use the same timestamp and query for staleness, we should get // true. if !ctx.router.IsStaleNode(pub1, updateTimeStamp) { t.Fatalf("failure to detect stale node update") } // If we update the timestamp and once again query for staleness, it // should report false. newTimeStamp := time.Unix(1234, 0) if ctx.router.IsStaleNode(pub1, newTimeStamp) { t.Fatalf("incorrectly detected node as stale") } } // TestIsKnownEdge tests that the IsKnownEdge method properly detects stale // channel announcements. func TestIsKnownEdge(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // First, we'll create a new channel edge (just the info) and insert it // into the database. var ( pub1 [33]byte pub2 [33]byte ) copy(pub1[:], priv1.PubKey().SerializeCompressed()) copy(pub2[:], priv2.PubKey().SerializeCompressed()) fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), 10000, 500) if err != nil { t.Fatalf("unable to create channel edge: %v", err) } fundingBlock := &wire.MsgBlock{ Transactions: []*wire.MsgTx{fundingTx}, } ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight) edge := &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), NodeKey1Bytes: pub1, NodeKey2Bytes: pub2, BitcoinKey1Bytes: pub1, BitcoinKey2Bytes: pub2, AuthProof: nil, } if err := ctx.router.AddEdge(edge); err != nil { t.Fatalf("unable to add edge: %v", err) } // Now that the edge has been inserted, query is the router already // knows of the edge should return true. if !ctx.router.IsKnownEdge(*chanID) { t.Fatalf("router should detect edge as known") } } // TestIsStaleEdgePolicy tests that the IsStaleEdgePolicy properly detects // stale channel edge update announcements. func TestIsStaleEdgePolicy(t *testing.T) { t.Parallel() const startingBlockHeight = 101 ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath) if err != nil { t.Fatalf("unable to create router: %v", err) } defer cleanUp() // First, we'll create a new channel edge (just the info) and insert it // into the database. var ( pub1 [33]byte pub2 [33]byte ) copy(pub1[:], priv1.PubKey().SerializeCompressed()) copy(pub2[:], priv2.PubKey().SerializeCompressed()) fundingTx, _, chanID, err := createChannelEdge(ctx, bitcoinKey1.SerializeCompressed(), bitcoinKey2.SerializeCompressed(), 10000, 500) if err != nil { t.Fatalf("unable to create channel edge: %v", err) } fundingBlock := &wire.MsgBlock{ Transactions: []*wire.MsgTx{fundingTx}, } ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight) // If we query for staleness before adding the edge, we should get // false. updateTimeStamp := time.Unix(123, 0) if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) { t.Fatalf("router failed to detect fresh edge policy") } if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) { t.Fatalf("router failed to detect fresh edge policy") } edge := &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), NodeKey1Bytes: pub1, NodeKey2Bytes: pub2, BitcoinKey1Bytes: pub1, BitcoinKey2Bytes: pub2, AuthProof: nil, } if err := ctx.router.AddEdge(edge); err != nil { t.Fatalf("unable to add edge: %v", err) } // We'll also add two edge policies, one for each direction. edgePolicy := &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: edge.ChannelID, LastUpdate: updateTimeStamp, TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, } edgePolicy.ChannelFlags = 0 if err := ctx.router.UpdateEdge(edgePolicy); err != nil { t.Fatalf("unable to update edge policy: %v", err) } edgePolicy = &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: edge.ChannelID, LastUpdate: updateTimeStamp, TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, } edgePolicy.ChannelFlags = 1 if err := ctx.router.UpdateEdge(edgePolicy); err != nil { t.Fatalf("unable to update edge policy: %v", err) } // Now that the edges have been added, an identical (chanID, flag, // timestamp) tuple for each edge should be detected as a stale edge. if !ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) { t.Fatalf("router failed to detect stale edge policy") } if !ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) { t.Fatalf("router failed to detect stale edge policy") } // If we now update the timestamp for both edges, the router should // detect that this tuple represents a fresh edge. updateTimeStamp = time.Unix(9999, 0) if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) { t.Fatalf("router failed to detect fresh edge policy") } if ctx.router.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) { t.Fatalf("router failed to detect fresh edge policy") } } // TestEmptyRoutesGenerateSphinxPacket tests that the generateSphinxPacket // function is able to gracefully handle being passed a nil set of hops for the // route by the caller. func TestEmptyRoutesGenerateSphinxPacket(t *testing.T) { t.Parallel() emptyRoute := &Route{} _, _, err := generateSphinxPacket(emptyRoute, testHash[:]) if err != ErrNoRouteHopsProvided { t.Fatalf("expected empty hops error: instead got: %v", err) } }