package main import ( "bytes" "context" "crypto/rand" "crypto/sha256" "encoding/hex" "fmt" "image/color" "math/big" "net" "path/filepath" "strconv" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/connmgr" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/coreos/bbolt" "github.com/go-errors/errors" "github.com/lightningnetwork/lightning-onion" "github.com/lightningnetwork/lnd/autopilot" "github.com/lightningnetwork/lnd/brontide" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/contractcourt" "github.com/lightningnetwork/lnd/discovery" "github.com/lightningnetwork/lnd/htlcswitch" "github.com/lightningnetwork/lnd/lncfg" "github.com/lightningnetwork/lnd/lnpeer" "github.com/lightningnetwork/lnd/lnrpc" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/nat" "github.com/lightningnetwork/lnd/routing" "github.com/lightningnetwork/lnd/ticker" "github.com/lightningnetwork/lnd/tor" ) const ( // defaultMinPeers is the minimum number of peers nodes should always be // connected to. defaultMinPeers = 3 // defaultBackoff is the starting point for exponential backoff for // reconnecting to persistent peers. defaultBackoff = time.Second // maximumBackoff is the largest backoff we will permit when // reattempting connections to persistent peers. maximumBackoff = time.Hour ) var ( // ErrPeerNotConnected signals that the server has no connection to the // given peer. ErrPeerNotConnected = errors.New("peer is not connected") // ErrServerShuttingDown indicates that the server is in the process of // gracefully exiting. ErrServerShuttingDown = errors.New("server is shutting down") ) // server is the main server of the Lightning Network Daemon. The server houses // global state pertaining to the wallet, database, and the rpcserver. // Additionally, the server is also used as a central messaging bus to interact // with any of its companion objects. type server struct { started int32 // atomic shutdown int32 // atomic // identityPriv is the private key used to authenticate any incoming // connections. identityPriv *btcec.PrivateKey // nodeSigner is an implementation of the MessageSigner implementation // that's backed by the identity private key of the running lnd node. nodeSigner *nodeSigner // lightningID is the sha256 of the public key corresponding to our // long-term identity private key. lightningID [32]byte // listenAddrs is the list of addresses the server is currently // listening on. listenAddrs []net.Addr // torController is a client that will communicate with a locally // running Tor server. This client will handle initiating and // authenticating the connection to the Tor server, automatically // creating and setting up onion services, etc. torController *tor.Controller // natTraversal is the specific NAT traversal technique used to // automatically set up port forwarding rules in order to advertise to // the network that the node is accepting inbound connections. natTraversal nat.Traversal // lastDetectedIP is the last IP detected by the NAT traversal technique // above. This IP will be watched periodically in a goroutine in order // to handle dynamic IP changes. lastDetectedIP net.IP mu sync.RWMutex peersByPub map[string]*peer inboundPeers map[string]*peer outboundPeers map[string]*peer peerConnectedListeners map[string][]chan<- lnpeer.Peer persistentPeers map[string]struct{} persistentPeersBackoff map[string]time.Duration persistentConnReqs map[string][]*connmgr.ConnReq persistentRetryCancels map[string]chan struct{} // ignorePeerTermination tracks peers for which the server has initiated // a disconnect. Adding a peer to this map causes the peer termination // watcher to short circuit in the event that peers are purposefully // disconnected. ignorePeerTermination map[*peer]struct{} // scheduledPeerConnection maps a pubkey string to a callback that // should be executed in the peerTerminationWatcher the prior peer with // the same pubkey exits. This allows the server to wait until the // prior peer has cleaned up successfully, before adding the new peer // intended to replace it. scheduledPeerConnection map[string]func() cc *chainControl fundingMgr *fundingManager chanDB *channeldb.DB htlcSwitch *htlcswitch.Switch invoices *invoiceRegistry witnessBeacon contractcourt.WitnessBeacon breachArbiter *breachArbiter chanRouter *routing.ChannelRouter authGossiper *discovery.AuthenticatedGossiper utxoNursery *utxoNursery chainArb *contractcourt.ChainArbitrator sphinx *htlcswitch.OnionProcessor connMgr *connmgr.ConnManager // globalFeatures feature vector which affects HTLCs and thus are also // advertised to other nodes. globalFeatures *lnwire.FeatureVector // currentNodeAnn is the node announcement that has been broadcast to // the network upon startup, if the attributes of the node (us) has // changed since last start. currentNodeAnn *lnwire.NodeAnnouncement quit chan struct{} wg sync.WaitGroup } // parseAddr parses an address from its string format to a net.Addr. func parseAddr(address string) (net.Addr, error) { var ( host string port int ) // Split the address into its host and port components. h, p, err := net.SplitHostPort(address) if err != nil { // If a port wasn't specified, we'll assume the address only // contains the host so we'll use the default port. host = address port = defaultPeerPort } else { // Otherwise, we'll note both the host and ports. host = h portNum, err := strconv.Atoi(p) if err != nil { return nil, err } port = portNum } if tor.IsOnionHost(host) { return &tor.OnionAddr{OnionService: host, Port: port}, nil } // If the host is part of a TCP address, we'll use the network // specific ResolveTCPAddr function in order to resolve these // addresses over Tor in order to prevent leaking your real IP // address. hostPort := net.JoinHostPort(host, strconv.Itoa(port)) return cfg.net.ResolveTCPAddr("tcp", hostPort) } // noiseDial is a factory function which creates a connmgr compliant dialing // function by returning a closure which includes the server's identity key. func noiseDial(idPriv *btcec.PrivateKey) func(net.Addr) (net.Conn, error) { return func(a net.Addr) (net.Conn, error) { lnAddr := a.(*lnwire.NetAddress) return brontide.Dial(idPriv, lnAddr, cfg.net.Dial) } } // newServer creates a new instance of the server which is to listen using the // passed listener address. func newServer(listenAddrs []net.Addr, chanDB *channeldb.DB, cc *chainControl, privKey *btcec.PrivateKey) (*server, error) { var err error listeners := make([]net.Listener, len(listenAddrs)) for i, listenAddr := range listenAddrs { // Note: though brontide.NewListener uses ResolveTCPAddr, it // doesn't need to call the general lndResolveTCP function // since we are resolving a local address. listeners[i], err = brontide.NewListener( privKey, listenAddr.String(), ) if err != nil { return nil, err } } globalFeatures := lnwire.NewRawFeatureVector() var serializedPubKey [33]byte copy(serializedPubKey[:], privKey.PubKey().SerializeCompressed()) // Initialize the sphinx router, placing it's persistent replay log in // the same directory as the channel graph database. graphDir := chanDB.Path() sharedSecretPath := filepath.Join(graphDir, "sphinxreplay.db") replayLog := htlcswitch.NewDecayedLog(sharedSecretPath, cc.chainNotifier) sphinxRouter := sphinx.NewRouter(privKey, activeNetParams.Params, replayLog) s := &server{ chanDB: chanDB, cc: cc, invoices: newInvoiceRegistry(chanDB), identityPriv: privKey, nodeSigner: newNodeSigner(privKey), listenAddrs: listenAddrs, // TODO(roasbeef): derive proper onion key based on rotation // schedule sphinx: htlcswitch.NewOnionProcessor(sphinxRouter), lightningID: sha256.Sum256(serializedPubKey[:]), persistentPeers: make(map[string]struct{}), persistentPeersBackoff: make(map[string]time.Duration), persistentConnReqs: make(map[string][]*connmgr.ConnReq), persistentRetryCancels: make(map[string]chan struct{}), ignorePeerTermination: make(map[*peer]struct{}), scheduledPeerConnection: make(map[string]func()), peersByPub: make(map[string]*peer), inboundPeers: make(map[string]*peer), outboundPeers: make(map[string]*peer), peerConnectedListeners: make(map[string][]chan<- lnpeer.Peer), globalFeatures: lnwire.NewFeatureVector(globalFeatures, lnwire.GlobalFeatures), quit: make(chan struct{}), } s.witnessBeacon = &preimageBeacon{ invoices: s.invoices, wCache: chanDB.NewWitnessCache(), subscribers: make(map[uint64]*preimageSubscriber), } // If the debug HTLC flag is on, then we invoice a "master debug" // invoice which all outgoing payments will be sent and all incoming // HTLCs with the debug R-Hash immediately settled. if cfg.DebugHTLC { kiloCoin := btcutil.Amount(btcutil.SatoshiPerBitcoin * 1000) s.invoices.AddDebugInvoice(kiloCoin, *debugPre) srvrLog.Debugf("Debug HTLC invoice inserted, preimage=%x, hash=%x", debugPre[:], debugHash[:]) } _, currentHeight, err := s.cc.chainIO.GetBestBlock() if err != nil { return nil, err } s.htlcSwitch, err = htlcswitch.New(htlcswitch.Config{ DB: chanDB, SelfKey: s.identityPriv.PubKey(), LocalChannelClose: func(pubKey []byte, request *htlcswitch.ChanClose) { peer, err := s.FindPeerByPubStr(string(pubKey)) if err != nil { srvrLog.Errorf("unable to close channel, peer"+ " with %v id can't be found: %v", pubKey, err, ) return } select { case peer.localCloseChanReqs <- request: srvrLog.Infof("Local close channel request "+ "delivered to peer: %x", pubKey[:]) case <-peer.quit: srvrLog.Errorf("Unable to deliver local close "+ "channel request to peer %x, err: %v", pubKey[:], err) } }, FwdingLog: chanDB.ForwardingLog(), SwitchPackager: channeldb.NewSwitchPackager(), ExtractErrorEncrypter: s.sphinx.ExtractErrorEncrypter, FetchLastChannelUpdate: fetchLastChanUpdate(s, serializedPubKey), Notifier: s.cc.chainNotifier, FwdEventTicker: ticker.New( htlcswitch.DefaultFwdEventInterval), LogEventTicker: ticker.New( htlcswitch.DefaultLogInterval), }, uint32(currentHeight)) if err != nil { return nil, err } // If enabled, use either UPnP or NAT-PMP to automatically configure // port forwarding for users behind a NAT. if cfg.NAT { srvrLog.Info("Scanning local network for a UPnP enabled device") discoveryTimeout := time.Duration(10 * time.Second) ctx, cancel := context.WithTimeout( context.Background(), discoveryTimeout, ) defer cancel() upnp, err := nat.DiscoverUPnP(ctx) if err == nil { s.natTraversal = upnp } else { // If we were not able to discover a UPnP enabled device // on the local network, we'll fall back to attempting // to discover a NAT-PMP enabled device. srvrLog.Errorf("Unable to discover a UPnP enabled "+ "device on the local network: %v", err) srvrLog.Info("Scanning local network for a NAT-PMP " + "enabled device") pmp, err := nat.DiscoverPMP(discoveryTimeout) if err != nil { err := fmt.Errorf("Unable to discover a "+ "NAT-PMP enabled device on the local "+ "network: %v", err) srvrLog.Error(err) return nil, err } s.natTraversal = pmp } } // If we were requested to automatically configure port forwarding, // we'll use the ports that the server will be listening on. externalIPStrings := make([]string, len(cfg.ExternalIPs)) for idx, ip := range cfg.ExternalIPs { externalIPStrings[idx] = ip.String() } if s.natTraversal != nil { listenPorts := make([]uint16, 0, len(listenAddrs)) for _, listenAddr := range listenAddrs { // At this point, the listen addresses should have // already been normalized, so it's safe to ignore the // errors. _, portStr, _ := net.SplitHostPort(listenAddr.String()) port, _ := strconv.Atoi(portStr) listenPorts = append(listenPorts, uint16(port)) } ips, err := s.configurePortForwarding(listenPorts...) if err != nil { srvrLog.Errorf("Unable to automatically set up port "+ "forwarding using %s: %v", s.natTraversal.Name(), err) } else { srvrLog.Infof("Automatically set up port forwarding "+ "using %s to advertise external IP", s.natTraversal.Name()) externalIPStrings = append(externalIPStrings, ips...) } } // If external IP addresses have been specified, add those to the list // of this server's addresses. externalIPs, err := lncfg.NormalizeAddresses( externalIPStrings, strconv.Itoa(defaultPeerPort), cfg.net.ResolveTCPAddr, ) if err != nil { return nil, err } selfAddrs := make([]net.Addr, 0, len(externalIPs)) for _, ip := range externalIPs { selfAddrs = append(selfAddrs, ip) } // If we were requested to route connections through Tor and to // automatically create an onion service, we'll initiate our Tor // controller and establish a connection to the Tor server. // // NOTE: v3 onion services cannot be created automatically yet. In the // future, this will be expanded to do so. if cfg.Tor.Active && cfg.Tor.V2 { s.torController = tor.NewController(cfg.Tor.Control) } chanGraph := chanDB.ChannelGraph() // Parse node color from configuration. color, err := parseHexColor(cfg.Color) if err != nil { srvrLog.Errorf("unable to parse color: %v\n", err) return nil, err } // If no alias is provided, default to first 10 characters of public key alias := cfg.Alias if alias == "" { alias = hex.EncodeToString(serializedPubKey[:10]) } nodeAlias, err := lnwire.NewNodeAlias(alias) if err != nil { return nil, err } selfNode := &channeldb.LightningNode{ HaveNodeAnnouncement: true, LastUpdate: time.Now(), Addresses: selfAddrs, Alias: nodeAlias.String(), Features: s.globalFeatures, Color: color, } copy(selfNode.PubKeyBytes[:], privKey.PubKey().SerializeCompressed()) // If our information has changed since our last boot, then we'll // re-sign our node announcement so a fresh authenticated version of it // can be propagated throughout the network upon startup. // // TODO(roasbeef): don't always set timestamp above to _now. nodeAnn := &lnwire.NodeAnnouncement{ Timestamp: uint32(selfNode.LastUpdate.Unix()), Addresses: selfNode.Addresses, NodeID: selfNode.PubKeyBytes, Alias: nodeAlias, Features: selfNode.Features.RawFeatureVector, RGBColor: color, } authSig, err := discovery.SignAnnouncement( s.nodeSigner, s.identityPriv.PubKey(), nodeAnn, ) if err != nil { return nil, fmt.Errorf("unable to generate signature for "+ "self node announcement: %v", err) } selfNode.AuthSigBytes = authSig.Serialize() s.currentNodeAnn = nodeAnn if err := chanGraph.SetSourceNode(selfNode); err != nil { return nil, fmt.Errorf("can't set self node: %v", err) } nodeAnn.Signature, err = lnwire.NewSigFromRawSignature(selfNode.AuthSigBytes) if err != nil { return nil, err } s.chanRouter, err = routing.New(routing.Config{ Graph: chanGraph, Chain: cc.chainIO, ChainView: cc.chainView, SendToSwitch: func(firstHopPub [33]byte, htlcAdd *lnwire.UpdateAddHTLC, circuit *sphinx.Circuit) ([32]byte, error) { // Using the created circuit, initialize the error // decrypter so we can parse+decode any failures // incurred by this payment within the switch. errorDecryptor := &htlcswitch.SphinxErrorDecrypter{ OnionErrorDecrypter: sphinx.NewOnionErrorDecrypter(circuit), } return s.htlcSwitch.SendHTLC(firstHopPub, htlcAdd, errorDecryptor) }, ChannelPruneExpiry: time.Duration(time.Hour * 24 * 14), GraphPruneInterval: time.Duration(time.Hour), QueryBandwidth: func(edge *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi { // If we aren't on either side of this edge, then we'll // just thread through the capacity of the edge as we // know it. if !bytes.Equal(edge.NodeKey1Bytes[:], selfNode.PubKeyBytes[:]) && !bytes.Equal(edge.NodeKey2Bytes[:], selfNode.PubKeyBytes[:]) { return lnwire.NewMSatFromSatoshis(edge.Capacity) } cid := lnwire.NewChanIDFromOutPoint(&edge.ChannelPoint) link, err := s.htlcSwitch.GetLink(cid) if err != nil { // If the link isn't online, then we'll report // that it has zero bandwidth to the router. return 0 } // If the link is found within the switch, but it isn't // yet eligible to forward any HTLCs, then we'll treat // it as if it isn't online in the first place. if !link.EligibleToForward() { return 0 } // Otherwise, we'll return the current best estimate // for the available bandwidth for the link. return link.Bandwidth() }, }) if err != nil { return nil, fmt.Errorf("can't create router: %v", err) } s.authGossiper, err = discovery.New(discovery.Config{ Router: s.chanRouter, Notifier: s.cc.chainNotifier, ChainHash: *activeNetParams.GenesisHash, Broadcast: s.BroadcastMessage, ChanSeries: &chanSeries{s.chanDB.ChannelGraph()}, SendToPeer: s.SendToPeer, FindPeer: func(pub *btcec.PublicKey) (lnpeer.Peer, error) { return s.FindPeer(pub) }, NotifyWhenOnline: s.NotifyWhenOnline, ProofMatureDelta: 0, TrickleDelay: time.Millisecond * time.Duration(cfg.TrickleDelay), RetransmitDelay: time.Minute * 30, DB: chanDB, AnnSigner: s.nodeSigner, }, s.identityPriv.PubKey(), ) if err != nil { return nil, err } utxnStore, err := newNurseryStore(activeNetParams.GenesisHash, chanDB) if err != nil { srvrLog.Errorf("unable to create nursery store: %v", err) return nil, err } s.utxoNursery = newUtxoNursery(&NurseryConfig{ ChainIO: cc.chainIO, ConfDepth: 1, DB: chanDB, Estimator: cc.feeEstimator, GenSweepScript: func() ([]byte, error) { return newSweepPkScript(cc.wallet) }, Notifier: cc.chainNotifier, PublishTransaction: cc.wallet.PublishTransaction, Signer: cc.wallet.Cfg.Signer, Store: utxnStore, }) // Construct a closure that wraps the htlcswitch's CloseLink method. closeLink := func(chanPoint *wire.OutPoint, closureType htlcswitch.ChannelCloseType) { // TODO(conner): Properly respect the update and error channels // returned by CloseLink. s.htlcSwitch.CloseLink(chanPoint, closureType, 0) } // We will use the following channel to reliably hand off contract // breach events from the ChannelArbitrator to the breachArbiter, contractBreaches := make(chan *ContractBreachEvent, 1) s.chainArb = contractcourt.NewChainArbitrator(contractcourt.ChainArbitratorConfig{ ChainHash: *activeNetParams.GenesisHash, // TODO(roasbeef): properly configure // * needs to be << or specified final hop time delta BroadcastDelta: defaultBroadcastDelta, NewSweepAddr: func() ([]byte, error) { return newSweepPkScript(cc.wallet) }, PublishTx: cc.wallet.PublishTransaction, DeliverResolutionMsg: func(msgs ...contractcourt.ResolutionMsg) error { for _, msg := range msgs { err := s.htlcSwitch.ProcessContractResolution(msg) if err != nil { return err } } return nil }, IncubateOutputs: func(chanPoint wire.OutPoint, commitRes *lnwallet.CommitOutputResolution, outHtlcRes *lnwallet.OutgoingHtlcResolution, inHtlcRes *lnwallet.IncomingHtlcResolution) error { var ( inRes []lnwallet.IncomingHtlcResolution outRes []lnwallet.OutgoingHtlcResolution ) if inHtlcRes != nil { inRes = append(inRes, *inHtlcRes) } if outHtlcRes != nil { outRes = append(outRes, *outHtlcRes) } return s.utxoNursery.IncubateOutputs( chanPoint, commitRes, outRes, inRes, ) }, PreimageDB: s.witnessBeacon, Notifier: cc.chainNotifier, Signer: cc.wallet.Cfg.Signer, FeeEstimator: cc.feeEstimator, ChainIO: cc.chainIO, MarkLinkInactive: func(chanPoint wire.OutPoint) error { chanID := lnwire.NewChanIDFromOutPoint(&chanPoint) s.htlcSwitch.RemoveLink(chanID) return nil }, IsOurAddress: func(addr btcutil.Address) bool { _, err := cc.wallet.GetPrivKey(addr) return err == nil }, ContractBreach: func(chanPoint wire.OutPoint, breachRet *lnwallet.BreachRetribution) error { event := &ContractBreachEvent{ ChanPoint: chanPoint, ProcessACK: make(chan error, 1), BreachRetribution: breachRet, } // Send the contract breach event to the breachArbiter. select { case contractBreaches <- event: case <-s.quit: return ErrServerShuttingDown } // Wait for the breachArbiter to ACK the event. select { case err := <-event.ProcessACK: return err case <-s.quit: return ErrServerShuttingDown } }, DisableChannel: s.disableChannel, }, chanDB) s.breachArbiter = newBreachArbiter(&BreachConfig{ CloseLink: closeLink, DB: chanDB, Estimator: s.cc.feeEstimator, GenSweepScript: func() ([]byte, error) { return newSweepPkScript(cc.wallet) }, Notifier: cc.chainNotifier, PublishTransaction: cc.wallet.PublishTransaction, ContractBreaches: contractBreaches, Signer: cc.wallet.Cfg.Signer, Store: newRetributionStore(chanDB), }) // Select the configuration and furnding parameters for Bitcoin or // Litecoin, depending on the primary registered chain. primaryChain := registeredChains.PrimaryChain() chainCfg := cfg.Bitcoin minRemoteDelay := minBtcRemoteDelay maxRemoteDelay := maxBtcRemoteDelay if primaryChain == litecoinChain { chainCfg = cfg.Litecoin minRemoteDelay = minLtcRemoteDelay maxRemoteDelay = maxLtcRemoteDelay } nodeSigner := newNodeSigner(privKey) var chanIDSeed [32]byte if _, err := rand.Read(chanIDSeed[:]); err != nil { return nil, err } s.fundingMgr, err = newFundingManager(fundingConfig{ IDKey: privKey.PubKey(), Wallet: cc.wallet, PublishTransaction: cc.wallet.PublishTransaction, Notifier: cc.chainNotifier, FeeEstimator: cc.feeEstimator, SignMessage: func(pubKey *btcec.PublicKey, msg []byte) (*btcec.Signature, error) { if pubKey.IsEqual(privKey.PubKey()) { return nodeSigner.SignMessage(pubKey, msg) } return cc.msgSigner.SignMessage(pubKey, msg) }, CurrentNodeAnnouncement: func() (lnwire.NodeAnnouncement, error) { return s.genNodeAnnouncement(true) }, SendAnnouncement: func(msg lnwire.Message) error { errChan := s.authGossiper.ProcessLocalAnnouncement( msg, privKey.PubKey(), ) return <-errChan }, NotifyWhenOnline: s.NotifyWhenOnline, TempChanIDSeed: chanIDSeed, FindChannel: func(chanID lnwire.ChannelID) (*lnwallet.LightningChannel, error) { dbChannels, err := chanDB.FetchAllChannels() if err != nil { return nil, err } for _, channel := range dbChannels { if chanID.IsChanPoint(&channel.FundingOutpoint) { return lnwallet.NewLightningChannel( cc.signer, s.witnessBeacon, channel, ) } } return nil, fmt.Errorf("unable to find channel") }, DefaultRoutingPolicy: cc.routingPolicy, NumRequiredConfs: func(chanAmt btcutil.Amount, pushAmt lnwire.MilliSatoshi) uint16 { // For large channels we increase the number // of confirmations we require for the // channel to be considered open. As it is // always the responder that gets to choose // value, the pushAmt is value being pushed // to us. This means we have more to lose // in the case this gets re-orged out, and // we will require more confirmations before // we consider it open. // TODO(halseth): Use Litecoin params in case // of LTC channels. // In case the user has explicitly specified // a default value for the number of // confirmations, we use it. defaultConf := uint16(chainCfg.DefaultNumChanConfs) if defaultConf != 0 { return defaultConf } // If not we return a value scaled linearly // between 3 and 6, depending on channel size. // TODO(halseth): Use 1 as minimum? minConf := uint64(3) maxConf := uint64(6) maxChannelSize := uint64( lnwire.NewMSatFromSatoshis(maxFundingAmount)) stake := lnwire.NewMSatFromSatoshis(chanAmt) + pushAmt conf := maxConf * uint64(stake) / maxChannelSize if conf < minConf { conf = minConf } if conf > maxConf { conf = maxConf } return uint16(conf) }, RequiredRemoteDelay: func(chanAmt btcutil.Amount) uint16 { // We scale the remote CSV delay (the time the // remote have to claim funds in case of a unilateral // close) linearly from minRemoteDelay blocks // for small channels, to maxRemoteDelay blocks // for channels of size maxFundingAmount. // TODO(halseth): Litecoin parameter for LTC. // In case the user has explicitly specified // a default value for the remote delay, we // use it. defaultDelay := uint16(chainCfg.DefaultRemoteDelay) if defaultDelay > 0 { return defaultDelay } // If not we scale according to channel size. delay := uint16(btcutil.Amount(maxRemoteDelay) * chanAmt / maxFundingAmount) if delay < minRemoteDelay { delay = minRemoteDelay } if delay > maxRemoteDelay { delay = maxRemoteDelay } return delay }, WatchNewChannel: func(channel *channeldb.OpenChannel, peerKey *btcec.PublicKey) error { // First, we'll mark this new peer as a persistent peer // for re-connection purposes. s.mu.Lock() pubStr := string(peerKey.SerializeCompressed()) s.persistentPeers[pubStr] = struct{}{} s.mu.Unlock() // With that taken care of, we'll send this channel to // the chain arb so it can react to on-chain events. return s.chainArb.WatchNewChannel(channel) }, ReportShortChanID: func(chanPoint wire.OutPoint) error { cid := lnwire.NewChanIDFromOutPoint(&chanPoint) return s.htlcSwitch.UpdateShortChanID(cid) }, RequiredRemoteChanReserve: func(chanAmt, dustLimit btcutil.Amount) btcutil.Amount { // By default, we'll require the remote peer to maintain // at least 1% of the total channel capacity at all // times. If this value ends up dipping below the dust // limit, then we'll use the dust limit itself as the // reserve as required by BOLT #2. reserve := chanAmt / 100 if reserve < dustLimit { reserve = dustLimit } return reserve }, RequiredRemoteMaxValue: func(chanAmt btcutil.Amount) lnwire.MilliSatoshi { // By default, we'll allow the remote peer to fully // utilize the full bandwidth of the channel, minus our // required reserve. reserve := lnwire.NewMSatFromSatoshis(chanAmt / 100) return lnwire.NewMSatFromSatoshis(chanAmt) - reserve }, RequiredRemoteMaxHTLCs: func(chanAmt btcutil.Amount) uint16 { // By default, we'll permit them to utilize the full // channel bandwidth. return uint16(lnwallet.MaxHTLCNumber / 2) }, ZombieSweeperInterval: 1 * time.Minute, ReservationTimeout: 10 * time.Minute, MinChanSize: btcutil.Amount(cfg.MinChanSize), }) if err != nil { return nil, err } // Create the connection manager which will be responsible for // maintaining persistent outbound connections and also accepting new // incoming connections cmgr, err := connmgr.New(&connmgr.Config{ Listeners: listeners, OnAccept: s.InboundPeerConnected, RetryDuration: time.Second * 5, TargetOutbound: 100, Dial: noiseDial(s.identityPriv), OnConnection: s.OutboundPeerConnected, }) if err != nil { return nil, err } s.connMgr = cmgr return s, nil } // Started returns true if the server has been started, and false otherwise. // NOTE: This function is safe for concurrent access. func (s *server) Started() bool { return atomic.LoadInt32(&s.started) != 0 } // Start starts the main daemon server, all requested listeners, and any helper // goroutines. // NOTE: This function is safe for concurrent access. func (s *server) Start() error { // Already running? if !atomic.CompareAndSwapInt32(&s.started, 0, 1) { return nil } if s.torController != nil { if err := s.initTorController(); err != nil { return err } } if s.natTraversal != nil { s.wg.Add(1) go s.watchExternalIP() } // Start the notification server. This is used so channel management // goroutines can be notified when a funding transaction reaches a // sufficient number of confirmations, or when the input for the // funding transaction is spent in an attempt at an uncooperative close // by the counterparty. if err := s.cc.chainNotifier.Start(); err != nil { return err } if err := s.sphinx.Start(); err != nil { return err } if err := s.htlcSwitch.Start(); err != nil { return err } if err := s.utxoNursery.Start(); err != nil { return err } if err := s.chainArb.Start(); err != nil { return err } if err := s.breachArbiter.Start(); err != nil { return err } if err := s.authGossiper.Start(); err != nil { return err } if err := s.chanRouter.Start(); err != nil { return err } if err := s.fundingMgr.Start(); err != nil { return err } s.connMgr.Start() if err := s.invoices.Start(); err != nil { return err } // With all the relevant sub-systems started, we'll now attempt to // establish persistent connections to our direct channel collaborators // within the network. Before doing so however, we'll prune our set of // link nodes found within the database to ensure we don't reconnect to // any nodes we no longer have open channels with. if err := s.chanDB.PruneLinkNodes(); err != nil { return err } if err := s.establishPersistentConnections(); err != nil { return err } // If network bootstrapping hasn't been disabled, then we'll configure // the set of active bootstrappers, and launch a dedicated goroutine to // maintain a set of persistent connections. if !cfg.NoNetBootstrap && !(cfg.Bitcoin.SimNet || cfg.Litecoin.SimNet) && !(cfg.Bitcoin.RegTest || cfg.Litecoin.RegTest) { bootstrappers, err := initNetworkBootstrappers(s) if err != nil { return err } s.wg.Add(1) go s.peerBootstrapper(defaultMinPeers, bootstrappers) } else { srvrLog.Infof("Auto peer bootstrapping is disabled") } return nil } // Stop gracefully shutsdown the main daemon server. This function will signal // any active goroutines, or helper objects to exit, then blocks until they've // all successfully exited. Additionally, any/all listeners are closed. // NOTE: This function is safe for concurrent access. func (s *server) Stop() error { // Bail if we're already shutting down. if !atomic.CompareAndSwapInt32(&s.shutdown, 0, 1) { return nil } close(s.quit) if s.torController != nil { s.torController.Stop() } // Shutdown the wallet, funding manager, and the rpc server. s.cc.chainNotifier.Stop() s.chanRouter.Stop() s.htlcSwitch.Stop() s.sphinx.Stop() s.utxoNursery.Stop() s.breachArbiter.Stop() s.authGossiper.Stop() s.chainArb.Stop() s.cc.wallet.Shutdown() s.cc.chainView.Stop() s.connMgr.Stop() s.cc.feeEstimator.Stop() s.invoices.Stop() s.fundingMgr.Stop() // Disconnect from each active peers to ensure that // peerTerminationWatchers signal completion to each peer. for _, peer := range s.Peers() { s.DisconnectPeer(peer.addr.IdentityKey) } // Wait for all lingering goroutines to quit. s.wg.Wait() return nil } // Stopped returns true if the server has been instructed to shutdown. // NOTE: This function is safe for concurrent access. func (s *server) Stopped() bool { return atomic.LoadInt32(&s.shutdown) != 0 } // configurePortForwarding attempts to set up port forwarding for the diffrent // ports that the server will be listening on. // // NOTE: This should only be used when using some kind of NAT traversal to // automatically set up forwarding rules. func (s *server) configurePortForwarding(ports ...uint16) ([]string, error) { ip, err := s.natTraversal.ExternalIP() if err != nil { return nil, err } s.lastDetectedIP = ip externalIPs := make([]string, 0, len(ports)) for _, port := range ports { if err := s.natTraversal.AddPortMapping(port); err != nil { srvrLog.Debugf("Unable to forward port %d: %v", port, err) continue } hostIP := fmt.Sprintf("%v:%d", ip, port) externalIPs = append(externalIPs, hostIP) } return externalIPs, nil } // removePortForwarding attempts to clear the forwarding rules for the different // ports the server is currently listening on. // // NOTE: This should only be used when using some kind of NAT traversal to // automatically set up forwarding rules. func (s *server) removePortForwarding() { forwardedPorts := s.natTraversal.ForwardedPorts() for _, port := range forwardedPorts { if err := s.natTraversal.DeletePortMapping(port); err != nil { srvrLog.Errorf("Unable to remove forwarding rules for "+ "port %d: %v", port, err) } } } // watchExternalIP continously checks for an updated external IP address every // 15 minutes. Once a new IP address has been detected, it will automatically // handle port forwarding rules and send updated node announcements to the // currently connected peers. // // NOTE: This MUST be run as a goroutine. func (s *server) watchExternalIP() { defer s.wg.Done() // Before exiting, we'll make sure to remove the forwarding rules set // up by the server. defer s.removePortForwarding() // Keep track of the external IPs set by the user to avoid replacing // them when detecting a new IP. ipsSetByUser := make(map[string]struct{}) for _, ip := range cfg.ExternalIPs { ipsSetByUser[ip.String()] = struct{}{} } forwardedPorts := s.natTraversal.ForwardedPorts() ticker := time.NewTicker(15 * time.Minute) defer ticker.Stop() out: for { select { case <-ticker.C: // We'll start off by making sure a new IP address has // been detected. ip, err := s.natTraversal.ExternalIP() if err != nil { srvrLog.Debugf("Unable to retrieve the "+ "external IP address: %v", err) continue } if ip.Equal(s.lastDetectedIP) { continue } srvrLog.Infof("Detected new external IP address %s", ip) // Next, we'll craft the new addresses that will be // included in the new node announcement and advertised // to the network. Each address will consist of the new // IP detected and one of the currently advertised // ports. var newAddrs []net.Addr for _, port := range forwardedPorts { hostIP := fmt.Sprintf("%v:%d", ip, port) addr, err := net.ResolveTCPAddr("tcp", hostIP) if err != nil { srvrLog.Debugf("Unable to resolve "+ "host %v: %v", addr, err) continue } newAddrs = append(newAddrs, addr) } // Skip the update if we weren't able to resolve any of // the new addresses. if len(newAddrs) == 0 { srvrLog.Debug("Skipping node announcement " + "update due to not being able to " + "resolve any new addresses") continue } // Now, we'll need to update the addresses in our node's // announcement in order to propogate the update // throughout the network. We'll only include addresses // that have a different IP from the previous one, as // the previous IP is no longer valid. currentNodeAnn, err := s.genNodeAnnouncement(false) if err != nil { srvrLog.Debugf("Unable to retrieve current "+ "node announcement: %v", err) continue } for _, addr := range currentNodeAnn.Addresses { host, _, err := net.SplitHostPort(addr.String()) if err != nil { srvrLog.Debugf("Unable to determine "+ "host from address %v: %v", addr, err) continue } // We'll also make sure to include external IPs // set manually by the user. _, setByUser := ipsSetByUser[addr.String()] if setByUser || host != s.lastDetectedIP.String() { newAddrs = append(newAddrs, addr) } } // Then, we'll generate a new timestamped node // announcement with the updated addresses and broadcast // it to our peers. newNodeAnn, err := s.genNodeAnnouncement( true, lnwire.UpdateNodeAnnAddrs(newAddrs), ) if err != nil { srvrLog.Debugf("Unable to generate new node "+ "announcement: %v", err) continue } err = s.BroadcastMessage(nil, &newNodeAnn) if err != nil { srvrLog.Debugf("Unable to broadcast new node "+ "announcement to peers: %v", err) continue } // Finally, update the last IP seen to the current one. s.lastDetectedIP = ip case <-s.quit: break out } } } // initNetworkBootstrappers initializes a set of network peer bootstrappers // based on the server, and currently active bootstrap mechanisms as defined // within the current configuration. func initNetworkBootstrappers(s *server) ([]discovery.NetworkPeerBootstrapper, error) { srvrLog.Infof("Initializing peer network bootstrappers!") var bootStrappers []discovery.NetworkPeerBootstrapper // First, we'll create an instance of the ChannelGraphBootstrapper as // this can be used by default if we've already partially seeded the // network. chanGraph := autopilot.ChannelGraphFromDatabase(s.chanDB.ChannelGraph()) graphBootstrapper, err := discovery.NewGraphBootstrapper(chanGraph) if err != nil { return nil, err } bootStrappers = append(bootStrappers, graphBootstrapper) // If this isn't simnet mode, then one of our additional bootstrapping // sources will be the set of running DNS seeds. if !cfg.Bitcoin.SimNet || !cfg.Litecoin.SimNet { dnsSeeds, ok := chainDNSSeeds[*activeNetParams.GenesisHash] // If we have a set of DNS seeds for this chain, then we'll add // it as an additional bootstrapping source. if ok { srvrLog.Infof("Creating DNS peer bootstrapper with "+ "seeds: %v", dnsSeeds) dnsBootStrapper := discovery.NewDNSSeedBootstrapper( dnsSeeds, cfg.net, ) bootStrappers = append(bootStrappers, dnsBootStrapper) } } return bootStrappers, nil } // peerBootstrapper is a goroutine which is tasked with attempting to establish // and maintain a target minimum number of outbound connections. With this // invariant, we ensure that our node is connected to a diverse set of peers // and that nodes newly joining the network receive an up to date network view // as soon as possible. func (s *server) peerBootstrapper(numTargetPeers uint32, bootstrappers []discovery.NetworkPeerBootstrapper) { defer s.wg.Done() // ignore is a set used to keep track of peers already retrieved from // our bootstrappers in order to avoid duplicates. ignore := make(map[autopilot.NodeID]struct{}) // We'll start off by aggressively attempting connections to peers in // order to be a part of the network as soon as possible. s.initialPeerBootstrap(ignore, numTargetPeers, bootstrappers) // Once done, we'll attempt to maintain our target minimum number of // peers. // // We'll use a 15 second backoff, and double the time every time an // epoch fails up to a ceiling. const backOffCeiling = time.Minute * 5 backOff := time.Second * 15 // We'll create a new ticker to wake us up every 15 seconds so we can // see if we've reached our minimum number of peers. sampleTicker := time.NewTicker(backOff) defer sampleTicker.Stop() // We'll use the number of attempts and errors to determine if we need // to increase the time between discovery epochs. var epochErrors uint32 // To be used atomically. var epochAttempts uint32 for { select { // The ticker has just woken us up, so we'll need to check if // we need to attempt to connect our to any more peers. case <-sampleTicker.C: // Obtain the current number of peers, so we can gauge // if we need to sample more peers or not. s.mu.RLock() numActivePeers := uint32(len(s.peersByPub)) s.mu.RUnlock() // If we have enough peers, then we can loop back // around to the next round as we're done here. if numActivePeers >= numTargetPeers { continue } // If all of our attempts failed during this last back // off period, then will increase our backoff to 5 // minute ceiling to avoid an excessive number of // queries // // TODO(roasbeef): add reverse policy too? if epochAttempts > 0 && atomic.LoadUint32(&epochErrors) >= epochAttempts { sampleTicker.Stop() backOff *= 2 if backOff > backOffCeiling { backOff = backOffCeiling } srvrLog.Debugf("Backing off peer bootstrapper to "+ "%v", backOff) sampleTicker = time.NewTicker(backOff) continue } atomic.StoreUint32(&epochErrors, 0) epochAttempts = 0 // Since we know need more peers, we'll compute the // exact number we need to reach our threshold. numNeeded := numTargetPeers - numActivePeers srvrLog.Debugf("Attempting to obtain %v more network "+ "peers", numNeeded) // With the number of peers we need calculated, we'll // query the network bootstrappers to sample a set of // random addrs for us. s.mu.RLock() ignoreList := make(map[autopilot.NodeID]struct{}) for _, peer := range s.peersByPub { nID := autopilot.NewNodeID(peer.addr.IdentityKey) ignoreList[nID] = struct{}{} } s.mu.RUnlock() peerAddrs, err := discovery.MultiSourceBootstrap( ignoreList, numNeeded*2, bootstrappers..., ) if err != nil { srvrLog.Errorf("Unable to retrieve bootstrap "+ "peers: %v", err) continue } // Finally, we'll launch a new goroutine for each // prospective peer candidates. for _, addr := range peerAddrs { epochAttempts++ go func(a *lnwire.NetAddress) { // TODO(roasbeef): can do AS, subnet, // country diversity, etc errChan := make(chan error, 1) s.connectToPeer(a, errChan) select { case err := <-errChan: if err == nil { return } srvrLog.Errorf("Unable to "+ "connect to %v: %v", a, err) atomic.AddUint32(&epochErrors, 1) case <-s.quit: } }(addr) } case <-s.quit: return } } } // initialPeerBootstrap attempts to continuously connect to peers on startup // until the target number of peers has been reached. This ensures that nodes // receive an up to date network view as soon as possible. func (s *server) initialPeerBootstrap(ignore map[autopilot.NodeID]struct{}, numTargetPeers uint32, bootstrappers []discovery.NetworkPeerBootstrapper) { var wg sync.WaitGroup for { // Check if the server has been requested to shut down in order // to prevent blocking. if s.Stopped() { return } // We can exit our aggressive initial peer bootstrapping stage // if we've reached out target number of peers. s.mu.RLock() numActivePeers := uint32(len(s.peersByPub)) s.mu.RUnlock() if numActivePeers >= numTargetPeers { return } // Otherwise, we'll request for the remaining number of peers in // order to reach our target. peersNeeded := numTargetPeers - numActivePeers bootstrapAddrs, err := discovery.MultiSourceBootstrap( ignore, peersNeeded, bootstrappers..., ) if err != nil { srvrLog.Errorf("Unable to retrieve initial bootstrap "+ "peers: %v", err) continue } // Then, we'll attempt to establish a connection to the // different peer addresses retrieved by our bootstrappers. for _, bootstrapAddr := range bootstrapAddrs { wg.Add(1) go func(addr *lnwire.NetAddress) { defer wg.Done() errChan := make(chan error, 1) go s.connectToPeer(addr, errChan) // We'll only allow this connection attempt to // take up to 3 seconds. This allows us to move // quickly by discarding peers that are slowing // us down. select { case err := <-errChan: if err == nil { return } srvrLog.Errorf("Unable to connect to "+ "%v: %v", addr, err) // TODO: tune timeout? 3 seconds might be *too* // aggressive but works well. case <-time.After(3 * time.Second): srvrLog.Tracef("Skipping peer %v due "+ "to not establishing a "+ "connection within 3 seconds", addr) case <-s.quit: } }(bootstrapAddr) } wg.Wait() } } // initTorController initiliazes the Tor controller backed by lnd and // automatically sets up a v2 onion service in order to listen for inbound // connections over Tor. func (s *server) initTorController() error { if err := s.torController.Start(); err != nil { return err } // Determine the different ports the server is listening on. The onion // service's virtual port will map to these ports and one will be picked // at random when the onion service is being accessed. listenPorts := make(map[int]struct{}) for _, listenAddr := range s.listenAddrs { // At this point, the listen addresses should have already been // normalized, so it's safe to ignore the errors. _, portStr, _ := net.SplitHostPort(listenAddr.String()) port, _ := strconv.Atoi(portStr) listenPorts[port] = struct{}{} } // Once the port mapping has been set, we can go ahead and automatically // create our onion service. The service's private key will be saved to // disk in order to regain access to this service when restarting `lnd`. virtToTargPorts := tor.VirtToTargPorts{defaultPeerPort: listenPorts} onionServiceAddrs, err := s.torController.AddOnionV2( cfg.Tor.V2PrivateKeyPath, virtToTargPorts, ) if err != nil { return err } // Now that the onion service has been created, we'll add the different // onion addresses it can be reached at to our list of advertised // addresses. for _, addr := range onionServiceAddrs { s.currentNodeAnn.Addresses = append( s.currentNodeAnn.Addresses, addr, ) } return nil } // genNodeAnnouncement generates and returns the current fully signed node // announcement. If refresh is true, then the time stamp of the announcement // will be updated in order to ensure it propagates through the network. func (s *server) genNodeAnnouncement(refresh bool, updates ...func(*lnwire.NodeAnnouncement)) (lnwire.NodeAnnouncement, error) { s.mu.Lock() defer s.mu.Unlock() if !refresh { return *s.currentNodeAnn, nil } for _, update := range updates { update(s.currentNodeAnn) } newStamp := uint32(time.Now().Unix()) if newStamp <= s.currentNodeAnn.Timestamp { newStamp = s.currentNodeAnn.Timestamp + 1 } s.currentNodeAnn.Timestamp = newStamp sig, err := discovery.SignAnnouncement( s.nodeSigner, s.identityPriv.PubKey(), s.currentNodeAnn, ) if err != nil { return lnwire.NodeAnnouncement{}, err } s.currentNodeAnn.Signature, err = lnwire.NewSigFromSignature(sig) if err != nil { return lnwire.NodeAnnouncement{}, err } return *s.currentNodeAnn, nil } type nodeAddresses struct { pubKey *btcec.PublicKey addresses []net.Addr } // establishPersistentConnections attempts to establish persistent connections // to all our direct channel collaborators. In order to promote liveness of // our active channels, we instruct the connection manager to attempt to // establish and maintain persistent connections to all our direct channel // counterparties. func (s *server) establishPersistentConnections() error { // nodeAddrsMap stores the combination of node public keys and // addresses that we'll attempt to reconnect to. PubKey strings are // used as keys since other PubKey forms can't be compared. nodeAddrsMap := map[string]*nodeAddresses{} // Iterate through the list of LinkNodes to find addresses we should // attempt to connect to based on our set of previous connections. Set // the reconnection port to the default peer port. linkNodes, err := s.chanDB.FetchAllLinkNodes() if err != nil && err != channeldb.ErrLinkNodesNotFound { return err } for _, node := range linkNodes { pubStr := string(node.IdentityPub.SerializeCompressed()) nodeAddrs := &nodeAddresses{ pubKey: node.IdentityPub, addresses: node.Addresses, } nodeAddrsMap[pubStr] = nodeAddrs } // After checking our previous connections for addresses to connect to, // iterate through the nodes in our channel graph to find addresses // that have been added via NodeAnnouncement messages. chanGraph := s.chanDB.ChannelGraph() sourceNode, err := chanGraph.SourceNode() if err != nil { return err } // TODO(roasbeef): instead iterate over link nodes and query graph for // each of the nodes. err = sourceNode.ForEachChannel(nil, func( _ *bolt.Tx, _ *channeldb.ChannelEdgeInfo, policy, _ *channeldb.ChannelEdgePolicy) error { pubStr := string(policy.Node.PubKeyBytes[:]) // Add addresses from channel graph/NodeAnnouncements to the // list of addresses we'll connect to. If there are duplicates // that have different ports specified, the port from the // channel graph should supersede the port from the link node. var addrs []net.Addr linkNodeAddrs, ok := nodeAddrsMap[pubStr] if ok { for _, lnAddress := range linkNodeAddrs.addresses { var addrHost string switch addr := lnAddress.(type) { case *net.TCPAddr: addrHost = addr.IP.String() case *tor.OnionAddr: addrHost = addr.OnionService default: continue } var addrMatched bool for _, polAddress := range policy.Node.Addresses { switch addr := polAddress.(type) { case *net.TCPAddr: if addr.IP.String() == addrHost { addrMatched = true addrs = append(addrs, addr) } case *tor.OnionAddr: if addr.OnionService == addrHost { addrMatched = true addrs = append(addrs, addr) } } } if !addrMatched { addrs = append(addrs, lnAddress) } } } else { for _, addr := range policy.Node.Addresses { switch addr.(type) { case *net.TCPAddr, *tor.OnionAddr: addrs = append(addrs, addr) } } } n := &nodeAddresses{ addresses: addrs, } n.pubKey, err = policy.Node.PubKey() if err != nil { return err } nodeAddrsMap[pubStr] = n return nil }) if err != nil && err != channeldb.ErrGraphNoEdgesFound { return err } // Acquire and hold server lock until all persistent connection requests // have been recorded and sent to the connection manager. s.mu.Lock() defer s.mu.Unlock() // Iterate through the combined list of addresses from prior links and // node announcements and attempt to reconnect to each node. for pubStr, nodeAddr := range nodeAddrsMap { // Add this peer to the set of peers we should maintain a // persistent connection with. s.persistentPeers[pubStr] = struct{}{} if _, ok := s.persistentPeersBackoff[pubStr]; !ok { s.persistentPeersBackoff[pubStr] = defaultBackoff } for _, address := range nodeAddr.addresses { // Create a wrapper address which couples the IP and // the pubkey so the brontide authenticated connection // can be established. lnAddr := &lnwire.NetAddress{ IdentityKey: nodeAddr.pubKey, Address: address, } srvrLog.Debugf("Attempting persistent connection to "+ "channel peer %v", lnAddr) // Send the persistent connection request to the // connection manager, saving the request itself so we // can cancel/restart the process as needed. connReq := &connmgr.ConnReq{ Addr: lnAddr, Permanent: true, } s.persistentConnReqs[pubStr] = append( s.persistentConnReqs[pubStr], connReq) go s.connMgr.Connect(connReq) } } return nil } // prunePersistentPeerConnection removes all internal state related to // persistent connections to a peer within the server. This is used to avoid // persistent connection retries to peers we do not have any open channels with. func (s *server) prunePersistentPeerConnection(compressedPubKey [33]byte) { srvrLog.Infof("Pruning peer %x from persistent connections, number of "+ "open channels is now zero", compressedPubKey) pubKeyStr := string(compressedPubKey[:]) s.mu.Lock() delete(s.persistentPeers, pubKeyStr) delete(s.persistentPeersBackoff, pubKeyStr) s.cancelConnReqs(pubKeyStr, nil) s.mu.Unlock() } // BroadcastMessage sends a request to the server to broadcast a set of // messages to all peers other than the one specified by the `skips` parameter. // // NOTE: This function is safe for concurrent access. func (s *server) BroadcastMessage(skips map[routing.Vertex]struct{}, msgs ...lnwire.Message) error { srvrLog.Debugf("Broadcasting %v messages", len(msgs)) // Filter out peers found in the skips map. We synchronize access to // peersByPub throughout this process to ensure we deliver messages to // exact set of peers present at the time of invocation. s.mu.RLock() peers := make([]*peer, 0, len(s.peersByPub)) for _, sPeer := range s.peersByPub { if skips != nil { if _, ok := skips[sPeer.pubKeyBytes]; ok { srvrLog.Tracef("Skipping %x in broadcast", sPeer.pubKeyBytes[:]) continue } } peers = append(peers, sPeer) } s.mu.RUnlock() // Iterate over all known peers, dispatching a go routine to enqueue // all messages to each of peers. var wg sync.WaitGroup for _, sPeer := range peers { // Dispatch a go routine to enqueue all messages to this peer. wg.Add(1) s.wg.Add(1) go s.sendPeerMessages(sPeer, msgs, &wg) } // Wait for all messages to have been dispatched before returning to // caller. wg.Wait() return nil } // SendToPeer send a message to the server telling it to send the specific set // of message to a particular peer. If the peer connect be found, then this // method will return a non-nil error. // // NOTE: This function is safe for concurrent access. func (s *server) SendToPeer(target *btcec.PublicKey, msgs ...lnwire.Message) error { // Compute the target peer's identifier. targetPubBytes := target.SerializeCompressed() srvrLog.Tracef("Attempting to send msgs %v to: %x", len(msgs), targetPubBytes) // Lookup intended target in peersByPub, returning an error to the // caller if the peer is unknown. Access to peersByPub is synchronized // here to ensure we consider the exact set of peers present at the // time of invocation. s.mu.RLock() targetPeer, err := s.findPeerByPubStr(string(targetPubBytes)) s.mu.RUnlock() if err == ErrPeerNotConnected { srvrLog.Errorf("unable to send message to %x, "+ "peer is not connected", targetPubBytes) return err } // Send messages to the peer and get the error channels that will be // signaled by the peer's write handler. errChans := s.sendPeerMessages(targetPeer, msgs, nil) // With the server's shared lock released, we now handle all of the // errors being returned from the target peer's write handler. for _, errChan := range errChans { select { case err := <-errChan: return err case <-targetPeer.quit: return ErrPeerExiting case <-s.quit: return ErrServerShuttingDown } } return nil } // NotifyWhenOnline can be called by other subsystems to get notified when a // particular peer comes online. The peer itself is sent across the peerChan. // // NOTE: This function is safe for concurrent access. func (s *server) NotifyWhenOnline(peerKey *btcec.PublicKey, peerChan chan<- lnpeer.Peer) { s.mu.Lock() defer s.mu.Unlock() // Compute the target peer's identifier. pubStr := string(peerKey.SerializeCompressed()) // Check if peer is connected. peer, ok := s.peersByPub[pubStr] if ok { // Connected, can return early. srvrLog.Debugf("Notifying that peer %x is online", peerKey.SerializeCompressed()) select { case peerChan <- peer: case <-s.quit: } return } // Not connected, store this listener such that it can be notified when // the peer comes online. s.peerConnectedListeners[pubStr] = append( s.peerConnectedListeners[pubStr], peerChan, ) } // sendPeerMessages enqueues a list of messages into the outgoingQueue of the // `targetPeer`. This method supports additional broadcast-level // synchronization by using the additional `wg` to coordinate a particular // broadcast. Since this method will wait for the return error from sending // each message, it should be run as a goroutine (see comment below) and // the error ignored if used for broadcasting messages, where the result // from sending the messages is not of importance. // // NOTE: This method must be invoked with a non-nil `wg` if it is spawned as a // go routine--both `wg` and the server's WaitGroup should be incremented // beforehand. If this method is not spawned as a go routine, the provided // `wg` should be nil, and the server's WaitGroup should not be tracking this // invocation. func (s *server) sendPeerMessages( targetPeer *peer, msgs []lnwire.Message, wg *sync.WaitGroup) []chan error { // If a WaitGroup is provided, we assume that this method was spawned // as a go routine, and that it is being tracked by both the server's // WaitGroup, as well as the broadcast-level WaitGroup `wg`. In this // event, we defer a call to Done on both WaitGroups to 1) ensure that // server will be able to shutdown after its go routines exit, and 2) // so the server can return to the caller of BroadcastMessage. isBroadcast := wg != nil if isBroadcast { defer s.wg.Done() defer wg.Done() } // We queue each message, creating a slice of error channels that // can be inspected after every message is successfully added to // the queue. var errChans []chan error for _, msg := range msgs { // If this is not broadcast, create error channels to provide // synchronous feedback regarding the delivery of the message to // a specific peer. var errChan chan error if !isBroadcast { errChan = make(chan error, 1) errChans = append(errChans, errChan) } targetPeer.queueMsg(msg, errChan) } return errChans } // FindPeer will return the peer that corresponds to the passed in public key. // This function is used by the funding manager, allowing it to update the // daemon's local representation of the remote peer. // // NOTE: This function is safe for concurrent access. func (s *server) FindPeer(peerKey *btcec.PublicKey) (*peer, error) { s.mu.RLock() defer s.mu.RUnlock() pubStr := string(peerKey.SerializeCompressed()) return s.findPeerByPubStr(pubStr) } // FindPeerByPubStr will return the peer that corresponds to the passed peerID, // which should be a string representation of the peer's serialized, compressed // public key. // // NOTE: This function is safe for concurrent access. func (s *server) FindPeerByPubStr(pubStr string) (*peer, error) { s.mu.RLock() defer s.mu.RUnlock() return s.findPeerByPubStr(pubStr) } // findPeerByPubStr is an internal method that retrieves the specified peer from // the server's internal state using. func (s *server) findPeerByPubStr(pubStr string) (*peer, error) { peer, ok := s.peersByPub[pubStr] if !ok { return nil, ErrPeerNotConnected } return peer, nil } // peerTerminationWatcher waits until a peer has been disconnected unexpectedly, // and then cleans up all resources allocated to the peer, notifies relevant // sub-systems of its demise, and finally handles re-connecting to the peer if // it's persistent. If the server intentionally disconnects a peer, it should // have a corresponding entry in the ignorePeerTermination map which will cause // the cleanup routine to exit early. // // NOTE: This MUST be launched as a goroutine. func (s *server) peerTerminationWatcher(p *peer) { defer s.wg.Done() p.WaitForDisconnect() srvrLog.Debugf("Peer %v has been disconnected", p) // If the server is exiting then we can bail out early ourselves as all // the other sub-systems will already be shutting down. if s.Stopped() { return } // Next, we'll cancel all pending funding reservations with this node. // If we tried to initiate any funding flows that haven't yet finished, // then we need to unlock those committed outputs so they're still // available for use. s.fundingMgr.CancelPeerReservations(p.PubKey()) pubKey := p.addr.IdentityKey // We'll also inform the gossiper that this peer is no longer active, // so we don't need to maintain sync state for it any longer. s.authGossiper.PruneSyncState(pubKey) // Tell the switch to remove all links associated with this peer. // Passing nil as the target link indicates that all links associated // with this interface should be closed. // // TODO(roasbeef): instead add a PurgeInterfaceLinks function? links, err := p.server.htlcSwitch.GetLinksByInterface(p.pubKeyBytes) if err != nil { srvrLog.Errorf("unable to get channel links: %v", err) } for _, link := range links { p.server.htlcSwitch.RemoveLink(link.ChanID()) } s.mu.Lock() defer s.mu.Unlock() // If the server has already removed this peer, we can short circuit the // peer termination watcher and skip cleanup. if _, ok := s.ignorePeerTermination[p]; ok { delete(s.ignorePeerTermination, p) pubKey := p.PubKey() pubStr := string(pubKey[:]) // If a connection callback is present, we'll go ahead and // execute it now that previous peer has fully disconnected. If // the callback is not present, this likely implies the peer was // purposefully disconnected via RPC, and that no reconnect // should be attempted. connCallback, ok := s.scheduledPeerConnection[pubStr] if ok { delete(s.scheduledPeerConnection, pubStr) connCallback() } return } // First, cleanup any remaining state the server has regarding the peer // in question. s.removePeer(p) // Next, check to see if this is a persistent peer or not. pubStr := string(pubKey.SerializeCompressed()) _, ok := s.persistentPeers[pubStr] if ok { // We'll only need to re-launch a connection request if one // isn't already currently pending. if _, ok := s.persistentConnReqs[pubStr]; ok { return } // We'll ensure that we locate an advertised address to use // within the peer's address for reconnection purposes. // // TODO(roasbeef): use them all? if p.inbound { advertisedAddr, err := s.fetchNodeAdvertisedAddr( pubKey, ) if err != nil { srvrLog.Errorf("Unable to retrieve advertised "+ "address for node %x: %v", pubKey.SerializeCompressed(), err) } else { p.addr.Address = advertisedAddr } } // Otherwise, we'll launch a new connection request in order to // attempt to maintain a persistent connection with this peer. connReq := &connmgr.ConnReq{ Addr: p.addr, Permanent: true, } s.persistentConnReqs[pubStr] = append( s.persistentConnReqs[pubStr], connReq) // Record the computed backoff in the backoff map. backoff := s.nextPeerBackoff(pubStr, p.StartTime()) s.persistentPeersBackoff[pubStr] = backoff // Initialize a retry canceller for this peer if one does not // exist. cancelChan, ok := s.persistentRetryCancels[pubStr] if !ok { cancelChan = make(chan struct{}) s.persistentRetryCancels[pubStr] = cancelChan } // We choose not to wait group this go routine since the Connect // call can stall for arbitrarily long if we shutdown while an // outbound connection attempt is being made. go func() { srvrLog.Debugf("Scheduling connection re-establishment to "+ "persistent peer %v in %s", p, backoff) select { case <-time.After(backoff): case <-cancelChan: return case <-s.quit: return } srvrLog.Debugf("Attempting to re-establish persistent "+ "connection to peer %v", p) s.connMgr.Connect(connReq) }() } } // nextPeerBackoff computes the next backoff duration for a peer's pubkey using // exponential backoff. If no previous backoff was known, the default is // returned. func (s *server) nextPeerBackoff(pubStr string, startTime time.Time) time.Duration { // Now, determine the appropriate backoff to use for the retry. backoff, ok := s.persistentPeersBackoff[pubStr] if !ok { // If an existing backoff was unknown, use the default. return defaultBackoff } // If the peer failed to start properly, we'll just use the previous // backoff to compute the subsequent randomized exponential backoff // duration. This will roughly double on average. if startTime.IsZero() { return computeNextBackoff(backoff) } // The peer succeeded in starting. We'll reduce the timeout duration // by the length of the connection before applying randomized // exponential backoff. We'll only apply this if: // backoff - connDuration > defaultBackoff connDuration := time.Now().Sub(startTime) relaxedBackoff := backoff - connDuration if relaxedBackoff > defaultBackoff { return computeNextBackoff(relaxedBackoff) } // Otherwise, backoff - connDuration <= defaultBackoff, meaning the // connection lasted much longer than our previous backoff. To reward // such good behavior, we'll reconnect after the default timeout. return defaultBackoff } // shouldRequestGraphSync returns true if the servers deems it necessary that // we sync channel graph state with the remote peer. This method is used to // avoid _always_ syncing channel graph state with each peer that connects. // // NOTE: This MUST be called with the server's mutex held. func (s *server) shouldRequestGraphSync() bool { // Initially, we'll only request a graph sync iff we have less than two // peers. return len(s.peersByPub) <= 2 } // peerConnected is a function that handles initialization a newly connected // peer by adding it to the server's global list of all active peers, and // starting all the goroutines the peer needs to function properly. The inbound // boolean should be true if the peer initiated the connection to us. func (s *server) peerConnected(conn net.Conn, connReq *connmgr.ConnReq, inbound bool) { brontideConn := conn.(*brontide.Conn) addr := conn.RemoteAddr() pubKey := brontideConn.RemotePub() srvrLog.Infof("finalizing connection to %x, inbound=%v", pubKey.SerializeCompressed(), inbound) peerAddr := &lnwire.NetAddress{ IdentityKey: pubKey, Address: addr, ChainNet: activeNetParams.Net, } // With the brontide connection established, we'll now craft the local // feature vector to advertise to the remote node. localFeatures := lnwire.NewRawFeatureVector() // We'll signal that we understand the data loss protection feature, // and also that we support the new gossip query features. localFeatures.Set(lnwire.DataLossProtectOptional) localFeatures.Set(lnwire.GossipQueriesOptional) // We'll only request a full channel graph sync if we detect that that // we aren't fully synced yet. if s.shouldRequestGraphSync() { // TODO(roasbeef): only do so if gossiper doesn't have active // peers? localFeatures.Set(lnwire.InitialRoutingSync) } // Now that we've established a connection, create a peer, and it to // the set of currently active peers. p, err := newPeer(conn, connReq, s, peerAddr, inbound, localFeatures) if err != nil { srvrLog.Errorf("unable to create peer %v", err) return } // TODO(roasbeef): update IP address for link-node // * also mark last-seen, do it one single transaction? // Attempt to start the peer, if we're unable to do so, then disconnect // this peer. if err := p.Start(); err != nil { p.Disconnect(errors.Errorf("unable to start peer: %v", err)) return } s.addPeer(p) } // shouldDropConnection determines if our local connection to a remote peer // should be dropped in the case of concurrent connection establishment. In // order to deterministically decide which connection should be dropped, we'll // utilize the ordering of the local and remote public key. If we didn't use // such a tie breaker, then we risk _both_ connections erroneously being // dropped. func shouldDropLocalConnection(local, remote *btcec.PublicKey) bool { localPubBytes := local.SerializeCompressed() remotePubPbytes := remote.SerializeCompressed() // The connection that comes from the node with a "smaller" pubkey // should be kept. Therefore, if our pubkey is "greater" than theirs, we // should drop our established connection. return bytes.Compare(localPubBytes, remotePubPbytes) > 0 } // InboundPeerConnected initializes a new peer in response to a new inbound // connection. // // NOTE: This function is safe for concurrent access. func (s *server) InboundPeerConnected(conn net.Conn) { // Exit early if we have already been instructed to shutdown, this // prevents any delayed callbacks from accidentally registering peers. if s.Stopped() { return } nodePub := conn.(*brontide.Conn).RemotePub() pubStr := string(nodePub.SerializeCompressed()) s.mu.Lock() defer s.mu.Unlock() // If we already have an outbound connection to this peer, then ignore // this new connection. if _, ok := s.outboundPeers[pubStr]; ok { srvrLog.Debugf("Already have outbound connection for %x, "+ "ignoring inbound connection", nodePub.SerializeCompressed()) conn.Close() return } // If we already have a valid connection that is scheduled to take // precedence once the prior peer has finished disconnecting, we'll // ignore this connection. if _, ok := s.scheduledPeerConnection[pubStr]; ok { srvrLog.Debugf("Ignoring connection, peer already scheduled") conn.Close() return } srvrLog.Infof("New inbound connection from %v", conn.RemoteAddr()) // Check to see if we already have a connection with this peer. If so, // we may need to drop our existing connection. This prevents us from // having duplicate connections to the same peer. We forgo adding a // default case as we expect these to be the only error values returned // from findPeerByPubStr. connectedPeer, err := s.findPeerByPubStr(pubStr) switch err { case ErrPeerNotConnected: // We were unable to locate an existing connection with the // target peer, proceed to connect. s.cancelConnReqs(pubStr, nil) s.peerConnected(conn, nil, true) case nil: // We already have a connection with the incoming peer. If the // connection we've already established should be kept, then // we'll close out this connection s.t there's only a single // connection between us. localPub := s.identityPriv.PubKey() if !shouldDropLocalConnection(localPub, nodePub) { srvrLog.Warnf("Received inbound connection from "+ "peer %x, but already connected, dropping conn", nodePub.SerializeCompressed()) conn.Close() return } // Otherwise, if we should drop the connection, then we'll // disconnect our already connected peer. srvrLog.Debugf("Disconnecting stale connection to %v", connectedPeer) s.cancelConnReqs(pubStr, nil) // Remove the current peer from the server's internal state and // signal that the peer termination watcher does not need to // execute for this peer. s.removePeer(connectedPeer) s.ignorePeerTermination[connectedPeer] = struct{}{} s.scheduledPeerConnection[pubStr] = func() { s.peerConnected(conn, nil, true) } } } // OutboundPeerConnected initializes a new peer in response to a new outbound // connection. // NOTE: This function is safe for concurrent access. func (s *server) OutboundPeerConnected(connReq *connmgr.ConnReq, conn net.Conn) { // Exit early if we have already been instructed to shutdown, this // prevents any delayed callbacks from accidentally registering peers. if s.Stopped() { return } nodePub := conn.(*brontide.Conn).RemotePub() pubStr := string(nodePub.SerializeCompressed()) s.mu.Lock() defer s.mu.Unlock() // If we already have an inbound connection to this peer, then ignore // this new connection. if _, ok := s.inboundPeers[pubStr]; ok { srvrLog.Debugf("Already have inbound connection for %x, "+ "ignoring outbound connection", nodePub.SerializeCompressed()) if connReq != nil { s.connMgr.Remove(connReq.ID()) } conn.Close() return } if _, ok := s.persistentConnReqs[pubStr]; !ok && connReq != nil { srvrLog.Debugf("Ignoring cancelled outbound connection") s.connMgr.Remove(connReq.ID()) conn.Close() return } // If we already have a valid connection that is scheduled to take // precedence once the prior peer has finished disconnecting, we'll // ignore this connection. if _, ok := s.scheduledPeerConnection[pubStr]; ok { srvrLog.Debugf("Ignoring connection, peer already scheduled") if connReq != nil { s.connMgr.Remove(connReq.ID()) } conn.Close() return } srvrLog.Infof("Established connection to: %v", conn.RemoteAddr()) if connReq != nil { // A successful connection was returned by the connmgr. // Immediately cancel all pending requests, excluding the // outbound connection we just established. ignore := connReq.ID() s.cancelConnReqs(pubStr, &ignore) } else { // This was a successful connection made by some other // subsystem. Remove all requests being managed by the connmgr. s.cancelConnReqs(pubStr, nil) } // If we already have a connection with this peer, decide whether or not // we need to drop the stale connection. We forgo adding a default case // as we expect these to be the only error values returned from // findPeerByPubStr. connectedPeer, err := s.findPeerByPubStr(pubStr) switch err { case ErrPeerNotConnected: // We were unable to locate an existing connection with the // target peer, proceed to connect. s.peerConnected(conn, connReq, false) case nil: // We already have a connection open with the target peer. // If our (this) connection should be dropped, then we'll do // so, in order to ensure we don't have any duplicate // connections. localPub := s.identityPriv.PubKey() if shouldDropLocalConnection(localPub, nodePub) { srvrLog.Warnf("Established outbound connection to "+ "peer %x, but already connected, dropping conn", nodePub.SerializeCompressed()) if connReq != nil { s.connMgr.Remove(connReq.ID()) } conn.Close() return } // Otherwise, _their_ connection should be dropped. So we'll // disconnect the peer and send the now obsolete peer to the // server for garbage collection. srvrLog.Debugf("Disconnecting stale connection to %v", connectedPeer) // Remove the current peer from the server's internal state and // signal that the peer termination watcher does not need to // execute for this peer. s.removePeer(connectedPeer) s.ignorePeerTermination[connectedPeer] = struct{}{} s.scheduledPeerConnection[pubStr] = func() { s.peerConnected(conn, connReq, false) } } } // UnassignedConnID is the default connection ID that a request can have before // it actually is submitted to the connmgr. // TODO(conner): move into connmgr package, or better, add connmgr method for // generating atomic IDs const UnassignedConnID uint64 = 0 // cancelConnReqs stops all persistent connection requests for a given pubkey. // Any attempts initiated by the peerTerminationWatcher are canceled first. // Afterwards, each connection request removed from the connmgr. The caller can // optionally specify a connection ID to ignore, which prevents us from // canceling a successful request. All persistent connreqs for the provided // pubkey are discarded after the operationjw. func (s *server) cancelConnReqs(pubStr string, skip *uint64) { // First, cancel any lingering persistent retry attempts, which will // prevent retries for any with backoffs that are still maturing. if cancelChan, ok := s.persistentRetryCancels[pubStr]; ok { close(cancelChan) delete(s.persistentRetryCancels, pubStr) } // Next, check to see if we have any outstanding persistent connection // requests to this peer. If so, then we'll remove all of these // connection requests, and also delete the entry from the map. connReqs, ok := s.persistentConnReqs[pubStr] if !ok { return } for _, connReq := range connReqs { // Atomically capture the current request identifier. connID := connReq.ID() // Skip any zero IDs, this indicates the request has not // yet been schedule. if connID == UnassignedConnID { continue } // Skip a particular connection ID if instructed. if skip != nil && connID == *skip { continue } s.connMgr.Remove(connID) } delete(s.persistentConnReqs, pubStr) } // addPeer adds the passed peer to the server's global state of all active // peers. func (s *server) addPeer(p *peer) { if p == nil { return } // Ignore new peers if we're shutting down. if s.Stopped() { p.Disconnect(ErrServerShuttingDown) return } // Track the new peer in our indexes so we can quickly look it up either // according to its public key, or its peer ID. // TODO(roasbeef): pipe all requests through to the // queryHandler/peerManager pubStr := string(p.addr.IdentityKey.SerializeCompressed()) s.peersByPub[pubStr] = p if p.inbound { s.inboundPeers[pubStr] = p } else { s.outboundPeers[pubStr] = p } // Launch a goroutine to watch for the unexpected termination of this // peer, which will ensure all resources are properly cleaned up, and // re-establish persistent connections when necessary. The peer // termination watcher will be short circuited if the peer is ever // added to the ignorePeerTermination map, indicating that the server // has already handled the removal of this peer. s.wg.Add(1) go s.peerTerminationWatcher(p) switch { // If the remote peer knows of the new gossip queries feature, then // we'll create a new gossipSyncer in the AuthenticatedGossiper for it. case p.remoteLocalFeatures.HasFeature(lnwire.GossipQueriesOptional): srvrLog.Infof("Negotiated chan series queries with %x", p.pubKeyBytes[:]) // We'll only request channel updates from the remote peer if // its enabled in the config, or we're already getting updates // from enough peers. // // TODO(roasbeef): craft s.t. we only get updates from a few // peers recvUpdates := !cfg.NoChanUpdates go s.authGossiper.InitSyncState(p, recvUpdates) // If the remote peer has the initial sync feature bit set, then we'll // being the synchronization protocol to exchange authenticated channel // graph edges/vertexes, but only if they don't know of the new gossip // queries. case p.remoteLocalFeatures.HasFeature(lnwire.InitialRoutingSync): srvrLog.Infof("Requesting full table sync with %x", p.pubKeyBytes[:]) go s.authGossiper.SynchronizeNode(p) } // Check if there are listeners waiting for this peer to come online. for _, peerChan := range s.peerConnectedListeners[pubStr] { select { case peerChan <- p: case <-s.quit: return } } delete(s.peerConnectedListeners, pubStr) } // removePeer removes the passed peer from the server's state of all active // peers. func (s *server) removePeer(p *peer) { if p == nil { return } srvrLog.Debugf("removing peer %v", p) // As the peer is now finished, ensure that the TCP connection is // closed and all of its related goroutines have exited. p.Disconnect(fmt.Errorf("server: disconnecting peer %v", p)) // If this peer had an active persistent connection request, remove it. if p.connReq != nil { s.connMgr.Remove(p.connReq.ID()) } // Ignore deleting peers if we're shutting down. if s.Stopped() { return } pubStr := string(p.addr.IdentityKey.SerializeCompressed()) delete(s.peersByPub, pubStr) if p.inbound { delete(s.inboundPeers, pubStr) } else { delete(s.outboundPeers, pubStr) } } // openChanReq is a message sent to the server in order to request the // initiation of a channel funding workflow to the peer with either the // specified relative peer ID, or a global lightning ID. type openChanReq struct { targetPubkey *btcec.PublicKey chainHash chainhash.Hash localFundingAmt btcutil.Amount remoteFundingAmt btcutil.Amount pushAmt lnwire.MilliSatoshi fundingFeePerKw lnwallet.SatPerKWeight private bool minHtlc lnwire.MilliSatoshi remoteCsvDelay uint16 // TODO(roasbeef): add ability to specify channel constraints as well updates chan *lnrpc.OpenStatusUpdate err chan error } // ConnectToPeer requests that the server connect to a Lightning Network peer // at the specified address. This function will *block* until either a // connection is established, or the initial handshake process fails. // // NOTE: This function is safe for concurrent access. func (s *server) ConnectToPeer(addr *lnwire.NetAddress, perm bool) error { targetPub := string(addr.IdentityKey.SerializeCompressed()) // Acquire mutex, but use explicit unlocking instead of defer for // better granularity. In certain conditions, this method requires // making an outbound connection to a remote peer, which requires the // lock to be released, and subsequently reacquired. s.mu.Lock() // Ensure we're not already connected to this peer. peer, err := s.findPeerByPubStr(targetPub) if err == nil { s.mu.Unlock() return fmt.Errorf("already connected to peer: %v", peer) } // Peer was not found, continue to pursue connection with peer. // If there's already a pending connection request for this pubkey, // then we ignore this request to ensure we don't create a redundant // connection. if reqs, ok := s.persistentConnReqs[targetPub]; ok { srvrLog.Warnf("Already have %d persistent connection "+ "requests for %v, connecting anyway.", len(reqs), addr) } // If there's not already a pending or active connection to this node, // then instruct the connection manager to attempt to establish a // persistent connection to the peer. srvrLog.Debugf("Connecting to %v", addr) if perm { connReq := &connmgr.ConnReq{ Addr: addr, Permanent: true, } s.persistentPeers[targetPub] = struct{}{} if _, ok := s.persistentPeersBackoff[targetPub]; !ok { s.persistentPeersBackoff[targetPub] = defaultBackoff } s.persistentConnReqs[targetPub] = append( s.persistentConnReqs[targetPub], connReq) s.mu.Unlock() go s.connMgr.Connect(connReq) return nil } s.mu.Unlock() // If we're not making a persistent connection, then we'll attempt to // connect to the target peer. If the we can't make the connection, or // the crypto negotiation breaks down, then return an error to the // caller. errChan := make(chan error, 1) s.connectToPeer(addr, errChan) select { case err := <-errChan: return err case <-s.quit: return ErrServerShuttingDown } } // connectToPeer establishes a connection to a remote peer. errChan is used to // notify the caller if the connection attempt has failed. Otherwise, it will be // closed. func (s *server) connectToPeer(addr *lnwire.NetAddress, errChan chan<- error) { conn, err := brontide.Dial(s.identityPriv, addr, cfg.net.Dial) if err != nil { srvrLog.Errorf("Unable to connect to %v: %v", addr, err) select { case errChan <- err: case <-s.quit: } return } close(errChan) s.OutboundPeerConnected(nil, conn) } // DisconnectPeer sends the request to server to close the connection with peer // identified by public key. // // NOTE: This function is safe for concurrent access. func (s *server) DisconnectPeer(pubKey *btcec.PublicKey) error { pubBytes := pubKey.SerializeCompressed() pubStr := string(pubBytes) s.mu.Lock() defer s.mu.Unlock() // Check that were actually connected to this peer. If not, then we'll // exit in an error as we can't disconnect from a peer that we're not // currently connected to. peer, err := s.findPeerByPubStr(pubStr) if err == ErrPeerNotConnected { return fmt.Errorf("peer %x is not connected", pubBytes) } srvrLog.Infof("Disconnecting from %v", peer) s.cancelConnReqs(pubStr, nil) // If this peer was formerly a persistent connection, then we'll remove // them from this map so we don't attempt to re-connect after we // disconnect. delete(s.persistentPeers, pubStr) delete(s.persistentPeersBackoff, pubStr) // Remove the current peer from the server's internal state and signal // that the peer termination watcher does not need to execute for this // peer. s.removePeer(peer) s.ignorePeerTermination[peer] = struct{}{} return nil } // OpenChannel sends a request to the server to open a channel to the specified // peer identified by nodeKey with the passed channel funding parameters. // // NOTE: This function is safe for concurrent access. func (s *server) OpenChannel(nodeKey *btcec.PublicKey, localAmt btcutil.Amount, pushAmt, minHtlc lnwire.MilliSatoshi, fundingFeePerKw lnwallet.SatPerKWeight, private bool, remoteCsvDelay uint16) (chan *lnrpc.OpenStatusUpdate, chan error) { // The updateChan will have a buffer of 2, since we expect a // ChanPending + a ChanOpen update, and we want to make sure the // funding process is not blocked if the caller is not reading the // updates. updateChan := make(chan *lnrpc.OpenStatusUpdate, 2) errChan := make(chan error, 1) var ( targetPeer *peer pubKeyBytes []byte err error ) // If the user is targeting the peer by public key, then we'll need to // convert that into a string for our map. Otherwise, we expect them to // target by peer ID instead. if nodeKey != nil { pubKeyBytes = nodeKey.SerializeCompressed() } // First attempt to locate the target peer to open a channel with, if // we're unable to locate the peer then this request will fail. s.mu.RLock() if peer, ok := s.peersByPub[string(pubKeyBytes)]; ok { targetPeer = peer } s.mu.RUnlock() if targetPeer == nil { errChan <- fmt.Errorf("peer is not connected NodeKey(%x)", pubKeyBytes) return updateChan, errChan } // If the fee rate wasn't specified, then we'll use a default // confirmation target. if fundingFeePerKw == 0 { estimator := s.cc.feeEstimator fundingFeePerKw, err = estimator.EstimateFeePerKW(6) if err != nil { errChan <- err return updateChan, errChan } } // Spawn a goroutine to send the funding workflow request to the // funding manager. This allows the server to continue handling queries // instead of blocking on this request which is exported as a // synchronous request to the outside world. req := &openChanReq{ targetPubkey: nodeKey, chainHash: *activeNetParams.GenesisHash, localFundingAmt: localAmt, fundingFeePerKw: fundingFeePerKw, pushAmt: pushAmt, private: private, minHtlc: minHtlc, remoteCsvDelay: remoteCsvDelay, updates: updateChan, err: errChan, } // TODO(roasbeef): pass in chan that's closed if/when funding succeeds // so can track as persistent peer? go s.fundingMgr.initFundingWorkflow(targetPeer, req) return updateChan, errChan } // Peers returns a slice of all active peers. // // NOTE: This function is safe for concurrent access. func (s *server) Peers() []*peer { s.mu.RLock() defer s.mu.RUnlock() peers := make([]*peer, 0, len(s.peersByPub)) for _, peer := range s.peersByPub { peers = append(peers, peer) } return peers } // parseHexColor takes a hex string representation of a color in the // form "#RRGGBB", parses the hex color values, and returns a color.RGBA // struct of the same color. func parseHexColor(colorStr string) (color.RGBA, error) { if len(colorStr) != 7 || colorStr[0] != '#' { return color.RGBA{}, errors.New("Color must be in format #RRGGBB") } // Decode the hex color string to bytes. // The resulting byte array is in the form [R, G, B]. colorBytes, err := hex.DecodeString(colorStr[1:]) if err != nil { return color.RGBA{}, err } return color.RGBA{R: colorBytes[0], G: colorBytes[1], B: colorBytes[2]}, nil } // computeNextBackoff uses a truncated exponential backoff to compute the next // backoff using the value of the exiting backoff. The returned duration is // randomized in either direction by 1/20 to prevent tight loops from // stabilizing. func computeNextBackoff(currBackoff time.Duration) time.Duration { // Double the current backoff, truncating if it exceeds our maximum. nextBackoff := 2 * currBackoff if nextBackoff > maximumBackoff { nextBackoff = maximumBackoff } // Using 1/10 of our duration as a margin, compute a random offset to // avoid the nodes entering connection cycles. margin := nextBackoff / 10 var wiggle big.Int wiggle.SetUint64(uint64(margin)) if _, err := rand.Int(rand.Reader, &wiggle); err != nil { // Randomizing is not mission critical, so we'll just return the // current backoff. return nextBackoff } // Otherwise add in our wiggle, but subtract out half of the margin so // that the backoff can tweaked by 1/20 in either direction. return nextBackoff + (time.Duration(wiggle.Uint64()) - margin/2) } // fetchNodeAdvertisedAddr attempts to fetch an advertised address of a node. func (s *server) fetchNodeAdvertisedAddr(pub *btcec.PublicKey) (net.Addr, error) { node, err := s.chanDB.ChannelGraph().FetchLightningNode(pub) if err != nil { return nil, err } if len(node.Addresses) == 0 { return nil, errors.New("no advertised addresses found") } return node.Addresses[0], nil } // disableChannel disables a channel, resulting in it not being able to forward // payments. This is done by sending a new channel update across the network // with the disabled flag set. func (s *server) disableChannel(op wire.OutPoint) error { // Retrieve the latest update for this channel. We'll use this // as our starting point to send the new update. chanUpdate, err := s.fetchLastChanUpdateByOutPoint(op) if err != nil { return err } // Set the bit responsible for marking a channel as disabled. chanUpdate.Flags |= lnwire.ChanUpdateDisabled // We must now update the message's timestamp and generate a new // signature. chanUpdate.Timestamp = uint32(time.Now().Unix()) chanUpdateMsg, err := chanUpdate.DataToSign() if err != nil { return err } pubKey := s.identityPriv.PubKey() sig, err := s.nodeSigner.SignMessage(pubKey, chanUpdateMsg) if err != nil { return err } chanUpdate.Signature, err = lnwire.NewSigFromSignature(sig) if err != nil { return err } // Once signed, we'll send the new update to all of our peers. return s.applyChannelUpdate(chanUpdate) } // fetchLastChanUpdateByOutPoint fetches the latest update for a channel from // our point of view. func (s *server) fetchLastChanUpdateByOutPoint(op wire.OutPoint) (*lnwire.ChannelUpdate, error) { graph := s.chanDB.ChannelGraph() info, edge1, edge2, err := graph.FetchChannelEdgesByOutpoint(&op) if err != nil { return nil, err } if edge1 == nil || edge2 == nil { return nil, fmt.Errorf("unable to find channel(%v)", op) } // If we're the outgoing node on the first edge, then that // means the second edge is our policy. Otherwise, the first // edge is our policy. var local *channeldb.ChannelEdgePolicy ourPubKey := s.identityPriv.PubKey().SerializeCompressed() if bytes.Equal(edge1.Node.PubKeyBytes[:], ourPubKey) { local = edge2 } else { local = edge1 } return extractChannelUpdate(info, local) } // extractChannelUpdate retrieves a lnwire.ChannelUpdate message from an edge's // info and routing policy. func extractChannelUpdate(info *channeldb.ChannelEdgeInfo, policy *channeldb.ChannelEdgePolicy) (*lnwire.ChannelUpdate, error) { update := &lnwire.ChannelUpdate{ ChainHash: info.ChainHash, ShortChannelID: lnwire.NewShortChanIDFromInt(policy.ChannelID), Timestamp: uint32(policy.LastUpdate.Unix()), Flags: policy.Flags, TimeLockDelta: policy.TimeLockDelta, HtlcMinimumMsat: policy.MinHTLC, BaseFee: uint32(policy.FeeBaseMSat), FeeRate: uint32(policy.FeeProportionalMillionths), } var err error update.Signature, err = lnwire.NewSigFromRawSignature(policy.SigBytes) if err != nil { return nil, err } return update, nil } // applyChannelUpdate applies the channel update to the different sub-systems of // the server. func (s *server) applyChannelUpdate(update *lnwire.ChannelUpdate) error { newChannelPolicy := &channeldb.ChannelEdgePolicy{ SigBytes: update.Signature.ToSignatureBytes(), ChannelID: update.ShortChannelID.ToUint64(), LastUpdate: time.Unix(int64(update.Timestamp), 0), Flags: update.Flags, TimeLockDelta: update.TimeLockDelta, MinHTLC: update.HtlcMinimumMsat, FeeBaseMSat: lnwire.MilliSatoshi(update.BaseFee), FeeProportionalMillionths: lnwire.MilliSatoshi(update.FeeRate), } err := s.chanRouter.UpdateEdge(newChannelPolicy) if err != nil && !routing.IsError(err, routing.ErrIgnored) { return err } pubKey := s.identityPriv.PubKey() errChan := s.authGossiper.ProcessLocalAnnouncement(update, pubKey) select { case err := <-errChan: return err case <-s.quit: return ErrServerShuttingDown } }