package lnwallet import ( "bytes" "container/list" "crypto/sha256" "errors" "fmt" "math" "sort" "sync" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btclog" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcutil/txsort" "github.com/davecgh/go-spew/spew" "github.com/lightningnetwork/lnd/build" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/input" "github.com/lightningnetwork/lnd/lnwallet/chainfee" "github.com/lightningnetwork/lnd/lnwire" ) var zeroHash chainhash.Hash var ( // ErrChanClosing is returned when a caller attempts to close a channel // that has already been closed or is in the process of being closed. ErrChanClosing = fmt.Errorf("channel is being closed, operation disallowed") // ErrNoWindow is returned when revocation window is exhausted. ErrNoWindow = fmt.Errorf("unable to sign new commitment, the current" + " revocation window is exhausted") // ErrMaxWeightCost is returned when the cost/weight (see segwit) // exceeds the widely used maximum allowed policy weight limit. In this // case the commitment transaction can't be propagated through the // network. ErrMaxWeightCost = fmt.Errorf("commitment transaction exceed max " + "available cost") // ErrMaxHTLCNumber is returned when a proposed HTLC would exceed the // maximum number of allowed HTLC's if committed in a state transition ErrMaxHTLCNumber = fmt.Errorf("commitment transaction exceed max " + "htlc number") // ErrMaxPendingAmount is returned when a proposed HTLC would exceed // the overall maximum pending value of all HTLCs if committed in a // state transition. ErrMaxPendingAmount = fmt.Errorf("commitment transaction exceed max" + "overall pending htlc value") // ErrBelowChanReserve is returned when a proposed HTLC would cause // one of the peer's funds to dip below the channel reserve limit. ErrBelowChanReserve = fmt.Errorf("commitment transaction dips peer " + "below chan reserve") // ErrBelowMinHTLC is returned when a proposed HTLC has a value that // is below the minimum HTLC value constraint for either us or our // peer depending on which flags are set. ErrBelowMinHTLC = fmt.Errorf("proposed HTLC value is below minimum " + "allowed HTLC value") // ErrInvalidHTLCAmt signals that a proposed HTLC has a value that is // not positive. ErrInvalidHTLCAmt = fmt.Errorf("proposed HTLC value must be positive") // ErrCannotSyncCommitChains is returned if, upon receiving a ChanSync // message, the state machine deems that is unable to properly // synchronize states with the remote peer. In this case we should fail // the channel, but we won't automatically force close. ErrCannotSyncCommitChains = fmt.Errorf("unable to sync commit chains") // ErrInvalidLastCommitSecret is returned in the case that the // commitment secret sent by the remote party in their // ChannelReestablish message doesn't match the last secret we sent. ErrInvalidLastCommitSecret = fmt.Errorf("commit secret is incorrect") // ErrInvalidLocalUnrevokedCommitPoint is returned in the case that the // commitment point sent by the remote party in their // ChannelReestablish message doesn't match the last unrevoked commit // point they sent us. ErrInvalidLocalUnrevokedCommitPoint = fmt.Errorf("unrevoked commit " + "point is invalid") // ErrCommitSyncRemoteDataLoss is returned in the case that we receive // a ChannelReestablish message from the remote that advertises a // NextLocalCommitHeight that is lower than what they have already // ACKed, or a RemoteCommitTailHeight that is lower than our revoked // height. In this case we should force close the channel such that // both parties can retrieve their funds. ErrCommitSyncRemoteDataLoss = fmt.Errorf("possible remote commitment " + "state data loss") ) // ErrCommitSyncLocalDataLoss is returned in the case that we receive a valid // commit secret within the ChannelReestablish message from the remote node AND // they advertise a RemoteCommitTailHeight higher than our current known // height. This means we have lost some critical data, and must fail the // channel and MUST NOT force close it. Instead we should wait for the remote // to force close it, such that we can attempt to sweep our funds. The // commitment point needed to sweep the remote's force close is encapsuled. type ErrCommitSyncLocalDataLoss struct { // ChannelPoint is the identifier for the channel that experienced data // loss. ChannelPoint wire.OutPoint // CommitPoint is the last unrevoked commit point, sent to us by the // remote when we determined we had lost state. CommitPoint *btcec.PublicKey } // Error returns a string representation of the local data loss error. func (e *ErrCommitSyncLocalDataLoss) Error() string { return fmt.Sprintf("ChannelPoint(%v) with CommitPoint(%x) had "+ "possible local commitment state data loss", e.ChannelPoint, e.CommitPoint.SerializeCompressed()) } // channelState is an enum like type which represents the current state of a // particular channel. // TODO(roasbeef): actually update state type channelState uint8 const ( // channelPending indicates this channel is still going through the // funding workflow, and isn't yet open. channelPending channelState = iota // nolint: unused // channelOpen represents an open, active channel capable of // sending/receiving HTLCs. channelOpen // channelClosing represents a channel which is in the process of being // closed. channelClosing // channelClosed represents a channel which has been fully closed. Note // that before a channel can be closed, ALL pending HTLCs must be // settled/removed. channelClosed // channelDispute indicates that an un-cooperative closure has been // detected within the channel. channelDispute // channelPendingPayment indicates that there a currently outstanding // HTLCs within the channel. channelPendingPayment // nolint:unused ) // PaymentHash represents the sha256 of a random value. This hash is used to // uniquely track incoming/outgoing payments within this channel, as well as // payments requested by the wallet/daemon. type PaymentHash [32]byte // updateType is the exact type of an entry within the shared HTLC log. type updateType uint8 const ( // Add is an update type that adds a new HTLC entry into the log. // Either side can add a new pending HTLC by adding a new Add entry // into their update log. Add updateType = iota // Fail is an update type which removes a prior HTLC entry from the // log. Adding a Fail entry to ones log will modify the _remote_ // parties update log once a new commitment view has been evaluated // which contains the Fail entry. Fail // MalformedFail is an update type which removes a prior HTLC entry // from the log. Adding a MalformedFail entry to ones log will modify // the _remote_ parties update log once a new commitment view has been // evaluated which contains the MalformedFail entry. The difference // from Fail type lie in the different data we have to store. MalformedFail // Settle is an update type which settles a prior HTLC crediting the // balance of the receiving node. Adding a Settle entry to a log will // result in the settle entry being removed on the log as well as the // original add entry from the remote party's log after the next state // transition. Settle // FeeUpdate is an update type sent by the channel initiator that // updates the fee rate used when signing the commitment transaction. FeeUpdate ) // String returns a human readable string that uniquely identifies the target // update type. func (u updateType) String() string { switch u { case Add: return "Add" case Fail: return "Fail" case MalformedFail: return "MalformedFail" case Settle: return "Settle" case FeeUpdate: return "FeeUpdate" default: return "" } } // PaymentDescriptor represents a commitment state update which either adds, // settles, or removes an HTLC. PaymentDescriptors encapsulate all necessary // metadata w.r.t to an HTLC, and additional data pairing a settle message to // the original added HTLC. // // TODO(roasbeef): LogEntry interface?? // * need to separate attrs for cancel/add/settle/feeupdate type PaymentDescriptor struct { // RHash is the payment hash for this HTLC. The HTLC can be settled iff // the preimage to this hash is presented. RHash PaymentHash // RPreimage is the preimage that settles the HTLC pointed to within the // log by the ParentIndex. RPreimage PaymentHash // Timeout is the absolute timeout in blocks, after which this HTLC // expires. Timeout uint32 // Amount is the HTLC amount in milli-satoshis. Amount lnwire.MilliSatoshi // LogIndex is the log entry number that his HTLC update has within the // log. Depending on if IsIncoming is true, this is either an entry the // remote party added, or one that we added locally. LogIndex uint64 // HtlcIndex is the index within the main update log for this HTLC. // Entries within the log of type Add will have this field populated, // as other entries will point to the entry via this counter. // // NOTE: This field will only be populate if EntryType is Add. HtlcIndex uint64 // ParentIndex is the HTLC index of the entry that this update settles or // times out. // // NOTE: This field will only be populate if EntryType is Fail or // Settle. ParentIndex uint64 // SourceRef points to an Add update in a forwarding package owned by // this channel. // // NOTE: This field will only be populated if EntryType is Fail or // Settle. SourceRef *channeldb.AddRef // DestRef points to a Fail/Settle update in another link's forwarding // package. // // NOTE: This field will only be populated if EntryType is Fail or // Settle, and the forwarded Add successfully included in an outgoing // link's commitment txn. DestRef *channeldb.SettleFailRef // OpenCircuitKey references the incoming Chan/HTLC ID of an Add HTLC // packet delivered by the switch. // // NOTE: This field is only populated for payment descriptors in the // *local* update log, and if the Add packet was delivered by the // switch. OpenCircuitKey *channeldb.CircuitKey // ClosedCircuitKey references the incoming Chan/HTLC ID of the Add HTLC // that opened the circuit. // // NOTE: This field is only populated for payment descriptors in the // *local* update log, and if settle/fails have a committed circuit in // the circuit map. ClosedCircuitKey *channeldb.CircuitKey // localOutputIndex is the output index of this HTLc output in the // commitment transaction of the local node. // // NOTE: If the output is dust from the PoV of the local commitment // chain, then this value will be -1. localOutputIndex int32 // remoteOutputIndex is the output index of this HTLC output in the // commitment transaction of the remote node. // // NOTE: If the output is dust from the PoV of the remote commitment // chain, then this value will be -1. remoteOutputIndex int32 // sig is the signature for the second-level HTLC transaction that // spends the version of this HTLC on the commitment transaction of the // local node. This signature is generated by the remote node and // stored by the local node in the case that local node needs to // broadcast their commitment transaction. sig *btcec.Signature // addCommitHeight[Remote|Local] encodes the height of the commitment // which included this HTLC on either the remote or local commitment // chain. This value is used to determine when an HTLC is fully // "locked-in". addCommitHeightRemote uint64 addCommitHeightLocal uint64 // removeCommitHeight[Remote|Local] encodes the height of the // commitment which removed the parent pointer of this // PaymentDescriptor either due to a timeout or a settle. Once both // these heights are below the tail of both chains, the log entries can // safely be removed. removeCommitHeightRemote uint64 removeCommitHeightLocal uint64 // OnionBlob is an opaque blob which is used to complete multi-hop // routing. // // NOTE: Populated only on add payment descriptor entry types. OnionBlob []byte // ShaOnionBlob is a sha of the onion blob. // // NOTE: Populated only in payment descriptor with MalformedFail type. ShaOnionBlob [sha256.Size]byte // FailReason stores the reason why a particular payment was canceled. // // NOTE: Populate only in fail payment descriptor entry types. FailReason []byte // FailCode stores the code why a particular payment was canceled. // // NOTE: Populated only in payment descriptor with MalformedFail type. FailCode lnwire.FailCode // [our|their|]PkScript are the raw public key scripts that encodes the // redemption rules for this particular HTLC. These fields will only be // populated iff the EntryType of this PaymentDescriptor is Add. // ourPkScript is the ourPkScript from the context of our local // commitment chain. theirPkScript is the latest pkScript from the // context of the remote commitment chain. // // NOTE: These values may change within the logs themselves, however, // they'll stay consistent within the commitment chain entries // themselves. ourPkScript []byte ourWitnessScript []byte theirPkScript []byte theirWitnessScript []byte // EntryType denotes the exact type of the PaymentDescriptor. In the // case of a Timeout, or Settle type, then the Parent field will point // into the log to the HTLC being modified. EntryType updateType // isForwarded denotes if an incoming HTLC has been forwarded to any // possible upstream peers in the route. isForwarded bool } // PayDescsFromRemoteLogUpdates converts a slice of LogUpdates received from the // remote peer into PaymentDescriptors to inform a link's forwarding decisions. // // NOTE: The provided `logUpdates` MUST corresponding exactly to either the Adds // or SettleFails in this channel's forwarding package at `height`. func PayDescsFromRemoteLogUpdates(chanID lnwire.ShortChannelID, height uint64, logUpdates []channeldb.LogUpdate) ([]*PaymentDescriptor, error) { // Allocate enough space to hold all of the payment descriptors we will // reconstruct, and also the list of pointers that will be returned to // the caller. payDescs := make([]PaymentDescriptor, 0, len(logUpdates)) payDescPtrs := make([]*PaymentDescriptor, 0, len(logUpdates)) // Iterate over the log updates we loaded from disk, and reconstruct the // payment descriptor corresponding to one of the four types of htlcs we // can receive from the remote peer. We only repopulate the information // necessary to process the packets and, if necessary, forward them to // the switch. // // For each log update, we include either an AddRef or a SettleFailRef // so that they can be ACK'd and garbage collected. for i, logUpdate := range logUpdates { var pd PaymentDescriptor switch wireMsg := logUpdate.UpdateMsg.(type) { case *lnwire.UpdateAddHTLC: pd = PaymentDescriptor{ RHash: wireMsg.PaymentHash, Timeout: wireMsg.Expiry, Amount: wireMsg.Amount, EntryType: Add, HtlcIndex: wireMsg.ID, LogIndex: logUpdate.LogIndex, SourceRef: &channeldb.AddRef{ Height: height, Index: uint16(i), }, } pd.OnionBlob = make([]byte, len(wireMsg.OnionBlob)) copy(pd.OnionBlob[:], wireMsg.OnionBlob[:]) case *lnwire.UpdateFulfillHTLC: pd = PaymentDescriptor{ RPreimage: wireMsg.PaymentPreimage, ParentIndex: wireMsg.ID, EntryType: Settle, DestRef: &channeldb.SettleFailRef{ Source: chanID, Height: height, Index: uint16(i), }, } case *lnwire.UpdateFailHTLC: pd = PaymentDescriptor{ ParentIndex: wireMsg.ID, EntryType: Fail, FailReason: wireMsg.Reason[:], DestRef: &channeldb.SettleFailRef{ Source: chanID, Height: height, Index: uint16(i), }, } case *lnwire.UpdateFailMalformedHTLC: pd = PaymentDescriptor{ ParentIndex: wireMsg.ID, EntryType: MalformedFail, FailCode: wireMsg.FailureCode, ShaOnionBlob: wireMsg.ShaOnionBlob, DestRef: &channeldb.SettleFailRef{ Source: chanID, Height: height, Index: uint16(i), }, } // NOTE: UpdateFee is not expected since they are not forwarded. case *lnwire.UpdateFee: return nil, fmt.Errorf("unexpected update fee") } payDescs = append(payDescs, pd) payDescPtrs = append(payDescPtrs, &payDescs[i]) } return payDescPtrs, nil } // commitment represents a commitment to a new state within an active channel. // New commitments can be initiated by either side. Commitments are ordered // into a commitment chain, with one existing for both parties. Each side can // independently extend the other side's commitment chain, up to a certain // "revocation window", which once reached, disallows new commitments until // the local nodes receives the revocation for the remote node's chain tail. type commitment struct { // height represents the commitment height of this commitment, or the // update number of this commitment. height uint64 // isOurs indicates whether this is the local or remote node's version // of the commitment. isOurs bool // [our|their]MessageIndex are indexes into the HTLC log, up to which // this commitment transaction includes. These indexes allow both sides // to independently, and concurrent send create new commitments. Each // new commitment sent to the remote party includes an index in the // shared log which details which of their updates we're including in // this new commitment. ourMessageIndex uint64 theirMessageIndex uint64 // [our|their]HtlcIndex are the current running counters for the HTLC's // offered by either party. This value is incremented each time a party // offers a new HTLC. The log update methods that consume HTLC's will // reference these counters, rather than the running cumulative message // counters. ourHtlcIndex uint64 theirHtlcIndex uint64 // txn is the commitment transaction generated by including any HTLC // updates whose index are below the two indexes listed above. If this // commitment is being added to the remote chain, then this txn is // their version of the commitment transactions. If the local commit // chain is being modified, the opposite is true. txn *wire.MsgTx // sig is a signature for the above commitment transaction. sig []byte // [our|their]Balance represents the settled balances at this point // within the commitment chain. This balance is computed by properly // evaluating all the add/remove/settle log entries before the listed // indexes. // // NOTE: This is the balance *after* subtracting any commitment fee, // AND anchor output values. ourBalance lnwire.MilliSatoshi theirBalance lnwire.MilliSatoshi // fee is the amount that will be paid as fees for this commitment // transaction. The fee is recorded here so that it can be added back // and recalculated for each new update to the channel state. fee btcutil.Amount // feePerKw is the fee per kw used to calculate this commitment // transaction's fee. feePerKw chainfee.SatPerKWeight // dustLimit is the limit on the commitment transaction such that no // output values should be below this amount. dustLimit btcutil.Amount // outgoingHTLCs is a slice of all the outgoing HTLC's (from our PoV) // on this commitment transaction. outgoingHTLCs []PaymentDescriptor // incomingHTLCs is a slice of all the incoming HTLC's (from our PoV) // on this commitment transaction. incomingHTLCs []PaymentDescriptor // [outgoing|incoming]HTLCIndex is an index that maps an output index // on the commitment transaction to the payment descriptor that // represents the HTLC output. // // NOTE: that these fields are only populated if this commitment state // belongs to the local node. These maps are used when validating any // HTLC signatures which are part of the local commitment state. We use // this map in order to locate the details needed to validate an HTLC // signature while iterating of the outputs in the local commitment // view. outgoingHTLCIndex map[int32]*PaymentDescriptor incomingHTLCIndex map[int32]*PaymentDescriptor } // locateOutputIndex is a small helper function to locate the output index of a // particular HTLC within the current commitment transaction. The duplicate map // massed in is to be retained for each output within the commitment // transition. This ensures that we don't assign multiple HTLC's to the same // index within the commitment transaction. func locateOutputIndex(p *PaymentDescriptor, tx *wire.MsgTx, ourCommit bool, dups map[PaymentHash][]int32, cltvs []uint32) (int32, error) { // Checks to see if element (e) exists in slice (s). contains := func(s []int32, e int32) bool { for _, a := range s { if a == e { return true } } return false } // If this their commitment transaction, we'll be trying to locate // their pkScripts, otherwise we'll be looking for ours. This is // required as the commitment states are asymmetric in order to ascribe // blame in the case of a contract breach. pkScript := p.theirPkScript if ourCommit { pkScript = p.ourPkScript } for i, txOut := range tx.TxOut { cltv := cltvs[i] if bytes.Equal(txOut.PkScript, pkScript) && txOut.Value == int64(p.Amount.ToSatoshis()) && cltv == p.Timeout { // If this payment hash and index has already been // found, then we'll continue in order to avoid any // duplicate indexes. if contains(dups[p.RHash], int32(i)) { continue } idx := int32(i) dups[p.RHash] = append(dups[p.RHash], idx) return idx, nil } } return 0, fmt.Errorf("unable to find htlc: script=%x, value=%v, "+ "cltv=%v", pkScript, p.Amount, p.Timeout) } // populateHtlcIndexes modifies the set of HTLC's locked-into the target view // to have full indexing information populated. This information is required as // we need to keep track of the indexes of each HTLC in order to properly write // the current state to disk, and also to locate the PaymentDescriptor // corresponding to HTLC outputs in the commitment transaction. func (c *commitment) populateHtlcIndexes(chanType channeldb.ChannelType, cltvs []uint32) error { // First, we'll set up some state to allow us to locate the output // index of the all the HTLC's within the commitment transaction. We // must keep this index so we can validate the HTLC signatures sent to // us. dups := make(map[PaymentHash][]int32) c.outgoingHTLCIndex = make(map[int32]*PaymentDescriptor) c.incomingHTLCIndex = make(map[int32]*PaymentDescriptor) // populateIndex is a helper function that populates the necessary // indexes within the commitment view for a particular HTLC. populateIndex := func(htlc *PaymentDescriptor, incoming bool) error { isDust := htlcIsDust( chanType, incoming, c.isOurs, c.feePerKw, htlc.Amount.ToSatoshis(), c.dustLimit, ) var err error switch { // If this is our commitment transaction, and this is a dust // output then we mark it as such using a -1 index. case c.isOurs && isDust: htlc.localOutputIndex = -1 // If this is the commitment transaction of the remote party, // and this is a dust output then we mark it as such using a -1 // index. case !c.isOurs && isDust: htlc.remoteOutputIndex = -1 // If this is our commitment transaction, then we'll need to // locate the output and the index so we can verify an HTLC // signatures. case c.isOurs: htlc.localOutputIndex, err = locateOutputIndex( htlc, c.txn, c.isOurs, dups, cltvs, ) if err != nil { return err } // As this is our commitment transactions, we need to // keep track of the locations of each output on the // transaction so we can verify any HTLC signatures // sent to us after we construct the HTLC view. if incoming { c.incomingHTLCIndex[htlc.localOutputIndex] = htlc } else { c.outgoingHTLCIndex[htlc.localOutputIndex] = htlc } // Otherwise, this is there remote party's commitment // transaction and we only need to populate the remote output // index within the HTLC index. case !c.isOurs: htlc.remoteOutputIndex, err = locateOutputIndex( htlc, c.txn, c.isOurs, dups, cltvs, ) if err != nil { return err } default: return fmt.Errorf("invalid commitment configuration") } return nil } // Finally, we'll need to locate the index within the commitment // transaction of all the HTLC outputs. This index will be required // later when we write the commitment state to disk, and also when // generating signatures for each of the HTLC transactions. for i := 0; i < len(c.outgoingHTLCs); i++ { htlc := &c.outgoingHTLCs[i] if err := populateIndex(htlc, false); err != nil { return err } } for i := 0; i < len(c.incomingHTLCs); i++ { htlc := &c.incomingHTLCs[i] if err := populateIndex(htlc, true); err != nil { return err } } return nil } // toDiskCommit converts the target commitment into a format suitable to be // written to disk after an accepted state transition. func (c *commitment) toDiskCommit(ourCommit bool) *channeldb.ChannelCommitment { numHtlcs := len(c.outgoingHTLCs) + len(c.incomingHTLCs) commit := &channeldb.ChannelCommitment{ CommitHeight: c.height, LocalLogIndex: c.ourMessageIndex, LocalHtlcIndex: c.ourHtlcIndex, RemoteLogIndex: c.theirMessageIndex, RemoteHtlcIndex: c.theirHtlcIndex, LocalBalance: c.ourBalance, RemoteBalance: c.theirBalance, CommitFee: c.fee, FeePerKw: btcutil.Amount(c.feePerKw), CommitTx: c.txn, CommitSig: c.sig, Htlcs: make([]channeldb.HTLC, 0, numHtlcs), } for _, htlc := range c.outgoingHTLCs { outputIndex := htlc.localOutputIndex if !ourCommit { outputIndex = htlc.remoteOutputIndex } h := channeldb.HTLC{ RHash: htlc.RHash, Amt: htlc.Amount, RefundTimeout: htlc.Timeout, OutputIndex: outputIndex, HtlcIndex: htlc.HtlcIndex, LogIndex: htlc.LogIndex, Incoming: false, } h.OnionBlob = make([]byte, len(htlc.OnionBlob)) copy(h.OnionBlob[:], htlc.OnionBlob) if ourCommit && htlc.sig != nil { h.Signature = htlc.sig.Serialize() } commit.Htlcs = append(commit.Htlcs, h) } for _, htlc := range c.incomingHTLCs { outputIndex := htlc.localOutputIndex if !ourCommit { outputIndex = htlc.remoteOutputIndex } h := channeldb.HTLC{ RHash: htlc.RHash, Amt: htlc.Amount, RefundTimeout: htlc.Timeout, OutputIndex: outputIndex, HtlcIndex: htlc.HtlcIndex, LogIndex: htlc.LogIndex, Incoming: true, } h.OnionBlob = make([]byte, len(htlc.OnionBlob)) copy(h.OnionBlob[:], htlc.OnionBlob) if ourCommit && htlc.sig != nil { h.Signature = htlc.sig.Serialize() } commit.Htlcs = append(commit.Htlcs, h) } return commit } // diskHtlcToPayDesc converts an HTLC previously written to disk within a // commitment state to the form required to manipulate in memory within the // commitment struct and updateLog. This function is used when we need to // restore commitment state written do disk back into memory once we need to // restart a channel session. func (lc *LightningChannel) diskHtlcToPayDesc(feeRate chainfee.SatPerKWeight, commitHeight uint64, htlc *channeldb.HTLC, localCommitKeys, remoteCommitKeys *CommitmentKeyRing, isLocal bool) (PaymentDescriptor, error) { // The proper pkScripts for this PaymentDescriptor must be // generated so we can easily locate them within the commitment // transaction in the future. var ( ourP2WSH, theirP2WSH []byte ourWitnessScript, theirWitnessScript []byte pd PaymentDescriptor err error chanType = lc.channelState.ChanType ) // If the either outputs is dust from the local or remote node's // perspective, then we don't need to generate the scripts as we only // generate them in order to locate the outputs within the commitment // transaction. As we'll mark dust with a special output index in the // on-disk state snapshot. isDustLocal := htlcIsDust( chanType, htlc.Incoming, true, feeRate, htlc.Amt.ToSatoshis(), lc.channelState.LocalChanCfg.DustLimit, ) if !isDustLocal && localCommitKeys != nil { ourP2WSH, ourWitnessScript, err = genHtlcScript( chanType, htlc.Incoming, true, htlc.RefundTimeout, htlc.RHash, localCommitKeys, ) if err != nil { return pd, err } } isDustRemote := htlcIsDust( chanType, htlc.Incoming, false, feeRate, htlc.Amt.ToSatoshis(), lc.channelState.RemoteChanCfg.DustLimit, ) if !isDustRemote && remoteCommitKeys != nil { theirP2WSH, theirWitnessScript, err = genHtlcScript( chanType, htlc.Incoming, false, htlc.RefundTimeout, htlc.RHash, remoteCommitKeys, ) if err != nil { return pd, err } } // Reconstruct the proper local/remote output indexes from the HTLC's // persisted output index depending on whose commitment we are // generating. var ( localOutputIndex int32 remoteOutputIndex int32 ) if isLocal { localOutputIndex = htlc.OutputIndex } else { remoteOutputIndex = htlc.OutputIndex } // With the scripts reconstructed (depending on if this is our commit // vs theirs or a pending commit for the remote party), we can now // re-create the original payment descriptor. pd = PaymentDescriptor{ RHash: htlc.RHash, Timeout: htlc.RefundTimeout, Amount: htlc.Amt, EntryType: Add, HtlcIndex: htlc.HtlcIndex, LogIndex: htlc.LogIndex, OnionBlob: htlc.OnionBlob, localOutputIndex: localOutputIndex, remoteOutputIndex: remoteOutputIndex, ourPkScript: ourP2WSH, ourWitnessScript: ourWitnessScript, theirPkScript: theirP2WSH, theirWitnessScript: theirWitnessScript, } return pd, nil } // extractPayDescs will convert all HTLC's present within a disk commit state // to a set of incoming and outgoing payment descriptors. Once reconstructed, // these payment descriptors can be re-inserted into the in-memory updateLog // for each side. func (lc *LightningChannel) extractPayDescs(commitHeight uint64, feeRate chainfee.SatPerKWeight, htlcs []channeldb.HTLC, localCommitKeys, remoteCommitKeys *CommitmentKeyRing, isLocal bool) ([]PaymentDescriptor, []PaymentDescriptor, error) { var ( incomingHtlcs []PaymentDescriptor outgoingHtlcs []PaymentDescriptor ) // For each included HTLC within this commitment state, we'll convert // the disk format into our in memory PaymentDescriptor format, // partitioning based on if we offered or received the HTLC. for _, htlc := range htlcs { // TODO(roasbeef): set isForwarded to false for all? need to // persist state w.r.t to if forwarded or not, or can // inadvertently trigger replays payDesc, err := lc.diskHtlcToPayDesc( feeRate, commitHeight, &htlc, localCommitKeys, remoteCommitKeys, isLocal, ) if err != nil { return incomingHtlcs, outgoingHtlcs, err } if htlc.Incoming { incomingHtlcs = append(incomingHtlcs, payDesc) } else { outgoingHtlcs = append(outgoingHtlcs, payDesc) } } return incomingHtlcs, outgoingHtlcs, nil } // diskCommitToMemCommit converts the on-disk commitment format to our // in-memory commitment format which is needed in order to properly resume // channel operations after a restart. func (lc *LightningChannel) diskCommitToMemCommit(isLocal bool, diskCommit *channeldb.ChannelCommitment, localCommitPoint, remoteCommitPoint *btcec.PublicKey) (*commitment, error) { // First, we'll need to re-derive the commitment key ring for each // party used within this particular state. If this is a pending commit // (we extended but weren't able to complete the commitment dance // before shutdown), then the localCommitPoint won't be set as we // haven't yet received a responding commitment from the remote party. var localCommitKeys, remoteCommitKeys *CommitmentKeyRing if localCommitPoint != nil { localCommitKeys = DeriveCommitmentKeys( localCommitPoint, true, lc.channelState.ChanType, &lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg, ) } if remoteCommitPoint != nil { remoteCommitKeys = DeriveCommitmentKeys( remoteCommitPoint, false, lc.channelState.ChanType, &lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg, ) } // With the key rings re-created, we'll now convert all the on-disk // HTLC"s into PaymentDescriptor's so we can re-insert them into our // update log. incomingHtlcs, outgoingHtlcs, err := lc.extractPayDescs( diskCommit.CommitHeight, chainfee.SatPerKWeight(diskCommit.FeePerKw), diskCommit.Htlcs, localCommitKeys, remoteCommitKeys, isLocal, ) if err != nil { return nil, err } // With the necessary items generated, we'll now re-construct the // commitment state as it was originally present in memory. commit := &commitment{ height: diskCommit.CommitHeight, isOurs: isLocal, ourBalance: diskCommit.LocalBalance, theirBalance: diskCommit.RemoteBalance, ourMessageIndex: diskCommit.LocalLogIndex, ourHtlcIndex: diskCommit.LocalHtlcIndex, theirMessageIndex: diskCommit.RemoteLogIndex, theirHtlcIndex: diskCommit.RemoteHtlcIndex, txn: diskCommit.CommitTx, sig: diskCommit.CommitSig, fee: diskCommit.CommitFee, feePerKw: chainfee.SatPerKWeight(diskCommit.FeePerKw), incomingHTLCs: incomingHtlcs, outgoingHTLCs: outgoingHtlcs, } if isLocal { commit.dustLimit = lc.channelState.LocalChanCfg.DustLimit } else { commit.dustLimit = lc.channelState.RemoteChanCfg.DustLimit } return commit, nil } // commitmentChain represents a chain of unrevoked commitments. The tail of the // chain is the latest fully signed, yet unrevoked commitment. Two chains are // tracked, one for the local node, and another for the remote node. New // commitments we create locally extend the remote node's chain, and vice // versa. Commitment chains are allowed to grow to a bounded length, after // which the tail needs to be "dropped" before new commitments can be received. // The tail is "dropped" when the owner of the chain sends a revocation for the // previous tail. type commitmentChain struct { // commitments is a linked list of commitments to new states. New // commitments are added to the end of the chain with increase height. // Once a commitment transaction is revoked, the tail is incremented, // freeing up the revocation window for new commitments. commitments *list.List } // newCommitmentChain creates a new commitment chain. func newCommitmentChain() *commitmentChain { return &commitmentChain{ commitments: list.New(), } } // addCommitment extends the commitment chain by a single commitment. This // added commitment represents a state update proposed by either party. Once // the commitment prior to this commitment is revoked, the commitment becomes // the new defacto state within the channel. func (s *commitmentChain) addCommitment(c *commitment) { s.commitments.PushBack(c) } // advanceTail reduces the length of the commitment chain by one. The tail of // the chain should be advanced once a revocation for the lowest unrevoked // commitment in the chain is received. func (s *commitmentChain) advanceTail() { s.commitments.Remove(s.commitments.Front()) } // tip returns the latest commitment added to the chain. func (s *commitmentChain) tip() *commitment { return s.commitments.Back().Value.(*commitment) } // tail returns the lowest unrevoked commitment transaction in the chain. func (s *commitmentChain) tail() *commitment { return s.commitments.Front().Value.(*commitment) } // hasUnackedCommitment returns true if the commitment chain has more than one // entry. The tail of the commitment chain has been ACKed by revoking all prior // commitments, but any subsequent commitments have not yet been ACKed. func (s *commitmentChain) hasUnackedCommitment() bool { return s.commitments.Front() != s.commitments.Back() } // updateLog is an append-only log that stores updates to a node's commitment // chain. This structure can be seen as the "mempool" within Lightning where // changes are stored before they're committed to the chain. Once an entry has // been committed in both the local and remote commitment chain, then it can be // removed from this log. // // TODO(roasbeef): create lightning package, move commitment and update to // package? // * also move state machine, separate from lnwallet package // * possible embed updateLog within commitmentChain. type updateLog struct { // logIndex is a monotonically increasing integer that tracks the total // number of update entries ever applied to the log. When sending new // commitment states, we include all updates up to this index. logIndex uint64 // htlcCounter is a monotonically increasing integer that tracks the // total number of offered HTLC's by the owner of this update log. We // use a distinct index for this purpose, as update's that remove // entries from the log will be indexed using this counter. htlcCounter uint64 // List is the updatelog itself, we embed this value so updateLog has // access to all the method of a list.List. *list.List // updateIndex is an index that maps a particular entries index to the // list element within the list.List above. updateIndex map[uint64]*list.Element // offerIndex is an index that maps the counter for offered HTLC's to // their list element within the main list.List. htlcIndex map[uint64]*list.Element // modifiedHtlcs is a set that keeps track of all the current modified // htlcs. A modified HTLC is one that's present in the log, and has as // a pending fail or settle that's attempting to consume it. modifiedHtlcs map[uint64]struct{} } // newUpdateLog creates a new updateLog instance. func newUpdateLog(logIndex, htlcCounter uint64) *updateLog { return &updateLog{ List: list.New(), updateIndex: make(map[uint64]*list.Element), htlcIndex: make(map[uint64]*list.Element), logIndex: logIndex, htlcCounter: htlcCounter, modifiedHtlcs: make(map[uint64]struct{}), } } // restoreHtlc will "restore" a prior HTLC to the updateLog. We say restore as // this method is intended to be used when re-covering a prior commitment // state. This function differs from appendHtlc in that it won't increment // either of log's counters. If the HTLC is already present, then it is // ignored. func (u *updateLog) restoreHtlc(pd *PaymentDescriptor) { if _, ok := u.htlcIndex[pd.HtlcIndex]; ok { return } u.htlcIndex[pd.HtlcIndex] = u.PushBack(pd) } // appendUpdate appends a new update to the tip of the updateLog. The entry is // also added to index accordingly. func (u *updateLog) appendUpdate(pd *PaymentDescriptor) { u.updateIndex[u.logIndex] = u.PushBack(pd) u.logIndex++ } // restoreUpdate appends a new update to the tip of the updateLog. The entry is // also added to index accordingly. This function differs from appendUpdate in // that it won't increment the log index counter. func (u *updateLog) restoreUpdate(pd *PaymentDescriptor) { u.updateIndex[pd.LogIndex] = u.PushBack(pd) } // appendHtlc appends a new HTLC offer to the tip of the update log. The entry // is also added to the offer index accordingly. func (u *updateLog) appendHtlc(pd *PaymentDescriptor) { u.htlcIndex[u.htlcCounter] = u.PushBack(pd) u.htlcCounter++ u.logIndex++ } // lookupHtlc attempts to look up an offered HTLC according to its offer // index. If the entry isn't found, then a nil pointer is returned. func (u *updateLog) lookupHtlc(i uint64) *PaymentDescriptor { htlc, ok := u.htlcIndex[i] if !ok { return nil } return htlc.Value.(*PaymentDescriptor) } // remove attempts to remove an entry from the update log. If the entry is // found, then the entry will be removed from the update log and index. func (u *updateLog) removeUpdate(i uint64) { entry := u.updateIndex[i] u.Remove(entry) delete(u.updateIndex, i) } // removeHtlc attempts to remove an HTLC offer form the update log. If the // entry is found, then the entry will be removed from both the main log and // the offer index. func (u *updateLog) removeHtlc(i uint64) { entry := u.htlcIndex[i] u.Remove(entry) delete(u.htlcIndex, i) delete(u.modifiedHtlcs, i) } // htlcHasModification returns true if the HTLC identified by the passed index // has a pending modification within the log. func (u *updateLog) htlcHasModification(i uint64) bool { _, o := u.modifiedHtlcs[i] return o } // markHtlcModified marks an HTLC as modified based on its HTLC index. After a // call to this method, htlcHasModification will return true until the HTLC is // removed. func (u *updateLog) markHtlcModified(i uint64) { u.modifiedHtlcs[i] = struct{}{} } // compactLogs performs garbage collection within the log removing HTLCs which // have been removed from the point-of-view of the tail of both chains. The // entries which timeout/settle HTLCs are also removed. func compactLogs(ourLog, theirLog *updateLog, localChainTail, remoteChainTail uint64) { compactLog := func(logA, logB *updateLog) { var nextA *list.Element for e := logA.Front(); e != nil; e = nextA { // Assign next iteration element at top of loop because // we may remove the current element from the list, // which can change the iterated sequence. nextA = e.Next() htlc := e.Value.(*PaymentDescriptor) // We skip Adds, as they will be removed along with the // fail/settles below. if htlc.EntryType == Add { continue } // If the HTLC hasn't yet been removed from either // chain, the skip it. if htlc.removeCommitHeightRemote == 0 || htlc.removeCommitHeightLocal == 0 { continue } // Otherwise if the height of the tail of both chains // is at least the height in which the HTLC was // removed, then evict the settle/timeout entry along // with the original add entry. if remoteChainTail >= htlc.removeCommitHeightRemote && localChainTail >= htlc.removeCommitHeightLocal { // Fee updates have no parent htlcs, so we only // remove the update itself. if htlc.EntryType == FeeUpdate { logA.removeUpdate(htlc.LogIndex) continue } // The other types (fail/settle) do have a // parent HTLC, so we'll remove that HTLC from // the other log. logA.removeUpdate(htlc.LogIndex) logB.removeHtlc(htlc.ParentIndex) } } } compactLog(ourLog, theirLog) compactLog(theirLog, ourLog) } // LightningChannel implements the state machine which corresponds to the // current commitment protocol wire spec. The state machine implemented allows // for asynchronous fully desynchronized, batched+pipelined updates to // commitment transactions allowing for a high degree of non-blocking // bi-directional payment throughput. // // In order to allow updates to be fully non-blocking, either side is able to // create multiple new commitment states up to a pre-determined window size. // This window size is encoded within InitialRevocationWindow. Before the start // of a session, both side should send out revocation messages with nil // preimages in order to populate their revocation window for the remote party. // // The state machine has for main methods: // * .SignNextCommitment() // * Called one one wishes to sign the next commitment, either initiating a // new state update, or responding to a received commitment. // * .ReceiveNewCommitment() // * Called upon receipt of a new commitment from the remote party. If the // new commitment is valid, then a revocation should immediately be // generated and sent. // * .RevokeCurrentCommitment() // * Revokes the current commitment. Should be called directly after // receiving a new commitment. // * .ReceiveRevocation() // * Processes a revocation from the remote party. If successful creates a // new defacto broadcastable state. // // See the individual comments within the above methods for further details. type LightningChannel struct { // Signer is the main signer instances that will be responsible for // signing any HTLC and commitment transaction generated by the state // machine. Signer input.Signer // signDesc is the primary sign descriptor that is capable of signing // the commitment transaction that spends the multi-sig output. signDesc *input.SignDescriptor status channelState // ChanPoint is the funding outpoint of this channel. ChanPoint *wire.OutPoint // sigPool is a pool of workers that are capable of signing and // validating signatures in parallel. This is utilized as an // optimization to void serially signing or validating the HTLC // signatures, of which there may be hundreds. sigPool *SigPool // Capacity is the total capacity of this channel. Capacity btcutil.Amount // currentHeight is the current height of our local commitment chain. // This is also the same as the number of updates to the channel we've // accepted. currentHeight uint64 // remoteCommitChain is the remote node's commitment chain. Any new // commitments we initiate are added to the tip of this chain. remoteCommitChain *commitmentChain // localCommitChain is our local commitment chain. Any new commitments // received are added to the tip of this chain. The tail (or lowest // height) in this chain is our current accepted state, which we are // able to broadcast safely. localCommitChain *commitmentChain channelState *channeldb.OpenChannel commitBuilder *CommitmentBuilder // [local|remote]Log is a (mostly) append-only log storing all the HTLC // updates to this channel. The log is walked backwards as HTLC updates // are applied in order to re-construct a commitment transaction from a // commitment. The log is compacted once a revocation is received. localUpdateLog *updateLog remoteUpdateLog *updateLog // LocalFundingKey is the public key under control by the wallet that // was used for the 2-of-2 funding output which created this channel. LocalFundingKey *btcec.PublicKey // RemoteFundingKey is the public key for the remote channel counter // party which used for the 2-of-2 funding output which created this // channel. RemoteFundingKey *btcec.PublicKey // log is a channel-specific logging instance. log btclog.Logger sync.RWMutex } // NewLightningChannel creates a new, active payment channel given an // implementation of the chain notifier, channel database, and the current // settled channel state. Throughout state transitions, then channel will // automatically persist pertinent state to the database in an efficient // manner. func NewLightningChannel(signer input.Signer, state *channeldb.OpenChannel, sigPool *SigPool) (*LightningChannel, error) { localCommit := state.LocalCommitment remoteCommit := state.RemoteCommitment // First, initialize the update logs with their current counter values // from the local and remote commitments. localUpdateLog := newUpdateLog( remoteCommit.LocalLogIndex, remoteCommit.LocalHtlcIndex, ) remoteUpdateLog := newUpdateLog( localCommit.RemoteLogIndex, localCommit.RemoteHtlcIndex, ) logPrefix := fmt.Sprintf("ChannelPoint(%v):", state.FundingOutpoint) lc := &LightningChannel{ Signer: signer, sigPool: sigPool, currentHeight: localCommit.CommitHeight, remoteCommitChain: newCommitmentChain(), localCommitChain: newCommitmentChain(), channelState: state, commitBuilder: NewCommitmentBuilder(state), localUpdateLog: localUpdateLog, remoteUpdateLog: remoteUpdateLog, ChanPoint: &state.FundingOutpoint, Capacity: state.Capacity, LocalFundingKey: state.LocalChanCfg.MultiSigKey.PubKey, RemoteFundingKey: state.RemoteChanCfg.MultiSigKey.PubKey, log: build.NewPrefixLog(logPrefix, walletLog), } // With the main channel struct reconstructed, we'll now restore the // commitment state in memory and also the update logs themselves. err := lc.restoreCommitState(&localCommit, &remoteCommit) if err != nil { return nil, err } // Create the sign descriptor which we'll be using very frequently to // request a signature for the 2-of-2 multi-sig from the signer in // order to complete channel state transitions. if err := lc.createSignDesc(); err != nil { return nil, err } return lc, nil } // createSignDesc derives the SignDescriptor for commitment transactions from // other fields on the LightningChannel. func (lc *LightningChannel) createSignDesc() error { localKey := lc.channelState.LocalChanCfg.MultiSigKey.PubKey. SerializeCompressed() remoteKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey. SerializeCompressed() multiSigScript, err := input.GenMultiSigScript(localKey, remoteKey) if err != nil { return err } fundingPkScript, err := input.WitnessScriptHash(multiSigScript) if err != nil { return err } lc.signDesc = &input.SignDescriptor{ KeyDesc: lc.channelState.LocalChanCfg.MultiSigKey, WitnessScript: multiSigScript, Output: &wire.TxOut{ PkScript: fundingPkScript, Value: int64(lc.channelState.Capacity), }, HashType: txscript.SigHashAll, InputIndex: 0, } return nil } // ResetState resets the state of the channel back to the default state. This // ensures that any active goroutines which need to act based on on-chain // events do so properly. func (lc *LightningChannel) ResetState() { lc.Lock() lc.status = channelOpen lc.Unlock() } // logUpdateToPayDesc converts a LogUpdate into a matching PaymentDescriptor // entry that can be re-inserted into the update log. This method is used when // we extended a state to the remote party, but the connection was obstructed // before we could finish the commitment dance. In this case, we need to // re-insert the original entries back into the update log so we can resume as // if nothing happened. func (lc *LightningChannel) logUpdateToPayDesc(logUpdate *channeldb.LogUpdate, remoteUpdateLog *updateLog, commitHeight uint64, feeRate chainfee.SatPerKWeight, remoteCommitKeys *CommitmentKeyRing, remoteDustLimit btcutil.Amount) (*PaymentDescriptor, error) { // Depending on the type of update message we'll map that to a distinct // PaymentDescriptor instance. var pd *PaymentDescriptor switch wireMsg := logUpdate.UpdateMsg.(type) { // For offered HTLC's, we'll map that to a PaymentDescriptor with the // type Add, ensuring we restore the necessary fields. From the PoV of // the commitment chain, this HTLC was included in the remote chain, // but not the local chain. case *lnwire.UpdateAddHTLC: // First, we'll map all the relevant fields in the // UpdateAddHTLC message to their corresponding fields in the // PaymentDescriptor struct. We also set addCommitHeightRemote // as we've included this HTLC in our local commitment chain // for the remote party. pd = &PaymentDescriptor{ RHash: wireMsg.PaymentHash, Timeout: wireMsg.Expiry, Amount: wireMsg.Amount, EntryType: Add, HtlcIndex: wireMsg.ID, LogIndex: logUpdate.LogIndex, addCommitHeightRemote: commitHeight, } pd.OnionBlob = make([]byte, len(wireMsg.OnionBlob)) copy(pd.OnionBlob[:], wireMsg.OnionBlob[:]) isDustRemote := htlcIsDust( lc.channelState.ChanType, false, false, feeRate, wireMsg.Amount.ToSatoshis(), remoteDustLimit, ) if !isDustRemote { theirP2WSH, theirWitnessScript, err := genHtlcScript( lc.channelState.ChanType, false, false, wireMsg.Expiry, wireMsg.PaymentHash, remoteCommitKeys, ) if err != nil { return nil, err } pd.theirPkScript = theirP2WSH pd.theirWitnessScript = theirWitnessScript } // For HTLC's we're offered we'll fetch the original offered HTLC // from the remote party's update log so we can retrieve the same // PaymentDescriptor that SettleHTLC would produce. case *lnwire.UpdateFulfillHTLC: ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID) pd = &PaymentDescriptor{ Amount: ogHTLC.Amount, RHash: ogHTLC.RHash, RPreimage: wireMsg.PaymentPreimage, LogIndex: logUpdate.LogIndex, ParentIndex: ogHTLC.HtlcIndex, EntryType: Settle, removeCommitHeightRemote: commitHeight, } // If we sent a failure for a prior incoming HTLC, then we'll consult // the update log of the remote party so we can retrieve the // information of the original HTLC we're failing. We also set the // removal height for the remote commitment. case *lnwire.UpdateFailHTLC: ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID) pd = &PaymentDescriptor{ Amount: ogHTLC.Amount, RHash: ogHTLC.RHash, ParentIndex: ogHTLC.HtlcIndex, LogIndex: logUpdate.LogIndex, EntryType: Fail, FailReason: wireMsg.Reason[:], removeCommitHeightRemote: commitHeight, } // HTLC fails due to malformed onion blobs are treated the exact same // way as regular HTLC fails. case *lnwire.UpdateFailMalformedHTLC: ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID) // TODO(roasbeef): err if nil? pd = &PaymentDescriptor{ Amount: ogHTLC.Amount, RHash: ogHTLC.RHash, ParentIndex: ogHTLC.HtlcIndex, LogIndex: logUpdate.LogIndex, EntryType: MalformedFail, FailCode: wireMsg.FailureCode, ShaOnionBlob: wireMsg.ShaOnionBlob, removeCommitHeightRemote: commitHeight, } // For fee updates we'll create a FeeUpdate type to add to the log. We // reuse the amount field to hold the fee rate. Since the amount field // is denominated in msat we won't lose precision when storing the // sat/kw denominated feerate. Note that we set both the add and remove // height to the same value, as we consider the fee update locked in by // adding and removing it at the same height. case *lnwire.UpdateFee: pd = &PaymentDescriptor{ LogIndex: logUpdate.LogIndex, Amount: lnwire.NewMSatFromSatoshis( btcutil.Amount(wireMsg.FeePerKw), ), EntryType: FeeUpdate, addCommitHeightRemote: commitHeight, removeCommitHeightRemote: commitHeight, } } return pd, nil } // remoteLogUpdateToPayDesc converts a LogUpdate into a matching // PaymentDescriptor entry that can be re-inserted into the update log. This // method is used when we revoked a local commitment, but the connection was // obstructed before we could sign a remote commitment that contains these // updates. In this case, we need to re-insert the original entries back into // the update log so we can resume as if nothing happened. The height of the // latest local commitment is also expected to be provided. We are restoring all // log update entries with this height, even though the real commitment height // may be lower. In the way these fields are used elsewhere, this doesn't change // anything. func (lc *LightningChannel) remoteLogUpdateToPayDesc(logUpdate *channeldb.LogUpdate, localUpdateLog *updateLog, commitHeight uint64) (*PaymentDescriptor, error) { switch wireMsg := logUpdate.UpdateMsg.(type) { case *lnwire.UpdateAddHTLC: pd := &PaymentDescriptor{ RHash: wireMsg.PaymentHash, Timeout: wireMsg.Expiry, Amount: wireMsg.Amount, EntryType: Add, HtlcIndex: wireMsg.ID, LogIndex: logUpdate.LogIndex, addCommitHeightLocal: commitHeight, } pd.OnionBlob = make([]byte, len(wireMsg.OnionBlob)) copy(pd.OnionBlob, wireMsg.OnionBlob[:]) // We don't need to generate an htlc script yet. This will be // done once we sign our remote commitment. return pd, nil // For HTLCs that the remote party settled, we'll fetch the original // offered HTLC from the local update log so we can retrieve the same // PaymentDescriptor that ReceiveHTLCSettle would produce. case *lnwire.UpdateFulfillHTLC: ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID) return &PaymentDescriptor{ Amount: ogHTLC.Amount, RHash: ogHTLC.RHash, RPreimage: wireMsg.PaymentPreimage, LogIndex: logUpdate.LogIndex, ParentIndex: ogHTLC.HtlcIndex, EntryType: Settle, removeCommitHeightLocal: commitHeight, }, nil // If we received a failure for a prior outgoing HTLC, then we'll // consult the local update log so we can retrieve the information of // the original HTLC we're failing. case *lnwire.UpdateFailHTLC: ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID) return &PaymentDescriptor{ Amount: ogHTLC.Amount, RHash: ogHTLC.RHash, ParentIndex: ogHTLC.HtlcIndex, LogIndex: logUpdate.LogIndex, EntryType: Fail, FailReason: wireMsg.Reason[:], removeCommitHeightLocal: commitHeight, }, nil // HTLC fails due to malformed onion blobs are treated the exact same // way as regular HTLC fails. case *lnwire.UpdateFailMalformedHTLC: ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID) return &PaymentDescriptor{ Amount: ogHTLC.Amount, RHash: ogHTLC.RHash, ParentIndex: ogHTLC.HtlcIndex, LogIndex: logUpdate.LogIndex, EntryType: MalformedFail, FailCode: wireMsg.FailureCode, ShaOnionBlob: wireMsg.ShaOnionBlob, removeCommitHeightLocal: commitHeight, }, nil // For fee updates we'll create a FeeUpdate type to add to the log. We // reuse the amount field to hold the fee rate. Since the amount field // is denominated in msat we won't lose precision when storing the // sat/kw denominated feerate. Note that we set both the add and remove // height to the same value, as we consider the fee update locked in by // adding and removing it at the same height. case *lnwire.UpdateFee: return &PaymentDescriptor{ LogIndex: logUpdate.LogIndex, Amount: lnwire.NewMSatFromSatoshis( btcutil.Amount(wireMsg.FeePerKw), ), EntryType: FeeUpdate, addCommitHeightLocal: commitHeight, removeCommitHeightLocal: commitHeight, }, nil default: return nil, errors.New("unknown message type") } } // restoreCommitState will restore the local commitment chain and updateLog // state to a consistent in-memory representation of the passed disk commitment. // This method is to be used upon reconnection to our channel counter party. // Once the connection has been established, we'll prepare our in memory state // to re-sync states with the remote party, and also verify/extend new proposed // commitment states. func (lc *LightningChannel) restoreCommitState( localCommitState, remoteCommitState *channeldb.ChannelCommitment) error { // In order to reconstruct the pkScripts on each of the pending HTLC // outputs (if any) we'll need to regenerate the current revocation for // this current un-revoked state as well as retrieve the current // revocation for the remote party. ourRevPreImage, err := lc.channelState.RevocationProducer.AtIndex( lc.currentHeight, ) if err != nil { return err } localCommitPoint := input.ComputeCommitmentPoint(ourRevPreImage[:]) remoteCommitPoint := lc.channelState.RemoteCurrentRevocation // With the revocation state reconstructed, we can now convert the disk // commitment into our in-memory commitment format, inserting it into // the local commitment chain. localCommit, err := lc.diskCommitToMemCommit( true, localCommitState, localCommitPoint, remoteCommitPoint, ) if err != nil { return err } lc.localCommitChain.addCommitment(localCommit) lc.log.Debugf("starting local commitment: %v", newLogClosure(func() string { return spew.Sdump(lc.localCommitChain.tail()) }), ) // We'll also do the same for the remote commitment chain. remoteCommit, err := lc.diskCommitToMemCommit( false, remoteCommitState, localCommitPoint, remoteCommitPoint, ) if err != nil { return err } lc.remoteCommitChain.addCommitment(remoteCommit) lc.log.Debugf("starting remote commitment: %v", newLogClosure(func() string { return spew.Sdump(lc.remoteCommitChain.tail()) }), ) var ( pendingRemoteCommit *commitment pendingRemoteCommitDiff *channeldb.CommitDiff pendingRemoteKeyChain *CommitmentKeyRing ) // Next, we'll check to see if we have an un-acked commitment state we // extended to the remote party but which was never ACK'd. pendingRemoteCommitDiff, err = lc.channelState.RemoteCommitChainTip() if err != nil && err != channeldb.ErrNoPendingCommit { return err } if pendingRemoteCommitDiff != nil { // If we have a pending remote commitment, then we'll also // reconstruct the original commitment for that state, // inserting it into the remote party's commitment chain. We // don't pass our commit point as we don't have the // corresponding state for the local commitment chain. pendingCommitPoint := lc.channelState.RemoteNextRevocation pendingRemoteCommit, err = lc.diskCommitToMemCommit( false, &pendingRemoteCommitDiff.Commitment, nil, pendingCommitPoint, ) if err != nil { return err } lc.remoteCommitChain.addCommitment(pendingRemoteCommit) lc.log.Debugf("pending remote commitment: %v", newLogClosure(func() string { return spew.Sdump(lc.remoteCommitChain.tip()) }), ) // We'll also re-create the set of commitment keys needed to // fully re-derive the state. pendingRemoteKeyChain = DeriveCommitmentKeys( pendingCommitPoint, false, lc.channelState.ChanType, &lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg, ) } // Fetch remote updates that we have acked but not yet signed for. unsignedAckedUpdates, err := lc.channelState.UnsignedAckedUpdates() if err != nil { return err } // Finally, with the commitment states restored, we'll now restore the // state logs based on the current local+remote commit, and any pending // remote commit that exists. err = lc.restoreStateLogs( localCommit, remoteCommit, pendingRemoteCommit, pendingRemoteCommitDiff, pendingRemoteKeyChain, unsignedAckedUpdates, ) if err != nil { return err } return nil } // restoreStateLogs runs through the current locked-in HTLCs from the point of // view of the channel and insert corresponding log entries (both local and // remote) for each HTLC read from disk. This method is required to sync the // in-memory state of the state machine with that read from persistent storage. func (lc *LightningChannel) restoreStateLogs( localCommitment, remoteCommitment, pendingRemoteCommit *commitment, pendingRemoteCommitDiff *channeldb.CommitDiff, pendingRemoteKeys *CommitmentKeyRing, unsignedAckedUpdates []channeldb.LogUpdate) error { // We make a map of incoming HTLCs to the height of the remote // commitment they were first added, and outgoing HTLCs to the height // of the local commit they were first added. This will be used when we // restore the update logs below. incomingRemoteAddHeights := make(map[uint64]uint64) outgoingLocalAddHeights := make(map[uint64]uint64) // We start by setting the height of the incoming HTLCs on the pending // remote commitment. We set these heights first since if there are // duplicates, these will be overwritten by the lower height of the // remoteCommitment below. if pendingRemoteCommit != nil { for _, r := range pendingRemoteCommit.incomingHTLCs { incomingRemoteAddHeights[r.HtlcIndex] = pendingRemoteCommit.height } } // Now set the remote commit height of all incoming HTLCs found on the // remote commitment. for _, r := range remoteCommitment.incomingHTLCs { incomingRemoteAddHeights[r.HtlcIndex] = remoteCommitment.height } // And finally we can do the same for the outgoing HTLCs. for _, l := range localCommitment.outgoingHTLCs { outgoingLocalAddHeights[l.HtlcIndex] = localCommitment.height } // For each incoming HTLC within the local commitment, we add it to the // remote update log. Since HTLCs are added first to the receiver's // commitment, we don't have to restore outgoing HTLCs, as they will be // restored from the remote commitment below. for i := range localCommitment.incomingHTLCs { htlc := localCommitment.incomingHTLCs[i] // We'll need to set the add height of the HTLC. Since it is on // this local commit, we can use its height as local add // height. As remote add height we consult the incoming HTLC // map we created earlier. Note that if this HTLC is not in // incomingRemoteAddHeights, the remote add height will be set // to zero, which indicates that it is not added yet. htlc.addCommitHeightLocal = localCommitment.height htlc.addCommitHeightRemote = incomingRemoteAddHeights[htlc.HtlcIndex] // Restore the htlc back to the remote log. lc.remoteUpdateLog.restoreHtlc(&htlc) } // Similarly, we'll do the same for the outgoing HTLCs within the // remote commitment, adding them to the local update log. for i := range remoteCommitment.outgoingHTLCs { htlc := remoteCommitment.outgoingHTLCs[i] // As for the incoming HTLCs, we'll use the current remote // commit height as remote add height, and consult the map // created above for the local add height. htlc.addCommitHeightRemote = remoteCommitment.height htlc.addCommitHeightLocal = outgoingLocalAddHeights[htlc.HtlcIndex] // Restore the htlc back to the local log. lc.localUpdateLog.restoreHtlc(&htlc) } // If we have a dangling (un-acked) commit for the remote party, then we // restore the updates leading up to this commit. if pendingRemoteCommit != nil { err := lc.restorePendingLocalUpdates( pendingRemoteCommitDiff, pendingRemoteKeys, ) if err != nil { return err } } // Restore unsigned acked remote log updates so that we can include them // in our next signature. err := lc.restorePendingRemoteUpdates( unsignedAckedUpdates, localCommitment.height, ) if err != nil { return err } return nil } // restorePendingRemoteUpdates restores the acked remote log updates that we // haven't yet signed for. func (lc *LightningChannel) restorePendingRemoteUpdates( unsignedAckedUpdates []channeldb.LogUpdate, localCommitmentHeight uint64) error { lc.log.Debugf("Restoring %v dangling remote updates", len(unsignedAckedUpdates)) for _, logUpdate := range unsignedAckedUpdates { logUpdate := logUpdate payDesc, err := lc.remoteLogUpdateToPayDesc( &logUpdate, lc.localUpdateLog, localCommitmentHeight, ) if err != nil { return err } // Sanity check that we are not restoring a remote log update // that we haven't received a sig for. if payDesc.LogIndex >= lc.remoteUpdateLog.logIndex { return fmt.Errorf("attempted to restore an "+ "unsigned remote update: log_index=%v", payDesc.LogIndex) } // Insert the update into the log. The log update index doesn't // need to be incremented (hence the restore calls), because its // final value was properly persisted with the last local // commitment update. switch payDesc.EntryType { case Add: lc.remoteUpdateLog.restoreHtlc(payDesc) // Sanity check to be sure that we are not restoring an // add update that the remote hasn't signed for yet. if payDesc.HtlcIndex >= lc.remoteUpdateLog.htlcCounter { return fmt.Errorf("attempted to restore an "+ "unsigned remote htlc: htlc_index=%v", payDesc.HtlcIndex) } case FeeUpdate: lc.remoteUpdateLog.restoreUpdate(payDesc) default: lc.remoteUpdateLog.restoreUpdate(payDesc) lc.localUpdateLog.markHtlcModified(payDesc.ParentIndex) } } return nil } // restorePendingLocalUpdates restores the local log updates leading up to the // given pending remote commitment. func (lc *LightningChannel) restorePendingLocalUpdates( pendingRemoteCommitDiff *channeldb.CommitDiff, pendingRemoteKeys *CommitmentKeyRing) error { pendingCommit := pendingRemoteCommitDiff.Commitment pendingHeight := pendingCommit.CommitHeight // If we did have a dangling commit, then we'll examine which updates // we included in that state and re-insert them into our update log. for _, logUpdate := range pendingRemoteCommitDiff.LogUpdates { payDesc, err := lc.logUpdateToPayDesc( &logUpdate, lc.remoteUpdateLog, pendingHeight, chainfee.SatPerKWeight(pendingCommit.FeePerKw), pendingRemoteKeys, lc.channelState.RemoteChanCfg.DustLimit, ) if err != nil { return err } // Earlier versions did not write the log index to disk for fee // updates, so they will be unset. To account for this we set // them to to current update log index. if payDesc.EntryType == FeeUpdate && payDesc.LogIndex == 0 && lc.localUpdateLog.logIndex > 0 { payDesc.LogIndex = lc.localUpdateLog.logIndex lc.log.Debugf("Found FeeUpdate on "+ "pendingRemoteCommitDiff without logIndex, "+ "using %v", payDesc.LogIndex) } // At this point the restored update's logIndex must be equal // to the update log, otherwise somthing is horribly wrong. if payDesc.LogIndex != lc.localUpdateLog.logIndex { panic(fmt.Sprintf("log index mismatch: "+ "%v vs %v", payDesc.LogIndex, lc.localUpdateLog.logIndex)) } switch payDesc.EntryType { case Add: // The HtlcIndex of the added HTLC _must_ be equal to // the log's htlcCounter at this point. If it is not we // panic to catch this. // TODO(halseth): remove when cause of htlc entry bug // is found. if payDesc.HtlcIndex != lc.localUpdateLog.htlcCounter { panic(fmt.Sprintf("htlc index mismatch: "+ "%v vs %v", payDesc.HtlcIndex, lc.localUpdateLog.htlcCounter)) } lc.localUpdateLog.appendHtlc(payDesc) case FeeUpdate: lc.localUpdateLog.appendUpdate(payDesc) default: lc.localUpdateLog.appendUpdate(payDesc) lc.remoteUpdateLog.markHtlcModified(payDesc.ParentIndex) } } return nil } // HtlcRetribution contains all the items necessary to seep a revoked HTLC // transaction from a revoked commitment transaction broadcast by the remote // party. type HtlcRetribution struct { // SignDesc is a design descriptor capable of generating the necessary // signatures to satisfy the revocation clause of the HTLC's public key // script. SignDesc input.SignDescriptor // OutPoint is the target outpoint of this HTLC pointing to the // breached commitment transaction. OutPoint wire.OutPoint // SecondLevelWitnessScript is the witness script that will be created // if the second level HTLC transaction for this output is // broadcast/confirmed. We provide this as if the remote party attempts // to go to the second level to claim the HTLC then we'll need to // update the SignDesc above accordingly to sweep properly. SecondLevelWitnessScript []byte // IsIncoming is a boolean flag that indicates whether or not this // HTLC was accepted from the counterparty. A false value indicates that // this HTLC was offered by us. This flag is used determine the exact // witness type should be used to sweep the output. IsIncoming bool } // BreachRetribution contains all the data necessary to bring a channel // counterparty to justice claiming ALL lingering funds within the channel in // the scenario that they broadcast a revoked commitment transaction. A // BreachRetribution is created by the closeObserver if it detects an // uncooperative close of the channel which uses a revoked commitment // transaction. The BreachRetribution is then sent over the ContractBreach // channel in order to allow the subscriber of the channel to dispatch justice. type BreachRetribution struct { // BreachTransaction is the transaction which breached the channel // contract by spending from the funding multi-sig with a revoked // commitment transaction. BreachTransaction *wire.MsgTx // BreachHeight records the block height confirming the breach // transaction, used as a height hint when registering for // confirmations. BreachHeight uint32 // ChainHash is the chain that the contract beach was identified // within. This is also the resident chain of the contract (the chain // the contract was created on). ChainHash chainhash.Hash // RevokedStateNum is the revoked state number which was broadcast. RevokedStateNum uint64 // PendingHTLCs is a slice of the HTLCs which were pending at this // point within the channel's history transcript. PendingHTLCs []channeldb.HTLC // LocalOutputSignDesc is a SignDescriptor which is capable of // generating the signature necessary to sweep the output within the // BreachTransaction that pays directly us. // // NOTE: A nil value indicates that the local output is considered dust // according to the remote party's dust limit. LocalOutputSignDesc *input.SignDescriptor // LocalOutpoint is the outpoint of the output paying to us (the local // party) within the breach transaction. LocalOutpoint wire.OutPoint // LocalDelay is the CSV delay for the to_remote script on the breached // commitment. LocalDelay uint32 // RemoteOutputSignDesc is a SignDescriptor which is capable of // generating the signature required to claim the funds as described // within the revocation clause of the remote party's commitment // output. // // NOTE: A nil value indicates that the local output is considered dust // according to the remote party's dust limit. RemoteOutputSignDesc *input.SignDescriptor // RemoteOutpoint is the outpoint of the output paying to the remote // party within the breach transaction. RemoteOutpoint wire.OutPoint // RemoteDelay specifies the CSV delay applied to to-local scripts on // the breaching commitment transaction. RemoteDelay uint32 // HtlcRetributions is a slice of HTLC retributions for each output // active HTLC output within the breached commitment transaction. HtlcRetributions []HtlcRetribution // KeyRing contains the derived public keys used to construct the // breaching commitment transaction. This allows downstream clients to // have access to the public keys used in the scripts. KeyRing *CommitmentKeyRing } // NewBreachRetribution creates a new fully populated BreachRetribution for the // passed channel, at a particular revoked state number, and one which targets // the passed commitment transaction. func NewBreachRetribution(chanState *channeldb.OpenChannel, stateNum uint64, breachHeight uint32) (*BreachRetribution, error) { // Query the on-disk revocation log for the snapshot which was recorded // at this particular state num. revokedSnapshot, err := chanState.FindPreviousState(stateNum) if err != nil { return nil, err } commitHash := revokedSnapshot.CommitTx.TxHash() // With the state number broadcast known, we can now derive/restore the // proper revocation preimage necessary to sweep the remote party's // output. revocationPreimage, err := chanState.RevocationStore.LookUp(stateNum) if err != nil { return nil, err } commitmentSecret, commitmentPoint := btcec.PrivKeyFromBytes( btcec.S256(), revocationPreimage[:], ) // With the commitment point generated, we can now generate the four // keys we'll need to reconstruct the commitment state, keyRing := DeriveCommitmentKeys( commitmentPoint, false, chanState.ChanType, &chanState.LocalChanCfg, &chanState.RemoteChanCfg, ) // Next, reconstruct the scripts as they were present at this state // number so we can have the proper witness script to sign and include // within the final witness. theirDelay := uint32(chanState.RemoteChanCfg.CsvDelay) theirPkScript, err := input.CommitScriptToSelf( theirDelay, keyRing.ToLocalKey, keyRing.RevocationKey, ) if err != nil { return nil, err } theirWitnessHash, err := input.WitnessScriptHash(theirPkScript) if err != nil { return nil, err } // Since it is the remote breach we are reconstructing, the output going // to us will be a to-remote script with our local params. ourScript, ourDelay, err := CommitScriptToRemote( chanState.ChanType, keyRing.ToRemoteKey, ) if err != nil { return nil, err } // In order to fully populate the breach retribution struct, we'll need // to find the exact index of the commitment outputs. ourOutpoint := wire.OutPoint{ Hash: commitHash, } theirOutpoint := wire.OutPoint{ Hash: commitHash, } for i, txOut := range revokedSnapshot.CommitTx.TxOut { switch { case bytes.Equal(txOut.PkScript, ourScript.PkScript): ourOutpoint.Index = uint32(i) case bytes.Equal(txOut.PkScript, theirWitnessHash): theirOutpoint.Index = uint32(i) } } // Conditionally instantiate a sign descriptor for each of the // commitment outputs. If either is considered dust using the remote // party's dust limit, the respective sign descriptor will be nil. var ( ourSignDesc *input.SignDescriptor theirSignDesc *input.SignDescriptor ) // Compute the balances in satoshis. ourAmt := revokedSnapshot.LocalBalance.ToSatoshis() theirAmt := revokedSnapshot.RemoteBalance.ToSatoshis() // If our balance exceeds the remote party's dust limit, instantiate // the sign descriptor for our output. if ourAmt >= chanState.RemoteChanCfg.DustLimit { ourSignDesc = &input.SignDescriptor{ SingleTweak: keyRing.LocalCommitKeyTweak, KeyDesc: chanState.LocalChanCfg.PaymentBasePoint, WitnessScript: ourScript.WitnessScript, Output: &wire.TxOut{ PkScript: ourScript.PkScript, Value: int64(ourAmt), }, HashType: txscript.SigHashAll, } } // Similarly, if their balance exceeds the remote party's dust limit, // assemble the sign descriptor for their output, which we can sweep. if theirAmt >= chanState.RemoteChanCfg.DustLimit { theirSignDesc = &input.SignDescriptor{ KeyDesc: chanState.LocalChanCfg.RevocationBasePoint, DoubleTweak: commitmentSecret, WitnessScript: theirPkScript, Output: &wire.TxOut{ PkScript: theirWitnessHash, Value: int64(theirAmt), }, HashType: txscript.SigHashAll, } } // With the commitment outputs located, we'll now generate all the // retribution structs for each of the HTLC transactions active on the // remote commitment transaction. htlcRetributions := make([]HtlcRetribution, 0, len(revokedSnapshot.Htlcs)) for _, htlc := range revokedSnapshot.Htlcs { // If the HTLC is dust, then we'll skip it as it doesn't have // an output on the commitment transaction. if htlcIsDust( chanState.ChanType, htlc.Incoming, false, chainfee.SatPerKWeight(revokedSnapshot.FeePerKw), htlc.Amt.ToSatoshis(), chanState.RemoteChanCfg.DustLimit, ) { continue } // We'll generate the original second level witness script now, // as we'll need it if we're revoking an HTLC output on the // remote commitment transaction, and *they* go to the second // level. secondLevelWitnessScript, err := input.SecondLevelHtlcScript( keyRing.RevocationKey, keyRing.ToLocalKey, theirDelay, ) if err != nil { return nil, err } // If this is an incoming HTLC, then this means that they were // the sender of the HTLC (relative to us). So we'll // re-generate the sender HTLC script. Otherwise, is this was // an outgoing HTLC that we sent, then from the PoV of the // remote commitment state, they're the receiver of this HTLC. htlcPkScript, htlcWitnessScript, err := genHtlcScript( chanState.ChanType, htlc.Incoming, false, htlc.RefundTimeout, htlc.RHash, keyRing, ) if err != nil { return nil, err } htlcRetributions = append(htlcRetributions, HtlcRetribution{ SignDesc: input.SignDescriptor{ KeyDesc: chanState.LocalChanCfg.RevocationBasePoint, DoubleTweak: commitmentSecret, WitnessScript: htlcWitnessScript, Output: &wire.TxOut{ PkScript: htlcPkScript, Value: int64(htlc.Amt.ToSatoshis()), }, HashType: txscript.SigHashAll, }, OutPoint: wire.OutPoint{ Hash: commitHash, Index: uint32(htlc.OutputIndex), }, SecondLevelWitnessScript: secondLevelWitnessScript, IsIncoming: htlc.Incoming, }) } // Finally, with all the necessary data constructed, we can create the // BreachRetribution struct which houses all the data necessary to // swiftly bring justice to the cheating remote party. return &BreachRetribution{ ChainHash: chanState.ChainHash, BreachTransaction: revokedSnapshot.CommitTx, BreachHeight: breachHeight, RevokedStateNum: stateNum, PendingHTLCs: revokedSnapshot.Htlcs, LocalOutpoint: ourOutpoint, LocalOutputSignDesc: ourSignDesc, LocalDelay: ourDelay, RemoteOutpoint: theirOutpoint, RemoteOutputSignDesc: theirSignDesc, RemoteDelay: theirDelay, HtlcRetributions: htlcRetributions, KeyRing: keyRing, }, nil } // htlcIsDust determines if an HTLC output is dust or not depending on two // bits: if the HTLC is incoming and if the HTLC will be placed on our // commitment transaction, or theirs. These two pieces of information are // require as we currently used second-level HTLC transactions as off-chain // covenants. Depending on the two bits, we'll either be using a timeout or // success transaction which have different weights. func htlcIsDust(chanType channeldb.ChannelType, incoming, ourCommit bool, feePerKw chainfee.SatPerKWeight, htlcAmt, dustLimit btcutil.Amount) bool { // First we'll determine the fee required for this HTLC based on if this is // an incoming HTLC or not, and also on whose commitment transaction it // will be placed on. var htlcFee btcutil.Amount switch { // If this is an incoming HTLC on our commitment transaction, then the // second-level transaction will be a success transaction. case incoming && ourCommit: htlcFee = HtlcSuccessFee(chanType, feePerKw) // If this is an incoming HTLC on their commitment transaction, then // we'll be using a second-level timeout transaction as they've added // this HTLC. case incoming && !ourCommit: htlcFee = HtlcTimeoutFee(chanType, feePerKw) // If this is an outgoing HTLC on our commitment transaction, then // we'll be using a timeout transaction as we're the sender of the // HTLC. case !incoming && ourCommit: htlcFee = HtlcTimeoutFee(chanType, feePerKw) // If this is an outgoing HTLC on their commitment transaction, then // we'll be using an HTLC success transaction as they're the receiver // of this HTLC. case !incoming && !ourCommit: htlcFee = HtlcSuccessFee(chanType, feePerKw) } return (htlcAmt - htlcFee) < dustLimit } // htlcView represents the "active" HTLCs at a particular point within the // history of the HTLC update log. type htlcView struct { ourUpdates []*PaymentDescriptor theirUpdates []*PaymentDescriptor feePerKw chainfee.SatPerKWeight } // fetchHTLCView returns all the candidate HTLC updates which should be // considered for inclusion within a commitment based on the passed HTLC log // indexes. func (lc *LightningChannel) fetchHTLCView(theirLogIndex, ourLogIndex uint64) *htlcView { var ourHTLCs []*PaymentDescriptor for e := lc.localUpdateLog.Front(); e != nil; e = e.Next() { htlc := e.Value.(*PaymentDescriptor) // This HTLC is active from this point-of-view iff the log // index of the state update is below the specified index in // our update log. if htlc.LogIndex < ourLogIndex { ourHTLCs = append(ourHTLCs, htlc) } } var theirHTLCs []*PaymentDescriptor for e := lc.remoteUpdateLog.Front(); e != nil; e = e.Next() { htlc := e.Value.(*PaymentDescriptor) // If this is an incoming HTLC, then it is only active from // this point-of-view if the index of the HTLC addition in // their log is below the specified view index. if htlc.LogIndex < theirLogIndex { theirHTLCs = append(theirHTLCs, htlc) } } return &htlcView{ ourUpdates: ourHTLCs, theirUpdates: theirHTLCs, } } // fetchCommitmentView returns a populated commitment which expresses the state // of the channel from the point of view of a local or remote chain, evaluating // the HTLC log up to the passed indexes. This function is used to construct // both local and remote commitment transactions in order to sign or verify new // commitment updates. A fully populated commitment is returned which reflects // the proper balances for both sides at this point in the commitment chain. func (lc *LightningChannel) fetchCommitmentView(remoteChain bool, ourLogIndex, ourHtlcIndex, theirLogIndex, theirHtlcIndex uint64, keyRing *CommitmentKeyRing) (*commitment, error) { commitChain := lc.localCommitChain dustLimit := lc.channelState.LocalChanCfg.DustLimit if remoteChain { commitChain = lc.remoteCommitChain dustLimit = lc.channelState.RemoteChanCfg.DustLimit } nextHeight := commitChain.tip().height + 1 // Run through all the HTLCs that will be covered by this transaction // in order to update their commitment addition height, and to adjust // the balances on the commitment transaction accordingly. Note that // these balances will be *before* taking a commitment fee from the // initiator. htlcView := lc.fetchHTLCView(theirLogIndex, ourLogIndex) ourBalance, theirBalance, _, filteredHTLCView, err := lc.computeView( htlcView, remoteChain, true, ) if err != nil { return nil, err } feePerKw := filteredHTLCView.feePerKw // Actually generate unsigned commitment transaction for this view. commitTx, err := lc.commitBuilder.createUnsignedCommitmentTx( ourBalance, theirBalance, !remoteChain, feePerKw, nextHeight, filteredHTLCView, keyRing, ) if err != nil { return nil, err } // We'll assert that there hasn't been a mistake during fee calculation // leading to a fee too low. var totalOut btcutil.Amount for _, txOut := range commitTx.txn.TxOut { totalOut += btcutil.Amount(txOut.Value) } fee := lc.channelState.Capacity - totalOut // Since the transaction is not signed yet, we use the witness weight // used for weight calculation. uTx := btcutil.NewTx(commitTx.txn) weight := blockchain.GetTransactionWeight(uTx) + input.WitnessCommitmentTxWeight effFeeRate := chainfee.SatPerKWeight(fee) * 1000 / chainfee.SatPerKWeight(weight) if effFeeRate < chainfee.AbsoluteFeePerKwFloor { return nil, fmt.Errorf("height=%v, for ChannelPoint(%v) "+ "attempts to create commitment with feerate %v: %v", nextHeight, lc.channelState.FundingOutpoint, effFeeRate, spew.Sdump(commitTx)) } // With the commitment view created, store the resulting balances and // transaction with the other parameters for this height. c := &commitment{ ourBalance: commitTx.ourBalance, theirBalance: commitTx.theirBalance, txn: commitTx.txn, fee: commitTx.fee, ourMessageIndex: ourLogIndex, ourHtlcIndex: ourHtlcIndex, theirMessageIndex: theirLogIndex, theirHtlcIndex: theirHtlcIndex, height: nextHeight, feePerKw: feePerKw, dustLimit: dustLimit, isOurs: !remoteChain, } // In order to ensure _none_ of the HTLC's associated with this new // commitment are mutated, we'll manually copy over each HTLC to its // respective slice. c.outgoingHTLCs = make([]PaymentDescriptor, len(filteredHTLCView.ourUpdates)) for i, htlc := range filteredHTLCView.ourUpdates { c.outgoingHTLCs[i] = *htlc } c.incomingHTLCs = make([]PaymentDescriptor, len(filteredHTLCView.theirUpdates)) for i, htlc := range filteredHTLCView.theirUpdates { c.incomingHTLCs[i] = *htlc } // Finally, we'll populate all the HTLC indexes so we can track the // locations of each HTLC in the commitment state. We pass in the sorted // slice of CLTV deltas in order to properly locate HTLCs that otherwise // have the same payment hash and amount. err = c.populateHtlcIndexes(lc.channelState.ChanType, commitTx.cltvs) if err != nil { return nil, err } return c, nil } func fundingTxIn(chanState *channeldb.OpenChannel) wire.TxIn { return *wire.NewTxIn(&chanState.FundingOutpoint, nil, nil) } // evaluateHTLCView processes all update entries in both HTLC update logs, // producing a final view which is the result of properly applying all adds, // settles, timeouts and fee updates found in both logs. The resulting view // returned reflects the current state of HTLCs within the remote or local // commitment chain, and the current commitment fee rate. // // If mutateState is set to true, then the add height of all added HTLCs // will be set to nextHeight, and the remove height of all removed HTLCs // will be set to nextHeight. This should therefore only be set to true // once for each height, and only in concert with signing a new commitment. // TODO(halseth): return htlcs to mutate instead of mutating inside // method. func (lc *LightningChannel) evaluateHTLCView(view *htlcView, ourBalance, theirBalance *lnwire.MilliSatoshi, nextHeight uint64, remoteChain, mutateState bool) (*htlcView, error) { // We initialize the view's fee rate to the fee rate of the unfiltered // view. If any fee updates are found when evaluating the view, it will // be updated. newView := &htlcView{ feePerKw: view.feePerKw, } // We use two maps, one for the local log and one for the remote log to // keep track of which entries we need to skip when creating the final // htlc view. We skip an entry whenever we find a settle or a timeout // modifying an entry. skipUs := make(map[uint64]struct{}) skipThem := make(map[uint64]struct{}) // fetchParentEntry is a helper method that will fetch the parent of // entry from the corresponding update log. fetchParentEntry := func(entry *PaymentDescriptor, remoteLog bool) (*PaymentDescriptor, error) { var ( updateLog *updateLog logName string ) if remoteLog { updateLog = lc.remoteUpdateLog logName = "remote" } else { updateLog = lc.localUpdateLog logName = "local" } addEntry := updateLog.lookupHtlc(entry.ParentIndex) switch { // We check if the parent entry is not found at this point. // This could happen for old versions of lnd, and we return an // error to gracefully shut down the state machine if such an // entry is still in the logs. case addEntry == nil: return nil, fmt.Errorf("unable to find parent entry "+ "%d in %v update log: %v\nUpdatelog: %v", entry.ParentIndex, logName, newLogClosure(func() string { return spew.Sdump(entry) }), newLogClosure(func() string { return spew.Sdump(updateLog) }), ) // The parent add height should never be zero at this point. If // that's the case we probably forgot to send a new commitment. case remoteChain && addEntry.addCommitHeightRemote == 0: return nil, fmt.Errorf("parent entry %d for update %d "+ "had zero remote add height", entry.ParentIndex, entry.LogIndex) case !remoteChain && addEntry.addCommitHeightLocal == 0: return nil, fmt.Errorf("parent entry %d for update %d "+ "had zero local add height", entry.ParentIndex, entry.LogIndex) } return addEntry, nil } // First we run through non-add entries in both logs, populating the // skip sets and mutating the current chain state (crediting balances, // etc) to reflect the settle/timeout entry encountered. for _, entry := range view.ourUpdates { switch entry.EntryType { // Skip adds for now. They will be processed below. case Add: continue // Process fee updates, updating the current feePerKw. case FeeUpdate: processFeeUpdate( entry, nextHeight, remoteChain, mutateState, newView, ) continue } // If we're settling an inbound HTLC, and it hasn't been // processed yet, then increment our state tracking the total // number of satoshis we've received within the channel. if mutateState && entry.EntryType == Settle && !remoteChain && entry.removeCommitHeightLocal == 0 { lc.channelState.TotalMSatReceived += entry.Amount } addEntry, err := fetchParentEntry(entry, true) if err != nil { return nil, err } skipThem[addEntry.HtlcIndex] = struct{}{} processRemoveEntry(entry, ourBalance, theirBalance, nextHeight, remoteChain, true, mutateState) } for _, entry := range view.theirUpdates { switch entry.EntryType { // Skip adds for now. They will be processed below. case Add: continue // Process fee updates, updating the current feePerKw. case FeeUpdate: processFeeUpdate( entry, nextHeight, remoteChain, mutateState, newView, ) continue } // If the remote party is settling one of our outbound HTLC's, // and it hasn't been processed, yet, the increment our state // tracking the total number of satoshis we've sent within the // channel. if mutateState && entry.EntryType == Settle && !remoteChain && entry.removeCommitHeightLocal == 0 { lc.channelState.TotalMSatSent += entry.Amount } addEntry, err := fetchParentEntry(entry, false) if err != nil { return nil, err } skipUs[addEntry.HtlcIndex] = struct{}{} processRemoveEntry(entry, ourBalance, theirBalance, nextHeight, remoteChain, false, mutateState) } // Next we take a second pass through all the log entries, skipping any // settled HTLCs, and debiting the chain state balance due to any newly // added HTLCs. for _, entry := range view.ourUpdates { isAdd := entry.EntryType == Add if _, ok := skipUs[entry.HtlcIndex]; !isAdd || ok { continue } processAddEntry(entry, ourBalance, theirBalance, nextHeight, remoteChain, false, mutateState) newView.ourUpdates = append(newView.ourUpdates, entry) } for _, entry := range view.theirUpdates { isAdd := entry.EntryType == Add if _, ok := skipThem[entry.HtlcIndex]; !isAdd || ok { continue } processAddEntry(entry, ourBalance, theirBalance, nextHeight, remoteChain, true, mutateState) newView.theirUpdates = append(newView.theirUpdates, entry) } return newView, nil } // processAddEntry evaluates the effect of an add entry within the HTLC log. // If the HTLC hasn't yet been committed in either chain, then the height it // was committed is updated. Keeping track of this inclusion height allows us to // later compact the log once the change is fully committed in both chains. func processAddEntry(htlc *PaymentDescriptor, ourBalance, theirBalance *lnwire.MilliSatoshi, nextHeight uint64, remoteChain bool, isIncoming, mutateState bool) { // If we're evaluating this entry for the remote chain (to create/view // a new commitment), then we'll may be updating the height this entry // was added to the chain. Otherwise, we may be updating the entry's // height w.r.t the local chain. var addHeight *uint64 if remoteChain { addHeight = &htlc.addCommitHeightRemote } else { addHeight = &htlc.addCommitHeightLocal } if *addHeight != 0 { return } if isIncoming { // If this is a new incoming (un-committed) HTLC, then we need // to update their balance accordingly by subtracting the // amount of the HTLC that are funds pending. *theirBalance -= htlc.Amount } else { // Similarly, we need to debit our balance if this is an out // going HTLC to reflect the pending balance. *ourBalance -= htlc.Amount } if mutateState { *addHeight = nextHeight } } // processRemoveEntry processes a log entry which settles or times out a // previously added HTLC. If the removal entry has already been processed, it // is skipped. func processRemoveEntry(htlc *PaymentDescriptor, ourBalance, theirBalance *lnwire.MilliSatoshi, nextHeight uint64, remoteChain bool, isIncoming, mutateState bool) { var removeHeight *uint64 if remoteChain { removeHeight = &htlc.removeCommitHeightRemote } else { removeHeight = &htlc.removeCommitHeightLocal } // Ignore any removal entries which have already been processed. if *removeHeight != 0 { return } switch { // If an incoming HTLC is being settled, then this means that we've // received the preimage either from another subsystem, or the // upstream peer in the route. Therefore, we increase our balance by // the HTLC amount. case isIncoming && htlc.EntryType == Settle: *ourBalance += htlc.Amount // Otherwise, this HTLC is being failed out, therefore the value of the // HTLC should return to the remote party. case isIncoming && (htlc.EntryType == Fail || htlc.EntryType == MalformedFail): *theirBalance += htlc.Amount // If an outgoing HTLC is being settled, then this means that the // downstream party resented the preimage or learned of it via a // downstream peer. In either case, we credit their settled value with // the value of the HTLC. case !isIncoming && htlc.EntryType == Settle: *theirBalance += htlc.Amount // Otherwise, one of our outgoing HTLC's has timed out, so the value of // the HTLC should be returned to our settled balance. case !isIncoming && (htlc.EntryType == Fail || htlc.EntryType == MalformedFail): *ourBalance += htlc.Amount } if mutateState { *removeHeight = nextHeight } } // processFeeUpdate processes a log update that updates the current commitment // fee. func processFeeUpdate(feeUpdate *PaymentDescriptor, nextHeight uint64, remoteChain bool, mutateState bool, view *htlcView) { // Fee updates are applied for all commitments after they are // sent/received, so we consider them being added and removed at the // same height. var addHeight *uint64 var removeHeight *uint64 if remoteChain { addHeight = &feeUpdate.addCommitHeightRemote removeHeight = &feeUpdate.removeCommitHeightRemote } else { addHeight = &feeUpdate.addCommitHeightLocal removeHeight = &feeUpdate.removeCommitHeightLocal } if *addHeight != 0 { return } // If the update wasn't already locked in, update the current fee rate // to reflect this update. view.feePerKw = chainfee.SatPerKWeight(feeUpdate.Amount.ToSatoshis()) if mutateState { *addHeight = nextHeight *removeHeight = nextHeight } } // generateRemoteHtlcSigJobs generates a series of HTLC signature jobs for the // sig pool, along with a channel that if closed, will cancel any jobs after // they have been submitted to the sigPool. This method is to be used when // generating a new commitment for the remote party. The jobs generated by the // signature can be submitted to the sigPool to generate all the signatures // asynchronously and in parallel. func genRemoteHtlcSigJobs(keyRing *CommitmentKeyRing, chanType channeldb.ChannelType, localChanCfg, remoteChanCfg *channeldb.ChannelConfig, remoteCommitView *commitment) ([]SignJob, chan struct{}, error) { txHash := remoteCommitView.txn.TxHash() dustLimit := remoteChanCfg.DustLimit feePerKw := remoteCommitView.feePerKw sigHashType := HtlcSigHashType(chanType) // With the keys generated, we'll make a slice with enough capacity to // hold potentially all the HTLCs. The actual slice may be a bit // smaller (than its total capacity) and some HTLCs may be dust. numSigs := (len(remoteCommitView.incomingHTLCs) + len(remoteCommitView.outgoingHTLCs)) sigBatch := make([]SignJob, 0, numSigs) var err error cancelChan := make(chan struct{}) // For each outgoing and incoming HTLC, if the HTLC isn't considered a // dust output after taking into account second-level HTLC fees, then a // sigJob will be generated and appended to the current batch. for _, htlc := range remoteCommitView.incomingHTLCs { if htlcIsDust( chanType, true, false, feePerKw, htlc.Amount.ToSatoshis(), dustLimit, ) { continue } // If the HTLC isn't dust, then we'll create an empty sign job // to add to the batch momentarily. sigJob := SignJob{} sigJob.Cancel = cancelChan sigJob.Resp = make(chan SignJobResp, 1) // As this is an incoming HTLC and we're sinning the commitment // transaction of the remote node, we'll need to generate an // HTLC timeout transaction for them. The output of the timeout // transaction needs to account for fees, so we'll compute the // required fee and output now. htlcFee := HtlcTimeoutFee(chanType, feePerKw) outputAmt := htlc.Amount.ToSatoshis() - htlcFee // With the fee calculate, we can properly create the HTLC // timeout transaction using the HTLC amount minus the fee. op := wire.OutPoint{ Hash: txHash, Index: uint32(htlc.remoteOutputIndex), } sigJob.Tx, err = createHtlcTimeoutTx( chanType, op, outputAmt, htlc.Timeout, uint32(remoteChanCfg.CsvDelay), keyRing.RevocationKey, keyRing.ToLocalKey, ) if err != nil { return nil, nil, err } // Finally, we'll generate a sign descriptor to generate a // signature to give to the remote party for this commitment // transaction. Note we use the raw HTLC amount. sigJob.SignDesc = input.SignDescriptor{ KeyDesc: localChanCfg.HtlcBasePoint, SingleTweak: keyRing.LocalHtlcKeyTweak, WitnessScript: htlc.theirWitnessScript, Output: &wire.TxOut{ Value: int64(htlc.Amount.ToSatoshis()), }, HashType: sigHashType, SigHashes: txscript.NewTxSigHashes(sigJob.Tx), InputIndex: 0, } sigJob.OutputIndex = htlc.remoteOutputIndex sigBatch = append(sigBatch, sigJob) } for _, htlc := range remoteCommitView.outgoingHTLCs { if htlcIsDust( chanType, false, false, feePerKw, htlc.Amount.ToSatoshis(), dustLimit, ) { continue } sigJob := SignJob{} sigJob.Cancel = cancelChan sigJob.Resp = make(chan SignJobResp, 1) // As this is an outgoing HTLC and we're signing the commitment // transaction of the remote node, we'll need to generate an // HTLC success transaction for them. The output of the timeout // transaction needs to account for fees, so we'll compute the // required fee and output now. htlcFee := HtlcSuccessFee(chanType, feePerKw) outputAmt := htlc.Amount.ToSatoshis() - htlcFee // With the proper output amount calculated, we can now // generate the success transaction using the remote party's // CSV delay. op := wire.OutPoint{ Hash: txHash, Index: uint32(htlc.remoteOutputIndex), } sigJob.Tx, err = createHtlcSuccessTx( chanType, op, outputAmt, uint32(remoteChanCfg.CsvDelay), keyRing.RevocationKey, keyRing.ToLocalKey, ) if err != nil { return nil, nil, err } // Finally, we'll generate a sign descriptor to generate a // signature to give to the remote party for this commitment // transaction. Note we use the raw HTLC amount. sigJob.SignDesc = input.SignDescriptor{ KeyDesc: localChanCfg.HtlcBasePoint, SingleTweak: keyRing.LocalHtlcKeyTweak, WitnessScript: htlc.theirWitnessScript, Output: &wire.TxOut{ Value: int64(htlc.Amount.ToSatoshis()), }, HashType: sigHashType, SigHashes: txscript.NewTxSigHashes(sigJob.Tx), InputIndex: 0, } sigJob.OutputIndex = htlc.remoteOutputIndex sigBatch = append(sigBatch, sigJob) } return sigBatch, cancelChan, nil } // createCommitDiff will create a commit diff given a new pending commitment // for the remote party and the necessary signatures for the remote party to // validate this new state. This function is called right before sending the // new commitment to the remote party. The commit diff returned contains all // information necessary for retransmission. func (lc *LightningChannel) createCommitDiff( newCommit *commitment, commitSig lnwire.Sig, htlcSigs []lnwire.Sig) (*channeldb.CommitDiff, error) { // First, we need to convert the funding outpoint into the ID that's // used on the wire to identify this channel. We'll use this shortly // when recording the exact CommitSig message that we'll be sending // out. chanID := lnwire.NewChanIDFromOutPoint(&lc.channelState.FundingOutpoint) var ( logUpdates []channeldb.LogUpdate ackAddRefs []channeldb.AddRef settleFailRefs []channeldb.SettleFailRef openCircuitKeys []channeldb.CircuitKey closedCircuitKeys []channeldb.CircuitKey ) // We'll now run through our local update log to locate the items which // were only just committed within this pending state. This will be the // set of items we need to retransmit if we reconnect and find that // they didn't process this new state fully. for e := lc.localUpdateLog.Front(); e != nil; e = e.Next() { pd := e.Value.(*PaymentDescriptor) // If this entry wasn't committed at the exact height of this // remote commitment, then we'll skip it as it was already // lingering in the log. if pd.addCommitHeightRemote != newCommit.height && pd.removeCommitHeightRemote != newCommit.height { continue } // Knowing that this update is a part of this new commitment, // we'll create a log update and not its index in the log so // we can later restore it properly if a restart occurs. logUpdate := channeldb.LogUpdate{ LogIndex: pd.LogIndex, } // We'll map the type of the PaymentDescriptor to one of the // four messages that it corresponds to. With this set of // messages obtained, we can simply read from disk and re-send // them in the case of a needed channel sync. switch pd.EntryType { case Add: htlc := &lnwire.UpdateAddHTLC{ ChanID: chanID, ID: pd.HtlcIndex, Amount: pd.Amount, Expiry: pd.Timeout, PaymentHash: pd.RHash, } copy(htlc.OnionBlob[:], pd.OnionBlob) logUpdate.UpdateMsg = htlc // Gather any references for circuits opened by this Add // HTLC. if pd.OpenCircuitKey != nil { openCircuitKeys = append(openCircuitKeys, *pd.OpenCircuitKey) } logUpdates = append(logUpdates, logUpdate) // Short circuit here since an add should not have any // of the references gathered in the case of settles, // fails or malformed fails. continue case Settle: logUpdate.UpdateMsg = &lnwire.UpdateFulfillHTLC{ ChanID: chanID, ID: pd.ParentIndex, PaymentPreimage: pd.RPreimage, } case Fail: logUpdate.UpdateMsg = &lnwire.UpdateFailHTLC{ ChanID: chanID, ID: pd.ParentIndex, Reason: pd.FailReason, } case MalformedFail: logUpdate.UpdateMsg = &lnwire.UpdateFailMalformedHTLC{ ChanID: chanID, ID: pd.ParentIndex, ShaOnionBlob: pd.ShaOnionBlob, FailureCode: pd.FailCode, } case FeeUpdate: // The Amount field holds the feerate denominated in // msat. Since feerates are only denominated in sat/kw, // we can convert it without loss of precision. logUpdate.UpdateMsg = &lnwire.UpdateFee{ ChanID: chanID, FeePerKw: uint32(pd.Amount.ToSatoshis()), } } // Gather the fwd pkg references from any settle or fail // packets, if they exist. if pd.SourceRef != nil { ackAddRefs = append(ackAddRefs, *pd.SourceRef) } if pd.DestRef != nil { settleFailRefs = append(settleFailRefs, *pd.DestRef) } if pd.ClosedCircuitKey != nil { closedCircuitKeys = append(closedCircuitKeys, *pd.ClosedCircuitKey) } logUpdates = append(logUpdates, logUpdate) } // With the set of log updates mapped into wire messages, we'll now // convert the in-memory commit into a format suitable for writing to // disk. diskCommit := newCommit.toDiskCommit(false) return &channeldb.CommitDiff{ Commitment: *diskCommit, CommitSig: &lnwire.CommitSig{ ChanID: lnwire.NewChanIDFromOutPoint( &lc.channelState.FundingOutpoint, ), CommitSig: commitSig, HtlcSigs: htlcSigs, }, LogUpdates: logUpdates, OpenedCircuitKeys: openCircuitKeys, ClosedCircuitKeys: closedCircuitKeys, AddAcks: ackAddRefs, SettleFailAcks: settleFailRefs, }, nil } // getUnsignedAckedUpdates returns all remote log updates that we haven't // signed for yet ourselves. func (lc *LightningChannel) getUnsignedAckedUpdates() []channeldb.LogUpdate { // First, we need to convert the funding outpoint into the ID that's // used on the wire to identify this channel. chanID := lnwire.NewChanIDFromOutPoint(&lc.channelState.FundingOutpoint) // Fetch the last remote update that we have signed for. lastRemoteCommitted := lc.remoteCommitChain.tip().theirMessageIndex // Fetch the last remote update that we have acked. lastLocalCommitted := lc.localCommitChain.tail().theirMessageIndex // We'll now run through the remote update log to locate the items that // we haven't signed for yet. This will be the set of items we need to // restore if we reconnect in order to produce the signature that the // remote party expects. var logUpdates []channeldb.LogUpdate for e := lc.remoteUpdateLog.Front(); e != nil; e = e.Next() { pd := e.Value.(*PaymentDescriptor) // Skip all remote updates that we have already included in our // commit chain. if pd.LogIndex < lastRemoteCommitted { continue } // Skip all remote updates that we haven't acked yet. At the // moment this function is called, there shouldn't be any, but // we check it anyway to make this function more generally // usable. if pd.LogIndex >= lastLocalCommitted { continue } logUpdate := channeldb.LogUpdate{ LogIndex: pd.LogIndex, } // We'll map the type of the PaymentDescriptor to one of the // four messages that it corresponds to. switch pd.EntryType { case Add: htlc := &lnwire.UpdateAddHTLC{ ChanID: chanID, ID: pd.HtlcIndex, Amount: pd.Amount, Expiry: pd.Timeout, PaymentHash: pd.RHash, } copy(htlc.OnionBlob[:], pd.OnionBlob) logUpdate.UpdateMsg = htlc case Settle: logUpdate.UpdateMsg = &lnwire.UpdateFulfillHTLC{ ChanID: chanID, ID: pd.ParentIndex, PaymentPreimage: pd.RPreimage, } case Fail: logUpdate.UpdateMsg = &lnwire.UpdateFailHTLC{ ChanID: chanID, ID: pd.ParentIndex, Reason: pd.FailReason, } case MalformedFail: logUpdate.UpdateMsg = &lnwire.UpdateFailMalformedHTLC{ ChanID: chanID, ID: pd.ParentIndex, ShaOnionBlob: pd.ShaOnionBlob, FailureCode: pd.FailCode, } case FeeUpdate: // The Amount field holds the feerate denominated in // msat. Since feerates are only denominated in sat/kw, // we can convert it without loss of precision. logUpdate.UpdateMsg = &lnwire.UpdateFee{ ChanID: chanID, FeePerKw: uint32(pd.Amount.ToSatoshis()), } } logUpdates = append(logUpdates, logUpdate) } return logUpdates } // validateCommitmentSanity is used to validate the current state of the // commitment transaction in terms of the ChannelConstraints that we and our // remote peer agreed upon during the funding workflow. The // predict[Our|Their]Add should parameters should be set to a valid // PaymentDescriptor if we are validating in the state when adding a new HTLC, // or nil otherwise. func (lc *LightningChannel) validateCommitmentSanity(theirLogCounter, ourLogCounter uint64, remoteChain bool, predictOurAdd, predictTheirAdd *PaymentDescriptor) error { // Fetch all updates not committed. view := lc.fetchHTLCView(theirLogCounter, ourLogCounter) // If we are checking if we can add a new HTLC, we add this to the // appropriate update log, in order to validate the sanity of the // commitment resulting from _actually adding_ this HTLC to the state. if predictOurAdd != nil { view.ourUpdates = append(view.ourUpdates, predictOurAdd) } if predictTheirAdd != nil { view.theirUpdates = append(view.theirUpdates, predictTheirAdd) } commitChain := lc.localCommitChain if remoteChain { commitChain = lc.remoteCommitChain } ourInitialBalance := commitChain.tip().ourBalance theirInitialBalance := commitChain.tip().theirBalance ourBalance, theirBalance, commitWeight, filteredView, err := lc.computeView( view, remoteChain, false, ) if err != nil { return err } feePerKw := filteredView.feePerKw // Calculate the commitment fee, and subtract it from the initiator's // balance. commitFee := feePerKw.FeeForWeight(commitWeight) commitFeeMsat := lnwire.NewMSatFromSatoshis(commitFee) if lc.channelState.IsInitiator { ourBalance -= commitFeeMsat } else { theirBalance -= commitFeeMsat } // As a quick sanity check, we'll ensure that if we interpret the // balances as signed integers, they haven't dipped down below zero. If // they have, then this indicates that a party doesn't have sufficient // balance to satisfy the final evaluated HTLC's. switch { case int64(ourBalance) < 0: return ErrBelowChanReserve case int64(theirBalance) < 0: return ErrBelowChanReserve } // Ensure that the fee being applied is enough to be relayed across the // network in a reasonable time frame. if feePerKw < chainfee.FeePerKwFloor { return fmt.Errorf("commitment fee per kw %v below fee floor %v", feePerKw, chainfee.FeePerKwFloor) } // If the added HTLCs will decrease the balance, make sure they won't // dip the local and remote balances below the channel reserves. switch { case ourBalance < ourInitialBalance && ourBalance < lnwire.NewMSatFromSatoshis( lc.channelState.LocalChanCfg.ChanReserve): return ErrBelowChanReserve case theirBalance < theirInitialBalance && theirBalance < lnwire.NewMSatFromSatoshis( lc.channelState.RemoteChanCfg.ChanReserve): return ErrBelowChanReserve } // validateUpdates take a set of updates, and validates them against // the passed channel constraints. validateUpdates := func(updates []*PaymentDescriptor, constraints *channeldb.ChannelConfig) error { // We keep track of the number of HTLCs in flight for the // commitment, and the amount in flight. var numInFlight uint16 var amtInFlight lnwire.MilliSatoshi // Go through all updates, checking that they don't violate the // channel constraints. for _, entry := range updates { if entry.EntryType == Add { // An HTLC is being added, this will add to the // number and amount in flight. amtInFlight += entry.Amount numInFlight++ // Check that the HTLC amount is positive. if entry.Amount == 0 { return ErrInvalidHTLCAmt } // Check that the value of the HTLC they added // is above our minimum. if entry.Amount < constraints.MinHTLC { return ErrBelowMinHTLC } } } // Now that we know the total value of added HTLCs, we check // that this satisfy the MaxPendingAmont contraint. if amtInFlight > constraints.MaxPendingAmount { return ErrMaxPendingAmount } // In this step, we verify that the total number of active // HTLCs does not exceed the constraint of the maximum number // of HTLCs in flight. if numInFlight > constraints.MaxAcceptedHtlcs { return ErrMaxHTLCNumber } return nil } // First check that the remote updates won't violate it's channel // constraints. err = validateUpdates( filteredView.theirUpdates, &lc.channelState.RemoteChanCfg, ) if err != nil { return err } // Secondly check that our updates won't violate our channel // constraints. err = validateUpdates( filteredView.ourUpdates, &lc.channelState.LocalChanCfg, ) if err != nil { return err } return nil } // SignNextCommitment signs a new commitment which includes any previous // unsettled HTLCs, any new HTLCs, and any modifications to prior HTLCs // committed in previous commitment updates. Signing a new commitment // decrements the available revocation window by 1. After a successful method // call, the remote party's commitment chain is extended by a new commitment // which includes all updates to the HTLC log prior to this method invocation. // The first return parameter is the signature for the commitment transaction // itself, while the second parameter is a slice of all HTLC signatures (if // any). The HTLC signatures are sorted according to the BIP 69 order of the // HTLC's on the commitment transaction. Finally, the new set of pending HTLCs // for the remote party's commitment are also returned. func (lc *LightningChannel) SignNextCommitment() (lnwire.Sig, []lnwire.Sig, []channeldb.HTLC, error) { lc.Lock() defer lc.Unlock() // Check for empty commit sig. This should never happen, but we don't // dare to fail hard here. We assume peers can deal with the empty sig // and continue channel operation. We log an error so that the bug // causing this can be tracked down. if !lc.oweCommitment(true) { lc.log.Errorf("sending empty commit sig") } var ( sig lnwire.Sig htlcSigs []lnwire.Sig ) // If we're awaiting for an ACK to a commitment signature, or if we // don't yet have the initial next revocation point of the remote // party, then we're unable to create new states. Each time we create a // new state, we consume a prior revocation point. commitPoint := lc.channelState.RemoteNextRevocation if lc.remoteCommitChain.hasUnackedCommitment() || commitPoint == nil { return sig, htlcSigs, nil, ErrNoWindow } // Determine the last update on the remote log that has been locked in. remoteACKedIndex := lc.localCommitChain.tail().theirMessageIndex remoteHtlcIndex := lc.localCommitChain.tail().theirHtlcIndex // Before we extend this new commitment to the remote commitment chain, // ensure that we aren't violating any of the constraints the remote // party set up when we initially set up the channel. If we are, then // we'll abort this state transition. err := lc.validateCommitmentSanity( remoteACKedIndex, lc.localUpdateLog.logIndex, true, nil, nil, ) if err != nil { return sig, htlcSigs, nil, err } // Grab the next commitment point for the remote party. This will be // used within fetchCommitmentView to derive all the keys necessary to // construct the commitment state. keyRing := DeriveCommitmentKeys( commitPoint, false, lc.channelState.ChanType, &lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg, ) // Create a new commitment view which will calculate the evaluated // state of the remote node's new commitment including our latest added // HTLCs. The view includes the latest balances for both sides on the // remote node's chain, and also update the addition height of any new // HTLC log entries. When we creating a new remote view, we include // _all_ of our changes (pending or committed) but only the remote // node's changes up to the last change we've ACK'd. newCommitView, err := lc.fetchCommitmentView( true, lc.localUpdateLog.logIndex, lc.localUpdateLog.htlcCounter, remoteACKedIndex, remoteHtlcIndex, keyRing, ) if err != nil { return sig, htlcSigs, nil, err } lc.log.Tracef("extending remote chain to height %v, "+ "local_log=%v, remote_log=%v", newCommitView.height, lc.localUpdateLog.logIndex, remoteACKedIndex) lc.log.Tracef("remote chain: our_balance=%v, "+ "their_balance=%v, commit_tx: %v", newCommitView.ourBalance, newCommitView.theirBalance, newLogClosure(func() string { return spew.Sdump(newCommitView.txn) }), ) // With the commitment view constructed, if there are any HTLC's, we'll // need to generate signatures of each of them for the remote party's // commitment state. We do so in two phases: first we generate and // submit the set of signature jobs to the worker pool. sigBatch, cancelChan, err := genRemoteHtlcSigJobs( keyRing, lc.channelState.ChanType, &lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg, newCommitView, ) if err != nil { return sig, htlcSigs, nil, err } lc.sigPool.SubmitSignBatch(sigBatch) // While the jobs are being carried out, we'll Sign their version of // the new commitment transaction while we're waiting for the rest of // the HTLC signatures to be processed. lc.signDesc.SigHashes = txscript.NewTxSigHashes(newCommitView.txn) rawSig, err := lc.Signer.SignOutputRaw(newCommitView.txn, lc.signDesc) if err != nil { close(cancelChan) return sig, htlcSigs, nil, err } sig, err = lnwire.NewSigFromSignature(rawSig) if err != nil { close(cancelChan) return sig, htlcSigs, nil, err } // We'll need to send over the signatures to the remote party in the // order as they appear on the commitment transaction after BIP 69 // sorting. sort.Slice(sigBatch, func(i, j int) bool { return sigBatch[i].OutputIndex < sigBatch[j].OutputIndex }) // With the jobs sorted, we'll now iterate through all the responses to // gather each of the signatures in order. htlcSigs = make([]lnwire.Sig, 0, len(sigBatch)) for _, htlcSigJob := range sigBatch { jobResp := <-htlcSigJob.Resp // If an error occurred, then we'll cancel any other active // jobs. if jobResp.Err != nil { close(cancelChan) return sig, htlcSigs, nil, err } htlcSigs = append(htlcSigs, jobResp.Sig) } // As we're about to proposer a new commitment state for the remote // party, we'll write this pending state to disk before we exit, so we // can retransmit it if necessary. commitDiff, err := lc.createCommitDiff(newCommitView, sig, htlcSigs) if err != nil { return sig, htlcSigs, nil, err } err = lc.channelState.AppendRemoteCommitChain(commitDiff) if err != nil { return sig, htlcSigs, nil, err } // TODO(roasbeef): check that one eclair bug // * need to retransmit on first state still? // * after initial reconnect // Extend the remote commitment chain by one with the addition of our // latest commitment update. lc.remoteCommitChain.addCommitment(newCommitView) return sig, htlcSigs, commitDiff.Commitment.Htlcs, nil } // ProcessChanSyncMsg processes a ChannelReestablish message sent by the remote // connection upon re establishment of our connection with them. This method // will return a single message if we are currently out of sync, otherwise a // nil lnwire.Message will be returned. If it is decided that our level of // de-synchronization is irreconcilable, then an error indicating the issue // will be returned. In this case that an error is returned, the channel should // be force closed, as we cannot continue updates. // // One of two message sets will be returned: // // * CommitSig+Updates: if we have a pending remote commit which they claim to // have not received // * RevokeAndAck: if we sent a revocation message that they claim to have // not received // // If we detect a scenario where we need to send a CommitSig+Updates, this // method also returns two sets channeldb.CircuitKeys identifying the circuits // that were opened and closed, respectively, as a result of signing the // previous commitment txn. This allows the link to clear its mailbox of those // circuits in case they are still in memory, and ensure the switch's circuit // map has been updated by deleting the closed circuits. func (lc *LightningChannel) ProcessChanSyncMsg( msg *lnwire.ChannelReestablish) ([]lnwire.Message, []channeldb.CircuitKey, []channeldb.CircuitKey, error) { // Now we'll examine the state we have, vs what was contained in the // chain sync message. If we're de-synchronized, then we'll send a // batch of messages which when applied will kick start the chain // resync. var ( updates []lnwire.Message openedCircuits []channeldb.CircuitKey closedCircuits []channeldb.CircuitKey ) // If the remote party included the optional fields, then we'll verify // their correctness first, as it will influence our decisions below. hasRecoveryOptions := msg.LocalUnrevokedCommitPoint != nil if hasRecoveryOptions && msg.RemoteCommitTailHeight != 0 { // We'll check that they've really sent a valid commit // secret from our shachain for our prior height, but only if // this isn't the first state. heightSecret, err := lc.channelState.RevocationProducer.AtIndex( msg.RemoteCommitTailHeight - 1, ) if err != nil { return nil, nil, nil, err } commitSecretCorrect := bytes.Equal( heightSecret[:], msg.LastRemoteCommitSecret[:], ) // If the commit secret they sent is incorrect then we'll fail // the channel as the remote node has an inconsistent state. if !commitSecretCorrect { // In this case, we'll return an error to indicate the // remote node sent us the wrong values. This will let // the caller act accordingly. lc.log.Errorf("sync failed: remote provided invalid " + "commit secret!") return nil, nil, nil, ErrInvalidLastCommitSecret } } // If we detect that this is is a restored channel, then we can skip a // portion of the verification, as we already know that we're unable to // proceed with any updates. isRestoredChan := lc.channelState.HasChanStatus( channeldb.ChanStatusRestored, ) // Take note of our current commit chain heights before we begin adding // more to them. var ( localTailHeight = lc.localCommitChain.tail().height remoteTailHeight = lc.remoteCommitChain.tail().height remoteTipHeight = lc.remoteCommitChain.tip().height ) // We'll now check that their view of our local chain is up-to-date. // This means checking that what their view of our local chain tail // height is what they believe. Note that the tail and tip height will // always be the same for the local chain at this stage, as we won't // store any received commitment to disk before it is ACKed. switch { // If their reported height for our local chain tail is ahead of our // view, then we're behind! case msg.RemoteCommitTailHeight > localTailHeight || isRestoredChan: lc.log.Errorf("sync failed with local data loss: remote "+ "believes our tail height is %v, while we have %v!", msg.RemoteCommitTailHeight, localTailHeight) if isRestoredChan { lc.log.Warnf("detected restored triggering DLP") } // We must check that we had recovery options to ensure the // commitment secret matched up, and the remote is just not // lying about its height. if !hasRecoveryOptions { // At this point we the remote is either lying about // its height, or we are actually behind but the remote // doesn't support data loss protection. In either case // it is not safe for us to keep using the channel, so // we mark it borked and fail the channel. lc.log.Errorf("sync failed: local data loss, but no " + "recovery option.") return nil, nil, nil, ErrCannotSyncCommitChains } // In this case, we've likely lost data and shouldn't proceed // with channel updates. return nil, nil, nil, &ErrCommitSyncLocalDataLoss{ ChannelPoint: lc.channelState.FundingOutpoint, CommitPoint: msg.LocalUnrevokedCommitPoint, } // If the height of our commitment chain reported by the remote party // is behind our view of the chain, then they probably lost some state, // and we'll force close the channel. case msg.RemoteCommitTailHeight+1 < localTailHeight: lc.log.Errorf("sync failed: remote believes our tail height is "+ "%v, while we have %v!", msg.RemoteCommitTailHeight, localTailHeight) return nil, nil, nil, ErrCommitSyncRemoteDataLoss // Their view of our commit chain is consistent with our view. case msg.RemoteCommitTailHeight == localTailHeight: // In sync, don't have to do anything. // We owe them a revocation if the tail of our current commitment chain // is one greater than what they _think_ our commitment tail is. In // this case we'll re-send the last revocation message that we sent. // This will be the revocation message for our prior chain tail. case msg.RemoteCommitTailHeight+1 == localTailHeight: lc.log.Debugf("sync: remote believes our tail height is %v, "+ "while we have %v, we owe them a revocation", msg.RemoteCommitTailHeight, localTailHeight) revocationMsg, err := lc.generateRevocation( localTailHeight - 1, ) if err != nil { return nil, nil, nil, err } updates = append(updates, revocationMsg) // Next, as a precaution, we'll check a special edge case. If // they initiated a state transition, we sent the revocation, // but died before the signature was sent. We re-transmit our // revocation, but also initiate a state transition to re-sync // them. if lc.OweCommitment(true) { commitSig, htlcSigs, _, err := lc.SignNextCommitment() switch { // If we signed this state, then we'll accumulate // another update to send over. case err == nil: updates = append(updates, &lnwire.CommitSig{ ChanID: lnwire.NewChanIDFromOutPoint( &lc.channelState.FundingOutpoint, ), CommitSig: commitSig, HtlcSigs: htlcSigs, }) // If we get a failure due to not knowing their next // point, then this is fine as they'll either send // FundingLocked, or revoke their next state to allow // us to continue forwards. case err == ErrNoWindow: // Otherwise, this is an error and we'll treat it as // such. default: return nil, nil, nil, err } } // There should be no other possible states. default: lc.log.Errorf("sync failed: remote believes our tail height is "+ "%v, while we have %v!", msg.RemoteCommitTailHeight, localTailHeight) return nil, nil, nil, ErrCannotSyncCommitChains } // Now check if our view of the remote chain is consistent with what // they tell us. switch { // The remote's view of what their next commit height is 2+ states // ahead of us, we most likely lost data, or the remote is trying to // trick us. Since we have no way of verifying whether they are lying // or not, we will fail the channel, but should not force close it // automatically. case msg.NextLocalCommitHeight > remoteTipHeight+1: lc.log.Errorf("sync failed: remote's next commit height is %v, "+ "while we believe it is %v!", msg.NextLocalCommitHeight, remoteTipHeight) return nil, nil, nil, ErrCannotSyncCommitChains // They are waiting for a state they have already ACKed. case msg.NextLocalCommitHeight <= remoteTailHeight: lc.log.Errorf("sync failed: remote's next commit height is %v, "+ "while we believe it is %v!", msg.NextLocalCommitHeight, remoteTipHeight) // They previously ACKed our current tail, and now they are // waiting for it. They probably lost state. return nil, nil, nil, ErrCommitSyncRemoteDataLoss // They have received our latest commitment, life is good. case msg.NextLocalCommitHeight == remoteTipHeight+1: // We owe them a commitment if the tip of their chain (from our Pov) is // equal to what they think their next commit height should be. We'll // re-send all the updates necessary to recreate this state, along // with the commit sig. case msg.NextLocalCommitHeight == remoteTipHeight: lc.log.Debugf("sync: remote's next commit height is %v, while "+ "we believe it is %v, we owe them a commitment", msg.NextLocalCommitHeight, remoteTipHeight) // Grab the current remote chain tip from the database. This // commit diff contains all the information required to re-sync // our states. commitDiff, err := lc.channelState.RemoteCommitChainTip() if err != nil { return nil, nil, nil, err } // Next, we'll need to send over any updates we sent as part of // this new proposed commitment state. for _, logUpdate := range commitDiff.LogUpdates { updates = append(updates, logUpdate.UpdateMsg) } // With the batch of updates accumulated, we'll now re-send the // original CommitSig message required to re-sync their remote // commitment chain with our local version of their chain. updates = append(updates, commitDiff.CommitSig) openedCircuits = commitDiff.OpenedCircuitKeys closedCircuits = commitDiff.ClosedCircuitKeys // There should be no other possible states as long as the commit chain // can have at most two elements. If that's the case, something is // wrong. default: lc.log.Errorf("sync failed: remote's next commit height is %v, "+ "while we believe it is %v!", msg.NextLocalCommitHeight, remoteTipHeight) return nil, nil, nil, ErrCannotSyncCommitChains } // If we didn't have recovery options, then the final check cannot be // performed, and we'll return early. if !hasRecoveryOptions { return updates, openedCircuits, closedCircuits, nil } // At this point we have determined that either the commit heights are // in sync, or that we are in a state we can recover from. As a final // check, we ensure that the commitment point sent to us by the remote // is valid. var commitPoint *btcec.PublicKey switch { // If their height is one beyond what we know their current height to // be, then we need to compare their current unrevoked commitment point // as that's what they should send. case msg.NextLocalCommitHeight == remoteTailHeight+1: commitPoint = lc.channelState.RemoteCurrentRevocation // Alternatively, if their height is two beyond what we know their best // height to be, then they're holding onto two commitments, and the // highest unrevoked point is their next revocation. // // TODO(roasbeef): verify this in the spec... case msg.NextLocalCommitHeight == remoteTailHeight+2: commitPoint = lc.channelState.RemoteNextRevocation } // Only if this is a tweakless channel will we attempt to verify the // commitment point, as otherwise it has no validity requirements. tweakless := lc.channelState.ChanType.IsTweakless() if !tweakless && commitPoint != nil && !commitPoint.IsEqual(msg.LocalUnrevokedCommitPoint) { lc.log.Errorf("sync failed: remote sent invalid commit point "+ "for height %v!", msg.NextLocalCommitHeight) return nil, nil, nil, ErrInvalidLocalUnrevokedCommitPoint } return updates, openedCircuits, closedCircuits, nil } // computeView takes the given htlcView, and calculates the balances, filtered // view (settling unsettled HTLCs), commitment weight and feePerKw, after // applying the HTLCs to the latest commitment. The returned balances are the // balances *before* subtracting the commitment fee from the initiator's // balance. // // If the updateState boolean is set true, the add and remove heights of the // HTLCs will be set to the next commitment height. func (lc *LightningChannel) computeView(view *htlcView, remoteChain bool, updateState bool) (lnwire.MilliSatoshi, lnwire.MilliSatoshi, int64, *htlcView, error) { commitChain := lc.localCommitChain dustLimit := lc.channelState.LocalChanCfg.DustLimit if remoteChain { commitChain = lc.remoteCommitChain dustLimit = lc.channelState.RemoteChanCfg.DustLimit } // Since the fetched htlc view will include all updates added after the // last committed state, we start with the balances reflecting that // state. ourBalance := commitChain.tip().ourBalance theirBalance := commitChain.tip().theirBalance // Add the fee from the previous commitment state back to the // initiator's balance, so that the fee can be recalculated and // re-applied in case fee estimation parameters have changed or the // number of outstanding HTLCs has changed. if lc.channelState.IsInitiator { ourBalance += lnwire.NewMSatFromSatoshis( commitChain.tip().fee) } else if !lc.channelState.IsInitiator { theirBalance += lnwire.NewMSatFromSatoshis( commitChain.tip().fee) } nextHeight := commitChain.tip().height + 1 // Initiate feePerKw to the last committed fee for this chain as we'll // need this to determine which HTLCs are dust, and also the final fee // rate. view.feePerKw = commitChain.tip().feePerKw // We evaluate the view at this stage, meaning settled and failed HTLCs // will remove their corresponding added HTLCs. The resulting filtered // view will only have Add entries left, making it easy to compare the // channel constraints to the final commitment state. If any fee // updates are found in the logs, the commitment fee rate should be // changed, so we'll also set the feePerKw to this new value. filteredHTLCView, err := lc.evaluateHTLCView(view, &ourBalance, &theirBalance, nextHeight, remoteChain, updateState) if err != nil { return 0, 0, 0, nil, err } feePerKw := filteredHTLCView.feePerKw // Now go through all HTLCs at this stage, to calculate the total // weight, needed to calculate the transaction fee. var totalHtlcWeight int64 for _, htlc := range filteredHTLCView.ourUpdates { if htlcIsDust( lc.channelState.ChanType, remoteChain, !remoteChain, feePerKw, htlc.Amount.ToSatoshis(), dustLimit, ) { continue } totalHtlcWeight += input.HTLCWeight } for _, htlc := range filteredHTLCView.theirUpdates { if htlcIsDust( lc.channelState.ChanType, !remoteChain, !remoteChain, feePerKw, htlc.Amount.ToSatoshis(), dustLimit, ) { continue } totalHtlcWeight += input.HTLCWeight } totalCommitWeight := CommitWeight(lc.channelState.ChanType) + totalHtlcWeight return ourBalance, theirBalance, totalCommitWeight, filteredHTLCView, nil } // genHtlcSigValidationJobs generates a series of signatures verification jobs // meant to verify all the signatures for HTLC's attached to a newly created // commitment state. The jobs generated are fully populated, and can be sent // directly into the pool of workers. func genHtlcSigValidationJobs(localCommitmentView *commitment, keyRing *CommitmentKeyRing, htlcSigs []lnwire.Sig, chanType channeldb.ChannelType, localChanCfg, remoteChanCfg *channeldb.ChannelConfig) ([]VerifyJob, error) { txHash := localCommitmentView.txn.TxHash() feePerKw := localCommitmentView.feePerKw sigHashType := HtlcSigHashType(chanType) // With the required state generated, we'll create a slice with large // enough capacity to hold verification jobs for all HTLC's in this // view. In the case that we have some dust outputs, then the actual // length will be smaller than the total capacity. numHtlcs := (len(localCommitmentView.incomingHTLCs) + len(localCommitmentView.outgoingHTLCs)) verifyJobs := make([]VerifyJob, 0, numHtlcs) // We'll iterate through each output in the commitment transaction, // populating the sigHash closure function if it's detected to be an // HLTC output. Given the sighash, and the signing key, we'll be able // to validate each signature within the worker pool. i := 0 for index := range localCommitmentView.txn.TxOut { var ( htlcIndex uint64 sigHash func() ([]byte, error) sig *btcec.Signature err error ) outputIndex := int32(index) switch { // If this output index is found within the incoming HTLC // index, then this means that we need to generate an HTLC // success transaction in order to validate the signature. case localCommitmentView.incomingHTLCIndex[outputIndex] != nil: htlc := localCommitmentView.incomingHTLCIndex[outputIndex] htlcIndex = htlc.HtlcIndex sigHash = func() ([]byte, error) { op := wire.OutPoint{ Hash: txHash, Index: uint32(htlc.localOutputIndex), } htlcFee := HtlcSuccessFee(chanType, feePerKw) outputAmt := htlc.Amount.ToSatoshis() - htlcFee successTx, err := createHtlcSuccessTx( chanType, op, outputAmt, uint32(localChanCfg.CsvDelay), keyRing.RevocationKey, keyRing.ToLocalKey, ) if err != nil { return nil, err } hashCache := txscript.NewTxSigHashes(successTx) sigHash, err := txscript.CalcWitnessSigHash( htlc.ourWitnessScript, hashCache, sigHashType, successTx, 0, int64(htlc.Amount.ToSatoshis()), ) if err != nil { return nil, err } return sigHash, nil } // Make sure there are more signatures left. if i >= len(htlcSigs) { return nil, fmt.Errorf("not enough HTLC " + "signatures") } // With the sighash generated, we'll also store the // signature so it can be written to disk if this state // is valid. sig, err = htlcSigs[i].ToSignature() if err != nil { return nil, err } htlc.sig = sig // Otherwise, if this is an outgoing HTLC, then we'll need to // generate a timeout transaction so we can verify the // signature presented. case localCommitmentView.outgoingHTLCIndex[outputIndex] != nil: htlc := localCommitmentView.outgoingHTLCIndex[outputIndex] htlcIndex = htlc.HtlcIndex sigHash = func() ([]byte, error) { op := wire.OutPoint{ Hash: txHash, Index: uint32(htlc.localOutputIndex), } htlcFee := HtlcTimeoutFee(chanType, feePerKw) outputAmt := htlc.Amount.ToSatoshis() - htlcFee timeoutTx, err := createHtlcTimeoutTx( chanType, op, outputAmt, htlc.Timeout, uint32(localChanCfg.CsvDelay), keyRing.RevocationKey, keyRing.ToLocalKey, ) if err != nil { return nil, err } hashCache := txscript.NewTxSigHashes(timeoutTx) sigHash, err := txscript.CalcWitnessSigHash( htlc.ourWitnessScript, hashCache, sigHashType, timeoutTx, 0, int64(htlc.Amount.ToSatoshis()), ) if err != nil { return nil, err } return sigHash, nil } // Make sure there are more signatures left. if i >= len(htlcSigs) { return nil, fmt.Errorf("not enough HTLC " + "signatures") } // With the sighash generated, we'll also store the // signature so it can be written to disk if this state // is valid. sig, err = htlcSigs[i].ToSignature() if err != nil { return nil, err } htlc.sig = sig default: continue } verifyJobs = append(verifyJobs, VerifyJob{ HtlcIndex: htlcIndex, PubKey: keyRing.RemoteHtlcKey, Sig: sig, SigHash: sigHash, }) i++ } // If we received a number of HTLC signatures that doesn't match our // commitment, we'll return an error now. if len(htlcSigs) != i { return nil, fmt.Errorf("number of htlc sig mismatch. "+ "Expected %v sigs, got %v", i, len(htlcSigs)) } return verifyJobs, nil } // InvalidCommitSigError is a struct that implements the error interface to // report a failure to validate a commitment signature for a remote peer. // We'll use the items in this struct to generate a rich error message for the // remote peer when we receive an invalid signature from it. Doing so can // greatly aide in debugging cross implementation issues. type InvalidCommitSigError struct { commitHeight uint64 commitSig []byte sigHash []byte commitTx []byte } // Error returns a detailed error string including the exact transaction that // caused an invalid commitment signature. func (i *InvalidCommitSigError) Error() string { return fmt.Sprintf("rejected commitment: commit_height=%v, "+ "invalid_commit_sig=%x, commit_tx=%x, sig_hash=%x", i.commitHeight, i.commitSig[:], i.commitTx, i.sigHash[:]) } // A compile time flag to ensure that InvalidCommitSigError implements the // error interface. var _ error = (*InvalidCommitSigError)(nil) // InvalidHtlcSigError is a struct that implements the error interface to // report a failure to validate an htlc signature from a remote peer. We'll use // the items in this struct to generate a rich error message for the remote // peer when we receive an invalid signature from it. Doing so can greatly aide // in debugging across implementation issues. type InvalidHtlcSigError struct { commitHeight uint64 htlcSig []byte htlcIndex uint64 sigHash []byte commitTx []byte } // Error returns a detailed error string including the exact transaction that // caused an invalid htlc signature. func (i *InvalidHtlcSigError) Error() string { return fmt.Sprintf("rejected commitment: commit_height=%v, "+ "invalid_htlc_sig=%x, commit_tx=%x, sig_hash=%x", i.commitHeight, i.htlcSig, i.commitTx, i.sigHash[:]) } // A compile time flag to ensure that InvalidCommitSigError implements the // error interface. var _ error = (*InvalidCommitSigError)(nil) // ReceiveNewCommitment process a signature for a new commitment state sent by // the remote party. This method should be called in response to the // remote party initiating a new change, or when the remote party sends a // signature fully accepting a new state we've initiated. If we are able to // successfully validate the signature, then the generated commitment is added // to our local commitment chain. Once we send a revocation for our prior // state, then this newly added commitment becomes our current accepted channel // state. func (lc *LightningChannel) ReceiveNewCommitment(commitSig lnwire.Sig, htlcSigs []lnwire.Sig) error { lc.Lock() defer lc.Unlock() // Check for empty commit sig. Because of a previously existing bug, it // is possible that we receive an empty commit sig from nodes running an // older version. This is a relaxation of the spec, but it is still // possible to handle it. To not break any channels with those older // nodes, we just log the event. This check is also not totally // reliable, because it could be that we've sent out a new sig, but the // remote hasn't received it yet. We could then falsely assume that they // should add our updates to their remote commitment tx. if !lc.oweCommitment(false) { lc.log.Warnf("empty commit sig message received") } // Determine the last update on the local log that has been locked in. localACKedIndex := lc.remoteCommitChain.tail().ourMessageIndex localHtlcIndex := lc.remoteCommitChain.tail().ourHtlcIndex // Ensure that this new local update from the remote node respects all // the constraints we specified during initial channel setup. If not, // then we'll abort the channel as they've violated our constraints. err := lc.validateCommitmentSanity( lc.remoteUpdateLog.logIndex, localACKedIndex, false, nil, nil, ) if err != nil { return err } // We're receiving a new commitment which attempts to extend our local // commitment chain height by one, so fetch the proper commitment point // as this will be needed to derive the keys required to construct the // commitment. nextHeight := lc.currentHeight + 1 commitSecret, err := lc.channelState.RevocationProducer.AtIndex(nextHeight) if err != nil { return err } commitPoint := input.ComputeCommitmentPoint(commitSecret[:]) keyRing := DeriveCommitmentKeys( commitPoint, true, lc.channelState.ChanType, &lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg, ) // With the current commitment point re-calculated, construct the new // commitment view which includes all the entries (pending or committed) // we know of in the remote node's HTLC log, but only our local changes // up to the last change the remote node has ACK'd. localCommitmentView, err := lc.fetchCommitmentView( false, localACKedIndex, localHtlcIndex, lc.remoteUpdateLog.logIndex, lc.remoteUpdateLog.htlcCounter, keyRing, ) if err != nil { return err } lc.log.Tracef("extending local chain to height %v, "+ "local_log=%v, remote_log=%v", localCommitmentView.height, localACKedIndex, lc.remoteUpdateLog.logIndex) lc.log.Tracef("local chain: our_balance=%v, "+ "their_balance=%v, commit_tx: %v", localCommitmentView.ourBalance, localCommitmentView.theirBalance, newLogClosure(func() string { return spew.Sdump(localCommitmentView.txn) }), ) // Construct the sighash of the commitment transaction corresponding to // this newly proposed state update. localCommitTx := localCommitmentView.txn multiSigScript := lc.signDesc.WitnessScript hashCache := txscript.NewTxSigHashes(localCommitTx) sigHash, err := txscript.CalcWitnessSigHash( multiSigScript, hashCache, txscript.SigHashAll, localCommitTx, 0, int64(lc.channelState.Capacity), ) if err != nil { // TODO(roasbeef): fetchview has already mutated the HTLCs... // * need to either roll-back, or make pure return err } // As an optimization, we'll generate a series of jobs for the worker // pool to verify each of the HTLc signatures presented. Once // generated, we'll submit these jobs to the worker pool. verifyJobs, err := genHtlcSigValidationJobs( localCommitmentView, keyRing, htlcSigs, lc.channelState.ChanType, &lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg, ) if err != nil { return err } cancelChan := make(chan struct{}) verifyResps := lc.sigPool.SubmitVerifyBatch(verifyJobs, cancelChan) // While the HTLC verification jobs are proceeding asynchronously, // we'll ensure that the newly constructed commitment state has a valid // signature. verifyKey := btcec.PublicKey{ X: lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.X, Y: lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.Y, Curve: btcec.S256(), } cSig, err := commitSig.ToSignature() if err != nil { return err } if !cSig.Verify(sigHash, &verifyKey) { close(cancelChan) // If we fail to validate their commitment signature, we'll // generate a special error to send over the protocol. We'll // include the exact signature and commitment we failed to // verify against in order to aide debugging. var txBytes bytes.Buffer localCommitTx.Serialize(&txBytes) return &InvalidCommitSigError{ commitHeight: nextHeight, commitSig: commitSig.ToSignatureBytes(), sigHash: sigHash, commitTx: txBytes.Bytes(), } } // With the primary commitment transaction validated, we'll check each // of the HTLC validation jobs. for i := 0; i < len(verifyJobs); i++ { // In the case that a single signature is invalid, we'll exit // early and cancel all the outstanding verification jobs. htlcErr := <-verifyResps if htlcErr != nil { close(cancelChan) sig, err := lnwire.NewSigFromSignature( htlcErr.Sig, ) if err != nil { return err } sigHash, err := htlcErr.SigHash() if err != nil { return err } var txBytes bytes.Buffer localCommitTx.Serialize(&txBytes) return &InvalidHtlcSigError{ commitHeight: nextHeight, htlcSig: sig.ToSignatureBytes(), htlcIndex: htlcErr.HtlcIndex, sigHash: sigHash, commitTx: txBytes.Bytes(), } } } // The signature checks out, so we can now add the new commitment to // our local commitment chain. localCommitmentView.sig = commitSig.ToSignatureBytes() lc.localCommitChain.addCommitment(localCommitmentView) return nil } // OweCommitment returns a boolean value reflecting whether we need to send // out a commitment signature because there are outstanding local updates and/or // updates in the local commit tx that aren't reflected in the remote commit tx // yet. func (lc *LightningChannel) OweCommitment(local bool) bool { lc.RLock() defer lc.RUnlock() return lc.oweCommitment(local) } // oweCommitment is the internal version of OweCommitment. This function expects // to be executed with a lock held. func (lc *LightningChannel) oweCommitment(local bool) bool { var ( remoteUpdatesPending, localUpdatesPending bool lastLocalCommit = lc.localCommitChain.tip() lastRemoteCommit = lc.remoteCommitChain.tip() perspective string ) if local { perspective = "local" // There are local updates pending if our local update log is // not in sync with our remote commitment tx. localUpdatesPending = lc.localUpdateLog.logIndex != lastRemoteCommit.ourMessageIndex // There are remote updates pending if their remote commitment // tx (our local commitment tx) contains updates that we don't // have added to our remote commitment tx yet. remoteUpdatesPending = lastLocalCommit.theirMessageIndex != lastRemoteCommit.theirMessageIndex } else { perspective = "remote" // There are local updates pending (local updates from the // perspective of the remote party) if the remote party has // updates to their remote tx pending for which they haven't // signed yet. localUpdatesPending = lc.remoteUpdateLog.logIndex != lastLocalCommit.theirMessageIndex // There are remote updates pending (remote updates from the // perspective of the remote party) if we have updates on our // remote commitment tx that they haven't added to theirs yet. remoteUpdatesPending = lastRemoteCommit.ourMessageIndex != lastLocalCommit.ourMessageIndex } // If any of the conditions above is true, we owe a commitment // signature. oweCommitment := localUpdatesPending || remoteUpdatesPending lc.log.Tracef("%v owes commit: %v (local updates: %v, "+ "remote updates %v)", perspective, oweCommitment, localUpdatesPending, remoteUpdatesPending) return oweCommitment } // PendingLocalUpdateCount returns the number of local updates that still need // to be applied to the remote commitment tx. func (lc *LightningChannel) PendingLocalUpdateCount() uint64 { lc.RLock() defer lc.RUnlock() lastRemoteCommit := lc.remoteCommitChain.tip() return lc.localUpdateLog.logIndex - lastRemoteCommit.ourMessageIndex } // RevokeCurrentCommitment revokes the next lowest unrevoked commitment // transaction in the local commitment chain. As a result the edge of our // revocation window is extended by one, and the tail of our local commitment // chain is advanced by a single commitment. This now lowest unrevoked // commitment becomes our currently accepted state within the channel. This // method also returns the set of HTLC's currently active within the commitment // transaction. This return value allows callers to act once an HTLC has been // locked into our commitment transaction. func (lc *LightningChannel) RevokeCurrentCommitment() (*lnwire.RevokeAndAck, []channeldb.HTLC, error) { lc.Lock() defer lc.Unlock() revocationMsg, err := lc.generateRevocation(lc.currentHeight) if err != nil { return nil, nil, err } lc.log.Tracef("revoking height=%v, now at height=%v", lc.localCommitChain.tail().height, lc.currentHeight+1) // Advance our tail, as we've revoked our previous state. lc.localCommitChain.advanceTail() lc.currentHeight++ // Additionally, generate a channel delta for this state transition for // persistent storage. chainTail := lc.localCommitChain.tail() newCommitment := chainTail.toDiskCommit(true) // Get the unsigned acked remotes updates that are currently in memory. // We need them after a restart to sync our remote commitment with what // is committed locally. unsignedAckedUpdates := lc.getUnsignedAckedUpdates() err = lc.channelState.UpdateCommitment( newCommitment, unsignedAckedUpdates, ) if err != nil { return nil, nil, err } lc.log.Tracef("state transition accepted: "+ "our_balance=%v, their_balance=%v, unsigned_acked_updates=%v", chainTail.ourBalance, chainTail.theirBalance, len(unsignedAckedUpdates)) revocationMsg.ChanID = lnwire.NewChanIDFromOutPoint( &lc.channelState.FundingOutpoint, ) return revocationMsg, newCommitment.Htlcs, nil } // ReceiveRevocation processes a revocation sent by the remote party for the // lowest unrevoked commitment within their commitment chain. We receive a // revocation either during the initial session negotiation wherein revocation // windows are extended, or in response to a state update that we initiate. If // successful, then the remote commitment chain is advanced by a single // commitment, and a log compaction is attempted. // // The returned values correspond to: // 1. The forwarding package corresponding to the remote commitment height // that was revoked. // 2. The PaymentDescriptor of any Add HTLCs that were locked in by this // revocation. // 3. The PaymentDescriptor of any Settle/Fail HTLCs that were locked in by // this revocation. // 4. The set of HTLCs present on the current valid commitment transaction // for the remote party. func (lc *LightningChannel) ReceiveRevocation(revMsg *lnwire.RevokeAndAck) ( *channeldb.FwdPkg, []*PaymentDescriptor, []*PaymentDescriptor, []channeldb.HTLC, error) { lc.Lock() defer lc.Unlock() // Ensure that the new pre-image can be placed in preimage store. store := lc.channelState.RevocationStore revocation, err := chainhash.NewHash(revMsg.Revocation[:]) if err != nil { return nil, nil, nil, nil, err } if err := store.AddNextEntry(revocation); err != nil { return nil, nil, nil, nil, err } // Verify that if we use the commitment point computed based off of the // revealed secret to derive a revocation key with our revocation base // point, then it matches the current revocation of the remote party. currentCommitPoint := lc.channelState.RemoteCurrentRevocation derivedCommitPoint := input.ComputeCommitmentPoint(revMsg.Revocation[:]) if !derivedCommitPoint.IsEqual(currentCommitPoint) { return nil, nil, nil, nil, fmt.Errorf("revocation key mismatch") } // Now that we've verified that the prior commitment has been properly // revoked, we'll advance the revocation state we track for the remote // party: the new current revocation is what was previously the next // revocation, and the new next revocation is set to the key included // in the message. lc.channelState.RemoteCurrentRevocation = lc.channelState.RemoteNextRevocation lc.channelState.RemoteNextRevocation = revMsg.NextRevocationKey lc.log.Tracef("remote party accepted state transition, revoked height "+ "%v, now at %v", lc.remoteCommitChain.tail().height, lc.remoteCommitChain.tail().height+1) // Add one to the remote tail since this will be height *after* we write // the revocation to disk, the local height will remain unchanged. remoteChainTail := lc.remoteCommitChain.tail().height + 1 localChainTail := lc.localCommitChain.tail().height source := lc.ShortChanID() chanID := lnwire.NewChanIDFromOutPoint(&lc.channelState.FundingOutpoint) // Determine the set of htlcs that can be forwarded as a result of // having received the revocation. We will simultaneously construct the // log updates and payment descriptors, allowing us to persist the log // updates to disk and optimistically buffer the forwarding package in // memory. var ( addsToForward []*PaymentDescriptor addUpdates []channeldb.LogUpdate settleFailsToForward []*PaymentDescriptor settleFailUpdates []channeldb.LogUpdate ) var addIndex, settleFailIndex uint16 for e := lc.remoteUpdateLog.Front(); e != nil; e = e.Next() { pd := e.Value.(*PaymentDescriptor) // Fee updates are local to this particular channel, and should // never be forwarded. if pd.EntryType == FeeUpdate { continue } if pd.isForwarded { continue } // For each type of HTLC, we will only consider forwarding it if // both of the remote and local heights are non-zero. If either // of these values is zero, it has yet to be committed in both // the local and remote chains. committedAdd := pd.addCommitHeightRemote > 0 && pd.addCommitHeightLocal > 0 committedRmv := pd.removeCommitHeightRemote > 0 && pd.removeCommitHeightLocal > 0 // Using the height of the remote and local commitments, // preemptively compute whether or not to forward this HTLC for // the case in which this in an Add HTLC, or if this is a // Settle, Fail, or MalformedFail. shouldFwdAdd := remoteChainTail == pd.addCommitHeightRemote && localChainTail >= pd.addCommitHeightLocal shouldFwdRmv := remoteChainTail == pd.removeCommitHeightRemote && localChainTail >= pd.removeCommitHeightLocal // We'll only forward any new HTLC additions iff, it's "freshly // locked in". Meaning that the HTLC was only *just* considered // locked-in at this new state. By doing this we ensure that we // don't re-forward any already processed HTLC's after a // restart. switch { case pd.EntryType == Add && committedAdd && shouldFwdAdd: // Construct a reference specifying the location that // this forwarded Add will be written in the forwarding // package constructed at this remote height. pd.SourceRef = &channeldb.AddRef{ Height: remoteChainTail, Index: addIndex, } addIndex++ pd.isForwarded = true addsToForward = append(addsToForward, pd) case pd.EntryType != Add && committedRmv && shouldFwdRmv: // Construct a reference specifying the location that // this forwarded Settle/Fail will be written in the // forwarding package constructed at this remote height. pd.DestRef = &channeldb.SettleFailRef{ Source: source, Height: remoteChainTail, Index: settleFailIndex, } settleFailIndex++ pd.isForwarded = true settleFailsToForward = append(settleFailsToForward, pd) default: continue } // If we've reached this point, this HTLC will be added to the // forwarding package at the height of the remote commitment. // All types of HTLCs will record their assigned log index. logUpdate := channeldb.LogUpdate{ LogIndex: pd.LogIndex, } // Next, we'll map the type of the PaymentDescriptor to one of // the four messages that it corresponds to and separate the // updates into Adds and Settle/Fail/MalformedFail such that // they can be written in the forwarding package. Adds are // aggregated separately from the other types of HTLCs. switch pd.EntryType { case Add: htlc := &lnwire.UpdateAddHTLC{ ChanID: chanID, ID: pd.HtlcIndex, Amount: pd.Amount, Expiry: pd.Timeout, PaymentHash: pd.RHash, } copy(htlc.OnionBlob[:], pd.OnionBlob) logUpdate.UpdateMsg = htlc addUpdates = append(addUpdates, logUpdate) case Settle: logUpdate.UpdateMsg = &lnwire.UpdateFulfillHTLC{ ChanID: chanID, ID: pd.ParentIndex, PaymentPreimage: pd.RPreimage, } settleFailUpdates = append(settleFailUpdates, logUpdate) case Fail: logUpdate.UpdateMsg = &lnwire.UpdateFailHTLC{ ChanID: chanID, ID: pd.ParentIndex, Reason: pd.FailReason, } settleFailUpdates = append(settleFailUpdates, logUpdate) case MalformedFail: logUpdate.UpdateMsg = &lnwire.UpdateFailMalformedHTLC{ ChanID: chanID, ID: pd.ParentIndex, ShaOnionBlob: pd.ShaOnionBlob, FailureCode: pd.FailCode, } settleFailUpdates = append(settleFailUpdates, logUpdate) } } // Now that we have gathered the set of HTLCs to forward, separated by // type, construct a forwarding package using the height that the remote // commitment chain will be extended after persisting the revocation. fwdPkg := channeldb.NewFwdPkg( source, remoteChainTail, addUpdates, settleFailUpdates, ) // At this point, the revocation has been accepted, and we've rotated // the current revocation key+hash for the remote party. Therefore we // sync now to ensure the revocation producer state is consistent with // the current commitment height and also to advance the on-disk // commitment chain. err = lc.channelState.AdvanceCommitChainTail(fwdPkg) if err != nil { return nil, nil, nil, nil, err } // Since they revoked the current lowest height in their commitment // chain, we can advance their chain by a single commitment. lc.remoteCommitChain.advanceTail() // As we've just completed a new state transition, attempt to see if we // can remove any entries from the update log which have been removed // from the PoV of both commitment chains. compactLogs( lc.localUpdateLog, lc.remoteUpdateLog, localChainTail, remoteChainTail, ) remoteHTLCs := lc.channelState.RemoteCommitment.Htlcs return fwdPkg, addsToForward, settleFailsToForward, remoteHTLCs, nil } // LoadFwdPkgs loads any pending log updates from disk and returns the payment // descriptors to be processed by the link. func (lc *LightningChannel) LoadFwdPkgs() ([]*channeldb.FwdPkg, error) { return lc.channelState.LoadFwdPkgs() } // AckAddHtlcs sets a bit in the FwdFilter of a forwarding package belonging to // this channel, that corresponds to the given AddRef. This method also succeeds // if no forwarding package is found. func (lc *LightningChannel) AckAddHtlcs(addRef channeldb.AddRef) error { return lc.channelState.AckAddHtlcs(addRef) } // AckSettleFails sets a bit in the SettleFailFilter of a forwarding package // belonging to this channel, that corresponds to the given SettleFailRef. This // method also succeeds if no forwarding package is found. func (lc *LightningChannel) AckSettleFails( settleFailRefs ...channeldb.SettleFailRef) error { return lc.channelState.AckSettleFails(settleFailRefs...) } // SetFwdFilter writes the forwarding decision for a given remote commitment // height. func (lc *LightningChannel) SetFwdFilter(height uint64, fwdFilter *channeldb.PkgFilter) error { return lc.channelState.SetFwdFilter(height, fwdFilter) } // RemoveFwdPkg permanently deletes the forwarding package at the given height. func (lc *LightningChannel) RemoveFwdPkg(height uint64) error { return lc.channelState.RemoveFwdPkg(height) } // NextRevocationKey returns the commitment point for the _next_ commitment // height. The pubkey returned by this function is required by the remote party // along with their revocation base to extend our commitment chain with a // new commitment. func (lc *LightningChannel) NextRevocationKey() (*btcec.PublicKey, error) { lc.RLock() defer lc.RUnlock() nextHeight := lc.currentHeight + 1 revocation, err := lc.channelState.RevocationProducer.AtIndex(nextHeight) if err != nil { return nil, err } return input.ComputeCommitmentPoint(revocation[:]), nil } // InitNextRevocation inserts the passed commitment point as the _next_ // revocation to be used when creating a new commitment state for the remote // party. This function MUST be called before the channel can accept or propose // any new states. func (lc *LightningChannel) InitNextRevocation(revKey *btcec.PublicKey) error { lc.Lock() defer lc.Unlock() return lc.channelState.InsertNextRevocation(revKey) } // AddHTLC adds an HTLC to the state machine's local update log. This method // should be called when preparing to send an outgoing HTLC. // // The additional openKey argument corresponds to the incoming CircuitKey of the // committed circuit for this HTLC. This value should never be nil. // // Note that AddHTLC doesn't reserve the HTLC fee for future payment (like // AvailableBalance does), so one could get into the "stuck channel" state by // sending dust HTLCs. // TODO(halseth): fix this either by using additional reserve, or better commit // format. See https://github.com/lightningnetwork/lightning-rfc/issues/728 // // NOTE: It is okay for sourceRef to be nil when unit testing the wallet. func (lc *LightningChannel) AddHTLC(htlc *lnwire.UpdateAddHTLC, openKey *channeldb.CircuitKey) (uint64, error) { lc.Lock() defer lc.Unlock() pd := &PaymentDescriptor{ EntryType: Add, RHash: PaymentHash(htlc.PaymentHash), Timeout: htlc.Expiry, Amount: htlc.Amount, LogIndex: lc.localUpdateLog.logIndex, HtlcIndex: lc.localUpdateLog.htlcCounter, OnionBlob: htlc.OnionBlob[:], OpenCircuitKey: openKey, } // Make sure adding this HTLC won't violate any of the constraints we // must keep on the commitment transactions. remoteACKedIndex := lc.localCommitChain.tail().theirMessageIndex // First we'll check whether this HTLC can be added to the remote // commitment transaction without violation any of the constraints. err := lc.validateCommitmentSanity( remoteACKedIndex, lc.localUpdateLog.logIndex, true, pd, nil, ) if err != nil { return 0, err } // We must also check whether it can be added to our own commitment // transaction, or the remote node will refuse to sign. This is not // totally bullet proof, as the remote might be adding updates // concurrently, but if we fail this check there is for sure not // possible for us to add the HTLC. err = lc.validateCommitmentSanity( lc.remoteUpdateLog.logIndex, lc.localUpdateLog.logIndex, false, pd, nil, ) if err != nil { return 0, err } lc.localUpdateLog.appendHtlc(pd) return pd.HtlcIndex, nil } // ReceiveHTLC adds an HTLC to the state machine's remote update log. This // method should be called in response to receiving a new HTLC from the remote // party. func (lc *LightningChannel) ReceiveHTLC(htlc *lnwire.UpdateAddHTLC) (uint64, error) { lc.Lock() defer lc.Unlock() if htlc.ID != lc.remoteUpdateLog.htlcCounter { return 0, fmt.Errorf("ID %d on HTLC add does not match expected next "+ "ID %d", htlc.ID, lc.remoteUpdateLog.htlcCounter) } pd := &PaymentDescriptor{ EntryType: Add, RHash: PaymentHash(htlc.PaymentHash), Timeout: htlc.Expiry, Amount: htlc.Amount, LogIndex: lc.remoteUpdateLog.logIndex, HtlcIndex: lc.remoteUpdateLog.htlcCounter, OnionBlob: htlc.OnionBlob[:], } localACKedIndex := lc.remoteCommitChain.tail().ourMessageIndex // Clamp down on the number of HTLC's we can receive by checking the // commitment sanity. err := lc.validateCommitmentSanity( lc.remoteUpdateLog.logIndex, localACKedIndex, false, nil, pd, ) if err != nil { return 0, err } lc.remoteUpdateLog.appendHtlc(pd) return pd.HtlcIndex, nil } // SettleHTLC attempts to settle an existing outstanding received HTLC. The // remote log index of the HTLC settled is returned in order to facilitate // creating the corresponding wire message. In the case the supplied preimage // is invalid, an error is returned. // // The additional arguments correspond to: // * sourceRef: specifies the location of the Add HTLC within a forwarding // package that this HTLC is settling. Every Settle fails exactly one Add, // so this should never be empty in practice. // // * destRef: specifies the location of the Settle HTLC within another // channel's forwarding package. This value can be nil if the corresponding // Add HTLC was never locked into an outgoing commitment txn, or this // HTLC does not originate as a response from the peer on the outgoing // link, e.g. on-chain resolutions. // // * closeKey: identifies the circuit that should be deleted after this Settle // HTLC is included in a commitment txn. This value should only be nil if // the HTLC was settled locally before committing a circuit to the circuit // map. // // NOTE: It is okay for sourceRef, destRef, and closeKey to be nil when unit // testing the wallet. func (lc *LightningChannel) SettleHTLC(preimage [32]byte, htlcIndex uint64, sourceRef *channeldb.AddRef, destRef *channeldb.SettleFailRef, closeKey *channeldb.CircuitKey) error { lc.Lock() defer lc.Unlock() htlc := lc.remoteUpdateLog.lookupHtlc(htlcIndex) if htlc == nil { return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex} } // Now that we know the HTLC exists, before checking to see if the // preimage matches, we'll ensure that we haven't already attempted to // modify the HTLC. if lc.remoteUpdateLog.htlcHasModification(htlcIndex) { return ErrHtlcIndexAlreadySettled(htlcIndex) } if htlc.RHash != sha256.Sum256(preimage[:]) { return ErrInvalidSettlePreimage{preimage[:], htlc.RHash[:]} } pd := &PaymentDescriptor{ Amount: htlc.Amount, RPreimage: preimage, LogIndex: lc.localUpdateLog.logIndex, ParentIndex: htlcIndex, EntryType: Settle, SourceRef: sourceRef, DestRef: destRef, ClosedCircuitKey: closeKey, } lc.localUpdateLog.appendUpdate(pd) // With the settle added to our local log, we'll now mark the HTLC as // modified to prevent ourselves from accidentally attempting a // duplicate settle. lc.remoteUpdateLog.markHtlcModified(htlcIndex) return nil } // ReceiveHTLCSettle attempts to settle an existing outgoing HTLC indexed by an // index into the local log. If the specified index doesn't exist within the // log, and error is returned. Similarly if the preimage is invalid w.r.t to // the referenced of then a distinct error is returned. func (lc *LightningChannel) ReceiveHTLCSettle(preimage [32]byte, htlcIndex uint64) error { lc.Lock() defer lc.Unlock() htlc := lc.localUpdateLog.lookupHtlc(htlcIndex) if htlc == nil { return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex} } // Now that we know the HTLC exists, before checking to see if the // preimage matches, we'll ensure that they haven't already attempted // to modify the HTLC. if lc.localUpdateLog.htlcHasModification(htlcIndex) { return ErrHtlcIndexAlreadySettled(htlcIndex) } if htlc.RHash != sha256.Sum256(preimage[:]) { return ErrInvalidSettlePreimage{preimage[:], htlc.RHash[:]} } pd := &PaymentDescriptor{ Amount: htlc.Amount, RPreimage: preimage, ParentIndex: htlc.HtlcIndex, RHash: htlc.RHash, LogIndex: lc.remoteUpdateLog.logIndex, EntryType: Settle, } lc.remoteUpdateLog.appendUpdate(pd) // With the settle added to the remote log, we'll now mark the HTLC as // modified to prevent the remote party from accidentally attempting a // duplicate settle. lc.localUpdateLog.markHtlcModified(htlcIndex) return nil } // FailHTLC attempts to fail a targeted HTLC by its payment hash, inserting an // entry which will remove the target log entry within the next commitment // update. This method is intended to be called in order to cancel in // _incoming_ HTLC. // // The additional arguments correspond to: // * sourceRef: specifies the location of the Add HTLC within a forwarding // package that this HTLC is failing. Every Fail fails exactly one Add, so // this should never be empty in practice. // // * destRef: specifies the location of the Fail HTLC within another channel's // forwarding package. This value can be nil if the corresponding Add HTLC // was never locked into an outgoing commitment txn, or this HTLC does not // originate as a response from the peer on the outgoing link, e.g. // on-chain resolutions. // // * closeKey: identifies the circuit that should be deleted after this Fail // HTLC is included in a commitment txn. This value should only be nil if // the HTLC was failed locally before committing a circuit to the circuit // map. // // NOTE: It is okay for sourceRef, destRef, and closeKey to be nil when unit // testing the wallet. func (lc *LightningChannel) FailHTLC(htlcIndex uint64, reason []byte, sourceRef *channeldb.AddRef, destRef *channeldb.SettleFailRef, closeKey *channeldb.CircuitKey) error { lc.Lock() defer lc.Unlock() htlc := lc.remoteUpdateLog.lookupHtlc(htlcIndex) if htlc == nil { return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex} } // Now that we know the HTLC exists, we'll ensure that we haven't // already attempted to fail the HTLC. if lc.remoteUpdateLog.htlcHasModification(htlcIndex) { return ErrHtlcIndexAlreadyFailed(htlcIndex) } pd := &PaymentDescriptor{ Amount: htlc.Amount, RHash: htlc.RHash, ParentIndex: htlcIndex, LogIndex: lc.localUpdateLog.logIndex, EntryType: Fail, FailReason: reason, SourceRef: sourceRef, DestRef: destRef, ClosedCircuitKey: closeKey, } lc.localUpdateLog.appendUpdate(pd) // With the fail added to the remote log, we'll now mark the HTLC as // modified to prevent ourselves from accidentally attempting a // duplicate fail. lc.remoteUpdateLog.markHtlcModified(htlcIndex) return nil } // MalformedFailHTLC attempts to fail a targeted HTLC by its payment hash, // inserting an entry which will remove the target log entry within the next // commitment update. This method is intended to be called in order to cancel // in _incoming_ HTLC. // // The additional sourceRef specifies the location of the Add HTLC within a // forwarding package that this HTLC is failing. This value should never be // empty. // // NOTE: It is okay for sourceRef to be nil when unit testing the wallet. func (lc *LightningChannel) MalformedFailHTLC(htlcIndex uint64, failCode lnwire.FailCode, shaOnionBlob [sha256.Size]byte, sourceRef *channeldb.AddRef) error { lc.Lock() defer lc.Unlock() htlc := lc.remoteUpdateLog.lookupHtlc(htlcIndex) if htlc == nil { return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex} } // Now that we know the HTLC exists, we'll ensure that we haven't // already attempted to fail the HTLC. if lc.remoteUpdateLog.htlcHasModification(htlcIndex) { return ErrHtlcIndexAlreadyFailed(htlcIndex) } pd := &PaymentDescriptor{ Amount: htlc.Amount, RHash: htlc.RHash, ParentIndex: htlcIndex, LogIndex: lc.localUpdateLog.logIndex, EntryType: MalformedFail, FailCode: failCode, ShaOnionBlob: shaOnionBlob, SourceRef: sourceRef, } lc.localUpdateLog.appendUpdate(pd) // With the fail added to the remote log, we'll now mark the HTLC as // modified to prevent ourselves from accidentally attempting a // duplicate fail. lc.remoteUpdateLog.markHtlcModified(htlcIndex) return nil } // ReceiveFailHTLC attempts to cancel a targeted HTLC by its log index, // inserting an entry which will remove the target log entry within the next // commitment update. This method should be called in response to the upstream // party cancelling an outgoing HTLC. The value of the failed HTLC is returned // along with an error indicating success. func (lc *LightningChannel) ReceiveFailHTLC(htlcIndex uint64, reason []byte, ) error { lc.Lock() defer lc.Unlock() htlc := lc.localUpdateLog.lookupHtlc(htlcIndex) if htlc == nil { return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex} } // Now that we know the HTLC exists, we'll ensure that they haven't // already attempted to fail the HTLC. if lc.localUpdateLog.htlcHasModification(htlcIndex) { return ErrHtlcIndexAlreadyFailed(htlcIndex) } pd := &PaymentDescriptor{ Amount: htlc.Amount, RHash: htlc.RHash, ParentIndex: htlc.HtlcIndex, LogIndex: lc.remoteUpdateLog.logIndex, EntryType: Fail, FailReason: reason, } lc.remoteUpdateLog.appendUpdate(pd) // With the fail added to the remote log, we'll now mark the HTLC as // modified to prevent ourselves from accidentally attempting a // duplicate fail. lc.localUpdateLog.markHtlcModified(htlcIndex) return nil } // ChannelPoint returns the outpoint of the original funding transaction which // created this active channel. This outpoint is used throughout various // subsystems to uniquely identify an open channel. func (lc *LightningChannel) ChannelPoint() *wire.OutPoint { return &lc.channelState.FundingOutpoint } // ShortChanID returns the short channel ID for the channel. The short channel // ID encodes the exact location in the main chain that the original // funding output can be found. func (lc *LightningChannel) ShortChanID() lnwire.ShortChannelID { return lc.channelState.ShortChanID() } // LocalUpfrontShutdownScript returns the local upfront shutdown script for the // channel. If it was not set, an empty byte array is returned. func (lc *LightningChannel) LocalUpfrontShutdownScript() lnwire.DeliveryAddress { return lc.channelState.LocalShutdownScript } // RemoteUpfrontShutdownScript returns the remote upfront shutdown script for the // channel. If it was not set, an empty byte array is returned. func (lc *LightningChannel) RemoteUpfrontShutdownScript() lnwire.DeliveryAddress { return lc.channelState.RemoteShutdownScript } // getSignedCommitTx function take the latest commitment transaction and // populate it with witness data. func (lc *LightningChannel) getSignedCommitTx() (*wire.MsgTx, error) { // Fetch the current commitment transaction, along with their signature // for the transaction. localCommit := lc.channelState.LocalCommitment commitTx := localCommit.CommitTx.Copy() theirSig, err := btcec.ParseDERSignature( localCommit.CommitSig, btcec.S256(), ) if err != nil { return nil, err } // With this, we then generate the full witness so the caller can // broadcast a fully signed transaction. lc.signDesc.SigHashes = txscript.NewTxSigHashes(commitTx) ourSig, err := lc.Signer.SignOutputRaw(commitTx, lc.signDesc) if err != nil { return nil, err } // With the final signature generated, create the witness stack // required to spend from the multi-sig output. ourKey := lc.channelState.LocalChanCfg.MultiSigKey.PubKey. SerializeCompressed() theirKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey. SerializeCompressed() commitTx.TxIn[0].Witness = input.SpendMultiSig( lc.signDesc.WitnessScript, ourKey, ourSig, theirKey, theirSig, ) return commitTx, nil } // CommitOutputResolution carries the necessary information required to allow // us to sweep our commitment output in the case that either party goes to // chain. type CommitOutputResolution struct { // SelfOutPoint is the full outpoint that points to out pay-to-self // output within the closing commitment transaction. SelfOutPoint wire.OutPoint // SelfOutputSignDesc is a fully populated sign descriptor capable of // generating a valid signature to sweep the output paying to us. SelfOutputSignDesc input.SignDescriptor // MaturityDelay is the relative time-lock, in blocks for all outputs // that pay to the local party within the broadcast commitment // transaction. MaturityDelay uint32 } // UnilateralCloseSummary describes the details of a detected unilateral // channel closure. This includes the information about with which // transactions, and block the channel was unilaterally closed, as well as // summarization details concerning the _state_ of the channel at the point of // channel closure. Additionally, if we had a commitment output above dust on // the remote party's commitment transaction, the necessary a SignDescriptor // with the material necessary to seep the output are returned. Finally, if we // had any outgoing HTLC's within the commitment transaction, then an // OutgoingHtlcResolution for each output will included. type UnilateralCloseSummary struct { // SpendDetail is a struct that describes how and when the funding // output was spent. *chainntnfs.SpendDetail // ChannelCloseSummary is a struct describing the final state of the // channel and in which state is was closed. channeldb.ChannelCloseSummary // CommitResolution contains all the data required to sweep the output // to ourselves. If this is our commitment transaction, then we'll need // to wait a time delay before we can sweep the output. // // NOTE: If our commitment delivery output is below the dust limit, // then this will be nil. CommitResolution *CommitOutputResolution // HtlcResolutions contains a fully populated HtlcResolutions struct // which contains all the data required to sweep any outgoing HTLC's, // and also any incoming HTLC's that we know the pre-image to. HtlcResolutions *HtlcResolutions // RemoteCommit is the exact commitment state that the remote party // broadcast. RemoteCommit channeldb.ChannelCommitment // AnchorResolution contains the data required to sweep our anchor // output. If the channel type doesn't include anchors, the value of // this field will be nil. AnchorResolution *AnchorResolution } // NewUnilateralCloseSummary creates a new summary that provides the caller // with all the information required to claim all funds on chain in the event // that the remote party broadcasts their commitment. The commitPoint argument // should be set to the per_commitment_point corresponding to the spending // commitment. // // NOTE: The remoteCommit argument should be set to the stored commitment for // this particular state. If we don't have the commitment stored (should only // happen in case we have lost state) it should be set to an empty struct, in // which case we will attempt to sweep the non-HTLC output using the passed // commitPoint. func NewUnilateralCloseSummary(chanState *channeldb.OpenChannel, signer input.Signer, commitSpend *chainntnfs.SpendDetail, remoteCommit channeldb.ChannelCommitment, commitPoint *btcec.PublicKey) (*UnilateralCloseSummary, error) { // First, we'll generate the commitment point and the revocation point // so we can re-construct the HTLC state and also our payment key. keyRing := DeriveCommitmentKeys( commitPoint, false, chanState.ChanType, &chanState.LocalChanCfg, &chanState.RemoteChanCfg, ) // Next, we'll obtain HTLC resolutions for all the outgoing HTLC's we // had on their commitment transaction. htlcResolutions, err := extractHtlcResolutions( chainfee.SatPerKWeight(remoteCommit.FeePerKw), false, signer, remoteCommit.Htlcs, keyRing, &chanState.LocalChanCfg, &chanState.RemoteChanCfg, *commitSpend.SpenderTxHash, chanState.ChanType, ) if err != nil { return nil, fmt.Errorf("unable to create htlc "+ "resolutions: %v", err) } commitTxBroadcast := commitSpend.SpendingTx // Before we can generate the proper sign descriptor, we'll need to // locate the output index of our non-delayed output on the commitment // transaction. selfScript, maturityDelay, err := CommitScriptToRemote( chanState.ChanType, keyRing.ToRemoteKey, ) if err != nil { return nil, fmt.Errorf("unable to create self commit "+ "script: %v", err) } var ( selfPoint *wire.OutPoint localBalance int64 ) for outputIndex, txOut := range commitTxBroadcast.TxOut { if bytes.Equal(txOut.PkScript, selfScript.PkScript) { selfPoint = &wire.OutPoint{ Hash: *commitSpend.SpenderTxHash, Index: uint32(outputIndex), } localBalance = txOut.Value break } } // With the HTLC's taken care of, we'll generate the sign descriptor // necessary to sweep our commitment output, but only if we had a // non-trimmed balance. var commitResolution *CommitOutputResolution if selfPoint != nil { localPayBase := chanState.LocalChanCfg.PaymentBasePoint commitResolution = &CommitOutputResolution{ SelfOutPoint: *selfPoint, SelfOutputSignDesc: input.SignDescriptor{ KeyDesc: localPayBase, SingleTweak: keyRing.LocalCommitKeyTweak, WitnessScript: selfScript.WitnessScript, Output: &wire.TxOut{ Value: localBalance, PkScript: selfScript.PkScript, }, HashType: txscript.SigHashAll, }, MaturityDelay: maturityDelay, } } closeSummary := channeldb.ChannelCloseSummary{ ChanPoint: chanState.FundingOutpoint, ChainHash: chanState.ChainHash, ClosingTXID: *commitSpend.SpenderTxHash, CloseHeight: uint32(commitSpend.SpendingHeight), RemotePub: chanState.IdentityPub, Capacity: chanState.Capacity, SettledBalance: btcutil.Amount(localBalance), CloseType: channeldb.RemoteForceClose, IsPending: true, RemoteCurrentRevocation: chanState.RemoteCurrentRevocation, RemoteNextRevocation: chanState.RemoteNextRevocation, ShortChanID: chanState.ShortChanID(), LocalChanConfig: chanState.LocalChanCfg, } // Attempt to add a channel sync message to the close summary. chanSync, err := chanState.ChanSyncMsg() if err != nil { walletLog.Errorf("ChannelPoint(%v): unable to create channel sync "+ "message: %v", chanState.FundingOutpoint, err) } else { closeSummary.LastChanSyncMsg = chanSync } anchorResolution, err := NewAnchorResolution( chanState, commitTxBroadcast, ) if err != nil { return nil, err } return &UnilateralCloseSummary{ SpendDetail: commitSpend, ChannelCloseSummary: closeSummary, CommitResolution: commitResolution, HtlcResolutions: htlcResolutions, RemoteCommit: remoteCommit, AnchorResolution: anchorResolution, }, nil } // IncomingHtlcResolution houses the information required to sweep any incoming // HTLC's that we know the preimage to. We'll need to sweep an HTLC manually // using this struct if we need to go on-chain for any reason, or if we detect // that the remote party broadcasts their commitment transaction. type IncomingHtlcResolution struct { // Preimage is the preimage that will be used to satisfy the contract of // the HTLC. // // NOTE: This field will only be populated in the incoming contest // resolver. Preimage [32]byte // SignedSuccessTx is the fully signed HTLC success transaction. This // transaction (if non-nil) can be broadcast immediately. After a csv // delay (included below), then the output created by this transactions // can be swept on-chain. // // NOTE: If this field is nil, then this indicates that we don't need // to go to the second level to claim this HTLC. Instead, it can be // claimed directly from the outpoint listed below. SignedSuccessTx *wire.MsgTx // CsvDelay is the relative time lock (expressed in blocks) that must // pass after the SignedSuccessTx is confirmed in the chain before the // output can be swept. // // NOTE: If SignedTimeoutTx is nil, then this field denotes the CSV // delay needed to spend from the commitment transaction. CsvDelay uint32 // ClaimOutpoint is the final outpoint that needs to be spent in order // to fully sweep the HTLC. The SignDescriptor below should be used to // spend this outpoint. In the case of a second-level HTLC (non-nil // SignedTimeoutTx), then we'll be spending a new transaction. // Otherwise, it'll be an output in the commitment transaction. ClaimOutpoint wire.OutPoint // SweepSignDesc is a sign descriptor that has been populated with the // necessary items required to spend the sole output of the above // transaction. SweepSignDesc input.SignDescriptor } // OutgoingHtlcResolution houses the information necessary to sweep any // outgoing HTLC's after their contract has expired. This struct will be needed // in one of two cases: the local party force closes the commitment transaction // or the remote party unilaterally closes with their version of the commitment // transaction. type OutgoingHtlcResolution struct { // Expiry the absolute timeout of the HTLC. This value is expressed in // block height, meaning after this height the HLTC can be swept. Expiry uint32 // SignedTimeoutTx is the fully signed HTLC timeout transaction. This // must be broadcast immediately after timeout has passed. Once this // has been confirmed, the HTLC output will transition into the // delay+claim state. // // NOTE: If this field is nil, then this indicates that we don't need // to go to the second level to claim this HTLC. Instead, it can be // claimed directly from the outpoint listed below. SignedTimeoutTx *wire.MsgTx // CsvDelay is the relative time lock (expressed in blocks) that must // pass after the SignedTimeoutTx is confirmed in the chain before the // output can be swept. // // NOTE: If SignedTimeoutTx is nil, then this field denotes the CSV // delay needed to spend from the commitment transaction. CsvDelay uint32 // ClaimOutpoint is the final outpoint that needs to be spent in order // to fully sweep the HTLC. The SignDescriptor below should be used to // spend this outpoint. In the case of a second-level HTLC (non-nil // SignedTimeoutTx), then we'll be spending a new transaction. // Otherwise, it'll be an output in the commitment transaction. ClaimOutpoint wire.OutPoint // SweepSignDesc is a sign descriptor that has been populated with the // necessary items required to spend the sole output of the above // transaction. SweepSignDesc input.SignDescriptor } // HtlcResolutions contains the items necessary to sweep HTLC's on chain // directly from a commitment transaction. We'll use this in case either party // goes broadcasts a commitment transaction with live HTLC's. type HtlcResolutions struct { // IncomingHTLCs contains a set of structs that can be used to sweep // all the incoming HTL'C that we know the preimage to. IncomingHTLCs []IncomingHtlcResolution // OutgoingHTLCs contains a set of structs that contains all the info // needed to sweep an outgoing HTLC we've sent to the remote party // after an absolute delay has expired. OutgoingHTLCs []OutgoingHtlcResolution } // newOutgoingHtlcResolution generates a new HTLC resolution capable of // allowing the caller to sweep an outgoing HTLC present on either their, or // the remote party's commitment transaction. func newOutgoingHtlcResolution(signer input.Signer, localChanCfg *channeldb.ChannelConfig, commitHash chainhash.Hash, htlc *channeldb.HTLC, keyRing *CommitmentKeyRing, feePerKw chainfee.SatPerKWeight, csvDelay uint32, localCommit bool, chanType channeldb.ChannelType) (*OutgoingHtlcResolution, error) { op := wire.OutPoint{ Hash: commitHash, Index: uint32(htlc.OutputIndex), } // First, we'll re-generate the script used to send the HTLC to // the remote party within their commitment transaction. htlcScriptHash, htlcScript, err := genHtlcScript( chanType, false, localCommit, htlc.RefundTimeout, htlc.RHash, keyRing, ) if err != nil { return nil, err } // If we're spending this HTLC output from the remote node's // commitment, then we won't need to go to the second level as our // outputs don't have a CSV delay. if !localCommit { // With the script generated, we can completely populated the // SignDescriptor needed to sweep the output. return &OutgoingHtlcResolution{ Expiry: htlc.RefundTimeout, ClaimOutpoint: op, SweepSignDesc: input.SignDescriptor{ KeyDesc: localChanCfg.HtlcBasePoint, SingleTweak: keyRing.LocalHtlcKeyTweak, WitnessScript: htlcScript, Output: &wire.TxOut{ PkScript: htlcScriptHash, Value: int64(htlc.Amt.ToSatoshis()), }, HashType: txscript.SigHashAll, }, CsvDelay: HtlcSecondLevelInputSequence(chanType), }, nil } // Otherwise, we'll need to craft a second level HTLC transaction, as // well as a sign desc to sweep after the CSV delay. // In order to properly reconstruct the HTLC transaction, we'll need to // re-calculate the fee required at this state, so we can add the // correct output value amount to the transaction. htlcFee := HtlcTimeoutFee(chanType, feePerKw) secondLevelOutputAmt := htlc.Amt.ToSatoshis() - htlcFee // With the fee calculated, re-construct the second level timeout // transaction. timeoutTx, err := createHtlcTimeoutTx( chanType, op, secondLevelOutputAmt, htlc.RefundTimeout, csvDelay, keyRing.RevocationKey, keyRing.ToLocalKey, ) if err != nil { return nil, err } // With the transaction created, we can generate a sign descriptor // that's capable of generating the signature required to spend the // HTLC output using the timeout transaction. timeoutSignDesc := input.SignDescriptor{ KeyDesc: localChanCfg.HtlcBasePoint, SingleTweak: keyRing.LocalHtlcKeyTweak, WitnessScript: htlcScript, Output: &wire.TxOut{ Value: int64(htlc.Amt.ToSatoshis()), }, HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(timeoutTx), InputIndex: 0, } htlcSig, err := btcec.ParseDERSignature(htlc.Signature, btcec.S256()) if err != nil { return nil, err } // With the sign desc created, we can now construct the full witness // for the timeout transaction, and populate it as well. sigHashType := HtlcSigHashType(chanType) timeoutWitness, err := input.SenderHtlcSpendTimeout( htlcSig, sigHashType, signer, &timeoutSignDesc, timeoutTx, ) if err != nil { return nil, err } timeoutTx.TxIn[0].Witness = timeoutWitness // Finally, we'll generate the script output that the timeout // transaction creates so we can generate the signDesc required to // complete the claim process after a delay period. htlcSweepScript, err := input.SecondLevelHtlcScript( keyRing.RevocationKey, keyRing.ToLocalKey, csvDelay, ) if err != nil { return nil, err } htlcSweepScriptHash, err := input.WitnessScriptHash(htlcSweepScript) if err != nil { return nil, err } localDelayTweak := input.SingleTweakBytes( keyRing.CommitPoint, localChanCfg.DelayBasePoint.PubKey, ) return &OutgoingHtlcResolution{ Expiry: htlc.RefundTimeout, SignedTimeoutTx: timeoutTx, CsvDelay: csvDelay, ClaimOutpoint: wire.OutPoint{ Hash: timeoutTx.TxHash(), Index: 0, }, SweepSignDesc: input.SignDescriptor{ KeyDesc: localChanCfg.DelayBasePoint, SingleTweak: localDelayTweak, WitnessScript: htlcSweepScript, Output: &wire.TxOut{ PkScript: htlcSweepScriptHash, Value: int64(secondLevelOutputAmt), }, HashType: txscript.SigHashAll, }, }, nil } // newIncomingHtlcResolution creates a new HTLC resolution capable of allowing // the caller to sweep an incoming HTLC. If the HTLC is on the caller's // commitment transaction, then they'll need to broadcast a second-level // transaction before sweeping the output (and incur a CSV delay). Otherwise, // they can just sweep the output immediately with knowledge of the pre-image. // // TODO(roasbeef) consolidate code with above func func newIncomingHtlcResolution(signer input.Signer, localChanCfg *channeldb.ChannelConfig, commitHash chainhash.Hash, htlc *channeldb.HTLC, keyRing *CommitmentKeyRing, feePerKw chainfee.SatPerKWeight, csvDelay uint32, localCommit bool, chanType channeldb.ChannelType) (*IncomingHtlcResolution, error) { op := wire.OutPoint{ Hash: commitHash, Index: uint32(htlc.OutputIndex), } // First, we'll re-generate the script the remote party used to // send the HTLC to us in their commitment transaction. htlcScriptHash, htlcScript, err := genHtlcScript( chanType, true, localCommit, htlc.RefundTimeout, htlc.RHash, keyRing, ) if err != nil { return nil, err } // If we're spending this output from the remote node's commitment, // then we can skip the second layer and spend the output directly. if !localCommit { // With the script generated, we can completely populated the // SignDescriptor needed to sweep the output. return &IncomingHtlcResolution{ ClaimOutpoint: op, SweepSignDesc: input.SignDescriptor{ KeyDesc: localChanCfg.HtlcBasePoint, SingleTweak: keyRing.LocalHtlcKeyTweak, WitnessScript: htlcScript, Output: &wire.TxOut{ PkScript: htlcScriptHash, Value: int64(htlc.Amt.ToSatoshis()), }, HashType: txscript.SigHashAll, }, CsvDelay: HtlcSecondLevelInputSequence(chanType), }, nil } // Otherwise, we'll need to go to the second level to sweep this HTLC. // First, we'll reconstruct the original HTLC success transaction, // taking into account the fee rate used. htlcFee := HtlcSuccessFee(chanType, feePerKw) secondLevelOutputAmt := htlc.Amt.ToSatoshis() - htlcFee successTx, err := createHtlcSuccessTx( chanType, op, secondLevelOutputAmt, csvDelay, keyRing.RevocationKey, keyRing.ToLocalKey, ) if err != nil { return nil, err } // Once we've created the second-level transaction, we'll generate the // SignDesc needed spend the HTLC output using the success transaction. successSignDesc := input.SignDescriptor{ KeyDesc: localChanCfg.HtlcBasePoint, SingleTweak: keyRing.LocalHtlcKeyTweak, WitnessScript: htlcScript, Output: &wire.TxOut{ Value: int64(htlc.Amt.ToSatoshis()), }, HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(successTx), InputIndex: 0, } htlcSig, err := btcec.ParseDERSignature(htlc.Signature, btcec.S256()) if err != nil { return nil, err } // Next, we'll construct the full witness needed to satisfy the input of // the success transaction. Don't specify the preimage yet. The preimage // will be supplied by the contract resolver, either directly or when it // becomes known. sigHashType := HtlcSigHashType(chanType) successWitness, err := input.ReceiverHtlcSpendRedeem( htlcSig, sigHashType, nil, signer, &successSignDesc, successTx, ) if err != nil { return nil, err } successTx.TxIn[0].Witness = successWitness // Finally, we'll generate the script that the second-level transaction // creates so we can generate the proper signDesc to sweep it after the // CSV delay has passed. htlcSweepScript, err := input.SecondLevelHtlcScript( keyRing.RevocationKey, keyRing.ToLocalKey, csvDelay, ) if err != nil { return nil, err } htlcSweepScriptHash, err := input.WitnessScriptHash(htlcSweepScript) if err != nil { return nil, err } localDelayTweak := input.SingleTweakBytes( keyRing.CommitPoint, localChanCfg.DelayBasePoint.PubKey, ) return &IncomingHtlcResolution{ SignedSuccessTx: successTx, CsvDelay: csvDelay, ClaimOutpoint: wire.OutPoint{ Hash: successTx.TxHash(), Index: 0, }, SweepSignDesc: input.SignDescriptor{ KeyDesc: localChanCfg.DelayBasePoint, SingleTweak: localDelayTweak, WitnessScript: htlcSweepScript, Output: &wire.TxOut{ PkScript: htlcSweepScriptHash, Value: int64(secondLevelOutputAmt), }, HashType: txscript.SigHashAll, }, }, nil } // HtlcPoint returns the htlc's outpoint on the commitment tx. func (r *IncomingHtlcResolution) HtlcPoint() wire.OutPoint { // If we have a success transaction, then the htlc's outpoint // is the transaction's only input. Otherwise, it's the claim // point. if r.SignedSuccessTx != nil { return r.SignedSuccessTx.TxIn[0].PreviousOutPoint } return r.ClaimOutpoint } // HtlcPoint returns the htlc's outpoint on the commitment tx. func (r *OutgoingHtlcResolution) HtlcPoint() wire.OutPoint { // If we have a timeout transaction, then the htlc's outpoint // is the transaction's only input. Otherwise, it's the claim // point. if r.SignedTimeoutTx != nil { return r.SignedTimeoutTx.TxIn[0].PreviousOutPoint } return r.ClaimOutpoint } // extractHtlcResolutions creates a series of outgoing HTLC resolutions, and // the local key used when generating the HTLC scrips. This function is to be // used in two cases: force close, or a unilateral close. func extractHtlcResolutions(feePerKw chainfee.SatPerKWeight, ourCommit bool, signer input.Signer, htlcs []channeldb.HTLC, keyRing *CommitmentKeyRing, localChanCfg, remoteChanCfg *channeldb.ChannelConfig, commitHash chainhash.Hash, chanType channeldb.ChannelType) ( *HtlcResolutions, error) { // TODO(roasbeef): don't need to swap csv delay? dustLimit := remoteChanCfg.DustLimit csvDelay := remoteChanCfg.CsvDelay if ourCommit { dustLimit = localChanCfg.DustLimit csvDelay = localChanCfg.CsvDelay } incomingResolutions := make([]IncomingHtlcResolution, 0, len(htlcs)) outgoingResolutions := make([]OutgoingHtlcResolution, 0, len(htlcs)) for _, htlc := range htlcs { htlc := htlc // We'll skip any HTLC's which were dust on the commitment // transaction, as these don't have a corresponding output // within the commitment transaction. if htlcIsDust( chanType, htlc.Incoming, ourCommit, feePerKw, htlc.Amt.ToSatoshis(), dustLimit, ) { continue } // If the HTLC is incoming, then we'll attempt to see if we // know the pre-image to the HTLC. if htlc.Incoming { // Otherwise, we'll create an incoming HTLC resolution // as we can satisfy the contract. ihr, err := newIncomingHtlcResolution( signer, localChanCfg, commitHash, &htlc, keyRing, feePerKw, uint32(csvDelay), ourCommit, chanType, ) if err != nil { return nil, err } incomingResolutions = append(incomingResolutions, *ihr) continue } ohr, err := newOutgoingHtlcResolution( signer, localChanCfg, commitHash, &htlc, keyRing, feePerKw, uint32(csvDelay), ourCommit, chanType, ) if err != nil { return nil, err } outgoingResolutions = append(outgoingResolutions, *ohr) } return &HtlcResolutions{ IncomingHTLCs: incomingResolutions, OutgoingHTLCs: outgoingResolutions, }, nil } // AnchorResolution holds the information necessary to spend our commitment tx // anchor. type AnchorResolution struct { // AnchorSignDescriptor is the sign descriptor for our anchor. AnchorSignDescriptor input.SignDescriptor // CommitAnchor is the anchor outpoint on the commit tx. CommitAnchor wire.OutPoint } // LocalForceCloseSummary describes the final commitment state before the // channel is locked-down to initiate a force closure by broadcasting the // latest state on-chain. If we intend to broadcast this this state, the // channel should not be used after generating this close summary. The summary // includes all the information required to claim all rightfully owned outputs // when the commitment gets confirmed. type LocalForceCloseSummary struct { // ChanPoint is the outpoint that created the channel which has been // force closed. ChanPoint wire.OutPoint // CloseTx is the transaction which can be used to close the channel // on-chain. When we initiate a force close, this will be our latest // commitment state. CloseTx *wire.MsgTx // CommitResolution contains all the data required to sweep the output // to ourselves. Since this is our commitment transaction, we'll need // to wait a time delay before we can sweep the output. // // NOTE: If our commitment delivery output is below the dust limit, // then this will be nil. CommitResolution *CommitOutputResolution // HtlcResolutions contains all the data required to sweep any outgoing // HTLC's and incoming HTLc's we know the preimage to. For each of these // HTLC's, we'll need to go to the second level to sweep them fully. HtlcResolutions *HtlcResolutions // ChanSnapshot is a snapshot of the final state of the channel at the // time the summary was created. ChanSnapshot channeldb.ChannelSnapshot // AnchorResolution contains the data required to sweep the anchor // output. If the channel type doesn't include anchors, the value of // this field will be nil. AnchorResolution *AnchorResolution } // ForceClose executes a unilateral closure of the transaction at the current // lowest commitment height of the channel. Following a force closure, all // state transitions, or modifications to the state update logs will be // rejected. Additionally, this function also returns a LocalForceCloseSummary // which includes the necessary details required to sweep all the time-locked // outputs within the commitment transaction. // // TODO(roasbeef): all methods need to abort if in dispute state // TODO(roasbeef): method to generate CloseSummaries for when the remote peer // does a unilateral close func (lc *LightningChannel) ForceClose() (*LocalForceCloseSummary, error) { lc.Lock() defer lc.Unlock() // If we've detected local data loss for this channel, then we won't // allow a force close, as it may be the case that we have a dated // version of the commitment, or this is actually a channel shell. if lc.channelState.HasChanStatus(channeldb.ChanStatusLocalDataLoss) { return nil, fmt.Errorf("cannot force close channel with "+ "state: %v", lc.channelState.ChanStatus()) } commitTx, err := lc.getSignedCommitTx() if err != nil { return nil, err } localCommitment := lc.channelState.LocalCommitment summary, err := NewLocalForceCloseSummary( lc.channelState, lc.Signer, commitTx, localCommitment, ) if err != nil { return nil, err } // Set the channel state to indicate that the channel is now in a // contested state. lc.status = channelDispute return summary, nil } // NewLocalForceCloseSummary generates a LocalForceCloseSummary from the given // channel state. The passed commitTx must be a fully signed commitment // transaction corresponding to localCommit. func NewLocalForceCloseSummary(chanState *channeldb.OpenChannel, signer input.Signer, commitTx *wire.MsgTx, localCommit channeldb.ChannelCommitment) ( *LocalForceCloseSummary, error) { // Re-derive the original pkScript for to-self output within the // commitment transaction. We'll need this to find the corresponding // output in the commitment transaction and potentially for creating // the sign descriptor. csvTimeout := uint32(chanState.LocalChanCfg.CsvDelay) revocation, err := chanState.RevocationProducer.AtIndex( localCommit.CommitHeight, ) if err != nil { return nil, err } commitPoint := input.ComputeCommitmentPoint(revocation[:]) keyRing := DeriveCommitmentKeys( commitPoint, true, chanState.ChanType, &chanState.LocalChanCfg, &chanState.RemoteChanCfg, ) selfScript, err := input.CommitScriptToSelf( csvTimeout, keyRing.ToLocalKey, keyRing.RevocationKey, ) if err != nil { return nil, err } payToUsScriptHash, err := input.WitnessScriptHash(selfScript) if err != nil { return nil, err } // Locate the output index of the delayed commitment output back to us. // We'll return the details of this output to the caller so they can // sweep it once it's mature. var ( delayIndex uint32 delayScript []byte ) for i, txOut := range commitTx.TxOut { if !bytes.Equal(payToUsScriptHash, txOut.PkScript) { continue } delayIndex = uint32(i) delayScript = txOut.PkScript break } // With the necessary information gathered above, create a new sign // descriptor which is capable of generating the signature the caller // needs to sweep this output. The hash cache, and input index are not // set as the caller will decide these values once sweeping the output. // If the output is non-existent (dust), have the sign descriptor be // nil. var commitResolution *CommitOutputResolution if len(delayScript) != 0 { localBalance := localCommit.LocalBalance commitResolution = &CommitOutputResolution{ SelfOutPoint: wire.OutPoint{ Hash: commitTx.TxHash(), Index: delayIndex, }, SelfOutputSignDesc: input.SignDescriptor{ KeyDesc: chanState.LocalChanCfg.DelayBasePoint, SingleTweak: keyRing.LocalCommitKeyTweak, WitnessScript: selfScript, Output: &wire.TxOut{ PkScript: delayScript, Value: int64(localBalance.ToSatoshis()), }, HashType: txscript.SigHashAll, }, MaturityDelay: csvTimeout, } } // Once the delay output has been found (if it exists), then we'll also // need to create a series of sign descriptors for any lingering // outgoing HTLC's that we'll need to claim as well. txHash := commitTx.TxHash() htlcResolutions, err := extractHtlcResolutions( chainfee.SatPerKWeight(localCommit.FeePerKw), true, signer, localCommit.Htlcs, keyRing, &chanState.LocalChanCfg, &chanState.RemoteChanCfg, txHash, chanState.ChanType, ) if err != nil { return nil, err } anchorResolution, err := NewAnchorResolution( chanState, commitTx, ) if err != nil { return nil, err } return &LocalForceCloseSummary{ ChanPoint: chanState.FundingOutpoint, CloseTx: commitTx, CommitResolution: commitResolution, HtlcResolutions: htlcResolutions, ChanSnapshot: *chanState.Snapshot(), AnchorResolution: anchorResolution, }, nil } // CreateCloseProposal is used by both parties in a cooperative channel close // workflow to generate proposed close transactions and signatures. This method // should only be executed once all pending HTLCs (if any) on the channel have // been cleared/removed. Upon completion, the source channel will shift into // the "closing" state, which indicates that all incoming/outgoing HTLC // requests should be rejected. A signature for the closing transaction is // returned. // // TODO(roasbeef): caller should initiate signal to reject all incoming HTLCs, // settle any in flight. func (lc *LightningChannel) CreateCloseProposal(proposedFee btcutil.Amount, localDeliveryScript []byte, remoteDeliveryScript []byte) (input.Signature, *chainhash.Hash, btcutil.Amount, error) { lc.Lock() defer lc.Unlock() // If we've already closed the channel, then ignore this request. if lc.status == channelClosed { // TODO(roasbeef): check to ensure no pending payments return nil, nil, 0, ErrChanClosing } // Subtract the proposed fee from the appropriate balance, taking care // not to persist the adjusted balance, as the feeRate may change // during the channel closing process. localCommit := lc.channelState.LocalCommitment ourBalance := localCommit.LocalBalance.ToSatoshis() theirBalance := localCommit.RemoteBalance.ToSatoshis() // We'll make sure we account for the complete balance by adding the // current dangling commitment fee to the balance of the initiator. commitFee := localCommit.CommitFee if lc.channelState.IsInitiator { ourBalance = ourBalance - proposedFee + commitFee } else { theirBalance = theirBalance - proposedFee + commitFee } closeTx := CreateCooperativeCloseTx( fundingTxIn(lc.channelState), lc.channelState.LocalChanCfg.DustLimit, lc.channelState.RemoteChanCfg.DustLimit, ourBalance, theirBalance, localDeliveryScript, remoteDeliveryScript, ) // Ensure that the transaction doesn't explicitly violate any // consensus rules such as being too big, or having any value with a // negative output. tx := btcutil.NewTx(closeTx) if err := blockchain.CheckTransactionSanity(tx); err != nil { return nil, nil, 0, err } // Finally, sign the completed cooperative closure transaction. As the // initiator we'll simply send our signature over to the remote party, // using the generated txid to be notified once the closure transaction // has been confirmed. lc.signDesc.SigHashes = txscript.NewTxSigHashes(closeTx) sig, err := lc.Signer.SignOutputRaw(closeTx, lc.signDesc) if err != nil { return nil, nil, 0, err } // As everything checks out, indicate in the channel status that a // channel closure has been initiated. lc.status = channelClosing closeTXID := closeTx.TxHash() return sig, &closeTXID, ourBalance, nil } // CompleteCooperativeClose completes the cooperative closure of the target // active lightning channel. A fully signed closure transaction as well as the // signature itself are returned. Additionally, we also return our final // settled balance, which reflects any fees we may have paid. // // NOTE: The passed local and remote sigs are expected to be fully complete // signatures including the proper sighash byte. func (lc *LightningChannel) CompleteCooperativeClose( localSig, remoteSig input.Signature, localDeliveryScript, remoteDeliveryScript []byte, proposedFee btcutil.Amount) (*wire.MsgTx, btcutil.Amount, error) { lc.Lock() defer lc.Unlock() // If the channel is already closed, then ignore this request. if lc.status == channelClosed { // TODO(roasbeef): check to ensure no pending payments return nil, 0, ErrChanClosing } // Subtract the proposed fee from the appropriate balance, taking care // not to persist the adjusted balance, as the feeRate may change // during the channel closing process. localCommit := lc.channelState.LocalCommitment ourBalance := localCommit.LocalBalance.ToSatoshis() theirBalance := localCommit.RemoteBalance.ToSatoshis() // We'll make sure we account for the complete balance by adding the // current dangling commitment fee to the balance of the initiator. commitFee := localCommit.CommitFee if lc.channelState.IsInitiator { ourBalance = ourBalance - proposedFee + commitFee } else { theirBalance = theirBalance - proposedFee + commitFee } // Create the transaction used to return the current settled balance // on this active channel back to both parties. In this current model, // the initiator pays full fees for the cooperative close transaction. closeTx := CreateCooperativeCloseTx( fundingTxIn(lc.channelState), lc.channelState.LocalChanCfg.DustLimit, lc.channelState.RemoteChanCfg.DustLimit, ourBalance, theirBalance, localDeliveryScript, remoteDeliveryScript, ) // Ensure that the transaction doesn't explicitly validate any // consensus rules such as being too big, or having any value with a // negative output. tx := btcutil.NewTx(closeTx) if err := blockchain.CheckTransactionSanity(tx); err != nil { return nil, 0, err } hashCache := txscript.NewTxSigHashes(closeTx) // Finally, construct the witness stack minding the order of the // pubkeys+sigs on the stack. ourKey := lc.channelState.LocalChanCfg.MultiSigKey.PubKey. SerializeCompressed() theirKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey. SerializeCompressed() witness := input.SpendMultiSig( lc.signDesc.WitnessScript, ourKey, localSig, theirKey, remoteSig, ) closeTx.TxIn[0].Witness = witness // Validate the finalized transaction to ensure the output script is // properly met, and that the remote peer supplied a valid signature. prevOut := lc.signDesc.Output vm, err := txscript.NewEngine(prevOut.PkScript, closeTx, 0, txscript.StandardVerifyFlags, nil, hashCache, prevOut.Value) if err != nil { return nil, 0, err } if err := vm.Execute(); err != nil { return nil, 0, err } // As the transaction is sane, and the scripts are valid we'll mark the // channel now as closed as the closure transaction should get into the // chain in a timely manner and possibly be re-broadcast by the wallet. lc.status = channelClosed return closeTx, ourBalance, nil } // NewAnchorResolutions returns the anchor resolutions for all currently valid // commitment transactions. Because we have no view on the mempool, we can only // blindly anchor all of these txes down. func (lc *LightningChannel) NewAnchorResolutions() ([]*AnchorResolution, error) { lc.Lock() defer lc.Unlock() var resolutions []*AnchorResolution // Add anchor for local commitment tx, if any. localRes, err := NewAnchorResolution( lc.channelState, lc.channelState.LocalCommitment.CommitTx, ) if err != nil { return nil, err } if localRes != nil { resolutions = append(resolutions, localRes) } // Add anchor for remote commitment tx, if any. remoteRes, err := NewAnchorResolution( lc.channelState, lc.channelState.RemoteCommitment.CommitTx, ) if err != nil { return nil, err } if remoteRes != nil { resolutions = append(resolutions, remoteRes) } // Add anchor for remote pending commitment tx, if any. remotePendingCommit, err := lc.channelState.RemoteCommitChainTip() if err != nil && err != channeldb.ErrNoPendingCommit { return nil, err } if remotePendingCommit != nil { remotePendingRes, err := NewAnchorResolution( lc.channelState, remotePendingCommit.Commitment.CommitTx, ) if err != nil { return nil, err } if remotePendingRes != nil { resolutions = append(resolutions, remotePendingRes) } } return resolutions, nil } // NewAnchorResolution returns the information that is required to sweep the // local anchor. func NewAnchorResolution(chanState *channeldb.OpenChannel, commitTx *wire.MsgTx) (*AnchorResolution, error) { // Return nil resolution if the channel has no anchors. if !chanState.ChanType.HasAnchors() { return nil, nil } // Derive our local anchor script. localAnchor, _, err := CommitScriptAnchors( &chanState.LocalChanCfg, &chanState.RemoteChanCfg, ) if err != nil { return nil, err } // Look up the script on the commitment transaction. It may not be // present if there is no output paying to us. found, index := input.FindScriptOutputIndex(commitTx, localAnchor.PkScript) if !found { return nil, nil } outPoint := &wire.OutPoint{ Hash: commitTx.TxHash(), Index: index, } // Instantiate the sign descriptor that allows sweeping of the anchor. signDesc := &input.SignDescriptor{ KeyDesc: chanState.LocalChanCfg.MultiSigKey, WitnessScript: localAnchor.WitnessScript, Output: &wire.TxOut{ PkScript: localAnchor.PkScript, Value: int64(anchorSize), }, HashType: txscript.SigHashAll, } return &AnchorResolution{ CommitAnchor: *outPoint, AnchorSignDescriptor: *signDesc, }, nil } // AvailableBalance returns the current balance available for sending within // the channel. By available balance, we mean that if at this very instance a // new commitment were to be created which evals all the log entries, what // would our available balance for adding an additional HTLC be. It takes into // account the fee that must be paid for adding this HTLC (if we're the // initiator), and that we cannot spend from the channel reserve. This method // is useful when deciding if a given channel can accept an HTLC in the // multi-hop forwarding scenario. func (lc *LightningChannel) AvailableBalance() lnwire.MilliSatoshi { lc.RLock() defer lc.RUnlock() bal, _ := lc.availableBalance() return bal } // availableBalance is the private, non mutexed version of AvailableBalance. // This method is provided so methods that already hold the lock can access // this method. Additionally, the total weight of the next to be created // commitment is returned for accounting purposes. func (lc *LightningChannel) availableBalance() (lnwire.MilliSatoshi, int64) { // We'll grab the current set of log updates that the remote has // ACKed. remoteACKedIndex := lc.localCommitChain.tip().theirMessageIndex htlcView := lc.fetchHTLCView(remoteACKedIndex, lc.localUpdateLog.logIndex) // Calculate our available balance from our local commitment. // TODO(halseth): could reuse parts validateCommitmentSanity to do this // balance calculation, as most of the logic is the same. // // NOTE: This is not always accurate, since the remote node can always // add updates concurrently, causing our balance to go down if we're // the initiator, but this is a problem on the protocol level. ourLocalCommitBalance, commitWeight := lc.availableCommitmentBalance( htlcView, false, ) // Do the same calculation from the remote commitment point of view. ourRemoteCommitBalance, _ := lc.availableCommitmentBalance( htlcView, true, ) // Return which ever balance is lowest. if ourRemoteCommitBalance < ourLocalCommitBalance { return ourRemoteCommitBalance, commitWeight } return ourLocalCommitBalance, commitWeight } // availableCommitmentBalance attempts to calculate the balance we have // available for HTLCs on the local/remote commitment given the htlcView. To // account for sending HTLCs of different sizes, it will report the balance // available for sending non-dust HTLCs, which will be manifested on the // commitment, increasing the commitment fee we must pay as an initiator, // eating into our balance. It will make sure we won't violate the channel // reserve constraints for this amount. func (lc *LightningChannel) availableCommitmentBalance(view *htlcView, remoteChain bool) (lnwire.MilliSatoshi, int64) { // Compute the current balances for this commitment. This will take // into account HTLCs to determine the commit weight, which the // initiator must pay the fee for. ourBalance, theirBalance, commitWeight, filteredView, err := lc.computeView( view, remoteChain, false, ) if err != nil { lc.log.Errorf("Unable to fetch available balance: %v", err) return 0, 0 } // We can never spend from the channel reserve, so we'll subtract it // from our available balance. ourReserve := lnwire.NewMSatFromSatoshis( lc.channelState.LocalChanCfg.ChanReserve, ) if ourReserve <= ourBalance { ourBalance -= ourReserve } else { ourBalance = 0 } // Calculate the commitment fee in the case where we would add another // HTLC to the commitment, as only the balance remaining after this fee // has been paid is actually available for sending. feePerKw := filteredView.feePerKw htlcCommitFee := lnwire.NewMSatFromSatoshis( feePerKw.FeeForWeight(commitWeight + input.HTLCWeight), ) // If we are the channel initiator, we must to subtract this commitment // fee from our available balance in order to ensure we can afford both // the value of the HTLC and the additional commitment fee from adding // the HTLC. if lc.channelState.IsInitiator { // There is an edge case where our non-zero balance is lower // than the htlcCommitFee, where we could still be sending dust // HTLCs, but we return 0 in this case. This is to avoid // lowering our balance even further, as this takes us into a // bad state wehere neither we nor our channel counterparty can // add HTLCs. if ourBalance < htlcCommitFee { return 0, commitWeight } return ourBalance - htlcCommitFee, commitWeight } // If we're not the initiator, we must check whether the remote has // enough balance to pay for the fee of our HTLC. We'll start by also // subtracting our counterparty's reserve from their balance. theirReserve := lnwire.NewMSatFromSatoshis( lc.channelState.RemoteChanCfg.ChanReserve, ) if theirReserve <= theirBalance { theirBalance -= theirReserve } else { theirBalance = 0 } // We'll use the dustlimit and htlcFee to find the largest HTLC value // that will be considered dust on the commitment. dustlimit := lnwire.NewMSatFromSatoshis( lc.channelState.LocalChanCfg.DustLimit, ) // For an extra HTLC fee to be paid on our commitment, the HTLC must be // large enough to make a non-dust HTLC timeout transaction. htlcFee := lnwire.NewMSatFromSatoshis( HtlcTimeoutFee(lc.channelState.ChanType, feePerKw), ) // If we are looking at the remote commitment, we must use the remote // dust limit and the fee for adding an HTLC success transaction. if remoteChain { dustlimit = lnwire.NewMSatFromSatoshis( lc.channelState.RemoteChanCfg.DustLimit, ) htlcFee = lnwire.NewMSatFromSatoshis( HtlcSuccessFee(lc.channelState.ChanType, feePerKw), ) } // The HTLC output will be manifested on the commitment if it // is non-dust after paying the HTLC fee. nonDustHtlcAmt := dustlimit + htlcFee // If they cannot pay the fee if we add another non-dust HTLC, we'll // report our available balance just below the non-dust amount, to // avoid attempting HTLCs larger than this size. if theirBalance < htlcCommitFee && ourBalance >= nonDustHtlcAmt { ourBalance = nonDustHtlcAmt - 1 } return ourBalance, commitWeight } // StateSnapshot returns a snapshot of the current fully committed state within // the channel. func (lc *LightningChannel) StateSnapshot() *channeldb.ChannelSnapshot { lc.RLock() defer lc.RUnlock() return lc.channelState.Snapshot() } // validateFeeRate ensures that if the passed fee is applied to the channel, // and a new commitment is created (which evaluates this fee), then the // initiator of the channel does not dip below their reserve. func (lc *LightningChannel) validateFeeRate(feePerKw chainfee.SatPerKWeight) error { // We'll ensure that we can accommodate this new fee change, yet still // be above our reserve balance. Otherwise, we'll reject the fee // update. availableBalance, txWeight := lc.availableBalance() oldFee := lnwire.NewMSatFromSatoshis(lc.localCommitChain.tip().fee) // Our base balance is the total amount of satoshis we can commit // towards fees before factoring in the channel reserve. baseBalance := availableBalance + oldFee // Using the weight of the commitment transaction if we were to create // a commitment now, we'll compute our remaining balance if we apply // this new fee update. newFee := lnwire.NewMSatFromSatoshis( feePerKw.FeeForWeight(txWeight), ) // If the total fee exceeds our available balance (taking into account // the fee from the last state), then we'll reject this update as it // would mean we need to trim our entire output. if newFee > baseBalance { return fmt.Errorf("cannot apply fee_update=%v sat/kw, new fee "+ "of %v is greater than balance of %v", int64(feePerKw), newFee, baseBalance) } // If this new balance is below our reserve, then we can't accommodate // the fee change, so we'll reject it. balanceAfterFee := baseBalance - newFee if balanceAfterFee.ToSatoshis() < lc.channelState.LocalChanCfg.ChanReserve { return fmt.Errorf("cannot apply fee_update=%v sat/kw, "+ "new balance=%v would dip below channel reserve=%v", int64(feePerKw), balanceAfterFee.ToSatoshis(), lc.channelState.LocalChanCfg.ChanReserve) } // TODO(halseth): should fail if fee update is unreasonable, // as specified in BOLT#2. // * COMMENT(roasbeef): can cross-check with our ideal fee rate return nil } // UpdateFee initiates a fee update for this channel. Must only be called by // the channel initiator, and must be called before sending update_fee to // the remote. func (lc *LightningChannel) UpdateFee(feePerKw chainfee.SatPerKWeight) error { lc.Lock() defer lc.Unlock() // Only initiator can send fee update, so trying to send one as // non-initiator will fail. if !lc.channelState.IsInitiator { return fmt.Errorf("local fee update as non-initiator") } // Ensure that the passed fee rate meets our current requirements. if err := lc.validateFeeRate(feePerKw); err != nil { return err } pd := &PaymentDescriptor{ LogIndex: lc.localUpdateLog.logIndex, Amount: lnwire.NewMSatFromSatoshis(btcutil.Amount(feePerKw)), EntryType: FeeUpdate, } lc.localUpdateLog.appendUpdate(pd) return nil } // ReceiveUpdateFee handles an updated fee sent from remote. This method will // return an error if called as channel initiator. func (lc *LightningChannel) ReceiveUpdateFee(feePerKw chainfee.SatPerKWeight) error { lc.Lock() defer lc.Unlock() // Only initiator can send fee update, and we must fail if we receive // fee update as initiator if lc.channelState.IsInitiator { return fmt.Errorf("received fee update as initiator") } // TODO(roasbeef): or just modify to use the other balance? pd := &PaymentDescriptor{ LogIndex: lc.remoteUpdateLog.logIndex, Amount: lnwire.NewMSatFromSatoshis(btcutil.Amount(feePerKw)), EntryType: FeeUpdate, } lc.remoteUpdateLog.appendUpdate(pd) return nil } // generateRevocation generates the revocation message for a given height. func (lc *LightningChannel) generateRevocation(height uint64) (*lnwire.RevokeAndAck, error) { // Now that we've accept a new state transition, we send the remote // party the revocation for our current commitment state. revocationMsg := &lnwire.RevokeAndAck{} commitSecret, err := lc.channelState.RevocationProducer.AtIndex(height) if err != nil { return nil, err } copy(revocationMsg.Revocation[:], commitSecret[:]) // Along with this revocation, we'll also send the _next_ commitment // point that the remote party should use to create our next commitment // transaction. We use a +2 here as we already gave them a look ahead // of size one after the FundingLocked message was sent: // // 0: current revocation, 1: their "next" revocation, 2: this revocation // // We're revoking the current revocation. Once they receive this // message they'll set the "current" revocation for us to their stored // "next" revocation, and this revocation will become their new "next" // revocation. // // Put simply in the window slides to the left by one. nextCommitSecret, err := lc.channelState.RevocationProducer.AtIndex( height + 2, ) if err != nil { return nil, err } revocationMsg.NextRevocationKey = input.ComputeCommitmentPoint(nextCommitSecret[:]) revocationMsg.ChanID = lnwire.NewChanIDFromOutPoint( &lc.channelState.FundingOutpoint) return revocationMsg, nil } // CreateCooperativeCloseTx creates a transaction which if signed by both // parties, then broadcast cooperatively closes an active channel. The creation // of the closure transaction is modified by a boolean indicating if the party // constructing the channel is the initiator of the closure. Currently it is // expected that the initiator pays the transaction fees for the closing // transaction in full. func CreateCooperativeCloseTx(fundingTxIn wire.TxIn, localDust, remoteDust, ourBalance, theirBalance btcutil.Amount, ourDeliveryScript, theirDeliveryScript []byte) *wire.MsgTx { // Construct the transaction to perform a cooperative closure of the // channel. In the event that one side doesn't have any settled funds // within the channel then a refund output for that particular side can // be omitted. closeTx := wire.NewMsgTx(2) closeTx.AddTxIn(&fundingTxIn) // Create both cooperative closure outputs, properly respecting the // dust limits of both parties. if ourBalance >= localDust { closeTx.AddTxOut(&wire.TxOut{ PkScript: ourDeliveryScript, Value: int64(ourBalance), }) } if theirBalance >= remoteDust { closeTx.AddTxOut(&wire.TxOut{ PkScript: theirDeliveryScript, Value: int64(theirBalance), }) } txsort.InPlaceSort(closeTx) return closeTx } // CalcFee returns the commitment fee to use for the given // fee rate (fee-per-kw). func (lc *LightningChannel) CalcFee(feeRate chainfee.SatPerKWeight) btcutil.Amount { return feeRate.FeeForWeight(CommitWeight(lc.channelState.ChanType)) } // MaxFeeRate returns the maximum fee rate given an allocation of the channel // initiator's spendable balance. This can be useful to determine when we should // stop proposing fee updates that exceed our maximum allocation. // // NOTE: This should only be used for channels in which the local commitment is // the initiator. func (lc *LightningChannel) MaxFeeRate(maxAllocation float64) chainfee.SatPerKWeight { lc.RLock() defer lc.RUnlock() // The maximum fee depends of the available balance that can be // committed towards fees. commit := lc.channelState.LocalCommitment feeBalance := float64( commit.LocalBalance.ToSatoshis() + commit.CommitFee, ) maxFee := feeBalance * maxAllocation // Ensure the fee rate doesn't dip below the fee floor. _, weight := lc.availableBalance() maxFeeRate := maxFee / (float64(weight) / 1000) return chainfee.SatPerKWeight( math.Max(maxFeeRate, float64(chainfee.FeePerKwFloor)), ) } // RemoteNextRevocation returns the channelState's RemoteNextRevocation. func (lc *LightningChannel) RemoteNextRevocation() *btcec.PublicKey { lc.RLock() defer lc.RUnlock() return lc.channelState.RemoteNextRevocation } // IsInitiator returns true if we were the ones that initiated the funding // workflow which led to the creation of this channel. Otherwise, it returns // false. func (lc *LightningChannel) IsInitiator() bool { lc.RLock() defer lc.RUnlock() return lc.channelState.IsInitiator } // CommitFeeRate returns the current fee rate of the commitment transaction in // units of sat-per-kw. func (lc *LightningChannel) CommitFeeRate() chainfee.SatPerKWeight { lc.RLock() defer lc.RUnlock() return chainfee.SatPerKWeight(lc.channelState.LocalCommitment.FeePerKw) } // IsPending returns true if the channel's funding transaction has been fully // confirmed, and false otherwise. func (lc *LightningChannel) IsPending() bool { lc.RLock() defer lc.RUnlock() return lc.channelState.IsPending } // State provides access to the channel's internal state. func (lc *LightningChannel) State() *channeldb.OpenChannel { return lc.channelState } // MarkBorked marks the event when the channel as reached an irreconcilable // state, such as a channel breach or state desynchronization. Borked channels // should never be added to the switch. func (lc *LightningChannel) MarkBorked() error { lc.Lock() defer lc.Unlock() return lc.channelState.MarkBorked() } // MarkCommitmentBroadcasted marks the channel as a commitment transaction has // been broadcast, either our own or the remote, and we should watch the chain // for it to confirm before taking any further action. It takes a boolean which // indicates whether we initiated the close. func (lc *LightningChannel) MarkCommitmentBroadcasted(tx *wire.MsgTx, locallyInitiated bool) error { lc.Lock() defer lc.Unlock() return lc.channelState.MarkCommitmentBroadcasted(tx, locallyInitiated) } // MarkCoopBroadcasted marks the channel as a cooperative close transaction has // been broadcast, and that we should watch the chain for it to confirm before // taking any further action. It takes a locally initiated bool which is true // if we initiated the cooperative close. func (lc *LightningChannel) MarkCoopBroadcasted(tx *wire.MsgTx, localInitiated bool) error { lc.Lock() defer lc.Unlock() return lc.channelState.MarkCoopBroadcasted(tx, localInitiated) } // MarkDataLoss marks sets the channel status to LocalDataLoss and stores the // passed commitPoint for use to retrieve funds in case the remote force closes // the channel. func (lc *LightningChannel) MarkDataLoss(commitPoint *btcec.PublicKey) error { lc.Lock() defer lc.Unlock() return lc.channelState.MarkDataLoss(commitPoint) } // ActiveHtlcs returns a slice of HTLC's which are currently active on *both* // commitment transactions. func (lc *LightningChannel) ActiveHtlcs() []channeldb.HTLC { lc.RLock() defer lc.RUnlock() return lc.channelState.ActiveHtlcs() } // LocalChanReserve returns our local ChanReserve requirement for the remote party. func (lc *LightningChannel) LocalChanReserve() btcutil.Amount { return lc.channelState.LocalChanCfg.ChanReserve } // NextLocalHtlcIndex returns the next unallocated local htlc index. To ensure // this always returns the next index that has been not been allocated, this // will first try to examine any pending commitments, before falling back to the // last locked-in local commitment. func (lc *LightningChannel) NextLocalHtlcIndex() (uint64, error) { lc.RLock() defer lc.RUnlock() return lc.channelState.NextLocalHtlcIndex() } // FwdMinHtlc returns the minimum HTLC value required by the remote node, i.e. // the minimum value HTLC we can forward on this channel. func (lc *LightningChannel) FwdMinHtlc() lnwire.MilliSatoshi { return lc.channelState.LocalChanCfg.MinHTLC }