package neutrinonotify import ( "errors" "fmt" "sync" "sync/atomic" "time" "github.com/lightninglabs/neutrino" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/roasbeef/btcd/chaincfg/chainhash" "github.com/roasbeef/btcd/rpcclient" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" "github.com/roasbeef/btcutil/gcs/builder" "github.com/roasbeef/btcwallet/waddrmgr" ) const ( // notifierType uniquely identifies this concrete implementation of the // ChainNotifier interface. notifierType = "neutrino" // reorgSafetyLimit is the chain depth beyond which it is assumed a block // will not be reorganized out of the chain. This is used to determine when // to prune old confirmation requests so that reorgs are handled correctly. // The coinbase maturity period is a reasonable value to use. reorgSafetyLimit = 100 ) var ( // ErrChainNotifierShuttingDown is used when we are trying to // measure a spend notification when notifier is already stopped. ErrChainNotifierShuttingDown = errors.New("chainntnfs: system interrupt " + "while attempting to register for spend notification.") ) // NeutrinoNotifier is a version of ChainNotifier that's backed by the neutrino // Bitcoin light client. Unlike other implementations, this implementation // speaks directly to the p2p network. As a result, this implementation of the // ChainNotifier interface is much more light weight that other implementation // which rely of receiving notification over an RPC interface backed by a // running full node. // // TODO(roasbeef): heavily consolidate with NeutrinoNotifier code // * maybe combine into single package? type NeutrinoNotifier struct { started int32 // To be used atomically. stopped int32 // To be used atomically. spendClientCounter uint64 // To be used atomically. epochClientCounter uint64 // To be used atomically. heightMtx sync.RWMutex bestHeight uint32 p2pNode *neutrino.ChainService chainView neutrino.Rescan notificationCancels chan interface{} notificationRegistry chan interface{} spendNotifications map[wire.OutPoint]map[uint64]*spendNotification txConfNotifier *chainntnfs.TxConfNotifier blockEpochClients map[uint64]*blockEpochRegistration rescanErr <-chan error chainUpdates *chainntnfs.ConcurrentQueue wg sync.WaitGroup quit chan struct{} } // Ensure NeutrinoNotifier implements the ChainNotifier interface at compile time. var _ chainntnfs.ChainNotifier = (*NeutrinoNotifier)(nil) // New creates a new instance of the NeutrinoNotifier concrete implementation // of the ChainNotifier interface. // // NOTE: The passed neutrino node should already be running and active before // being passed into this function. func New(node *neutrino.ChainService) (*NeutrinoNotifier, error) { notifier := &NeutrinoNotifier{ notificationCancels: make(chan interface{}), notificationRegistry: make(chan interface{}), blockEpochClients: make(map[uint64]*blockEpochRegistration), spendNotifications: make(map[wire.OutPoint]map[uint64]*spendNotification), p2pNode: node, rescanErr: make(chan error), chainUpdates: chainntnfs.NewConcurrentQueue(10), quit: make(chan struct{}), } return notifier, nil } // Start contacts the running neutrino light client and kicks off an initial // empty rescan. func (n *NeutrinoNotifier) Start() error { // Already started? if atomic.AddInt32(&n.started, 1) != 1 { return nil } // First, we'll obtain the latest block height of the p2p node. We'll // start the auto-rescan from this point. Once a caller actually wishes // to register a chain view, the rescan state will be rewound // accordingly. bestHeader, bestHeight, err := n.p2pNode.BlockHeaders.ChainTip() if err != nil { return err } startingPoint := &waddrmgr.BlockStamp{ Height: int32(bestHeight), Hash: bestHeader.BlockHash(), } n.bestHeight = bestHeight // Next, we'll create our set of rescan options. Currently it's // required that a user MUST set a addr/outpoint/txid when creating a // rescan. To get around this, we'll add a "zero" outpoint, that won't // actually be matched. var zeroHash chainhash.Hash rescanOptions := []neutrino.RescanOption{ neutrino.StartBlock(startingPoint), neutrino.QuitChan(n.quit), neutrino.NotificationHandlers( rpcclient.NotificationHandlers{ OnFilteredBlockConnected: n.onFilteredBlockConnected, OnFilteredBlockDisconnected: n.onFilteredBlockDisconnected, }, ), neutrino.WatchTxIDs(zeroHash), } n.txConfNotifier = chainntnfs.NewTxConfNotifier( bestHeight, reorgSafetyLimit) // Finally, we'll create our rescan struct, start it, and launch all // the goroutines we need to operate this ChainNotifier instance. n.chainView = n.p2pNode.NewRescan(rescanOptions...) n.rescanErr = n.chainView.Start() n.chainUpdates.Start() n.wg.Add(1) go n.notificationDispatcher() return nil } // Stop shutsdown the NeutrinoNotifier. func (n *NeutrinoNotifier) Stop() error { // Already shutting down? if atomic.AddInt32(&n.stopped, 1) != 1 { return nil } close(n.quit) n.wg.Wait() n.chainUpdates.Stop() // Notify all pending clients of our shutdown by closing the related // notification channels. for _, spendClients := range n.spendNotifications { for _, spendClient := range spendClients { close(spendClient.spendChan) } } for _, epochClient := range n.blockEpochClients { close(epochClient.epochChan) } n.txConfNotifier.TearDown() return nil } // filteredBlock represents a new block which has been connected to the main // chain. The slice of transactions will only be populated if the block // includes a transaction that confirmed one of our watched txids, or spends // one of the outputs currently being watched. type filteredBlock struct { hash chainhash.Hash height uint32 txns []*btcutil.Tx // connected is true if this update is a new block and false if it is a // disconnected block. connect bool } // onFilteredBlockConnected is a callback which is executed each a new block is // connected to the end of the main chain. func (n *NeutrinoNotifier) onFilteredBlockConnected(height int32, header *wire.BlockHeader, txns []*btcutil.Tx) { // Append this new chain update to the end of the queue of new chain // updates. n.chainUpdates.ChanIn() <- &filteredBlock{ hash: header.BlockHash(), height: uint32(height), txns: txns, connect: true, } } // onFilteredBlockDisconnected is a callback which is executed each time a new // block has been disconnected from the end of the mainchain due to a re-org. func (n *NeutrinoNotifier) onFilteredBlockDisconnected(height int32, header *wire.BlockHeader) { // Append this new chain update to the end of the queue of new chain // disconnects. n.chainUpdates.ChanIn() <- &filteredBlock{ hash: header.BlockHash(), height: uint32(height), connect: false, } } // notificationDispatcher is the primary goroutine which handles client // notification registrations, as well as notification dispatches. func (n *NeutrinoNotifier) notificationDispatcher() { defer n.wg.Done() for { select { case cancelMsg := <-n.notificationCancels: switch msg := cancelMsg.(type) { case *spendCancel: chainntnfs.Log.Infof("Cancelling spend "+ "notification for out_point=%v, "+ "spend_id=%v", msg.op, msg.spendID) // Before we attempt to close the spendChan, // ensure that the notification hasn't already // yet been dispatched. if outPointClients, ok := n.spendNotifications[msg.op]; ok { close(outPointClients[msg.spendID].spendChan) delete(n.spendNotifications[msg.op], msg.spendID) } case *epochCancel: chainntnfs.Log.Infof("Cancelling epoch "+ "notification, epoch_id=%v", msg.epochID) // First, close the cancel channel for this // specific client, and wait for the client to // exit. close(n.blockEpochClients[msg.epochID].cancelChan) n.blockEpochClients[msg.epochID].wg.Wait() // Once the client has exited, we can then // safely close the channel used to send epoch // notifications, in order to notify any // listeners that the intent has been // cancelled. close(n.blockEpochClients[msg.epochID].epochChan) delete(n.blockEpochClients, msg.epochID) } case registerMsg := <-n.notificationRegistry: switch msg := registerMsg.(type) { case *spendNotification: chainntnfs.Log.Infof("New spend subscription: "+ "utxo=%v", msg.targetOutpoint) op := *msg.targetOutpoint if _, ok := n.spendNotifications[op]; !ok { n.spendNotifications[op] = make(map[uint64]*spendNotification) } n.spendNotifications[op][msg.spendID] = msg case *confirmationsNotification: chainntnfs.Log.Infof("New confirmations subscription: "+ "txid=%v, numconfs=%v, height_hint=%v", msg.TxID, msg.NumConfirmations, msg.heightHint) // If the notification can be partially or // fully dispatched, then we can skip the first // phase for ntfns. n.heightMtx.RLock() currentHeight := n.bestHeight n.heightMtx.RUnlock() // Lookup whether the transaction is already included in the // active chain. txConf, err := n.historicalConfDetails(msg.TxID, currentHeight, msg.heightHint) if err != nil { chainntnfs.Log.Error(err) } if txConf == nil { // If we can't fully dispatch confirmation, // then we'll update our filter so we can be // notified of its future initial confirmation. rescanUpdate := []neutrino.UpdateOption{ neutrino.AddTxIDs(*msg.TxID), neutrino.Rewind(currentHeight), } if err := n.chainView.Update(rescanUpdate...); err != nil { chainntnfs.Log.Errorf("unable to update rescan: %v", err) } } n.txConfNotifier.Register(&msg.ConfNtfn, txConf) case *blockEpochRegistration: chainntnfs.Log.Infof("New block epoch subscription") n.blockEpochClients[msg.epochID] = msg } case item := <-n.chainUpdates.ChanOut(): update := item.(*filteredBlock) if update.connect { n.heightMtx.Lock() if update.height != n.bestHeight+1 { chainntnfs.Log.Warnf("Received blocks out of order: "+ "current height=%d, new height=%d", n.bestHeight, update.height) } n.bestHeight = update.height n.heightMtx.Unlock() chainntnfs.Log.Infof("New block: height=%v, sha=%v", update.height, update.hash) err := n.handleBlockConnected(update) if err != nil { chainntnfs.Log.Error(err) } } else { n.heightMtx.Lock() if update.height != n.bestHeight { chainntnfs.Log.Warnf("Received blocks out of order: "+ "current height=%d, disconnected height=%d", n.bestHeight, update.height) } n.bestHeight = update.height - 1 n.heightMtx.Unlock() chainntnfs.Log.Infof("Block disconnected from main chain: "+ "height=%v, sha=%v", update.height, update.hash) err := n.txConfNotifier.DisconnectTip(update.height) if err != nil { chainntnfs.Log.Error(err) } } case err := <-n.rescanErr: chainntnfs.Log.Errorf("Error during rescan: %v", err) case <-n.quit: return } } } // historicalConfDetails looks up whether a transaction is already included in a // block in the active chain and, if so, returns details about the confirmation. func (n *NeutrinoNotifier) historicalConfDetails(targetHash *chainhash.Hash, currentHeight, heightHint uint32) (*chainntnfs.TxConfirmation, error) { // Starting from the height hint, we'll walk forwards in the chain to // see if this transaction has already been confirmed. for scanHeight := heightHint; scanHeight <= currentHeight; scanHeight++ { // First, we'll fetch the block header for this height so we // can compute the current block hash. header, err := n.p2pNode.BlockHeaders.FetchHeaderByHeight(scanHeight) if err != nil { return nil, fmt.Errorf("unable to get header for height=%v: %v", scanHeight, err) } blockHash := header.BlockHash() // With the hash computed, we can now fetch the basic filter // for this height. regFilter, err := n.p2pNode.GetCFilter(blockHash, wire.GCSFilterRegular) if err != nil { return nil, fmt.Errorf("unable to retrieve regular filter for "+ "height=%v: %v", scanHeight, err) } // If the block has no transactions other than the coinbase // transaction, then the filter may be nil, so we'll continue // forward int that case. if regFilter == nil { continue } // In the case that the filter exists, we'll attempt to see if // any element in it match our target txid. key := builder.DeriveKey(&blockHash) match, err := regFilter.Match(key, targetHash[:]) if err != nil { return nil, fmt.Errorf("unable to query filter: %v", err) } // If there's no match, then we can continue forward to the // next block. if !match { continue } // In the case that we do have a match, we'll fetch the block // from the network so we can find the positional data required // to send the proper response. block, err := n.p2pNode.GetBlockFromNetwork(blockHash) if err != nil { return nil, fmt.Errorf("unable to get block from network: %v", err) } for j, tx := range block.Transactions() { txHash := tx.Hash() if txHash.IsEqual(targetHash) { confDetails := chainntnfs.TxConfirmation{ BlockHash: &blockHash, BlockHeight: scanHeight, TxIndex: uint32(j), } return &confDetails, nil } } } return nil, nil } // handleBlocksConnected applies a chain update for a new block. Any watched // transactions included this block will processed to either send notifications // now or after numConfirmations confs. func (n *NeutrinoNotifier) handleBlockConnected(newBlock *filteredBlock) error { // First we'll notify any subscribed clients of the block. n.notifyBlockEpochs(int32(newBlock.height), &newBlock.hash) // Next, we'll scan over the list of relevant transactions and possibly // dispatch notifications for confirmations and spends. for _, tx := range newBlock.txns { mtx := tx.MsgTx() txSha := mtx.TxHash() for i, txIn := range mtx.TxIn { prevOut := txIn.PreviousOutPoint // If this transaction indeed does spend an output which we have a // registered notification for, then create a spend summary, finally // sending off the details to the notification subscriber. clients, ok := n.spendNotifications[prevOut] if !ok { continue } // TODO(roasbeef): many integration tests expect spend to be // notified within the mempool. spendDetails := &chainntnfs.SpendDetail{ SpentOutPoint: &prevOut, SpenderTxHash: &txSha, SpendingTx: mtx, SpenderInputIndex: uint32(i), SpendingHeight: int32(newBlock.height), } for _, ntfn := range clients { chainntnfs.Log.Infof("Dispatching spend notification for "+ "outpoint=%v", ntfn.targetOutpoint) ntfn.spendChan <- spendDetails // Close spendChan to ensure that any calls to Cancel will not // block. This is safe to do since the channel is buffered, and // the message can still be read by the receiver. close(ntfn.spendChan) } delete(n.spendNotifications, prevOut) } } // A new block has been connected to the main chain. // Send out any N confirmation notifications which may // have been triggered by this new block. n.txConfNotifier.ConnectTip(&newBlock.hash, newBlock.height, newBlock.txns) return nil } // notifyBlockEpochs notifies all registered block epoch clients of the newly // connected block to the main chain. func (n *NeutrinoNotifier) notifyBlockEpochs(newHeight int32, newSha *chainhash.Hash) { epoch := &chainntnfs.BlockEpoch{ Height: newHeight, Hash: newSha, } for _, epochClient := range n.blockEpochClients { n.wg.Add(1) epochClient.wg.Add(1) go func(ntfnChan chan *chainntnfs.BlockEpoch, cancelChan chan struct{}, clientWg *sync.WaitGroup) { defer clientWg.Done() defer n.wg.Done() select { case ntfnChan <- epoch: case <-cancelChan: return case <-n.quit: return } }(epochClient.epochChan, epochClient.cancelChan, &epochClient.wg) } } // spendNotification couples a target outpoint along with the channel used for // notifications once a spend of the outpoint has been detected. type spendNotification struct { targetOutpoint *wire.OutPoint spendChan chan *chainntnfs.SpendDetail spendID uint64 } // spendCancel is a message sent to the NeutrinoNotifier when a client wishes // to cancel an outstanding spend notification that has yet to be dispatched. type spendCancel struct { // op is the target outpoint of the notification to be cancelled. op wire.OutPoint // spendID the ID of the notification to cancel. spendID uint64 } // RegisterSpendNtfn registers an intent to be notified once the target // outpoint has been spent by a transaction on-chain. Once a spend of the // target outpoint has been detected, the details of the spending event will be // sent across the 'Spend' channel. func (n *NeutrinoNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint, heightHint uint32) (*chainntnfs.SpendEvent, error) { n.heightMtx.RLock() currentHeight := n.bestHeight n.heightMtx.RUnlock() chainntnfs.Log.Infof("New spend notification for outpoint=%v, "+ "height_hint=%v", outpoint, heightHint) ntfn := &spendNotification{ targetOutpoint: outpoint, spendChan: make(chan *chainntnfs.SpendDetail, 1), spendID: atomic.AddUint64(&n.spendClientCounter, 1), } spendEvent := &chainntnfs.SpendEvent{ Spend: ntfn.spendChan, Cancel: func() { cancel := &spendCancel{ op: *outpoint, spendID: ntfn.spendID, } // Submit spend cancellation to notification dispatcher. select { case n.notificationCancels <- cancel: // Cancellation is being handled, drain the spend chan until it is // closed before yielding to the caller. for { select { case _, ok := <-ntfn.spendChan: if !ok { return } case <-n.quit: return } } case <-n.quit: } }, } // Ensure that neutrino is caught up to the height hint before we // attempt to fetch the utxo fromt the chain. If we're behind, then we // may miss a notification dispatch. for { n.heightMtx.RLock() currentHeight := n.bestHeight n.heightMtx.RUnlock() if currentHeight < heightHint { time.Sleep(time.Millisecond * 200) continue } break } // Before sending off the notification request, we'll attempt to see if // this output is still spent or not at this point in the chain. spendReport, err := n.p2pNode.GetUtxo( neutrino.WatchOutPoints(*outpoint), neutrino.StartBlock(&waddrmgr.BlockStamp{ Height: int32(heightHint), }), ) if err != nil { return nil, err } // If a spend report was returned, and the transaction is present, then // this means that the output is already spent. if spendReport != nil && spendReport.SpendingTx != nil { // As a result, we'll launch a goroutine to immediately // dispatch the notification with a normal response. go func() { txSha := spendReport.SpendingTx.TxHash() select { case ntfn.spendChan <- &chainntnfs.SpendDetail{ SpentOutPoint: outpoint, SpenderTxHash: &txSha, SpendingTx: spendReport.SpendingTx, SpenderInputIndex: spendReport.SpendingInputIndex, SpendingHeight: int32(spendReport.SpendingTxHeight), }: case <-n.quit: return } }() return spendEvent, nil } // If the output is still unspent, then we'll update our rescan's // filter, and send the request to the dispatcher goroutine. rescanUpdate := []neutrino.UpdateOption{ neutrino.AddOutPoints(*outpoint), neutrino.Rewind(currentHeight), } if err := n.chainView.Update(rescanUpdate...); err != nil { return nil, err } select { case n.notificationRegistry <- ntfn: case <-n.quit: return nil, ErrChainNotifierShuttingDown } return spendEvent, nil } // confirmationNotification represents a client's intent to receive a // notification once the target txid reaches numConfirmations confirmations. type confirmationsNotification struct { chainntnfs.ConfNtfn heightHint uint32 } // RegisterConfirmationsNtfn registers a notification with NeutrinoNotifier // which will be triggered once the txid reaches numConfs number of // confirmations. func (n *NeutrinoNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash, numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent, error) { ntfn := &confirmationsNotification{ ConfNtfn: chainntnfs.ConfNtfn{ TxID: txid, NumConfirmations: numConfs, Event: chainntnfs.NewConfirmationEvent(), }, heightHint: heightHint, } select { case <-n.quit: return nil, ErrChainNotifierShuttingDown case n.notificationRegistry <- ntfn: return ntfn.Event, nil } } // blockEpochRegistration represents a client's intent to receive a // notification with each newly connected block. type blockEpochRegistration struct { epochID uint64 epochChan chan *chainntnfs.BlockEpoch cancelChan chan struct{} wg sync.WaitGroup } // epochCancel is a message sent to the NeutrinoNotifier when a client wishes // to cancel an outstanding epoch notification that has yet to be dispatched. type epochCancel struct { epochID uint64 } // RegisterBlockEpochNtfn returns a BlockEpochEvent which subscribes the caller // to receive notifications, of each new block connected to the main chain. func (n *NeutrinoNotifier) RegisterBlockEpochNtfn() (*chainntnfs.BlockEpochEvent, error) { registration := &blockEpochRegistration{ epochChan: make(chan *chainntnfs.BlockEpoch, 20), cancelChan: make(chan struct{}), epochID: atomic.AddUint64(&n.epochClientCounter, 1), } select { case <-n.quit: return nil, errors.New("chainntnfs: system interrupt while " + "attempting to register for block epoch notification.") case n.notificationRegistry <- registration: return &chainntnfs.BlockEpochEvent{ Epochs: registration.epochChan, Cancel: func() { cancel := &epochCancel{ epochID: registration.epochID, } // Submit epoch cancellation to notification dispatcher. select { case n.notificationCancels <- cancel: // Cancellation is being handled, drain the epoch channel until it is // closed before yielding to caller. for { select { case _, ok := <-registration.epochChan: if !ok { return } case <-n.quit: return } } case <-n.quit: } }, }, nil } }