// +build !rpctest package lnd import ( "bytes" "errors" "fmt" "io/ioutil" "math/big" "net" "os" "path/filepath" "runtime" "strings" "testing" "time" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/chainreg" "github.com/lightningnetwork/lnd/chanacceptor" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/channelnotifier" "github.com/lightningnetwork/lnd/discovery" "github.com/lightningnetwork/lnd/funding" "github.com/lightningnetwork/lnd/htlcswitch" "github.com/lightningnetwork/lnd/input" "github.com/lightningnetwork/lnd/keychain" "github.com/lightningnetwork/lnd/lncfg" "github.com/lightningnetwork/lnd/lnpeer" "github.com/lightningnetwork/lnd/lnrpc" "github.com/lightningnetwork/lnd/lntest/mock" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwallet/chainfee" "github.com/lightningnetwork/lnd/lnwire" "github.com/stretchr/testify/require" ) const ( // testPollNumTries is the number of times we attempt to query // for a certain expected database state before we give up and // consider the test failed. Since it sometimes can take a // while to update the database, we poll a certain amount of // times, until it gets into the state we expect, or we are out // of tries. testPollNumTries = 10 // testPollSleepMs is the number of milliseconds to sleep between // each attempt to access the database to check its state. testPollSleepMs = 500 // maxPending is the maximum number of channels we allow opening to the // same peer in the max pending channels test. maxPending = 4 // A dummy value to use for the funding broadcast height. fundingBroadcastHeight = 123 ) var ( // Use hard-coded keys for Alice and Bob, the two FundingManagers that // we will test the interaction between. alicePrivKeyBytes = [32]byte{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9, 0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } alicePrivKey, alicePubKey = btcec.PrivKeyFromBytes(btcec.S256(), alicePrivKeyBytes[:]) aliceTCPAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9001") aliceAddr = &lnwire.NetAddress{ IdentityKey: alicePubKey, Address: aliceTCPAddr, } bobPrivKeyBytes = [32]byte{ 0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda, 0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, 0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d, 0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9, } bobPrivKey, bobPubKey = btcec.PrivKeyFromBytes(btcec.S256(), bobPrivKeyBytes[:]) bobTCPAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9000") bobAddr = &lnwire.NetAddress{ IdentityKey: bobPubKey, Address: bobTCPAddr, } testSig = &btcec.Signature{ R: new(big.Int), S: new(big.Int), } _, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10) _, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10) fundingNetParams = chainreg.BitcoinTestNetParams ) type mockNotifier struct { oneConfChannel chan *chainntnfs.TxConfirmation sixConfChannel chan *chainntnfs.TxConfirmation epochChan chan *chainntnfs.BlockEpoch } func (m *mockNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash, _ []byte, numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent, error) { if numConfs == 6 { return &chainntnfs.ConfirmationEvent{ Confirmed: m.sixConfChannel, }, nil } return &chainntnfs.ConfirmationEvent{ Confirmed: m.oneConfChannel, }, nil } func (m *mockNotifier) RegisterBlockEpochNtfn( bestBlock *chainntnfs.BlockEpoch) (*chainntnfs.BlockEpochEvent, error) { return &chainntnfs.BlockEpochEvent{ Epochs: m.epochChan, Cancel: func() {}, }, nil } func (m *mockNotifier) Start() error { return nil } func (m *mockNotifier) Started() bool { return true } func (m *mockNotifier) Stop() error { return nil } func (m *mockNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint, _ []byte, heightHint uint32) (*chainntnfs.SpendEvent, error) { return &chainntnfs.SpendEvent{ Spend: make(chan *chainntnfs.SpendDetail), Cancel: func() {}, }, nil } type mockChanEvent struct { openEvent chan wire.OutPoint pendingOpenEvent chan channelnotifier.PendingOpenChannelEvent } func (m *mockChanEvent) NotifyOpenChannelEvent(outpoint wire.OutPoint) { m.openEvent <- outpoint } func (m *mockChanEvent) NotifyPendingOpenChannelEvent(outpoint wire.OutPoint, pendingChannel *channeldb.OpenChannel) { m.pendingOpenEvent <- channelnotifier.PendingOpenChannelEvent{ ChannelPoint: &outpoint, PendingChannel: pendingChannel, } } type newChannelMsg struct { channel *channeldb.OpenChannel err chan error } type testNode struct { privKey *btcec.PrivateKey addr *lnwire.NetAddress msgChan chan lnwire.Message announceChan chan lnwire.Message publTxChan chan *wire.MsgTx fundingMgr *Manager newChannels chan *newChannelMsg mockNotifier *mockNotifier mockChanEvent *mockChanEvent testDir string shutdownChannel chan struct{} remoteFeatures []lnwire.FeatureBit remotePeer *testNode sendMessage func(lnwire.Message) error } var _ lnpeer.Peer = (*testNode)(nil) func (n *testNode) IdentityKey() *btcec.PublicKey { return n.addr.IdentityKey } func (n *testNode) Address() net.Addr { return n.addr.Address } func (n *testNode) PubKey() [33]byte { return newSerializedKey(n.addr.IdentityKey) } func (n *testNode) SendMessage(_ bool, msg ...lnwire.Message) error { return n.sendMessage(msg[0]) } func (n *testNode) SendMessageLazy(sync bool, msgs ...lnwire.Message) error { return n.SendMessage(sync, msgs...) } func (n *testNode) WipeChannel(_ *wire.OutPoint) {} func (n *testNode) QuitSignal() <-chan struct{} { return n.shutdownChannel } func (n *testNode) LocalFeatures() *lnwire.FeatureVector { return lnwire.NewFeatureVector(nil, nil) } func (n *testNode) RemoteFeatures() *lnwire.FeatureVector { return lnwire.NewFeatureVector( lnwire.NewRawFeatureVector(n.remoteFeatures...), nil, ) } func (n *testNode) AddNewChannel(channel *channeldb.OpenChannel, quit <-chan struct{}) error { errChan := make(chan error) msg := &newChannelMsg{ channel: channel, err: errChan, } select { case n.newChannels <- msg: case <-quit: return ErrFundingManagerShuttingDown } select { case err := <-errChan: return err case <-quit: return ErrFundingManagerShuttingDown } } func createTestWallet(cdb *channeldb.DB, netParams *chaincfg.Params, notifier chainntnfs.ChainNotifier, wc lnwallet.WalletController, signer input.Signer, keyRing keychain.SecretKeyRing, bio lnwallet.BlockChainIO, estimator chainfee.Estimator) (*lnwallet.LightningWallet, error) { wallet, err := lnwallet.NewLightningWallet(lnwallet.Config{ Database: cdb, Notifier: notifier, SecretKeyRing: keyRing, WalletController: wc, Signer: signer, ChainIO: bio, FeeEstimator: estimator, NetParams: *netParams, DefaultConstraints: chainreg.DefaultBtcChannelConstraints, }) if err != nil { return nil, err } if err := wallet.Startup(); err != nil { return nil, err } return wallet, nil } func createTestFundingManager(t *testing.T, privKey *btcec.PrivateKey, addr *lnwire.NetAddress, tempTestDir string, options ...cfgOption) (*testNode, error) { netParams := fundingNetParams.Params estimator := chainfee.NewStaticEstimator(62500, 0) chainNotifier := &mockNotifier{ oneConfChannel: make(chan *chainntnfs.TxConfirmation, 1), sixConfChannel: make(chan *chainntnfs.TxConfirmation, 1), epochChan: make(chan *chainntnfs.BlockEpoch, 2), } sentMessages := make(chan lnwire.Message) sentAnnouncements := make(chan lnwire.Message) publTxChan := make(chan *wire.MsgTx, 1) shutdownChan := make(chan struct{}) wc := &mock.WalletController{ RootKey: alicePrivKey, } signer := &mock.SingleSigner{ Privkey: alicePrivKey, } bio := &mock.ChainIO{ BestHeight: fundingBroadcastHeight, } // The mock channel event notifier will receive events for each pending // open and open channel. Because some tests will create multiple // channels in a row before advancing to the next step, these channels // need to be buffered. evt := &mockChanEvent{ openEvent: make(chan wire.OutPoint, maxPending), pendingOpenEvent: make( chan channelnotifier.PendingOpenChannelEvent, maxPending, ), } dbDir := filepath.Join(tempTestDir, "cdb") cdb, err := channeldb.Open(dbDir) if err != nil { return nil, err } keyRing := &mock.SecretKeyRing{ RootKey: alicePrivKey, } lnw, err := createTestWallet( cdb, netParams, chainNotifier, wc, signer, keyRing, bio, estimator, ) if err != nil { t.Fatalf("unable to create test ln wallet: %v", err) } var chanIDSeed [32]byte chainedAcceptor := chanacceptor.NewChainedAcceptor() fundingCfg := fundingConfig{ IDKey: privKey.PubKey(), Wallet: lnw, Notifier: chainNotifier, FeeEstimator: estimator, SignMessage: func(pubKey *btcec.PublicKey, msg []byte) (input.Signature, error) { return testSig, nil }, SendAnnouncement: func(msg lnwire.Message, _ ...discovery.OptionalMsgField) chan error { errChan := make(chan error, 1) select { case sentAnnouncements <- msg: errChan <- nil case <-shutdownChan: errChan <- fmt.Errorf("shutting down") } return errChan }, CurrentNodeAnnouncement: func() (lnwire.NodeAnnouncement, error) { return lnwire.NodeAnnouncement{}, nil }, TempChanIDSeed: chanIDSeed, FindChannel: func(chanID lnwire.ChannelID) ( *channeldb.OpenChannel, error) { dbChannels, err := cdb.FetchAllChannels() if err != nil { return nil, err } for _, channel := range dbChannels { if chanID.IsChanPoint(&channel.FundingOutpoint) { return channel, nil } } return nil, fmt.Errorf("unable to find channel") }, DefaultRoutingPolicy: htlcswitch.ForwardingPolicy{ MinHTLCOut: 5, BaseFee: 100, FeeRate: 1000, TimeLockDelta: 10, }, DefaultMinHtlcIn: 5, NumRequiredConfs: func(chanAmt btcutil.Amount, pushAmt lnwire.MilliSatoshi) uint16 { return 3 }, RequiredRemoteDelay: func(amt btcutil.Amount) uint16 { return 4 }, RequiredRemoteChanReserve: func(chanAmt, dustLimit btcutil.Amount) btcutil.Amount { reserve := chanAmt / 100 if reserve < dustLimit { reserve = dustLimit } return reserve }, RequiredRemoteMaxValue: func(chanAmt btcutil.Amount) lnwire.MilliSatoshi { reserve := lnwire.NewMSatFromSatoshis(chanAmt / 100) return lnwire.NewMSatFromSatoshis(chanAmt) - reserve }, RequiredRemoteMaxHTLCs: func(chanAmt btcutil.Amount) uint16 { return uint16(input.MaxHTLCNumber / 2) }, WatchNewChannel: func(*channeldb.OpenChannel, *btcec.PublicKey) error { return nil }, ReportShortChanID: func(wire.OutPoint) error { return nil }, PublishTransaction: func(txn *wire.MsgTx, _ string) error { publTxChan <- txn return nil }, UpdateLabel: func(chainhash.Hash, string) error { return nil }, ZombieSweeperInterval: 1 * time.Hour, ReservationTimeout: 1 * time.Nanosecond, MaxChanSize: funding.MaxBtcFundingAmount, MaxLocalCSVDelay: defaultMaxLocalCSVDelay, MaxPendingChannels: lncfg.DefaultMaxPendingChannels, NotifyOpenChannelEvent: evt.NotifyOpenChannelEvent, OpenChannelPredicate: chainedAcceptor, NotifyPendingOpenChannelEvent: evt.NotifyPendingOpenChannelEvent, RegisteredChains: chainreg.NewChainRegistry(), } for _, op := range options { op(&fundingCfg) } f, err := NewFundingManager(fundingCfg) if err != nil { t.Fatalf("failed creating fundingManager: %v", err) } if err = f.Start(); err != nil { t.Fatalf("failed starting fundingManager: %v", err) } testNode := &testNode{ privKey: privKey, msgChan: sentMessages, newChannels: make(chan *newChannelMsg), announceChan: sentAnnouncements, publTxChan: publTxChan, fundingMgr: f, mockNotifier: chainNotifier, mockChanEvent: evt, testDir: tempTestDir, shutdownChannel: shutdownChan, addr: addr, } f.cfg.NotifyWhenOnline = func(peer [33]byte, connectedChan chan<- lnpeer.Peer) { connectedChan <- testNode.remotePeer } return testNode, nil } func recreateAliceFundingManager(t *testing.T, alice *testNode) { // Stop the old fundingManager before creating a new one. close(alice.shutdownChannel) if err := alice.fundingMgr.Stop(); err != nil { t.Fatalf("unable to stop old fundingManager: %v", err) } aliceMsgChan := make(chan lnwire.Message) aliceAnnounceChan := make(chan lnwire.Message) shutdownChan := make(chan struct{}) publishChan := make(chan *wire.MsgTx, 10) oldCfg := alice.fundingMgr.cfg chainedAcceptor := chanacceptor.NewChainedAcceptor() f, err := NewFundingManager(fundingConfig{ IDKey: oldCfg.IDKey, Wallet: oldCfg.Wallet, Notifier: oldCfg.Notifier, FeeEstimator: oldCfg.FeeEstimator, SignMessage: func(pubKey *btcec.PublicKey, msg []byte) (input.Signature, error) { return testSig, nil }, SendAnnouncement: func(msg lnwire.Message, _ ...discovery.OptionalMsgField) chan error { errChan := make(chan error, 1) select { case aliceAnnounceChan <- msg: errChan <- nil case <-shutdownChan: errChan <- fmt.Errorf("shutting down") } return errChan }, CurrentNodeAnnouncement: func() (lnwire.NodeAnnouncement, error) { return lnwire.NodeAnnouncement{}, nil }, NotifyWhenOnline: func(peer [33]byte, connectedChan chan<- lnpeer.Peer) { connectedChan <- alice.remotePeer }, TempChanIDSeed: oldCfg.TempChanIDSeed, FindChannel: oldCfg.FindChannel, DefaultRoutingPolicy: htlcswitch.ForwardingPolicy{ MinHTLCOut: 5, BaseFee: 100, FeeRate: 1000, TimeLockDelta: 10, }, DefaultMinHtlcIn: 5, RequiredRemoteMaxValue: oldCfg.RequiredRemoteMaxValue, PublishTransaction: func(txn *wire.MsgTx, _ string) error { publishChan <- txn return nil }, UpdateLabel: func(chainhash.Hash, string) error { return nil }, ZombieSweeperInterval: oldCfg.ZombieSweeperInterval, ReservationTimeout: oldCfg.ReservationTimeout, OpenChannelPredicate: chainedAcceptor, }) if err != nil { t.Fatalf("failed recreating aliceFundingManager: %v", err) } alice.fundingMgr = f alice.msgChan = aliceMsgChan alice.announceChan = aliceAnnounceChan alice.publTxChan = publishChan alice.shutdownChannel = shutdownChan if err = f.Start(); err != nil { t.Fatalf("failed starting fundingManager: %v", err) } } type cfgOption func(*fundingConfig) func setupFundingManagers(t *testing.T, options ...cfgOption) (*testNode, *testNode) { aliceTestDir, err := ioutil.TempDir("", "alicelnwallet") if err != nil { t.Fatalf("unable to create temp directory: %v", err) } alice, err := createTestFundingManager( t, alicePrivKey, aliceAddr, aliceTestDir, options..., ) if err != nil { t.Fatalf("failed creating fundingManager: %v", err) } bobTestDir, err := ioutil.TempDir("", "boblnwallet") if err != nil { t.Fatalf("unable to create temp directory: %v", err) } bob, err := createTestFundingManager( t, bobPrivKey, bobAddr, bobTestDir, options..., ) if err != nil { t.Fatalf("failed creating fundingManager: %v", err) } // With the funding manager's created, we'll now attempt to mimic a // connection pipe between them. In order to intercept the messages // within it, we'll redirect all messages back to the msgChan of the // sender. Since the fundingManager now has a reference to peers itself, // alice.sendMessage will be triggered when Bob's funding manager // attempts to send a message to Alice and vice versa. alice.remotePeer = bob alice.sendMessage = func(msg lnwire.Message) error { select { case alice.remotePeer.msgChan <- msg: case <-alice.shutdownChannel: return errors.New("shutting down") } return nil } bob.remotePeer = alice bob.sendMessage = func(msg lnwire.Message) error { select { case bob.remotePeer.msgChan <- msg: case <-bob.shutdownChannel: return errors.New("shutting down") } return nil } return alice, bob } func tearDownFundingManagers(t *testing.T, a, b *testNode) { close(a.shutdownChannel) close(b.shutdownChannel) if err := a.fundingMgr.Stop(); err != nil { t.Fatalf("unable to stop fundingManager: %v", err) } if err := b.fundingMgr.Stop(); err != nil { t.Fatalf("unable to stop fundingManager: %v", err) } os.RemoveAll(a.testDir) os.RemoveAll(b.testDir) } // openChannel takes the funding process to the point where the funding // transaction is confirmed on-chain. Returns the funding out point. func openChannel(t *testing.T, alice, bob *testNode, localFundingAmt, pushAmt btcutil.Amount, numConfs uint32, updateChan chan *lnrpc.OpenStatusUpdate, announceChan bool) ( *wire.OutPoint, *wire.MsgTx) { publ := fundChannel( t, alice, bob, localFundingAmt, pushAmt, false, numConfs, updateChan, announceChan, ) fundingOutPoint := &wire.OutPoint{ Hash: publ.TxHash(), Index: 0, } return fundingOutPoint, publ } // fundChannel takes the funding process to the point where the funding // transaction is confirmed on-chain. Returns the funding tx. func fundChannel(t *testing.T, alice, bob *testNode, localFundingAmt, pushAmt btcutil.Amount, subtractFees bool, numConfs uint32, updateChan chan *lnrpc.OpenStatusUpdate, announceChan bool) *wire.MsgTx { // Create a funding request and start the workflow. errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, SubtractFees: subtractFees, LocalFundingAmt: localFundingAmt, PushAmt: lnwire.NewMSatFromSatoshis(pushAmt), FundingFeePerKw: 1000, Private: !announceChan, Updates: updateChan, Err: errChan, } alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Bob should answer with an AcceptChannel message. acceptChannelResponse := assertFundingMsgSent( t, bob.msgChan, "AcceptChannel", ).(*lnwire.AcceptChannel) // They now should both have pending reservations for this channel // active. assertNumPendingReservations(t, alice, bobPubKey, 1) assertNumPendingReservations(t, bob, alicePubKey, 1) // Forward the response to Alice. alice.fundingMgr.ProcessFundingMsg(acceptChannelResponse, bob) // Alice responds with a FundingCreated message. fundingCreated := assertFundingMsgSent( t, alice.msgChan, "FundingCreated", ).(*lnwire.FundingCreated) // Give the message to Bob. bob.fundingMgr.ProcessFundingMsg(fundingCreated, alice) // Finally, Bob should send the FundingSigned message. fundingSigned := assertFundingMsgSent( t, bob.msgChan, "FundingSigned", ).(*lnwire.FundingSigned) // Forward the signature to Alice. alice.fundingMgr.ProcessFundingMsg(fundingSigned, bob) // After Alice processes the singleFundingSignComplete message, she will // broadcast the funding transaction to the network. We expect to get a // channel update saying the channel is pending. var pendingUpdate *lnrpc.OpenStatusUpdate select { case pendingUpdate = <-updateChan: case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenStatusUpdate_ChanPending") } _, ok = pendingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending) if !ok { t.Fatal("OpenStatusUpdate was not OpenStatusUpdate_ChanPending") } // Get and return the transaction Alice published to the network. var publ *wire.MsgTx select { case publ = <-alice.publTxChan: case <-time.After(time.Second * 5): t.Fatalf("alice did not publish funding tx") } // Make sure the notification about the pending channel was sent out. select { case <-alice.mockChanEvent.pendingOpenEvent: case <-time.After(time.Second * 5): t.Fatalf("alice did not send pending channel event") } select { case <-bob.mockChanEvent.pendingOpenEvent: case <-time.After(time.Second * 5): t.Fatalf("bob did not send pending channel event") } // Finally, make sure neither have active reservation for the channel // now pending open in the database. assertNumPendingReservations(t, alice, bobPubKey, 0) assertNumPendingReservations(t, bob, alicePubKey, 0) return publ } func assertErrorNotSent(t *testing.T, msgChan chan lnwire.Message) { t.Helper() select { case <-msgChan: t.Fatalf("error sent unexpectedly") case <-time.After(100 * time.Millisecond): // Expected, return. } } func assertErrorSent(t *testing.T, msgChan chan lnwire.Message) { t.Helper() var msg lnwire.Message select { case msg = <-msgChan: case <-time.After(time.Second * 5): t.Fatalf("node did not send Error message") } _, ok := msg.(*lnwire.Error) if !ok { t.Fatalf("expected Error to be sent from "+ "node, instead got %T", msg) } } func assertFundingMsgSent(t *testing.T, msgChan chan lnwire.Message, msgType string) lnwire.Message { t.Helper() var msg lnwire.Message select { case msg = <-msgChan: case <-time.After(time.Second * 5): t.Fatalf("peer did not send %s message", msgType) } var ( sentMsg lnwire.Message ok bool ) switch msgType { case "AcceptChannel": sentMsg, ok = msg.(*lnwire.AcceptChannel) case "FundingCreated": sentMsg, ok = msg.(*lnwire.FundingCreated) case "FundingSigned": sentMsg, ok = msg.(*lnwire.FundingSigned) case "FundingLocked": sentMsg, ok = msg.(*lnwire.FundingLocked) case "Error": sentMsg, ok = msg.(*lnwire.Error) default: t.Fatalf("unknown message type: %s", msgType) } if !ok { errorMsg, gotError := msg.(*lnwire.Error) if gotError { t.Fatalf("expected %s to be sent, instead got error: %v", msgType, errorMsg.Error()) } _, _, line, _ := runtime.Caller(1) t.Fatalf("expected %s to be sent, instead got %T at %v", msgType, msg, line) } return sentMsg } func assertNumPendingReservations(t *testing.T, node *testNode, peerPubKey *btcec.PublicKey, expectedNum int) { t.Helper() serializedPubKey := newSerializedKey(peerPubKey) actualNum := len(node.fundingMgr.activeReservations[serializedPubKey]) if actualNum == expectedNum { // Success, return. return } t.Fatalf("Expected node to have %d pending reservations, had %v", expectedNum, actualNum) } func assertNumPendingChannelsBecomes(t *testing.T, node *testNode, expectedNum int) { t.Helper() var numPendingChans int for i := 0; i < testPollNumTries; i++ { // If this is not the first try, sleep before retrying. if i > 0 { time.Sleep(testPollSleepMs * time.Millisecond) } pendingChannels, err := node.fundingMgr. cfg.Wallet.Cfg.Database.FetchPendingChannels() if err != nil { t.Fatalf("unable to fetch pending channels: %v", err) } numPendingChans = len(pendingChannels) if numPendingChans == expectedNum { // Success, return. return } } t.Fatalf("Expected node to have %d pending channels, had %v", expectedNum, numPendingChans) } func assertNumPendingChannelsRemains(t *testing.T, node *testNode, expectedNum int) { t.Helper() var numPendingChans int for i := 0; i < 5; i++ { // If this is not the first try, sleep before retrying. if i > 0 { time.Sleep(200 * time.Millisecond) } pendingChannels, err := node.fundingMgr. cfg.Wallet.Cfg.Database.FetchPendingChannels() if err != nil { t.Fatalf("unable to fetch pending channels: %v", err) } numPendingChans = len(pendingChannels) if numPendingChans != expectedNum { t.Fatalf("Expected node to have %d pending channels, had %v", expectedNum, numPendingChans) } } } func assertDatabaseState(t *testing.T, node *testNode, fundingOutPoint *wire.OutPoint, expectedState channelOpeningState) { t.Helper() var state channelOpeningState var err error for i := 0; i < testPollNumTries; i++ { // If this is not the first try, sleep before retrying. if i > 0 { time.Sleep(testPollSleepMs * time.Millisecond) } state, _, err = node.fundingMgr.getChannelOpeningState( fundingOutPoint) if err != nil && err != ErrChannelNotFound { t.Fatalf("unable to get channel state: %v", err) } // If we found the channel, check if it had the expected state. if err != ErrChannelNotFound && state == expectedState { // Got expected state, return with success. return } } // 10 tries without success. if err != nil { t.Fatalf("error getting channelOpeningState: %v", err) } else { t.Fatalf("expected state to be %v, was %v", expectedState, state) } } func assertMarkedOpen(t *testing.T, alice, bob *testNode, fundingOutPoint *wire.OutPoint) { t.Helper() // Make sure the notification about the pending channel was sent out. select { case <-alice.mockChanEvent.openEvent: case <-time.After(time.Second * 5): t.Fatalf("alice did not send open channel event") } select { case <-bob.mockChanEvent.openEvent: case <-time.After(time.Second * 5): t.Fatalf("bob did not send open channel event") } assertDatabaseState(t, alice, fundingOutPoint, markedOpen) assertDatabaseState(t, bob, fundingOutPoint, markedOpen) } func assertFundingLockedSent(t *testing.T, alice, bob *testNode, fundingOutPoint *wire.OutPoint) { t.Helper() assertDatabaseState(t, alice, fundingOutPoint, fundingLockedSent) assertDatabaseState(t, bob, fundingOutPoint, fundingLockedSent) } func assertAddedToRouterGraph(t *testing.T, alice, bob *testNode, fundingOutPoint *wire.OutPoint) { t.Helper() assertDatabaseState(t, alice, fundingOutPoint, addedToRouterGraph) assertDatabaseState(t, bob, fundingOutPoint, addedToRouterGraph) } // assertChannelAnnouncements checks that alice and bob both sends the expected // announcements (ChannelAnnouncement, ChannelUpdate) after the funding tx has // confirmed. The last arguments can be set if we expect the nodes to advertise // custom min_htlc values as part of their ChannelUpdate. We expect Alice to // advertise the value required by Bob and vice versa. If they are not set the // advertised value will be checked against the other node's default min_htlc // value. func assertChannelAnnouncements(t *testing.T, alice, bob *testNode, capacity btcutil.Amount, customMinHtlc []lnwire.MilliSatoshi, customMaxHtlc []lnwire.MilliSatoshi) { t.Helper() // After the FundingLocked message is sent, Alice and Bob will each // send the following messages to their gossiper: // 1) ChannelAnnouncement // 2) ChannelUpdate // The ChannelAnnouncement is kept locally, while the ChannelUpdate // is sent directly to the other peer, so the edge policies are // known to both peers. nodes := []*testNode{alice, bob} for j, node := range nodes { announcements := make([]lnwire.Message, 2) for i := 0; i < len(announcements); i++ { select { case announcements[i] = <-node.announceChan: case <-time.After(time.Second * 5): t.Fatalf("node did not send announcement: %v", i) } } gotChannelAnnouncement := false gotChannelUpdate := false for _, msg := range announcements { switch m := msg.(type) { case *lnwire.ChannelAnnouncement: gotChannelAnnouncement = true case *lnwire.ChannelUpdate: // The channel update sent by the node should // advertise the MinHTLC value required by the // _other_ node. other := (j + 1) % 2 minHtlc := nodes[other].fundingMgr.cfg. DefaultMinHtlcIn // We might expect a custom MinHTLC value. if len(customMinHtlc) > 0 { if len(customMinHtlc) != 2 { t.Fatalf("only 0 or 2 custom " + "min htlc values " + "currently supported") } minHtlc = customMinHtlc[j] } if m.HtlcMinimumMsat != minHtlc { t.Fatalf("expected ChannelUpdate to "+ "advertise min HTLC %v, had %v", minHtlc, m.HtlcMinimumMsat) } maxHtlc := alice.fundingMgr.cfg.RequiredRemoteMaxValue( capacity, ) // We might expect a custom MaxHltc value. if len(customMaxHtlc) > 0 { if len(customMaxHtlc) != 2 { t.Fatalf("only 0 or 2 custom " + "min htlc values " + "currently supported") } maxHtlc = customMaxHtlc[j] } if m.MessageFlags != 1 { t.Fatalf("expected message flags to "+ "be 1, was %v", m.MessageFlags) } if maxHtlc != m.HtlcMaximumMsat { t.Fatalf("expected ChannelUpdate to "+ "advertise max HTLC %v, had %v", maxHtlc, m.HtlcMaximumMsat) } gotChannelUpdate = true } } if !gotChannelAnnouncement { t.Fatalf("did not get ChannelAnnouncement from node %d", j) } if !gotChannelUpdate { t.Fatalf("did not get ChannelUpdate from node %d", j) } // Make sure no other message is sent. select { case <-node.announceChan: t.Fatalf("received unexpected announcement") case <-time.After(300 * time.Millisecond): // Expected } } } func assertAnnouncementSignatures(t *testing.T, alice, bob *testNode) { t.Helper() // After the FundingLocked message is sent and six confirmations have // been reached, the channel will be announced to the greater network // by having the nodes exchange announcement signatures. // Two distinct messages will be sent: // 1) AnnouncementSignatures // 2) NodeAnnouncement // These may arrive in no particular order. // Note that sending the NodeAnnouncement at this point is an // implementation detail, and not something required by the LN spec. for j, node := range []*testNode{alice, bob} { announcements := make([]lnwire.Message, 2) for i := 0; i < len(announcements); i++ { select { case announcements[i] = <-node.announceChan: case <-time.After(time.Second * 5): t.Fatalf("node did not send announcement %v", i) } } gotAnnounceSignatures := false gotNodeAnnouncement := false for _, msg := range announcements { switch msg.(type) { case *lnwire.AnnounceSignatures: gotAnnounceSignatures = true case *lnwire.NodeAnnouncement: gotNodeAnnouncement = true } } if !gotAnnounceSignatures { t.Fatalf("did not get AnnounceSignatures from node %d", j) } if !gotNodeAnnouncement { t.Fatalf("did not get NodeAnnouncement from node %d", j) } } } func waitForOpenUpdate(t *testing.T, updateChan chan *lnrpc.OpenStatusUpdate) { var openUpdate *lnrpc.OpenStatusUpdate select { case openUpdate = <-updateChan: case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenStatusUpdate") } _, ok := openUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanOpen) if !ok { t.Fatal("OpenStatusUpdate was not OpenStatusUpdate_ChanOpen") } } func assertNoChannelState(t *testing.T, alice, bob *testNode, fundingOutPoint *wire.OutPoint) { t.Helper() assertErrChannelNotFound(t, alice, fundingOutPoint) assertErrChannelNotFound(t, bob, fundingOutPoint) } func assertErrChannelNotFound(t *testing.T, node *testNode, fundingOutPoint *wire.OutPoint) { t.Helper() var state channelOpeningState var err error for i := 0; i < testPollNumTries; i++ { // If this is not the first try, sleep before retrying. if i > 0 { time.Sleep(testPollSleepMs * time.Millisecond) } state, _, err = node.fundingMgr.getChannelOpeningState( fundingOutPoint) if err == ErrChannelNotFound { // Got expected state, return with success. return } else if err != nil { t.Fatalf("unable to get channel state: %v", err) } } // 10 tries without success. t.Fatalf("expected to not find state, found state %v", state) } func assertHandleFundingLocked(t *testing.T, alice, bob *testNode) { t.Helper() // They should both send the new channel state to their peer. select { case c := <-alice.newChannels: close(c.err) case <-time.After(time.Second * 15): t.Fatalf("alice did not send new channel to peer") } select { case c := <-bob.newChannels: close(c.err) case <-time.After(time.Second * 15): t.Fatalf("bob did not send new channel to peer") } } func TestFundingManagerNormalWorkflow(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, true, ) // Check that neither Alice nor Bob sent an error message. assertErrorNotSent(t, alice.msgChan) assertErrorNotSent(t, bob.msgChan) // Notify that transaction was mined. alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction is mined, Alice will send // fundingLocked to Bob. fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // And similarly Bob will send funding locked to Alice. fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Check that the state machine is updated accordingly assertFundingLockedSent(t, alice, bob, fundingOutPoint) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // Check that the state machine is updated accordingly assertAddedToRouterGraph(t, alice, bob, fundingOutPoint) // The funding transaction is now confirmed, wait for the // OpenStatusUpdate_ChanOpen update waitForOpenUpdate(t, updateChan) // Exchange the fundingLocked messages. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Make sure the fundingManagers exchange announcement signatures. assertAnnouncementSignatures(t, alice, bob) // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerRejectCSV tests checking of local CSV values against our // local CSV limit for incoming and outgoing channels. func TestFundingManagerRejectCSV(t *testing.T) { t.Run("csv too high", func(t *testing.T) { testLocalCSVLimit(t, 400, 500) }) t.Run("csv within limit", func(t *testing.T) { testLocalCSVLimit(t, 600, 500) }) } // testLocalCSVLimit creates two funding managers, alice and bob, where alice // has a limit on her maximum local CSV and bob sets his required CSV for alice. // We test an incoming and outgoing channel, ensuring that alice accepts csvs // below her maximum, and rejects those above it. func testLocalCSVLimit(t *testing.T, aliceMaxCSV, bobRequiredCSV uint16) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // Set a maximum local delay in alice's config to aliceMaxCSV and overwrite // bob's required remote delay function to return bobRequiredCSV. alice.fundingMgr.cfg.MaxLocalCSVDelay = aliceMaxCSV bob.fundingMgr.cfg.RequiredRemoteDelay = func(_ btcutil.Amount) uint16 { return bobRequiredCSV } // For convenience, we bump our max pending channels to 2 so that we // can test incoming and outgoing channels without needing to step // through the full funding process. alice.fundingMgr.cfg.MaxPendingChannels = 2 bob.fundingMgr.cfg.MaxPendingChannels = 2 // If our maximum is less than the value bob sets, we expect this test // to fail. expectFail := aliceMaxCSV < bobRequiredCSV // First, we will initiate an outgoing channel from Alice -> Bob. errChan := make(chan error, 1) updateChan := make(chan *lnrpc.OpenStatusUpdate) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 200000, FundingFeePerKw: 1000, Updates: updateChan, Err: errChan, } // Alice should have sent the OpenChannel message to Bob. alice.fundingMgr.InitFundingWorkflow(initReq) var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) require.True(t, ok) // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Bob should answer with an AcceptChannel message. acceptChannelResponse := assertFundingMsgSent( t, bob.msgChan, "AcceptChannel", ).(*lnwire.AcceptChannel) // They now should both have pending reservations for this channel // active. assertNumPendingReservations(t, alice, bobPubKey, 1) assertNumPendingReservations(t, bob, alicePubKey, 1) // Forward the response to Alice. alice.fundingMgr.ProcessFundingMsg(acceptChannelResponse, bob) // At this point, Alice has received an AcceptChannel message from // bob with the CSV value that he has set for her, and has to evaluate // whether she wants to accept this channel. If we get an error, we // assert that we expected the channel to fail, otherwise we assert that // she proceeded with the channel open as usual. select { case err := <-errChan: require.Error(t, err) require.True(t, expectFail) case msg := <-alice.msgChan: _, ok := msg.(*lnwire.FundingCreated) require.True(t, ok) require.False(t, expectFail) case <-time.After(time.Second): t.Fatal("funding flow was not failed") } // We do not need to complete the rest of the funding flow (it is // covered in other tests). So now we test that Alice will appropriately // handle incoming channels, opening a channel from Bob->Alice. errChan = make(chan error, 1) updateChan = make(chan *lnrpc.OpenStatusUpdate) initReq = &InitFundingMsg{ Peer: alice, TargetPubkey: alice.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 200000, FundingFeePerKw: 1000, Updates: updateChan, Err: errChan, } bob.fundingMgr.InitFundingWorkflow(initReq) // Bob should have sent the OpenChannel message to Alice. var bobMsg lnwire.Message select { case bobMsg = <-bob.msgChan: case err := <-initReq.Err: t.Fatalf("bob OpenChannel message failed: %v", err) case <-time.After(time.Second * 5): t.Fatalf("bob did not send OpenChannel message") } openChannelReq, ok = bobMsg.(*lnwire.OpenChannel) require.True(t, ok) // Let Alice handle the init message. alice.fundingMgr.ProcessFundingMsg(openChannelReq, bob) // We expect a error message from Alice if we're expecting the channel // to fail, otherwise we expect her to proceed with the channel as // usual. select { case msg := <-alice.msgChan: var ok bool if expectFail { _, ok = msg.(*lnwire.Error) } else { _, ok = msg.(*lnwire.AcceptChannel) } require.True(t, ok) case <-time.After(time.Second * 5): t.Fatal("funding flow was not failed") } } func TestFundingManagerRestartBehavior(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt updateChan := make(chan *lnrpc.OpenStatusUpdate) fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, true, ) // After the funding transaction gets mined, both nodes will send the // fundingLocked message to the other peer. If the funding node fails // before this message has been successfully sent, it should retry // sending it on restart. We mimic this behavior by letting the // SendToPeer method return an error, as if the message was not // successfully sent. We then recreate the fundingManager and make sure // it continues the process as expected. We'll save the current // implementation of sendMessage to restore the original behavior later // on. workingSendMessage := bob.sendMessage bob.sendMessage = func(msg lnwire.Message) error { return fmt.Errorf("intentional error in SendToPeer") } alice.fundingMgr.cfg.NotifyWhenOnline = func(peer [33]byte, con chan<- lnpeer.Peer) { // Intentionally empty. } // Notify that transaction was mined alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction was mined, Bob should have successfully // sent the fundingLocked message, while Alice failed sending it. In // Alice's case this means that there should be no messages for Bob, and // the channel should still be in state 'markedOpen' select { case msg := <-alice.msgChan: t.Fatalf("did not expect any message from Alice: %v", msg) default: // Expected. } // Bob will send funding locked to Alice. fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Alice should still be markedOpen assertDatabaseState(t, alice, fundingOutPoint, markedOpen) // While Bob successfully sent fundingLocked. assertDatabaseState(t, bob, fundingOutPoint, fundingLockedSent) // We now recreate Alice's fundingManager with the correct sendMessage // implementation, and expect it to retry sending the fundingLocked // message. We'll explicitly shut down Alice's funding manager to // prevent a race when overriding the sendMessage implementation. if err := alice.fundingMgr.Stop(); err != nil { t.Fatalf("unable to stop alice's funding manager: %v", err) } bob.sendMessage = workingSendMessage recreateAliceFundingManager(t, alice) // Intentionally make the channel announcements fail alice.fundingMgr.cfg.SendAnnouncement = func(msg lnwire.Message, _ ...discovery.OptionalMsgField) chan error { errChan := make(chan error, 1) errChan <- fmt.Errorf("intentional error in SendAnnouncement") return errChan } fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // The state should now be fundingLockedSent assertDatabaseState(t, alice, fundingOutPoint, fundingLockedSent) // Check that the channel announcements were never sent select { case ann := <-alice.announceChan: t.Fatalf("unexpectedly got channel announcement message: %v", ann) default: // Expected } // Exchange the fundingLocked messages. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // Next up, we check that Alice rebroadcasts the announcement // messages on restart. Bob should as expected send announcements. recreateAliceFundingManager(t, alice) time.Sleep(300 * time.Millisecond) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // Check that the state machine is updated accordingly assertAddedToRouterGraph(t, alice, bob, fundingOutPoint) // Next, we check that Alice sends the announcement signatures // on restart after six confirmations. Bob should as expected send // them as well. recreateAliceFundingManager(t, alice) time.Sleep(300 * time.Millisecond) // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Make sure the fundingManagers exchange announcement signatures. assertAnnouncementSignatures(t, alice, bob) // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerOfflinePeer checks that the fundingManager waits for the // server to notify when the peer comes online, in case sending the // fundingLocked message fails the first time. func TestFundingManagerOfflinePeer(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt updateChan := make(chan *lnrpc.OpenStatusUpdate) fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, true, ) // After the funding transaction gets mined, both nodes will send the // fundingLocked message to the other peer. If the funding node fails // to send the fundingLocked message to the peer, it should wait for // the server to notify it that the peer is back online, and try again. // We'll save the current implementation of sendMessage to restore the // original behavior later on. workingSendMessage := bob.sendMessage bob.sendMessage = func(msg lnwire.Message) error { return fmt.Errorf("intentional error in SendToPeer") } peerChan := make(chan [33]byte, 1) conChan := make(chan chan<- lnpeer.Peer, 1) alice.fundingMgr.cfg.NotifyWhenOnline = func(peer [33]byte, connected chan<- lnpeer.Peer) { peerChan <- peer conChan <- connected } // Notify that transaction was mined alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction was mined, Bob should have successfully // sent the fundingLocked message, while Alice failed sending it. In // Alice's case this means that there should be no messages for Bob, and // the channel should still be in state 'markedOpen' select { case msg := <-alice.msgChan: t.Fatalf("did not expect any message from Alice: %v", msg) default: // Expected. } // Bob will send funding locked to Alice fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Alice should still be markedOpen assertDatabaseState(t, alice, fundingOutPoint, markedOpen) // While Bob successfully sent fundingLocked. assertDatabaseState(t, bob, fundingOutPoint, fundingLockedSent) // Alice should be waiting for the server to notify when Bob comes back // online. var peer [33]byte var con chan<- lnpeer.Peer select { case peer = <-peerChan: // Expected case <-time.After(time.Second * 3): t.Fatalf("alice did not register peer with server") } select { case con = <-conChan: // Expected case <-time.After(time.Second * 3): t.Fatalf("alice did not register connectedChan with server") } if !bytes.Equal(peer[:], bobPubKey.SerializeCompressed()) { t.Fatalf("expected to receive Bob's pubkey (%v), instead got %v", bobPubKey, peer) } // Restore the correct sendMessage implementation, and notify that Bob // is back online. bob.sendMessage = workingSendMessage con <- bob // This should make Alice send the fundingLocked. fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // The state should now be fundingLockedSent assertDatabaseState(t, alice, fundingOutPoint, fundingLockedSent) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // Check that the state machine is updated accordingly assertAddedToRouterGraph(t, alice, bob, fundingOutPoint) // The funding transaction is now confirmed, wait for the // OpenStatusUpdate_ChanOpen update waitForOpenUpdate(t, updateChan) // Exchange the fundingLocked messages. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Make sure both fundingManagers send the expected announcement // signatures. assertAnnouncementSignatures(t, alice, bob) // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerPeerTimeoutAfterInitFunding checks that the zombie sweeper // will properly clean up a zombie reservation that times out after the // InitFundingMsg has been handled. func TestFundingManagerPeerTimeoutAfterInitFunding(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Create a funding request and start the workflow. errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 500000, PushAmt: lnwire.NewMSatFromSatoshis(0), Private: false, Updates: updateChan, Err: errChan, } alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } _, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Alice should have a new pending reservation. assertNumPendingReservations(t, alice, bobPubKey, 1) // Make sure Alice's reservation times out and then run her zombie sweeper. time.Sleep(1 * time.Millisecond) go alice.fundingMgr.pruneZombieReservations() // Alice should have sent an Error message to Bob. assertErrorSent(t, alice.msgChan) // Alice's zombie reservation should have been pruned. assertNumPendingReservations(t, alice, bobPubKey, 0) } // TestFundingManagerPeerTimeoutAfterFundingOpen checks that the zombie sweeper // will properly clean up a zombie reservation that times out after the // fundingOpenMsg has been handled. func TestFundingManagerPeerTimeoutAfterFundingOpen(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Create a funding request and start the workflow. errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 500000, PushAmt: lnwire.NewMSatFromSatoshis(0), Private: false, Updates: updateChan, Err: errChan, } alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Alice should have a new pending reservation. assertNumPendingReservations(t, alice, bobPubKey, 1) // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Bob should answer with an AcceptChannel. assertFundingMsgSent(t, bob.msgChan, "AcceptChannel") // Bob should have a new pending reservation. assertNumPendingReservations(t, bob, alicePubKey, 1) // Make sure Bob's reservation times out and then run his zombie sweeper. time.Sleep(1 * time.Millisecond) go bob.fundingMgr.pruneZombieReservations() // Bob should have sent an Error message to Alice. assertErrorSent(t, bob.msgChan) // Bob's zombie reservation should have been pruned. assertNumPendingReservations(t, bob, alicePubKey, 0) } // TestFundingManagerPeerTimeoutAfterFundingAccept checks that the zombie sweeper // will properly clean up a zombie reservation that times out after the // fundingAcceptMsg has been handled. func TestFundingManagerPeerTimeoutAfterFundingAccept(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Create a funding request and start the workflow. errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 500000, PushAmt: lnwire.NewMSatFromSatoshis(0), Private: false, Updates: updateChan, Err: errChan, } alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Alice should have a new pending reservation. assertNumPendingReservations(t, alice, bobPubKey, 1) // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Bob should answer with an AcceptChannel. acceptChannelResponse := assertFundingMsgSent( t, bob.msgChan, "AcceptChannel", ).(*lnwire.AcceptChannel) // Bob should have a new pending reservation. assertNumPendingReservations(t, bob, alicePubKey, 1) // Forward the response to Alice. alice.fundingMgr.ProcessFundingMsg(acceptChannelResponse, bob) // Alice responds with a FundingCreated messages. assertFundingMsgSent(t, alice.msgChan, "FundingCreated") // Make sure Alice's reservation times out and then run her zombie sweeper. time.Sleep(1 * time.Millisecond) go alice.fundingMgr.pruneZombieReservations() // Alice should have sent an Error message to Bob. assertErrorSent(t, alice.msgChan) // Alice's zombie reservation should have been pruned. assertNumPendingReservations(t, alice, bobPubKey, 0) } func TestFundingManagerFundingTimeout(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. _, _ = openChannel(t, alice, bob, 500000, 0, 1, updateChan, true) // Bob will at this point be waiting for the funding transaction to be // confirmed, so the channel should be considered pending. pendingChannels, err := bob.fundingMgr.cfg.Wallet.Cfg.Database.FetchPendingChannels() if err != nil { t.Fatalf("unable to fetch pending channels: %v", err) } if len(pendingChannels) != 1 { t.Fatalf("Expected Bob to have 1 pending channel, had %v", len(pendingChannels)) } // We expect Bob to forget the channel after 2016 blocks (2 weeks), so // mine 2016-1, and check that it is still pending. bob.mockNotifier.epochChan <- &chainntnfs.BlockEpoch{ Height: fundingBroadcastHeight + maxWaitNumBlocksFundingConf - 1, } // Bob should still be waiting for the channel to open. assertNumPendingChannelsRemains(t, bob, 1) bob.mockNotifier.epochChan <- &chainntnfs.BlockEpoch{ Height: fundingBroadcastHeight + maxWaitNumBlocksFundingConf, } // Bob should have sent an Error message to Alice. assertErrorSent(t, bob.msgChan) // Should not be pending anymore. assertNumPendingChannelsBecomes(t, bob, 0) } // TestFundingManagerFundingNotTimeoutInitiator checks that if the user was // the channel initiator, that it does not timeout when the lnd restarts. func TestFundingManagerFundingNotTimeoutInitiator(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. _, _ = openChannel(t, alice, bob, 500000, 0, 1, updateChan, true) // Alice will at this point be waiting for the funding transaction to be // confirmed, so the channel should be considered pending. pendingChannels, err := alice.fundingMgr.cfg.Wallet.Cfg.Database.FetchPendingChannels() if err != nil { t.Fatalf("unable to fetch pending channels: %v", err) } if len(pendingChannels) != 1 { t.Fatalf("Expected Alice to have 1 pending channel, had %v", len(pendingChannels)) } recreateAliceFundingManager(t, alice) // We should receive the rebroadcasted funding txn. select { case <-alice.publTxChan: case <-time.After(time.Second * 5): t.Fatalf("alice did not publish funding tx") } // Increase the height to 1 minus the maxWaitNumBlocksFundingConf height. alice.mockNotifier.epochChan <- &chainntnfs.BlockEpoch{ Height: fundingBroadcastHeight + maxWaitNumBlocksFundingConf - 1, } bob.mockNotifier.epochChan <- &chainntnfs.BlockEpoch{ Height: fundingBroadcastHeight + maxWaitNumBlocksFundingConf - 1, } // Assert both and Alice and Bob still have 1 pending channels. assertNumPendingChannelsRemains(t, alice, 1) assertNumPendingChannelsRemains(t, bob, 1) // Increase both Alice and Bob to maxWaitNumBlocksFundingConf height. alice.mockNotifier.epochChan <- &chainntnfs.BlockEpoch{ Height: fundingBroadcastHeight + maxWaitNumBlocksFundingConf, } bob.mockNotifier.epochChan <- &chainntnfs.BlockEpoch{ Height: fundingBroadcastHeight + maxWaitNumBlocksFundingConf, } // Since Alice was the initiator, the channel should not have timed out. assertNumPendingChannelsRemains(t, alice, 1) // Bob should have sent an Error message to Alice. assertErrorSent(t, bob.msgChan) // Since Bob was not the initiator, the channel should timeout. assertNumPendingChannelsBecomes(t, bob, 0) } // TestFundingManagerReceiveFundingLockedTwice checks that the fundingManager // continues to operate as expected in case we receive a duplicate fundingLocked // message. func TestFundingManagerReceiveFundingLockedTwice(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, true, ) // Notify that transaction was mined alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction is mined, Alice will send // fundingLocked to Bob. fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // And similarly Bob will send funding locked to Alice. fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Check that the state machine is updated accordingly assertFundingLockedSent(t, alice, bob, fundingOutPoint) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // Check that the state machine is updated accordingly assertAddedToRouterGraph(t, alice, bob, fundingOutPoint) // The funding transaction is now confirmed, wait for the // OpenStatusUpdate_ChanOpen update waitForOpenUpdate(t, updateChan) // Send the fundingLocked message twice to Alice, and once to Bob. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // Alice should not send the channel state the second time, as the // second funding locked should just be ignored. select { case <-alice.newChannels: t.Fatalf("alice sent new channel to peer a second time") case <-time.After(time.Millisecond * 300): // Expected } // Another fundingLocked should also be ignored, since Alice should // have updated her database at this point. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) select { case <-alice.newChannels: t.Fatalf("alice sent new channel to peer a second time") case <-time.After(time.Millisecond * 300): // Expected } // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Make sure the fundingManagers exchange announcement signatures. assertAnnouncementSignatures(t, alice, bob) // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerRestartAfterChanAnn checks that the fundingManager properly // handles receiving a fundingLocked after the its own fundingLocked and channel // announcement is sent and gets restarted. func TestFundingManagerRestartAfterChanAnn(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, true, ) // Notify that transaction was mined alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction is mined, Alice will send // fundingLocked to Bob. fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // And similarly Bob will send funding locked to Alice. fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Check that the state machine is updated accordingly assertFundingLockedSent(t, alice, bob, fundingOutPoint) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // Check that the state machine is updated accordingly assertAddedToRouterGraph(t, alice, bob, fundingOutPoint) // The funding transaction is now confirmed, wait for the // OpenStatusUpdate_ChanOpen update waitForOpenUpdate(t, updateChan) // At this point we restart Alice's fundingManager, before she receives // the fundingLocked message. After restart, she will receive it, and // we expect her to be able to handle it correctly. recreateAliceFundingManager(t, alice) // Exchange the fundingLocked messages. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Make sure both fundingManagers send the expected channel announcements. assertAnnouncementSignatures(t, alice, bob) // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerRestartAfterReceivingFundingLocked checks that the // fundingManager continues to operate as expected after it has received // fundingLocked and then gets restarted. func TestFundingManagerRestartAfterReceivingFundingLocked(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, true, ) // Notify that transaction was mined alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction is mined, Alice will send // fundingLocked to Bob. fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // And similarly Bob will send funding locked to Alice. fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Check that the state machine is updated accordingly assertFundingLockedSent(t, alice, bob, fundingOutPoint) // Let Alice immediately get the fundingLocked message. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) // Also let Bob get the fundingLocked message. bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // At this point we restart Alice's fundingManager. recreateAliceFundingManager(t, alice) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // Check that the state machine is updated accordingly assertAddedToRouterGraph(t, alice, bob, fundingOutPoint) // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Make sure both fundingManagers send the expected channel announcements. assertAnnouncementSignatures(t, alice, bob) // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerPrivateChannel tests that if we open a private channel // (a channel not supposed to be announced to the rest of the network), // the announcementSignatures nor the nodeAnnouncement messages are sent. func TestFundingManagerPrivateChannel(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, false, ) // Notify that transaction was mined alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction is mined, Alice will send // fundingLocked to Bob. fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // And similarly Bob will send funding locked to Alice. fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Check that the state machine is updated accordingly assertFundingLockedSent(t, alice, bob, fundingOutPoint) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // The funding transaction is now confirmed, wait for the // OpenStatusUpdate_ChanOpen update waitForOpenUpdate(t, updateChan) // Exchange the fundingLocked messages. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Since this is a private channel, we shouldn't receive the // announcement signatures. select { case ann := <-alice.announceChan: t.Fatalf("unexpectedly got channel announcement message: %v", ann) case <-time.After(300 * time.Millisecond): // Expected } select { case ann := <-bob.announceChan: t.Fatalf("unexpectedly got channel announcement message: %v", ann) case <-time.After(300 * time.Millisecond): // Expected } // We should however receive each side's node announcement. select { case msg := <-alice.msgChan: if _, ok := msg.(*lnwire.NodeAnnouncement); !ok { t.Fatalf("expected to receive node announcement") } case <-time.After(time.Second): t.Fatalf("expected to receive node announcement") } select { case msg := <-bob.msgChan: if _, ok := msg.(*lnwire.NodeAnnouncement); !ok { t.Fatalf("expected to receive node announcement") } case <-time.After(time.Second): t.Fatalf("expected to receive node announcement") } // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerPrivateRestart tests that the privacy guarantees granted // by the private channel persist even on restart. This means that the // announcement signatures nor the node announcement messages are sent upon // restart. func TestFundingManagerPrivateRestart(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // We will consume the channel updates as we go, so no buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Run through the process of opening the channel, up until the funding // transaction is broadcasted. localAmt := btcutil.Amount(500000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt fundingOutPoint, fundingTx := openChannel( t, alice, bob, localAmt, pushAmt, 1, updateChan, false, ) // Notify that transaction was mined alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // The funding transaction was mined, so assert that both funding // managers now have the state of this channel 'markedOpen' in their // internal state machine. assertMarkedOpen(t, alice, bob, fundingOutPoint) // After the funding transaction is mined, Alice will send // fundingLocked to Bob. fundingLockedAlice := assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // And similarly Bob will send funding locked to Alice. fundingLockedBob := assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Check that the state machine is updated accordingly assertFundingLockedSent(t, alice, bob, fundingOutPoint) // Make sure both fundingManagers send the expected channel // announcements. assertChannelAnnouncements(t, alice, bob, capacity, nil, nil) // Note: We don't check for the addedToRouterGraph state because in // the private channel mode, the state is quickly changed from // addedToRouterGraph to deleted from the database since the public // announcement phase is skipped. // The funding transaction is now confirmed, wait for the // OpenStatusUpdate_ChanOpen update waitForOpenUpdate(t, updateChan) // Exchange the fundingLocked messages. alice.fundingMgr.ProcessFundingMsg(fundingLockedBob, bob) bob.fundingMgr.ProcessFundingMsg(fundingLockedAlice, alice) // Check that they notify the breach arbiter and peer about the new // channel. assertHandleFundingLocked(t, alice, bob) // Notify that six confirmations has been reached on funding transaction. alice.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.sixConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // Since this is a private channel, we shouldn't receive the public // channel announcement messages. select { case ann := <-alice.announceChan: t.Fatalf("unexpectedly got channel announcement message: %v", ann) case <-time.After(300 * time.Millisecond): } select { case ann := <-bob.announceChan: t.Fatalf("unexpectedly got channel announcement message: %v", ann) case <-time.After(300 * time.Millisecond): } // We should however receive each side's node announcement. select { case msg := <-alice.msgChan: if _, ok := msg.(*lnwire.NodeAnnouncement); !ok { t.Fatalf("expected to receive node announcement") } case <-time.After(time.Second): t.Fatalf("expected to receive node announcement") } select { case msg := <-bob.msgChan: if _, ok := msg.(*lnwire.NodeAnnouncement); !ok { t.Fatalf("expected to receive node announcement") } case <-time.After(time.Second): t.Fatalf("expected to receive node announcement") } // Restart Alice's fundingManager so we can prove that the public // channel announcements are not sent upon restart and that the private // setting persists upon restart. recreateAliceFundingManager(t, alice) select { case ann := <-alice.announceChan: t.Fatalf("unexpectedly got channel announcement message: %v", ann) case <-time.After(300 * time.Millisecond): // Expected } select { case ann := <-bob.announceChan: t.Fatalf("unexpectedly got channel announcement message: %v", ann) case <-time.After(300 * time.Millisecond): // Expected } // The internal state-machine should now have deleted the channelStates // from the database, as the channel is announced. assertNoChannelState(t, alice, bob, fundingOutPoint) } // TestFundingManagerCustomChannelParameters checks that custom requirements we // specify during the channel funding flow is preserved correcly on both sides. func TestFundingManagerCustomChannelParameters(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // This is the custom parameters we'll use. const csvDelay = 67 const minHtlcIn = 1234 const maxValueInFlight = 50000 const fundingAmt = 5000000 // We will consume the channel updates as we go, so no buffering is // needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) localAmt := btcutil.Amount(5000000) pushAmt := btcutil.Amount(0) capacity := localAmt + pushAmt // Create a funding request with the custom parameters and start the // workflow. errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: localAmt, PushAmt: lnwire.NewMSatFromSatoshis(pushAmt), Private: false, MaxValueInFlight: maxValueInFlight, MinHtlcIn: minHtlcIn, RemoteCsvDelay: csvDelay, Updates: updateChan, Err: errChan, } alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Check that the custom CSV delay is sent as part of OpenChannel. if openChannelReq.CsvDelay != csvDelay { t.Fatalf("expected OpenChannel to have CSV delay %v, got %v", csvDelay, openChannelReq.CsvDelay) } // Check that the custom minHTLC value is sent. if openChannelReq.HtlcMinimum != minHtlcIn { t.Fatalf("expected OpenChannel to have minHtlc %v, got %v", minHtlcIn, openChannelReq.HtlcMinimum) } // Check that the max value in flight is sent as part of OpenChannel. if openChannelReq.MaxValueInFlight != maxValueInFlight { t.Fatalf("expected OpenChannel to have MaxValueInFlight %v, got %v", maxValueInFlight, openChannelReq.MaxValueInFlight) } chanID := openChannelReq.PendingChannelID // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Bob should answer with an AcceptChannel message. acceptChannelResponse := assertFundingMsgSent( t, bob.msgChan, "AcceptChannel", ).(*lnwire.AcceptChannel) // Bob should require the default delay of 4. if acceptChannelResponse.CsvDelay != 4 { t.Fatalf("expected AcceptChannel to have CSV delay %v, got %v", 4, acceptChannelResponse.CsvDelay) } // And the default MinHTLC value of 5. if acceptChannelResponse.HtlcMinimum != 5 { t.Fatalf("expected AcceptChannel to have minHtlc %v, got %v", 5, acceptChannelResponse.HtlcMinimum) } reserve := lnwire.NewMSatFromSatoshis(fundingAmt / 100) maxValueAcceptChannel := lnwire.NewMSatFromSatoshis(fundingAmt) - reserve if acceptChannelResponse.MaxValueInFlight != maxValueAcceptChannel { t.Fatalf("expected AcceptChannel to have MaxValueInFlight %v, got %v", maxValueAcceptChannel, acceptChannelResponse.MaxValueInFlight) } // Forward the response to Alice. alice.fundingMgr.ProcessFundingMsg(acceptChannelResponse, bob) // Alice responds with a FundingCreated message. fundingCreated := assertFundingMsgSent( t, alice.msgChan, "FundingCreated", ).(*lnwire.FundingCreated) // Helper method for checking the CSV delay stored for a reservation. assertDelay := func(resCtx *reservationWithCtx, ourDelay, theirDelay uint16) error { ourCsvDelay := resCtx.reservation.OurContribution().CsvDelay if ourCsvDelay != ourDelay { return fmt.Errorf("expected our CSV delay to be %v, "+ "was %v", ourDelay, ourCsvDelay) } theirCsvDelay := resCtx.reservation.TheirContribution().CsvDelay if theirCsvDelay != theirDelay { return fmt.Errorf("expected their CSV delay to be %v, "+ "was %v", theirDelay, theirCsvDelay) } return nil } // Helper method for checking the MinHtlc value stored for a // reservation. assertMinHtlc := func(resCtx *reservationWithCtx, expOurMinHtlc, expTheirMinHtlc lnwire.MilliSatoshi) error { ourMinHtlc := resCtx.reservation.OurContribution().MinHTLC if ourMinHtlc != expOurMinHtlc { return fmt.Errorf("expected our minHtlc to be %v, "+ "was %v", expOurMinHtlc, ourMinHtlc) } theirMinHtlc := resCtx.reservation.TheirContribution().MinHTLC if theirMinHtlc != expTheirMinHtlc { return fmt.Errorf("expected their minHtlc to be %v, "+ "was %v", expTheirMinHtlc, theirMinHtlc) } return nil } // Helper method for checking the MaxValueInFlight stored for a // reservation. assertMaxHtlc := func(resCtx *reservationWithCtx, expOurMaxValue, expTheirMaxValue lnwire.MilliSatoshi) error { ourMaxValue := resCtx.reservation.OurContribution().MaxPendingAmount if ourMaxValue != expOurMaxValue { return fmt.Errorf("expected our maxValue to be %v, "+ "was %v", expOurMaxValue, ourMaxValue) } theirMaxValue := resCtx.reservation.TheirContribution().MaxPendingAmount if theirMaxValue != expTheirMaxValue { return fmt.Errorf("expected their MaxPendingAmount to be %v, "+ "was %v", expTheirMaxValue, theirMaxValue) } return nil } // Check that the custom channel parameters were properly set in the // channel reservation. resCtx, err := alice.fundingMgr.getReservationCtx(bobPubKey, chanID) if err != nil { t.Fatalf("unable to find ctx: %v", err) } // Alice's CSV delay should be 4 since Bob sent the default value, and // Bob's should be 67 since Alice sent the custom value. if err := assertDelay(resCtx, 4, csvDelay); err != nil { t.Fatal(err) } // The minimum HTLC value Alice can offer should be 5, and the minimum // Bob can offer should be 1234. if err := assertMinHtlc(resCtx, 5, minHtlcIn); err != nil { t.Fatal(err) } // The max value in flight Alice can have should be maxValueAcceptChannel, // which is the default value and the maxium Bob can offer should be // maxValueInFlight. if err := assertMaxHtlc(resCtx, maxValueAcceptChannel, maxValueInFlight); err != nil { t.Fatal(err) } // Also make sure the parameters are properly set on Bob's end. resCtx, err = bob.fundingMgr.getReservationCtx(alicePubKey, chanID) if err != nil { t.Fatalf("unable to find ctx: %v", err) } if err := assertDelay(resCtx, csvDelay, 4); err != nil { t.Fatal(err) } if err := assertMinHtlc(resCtx, minHtlcIn, 5); err != nil { t.Fatal(err) } if err := assertMaxHtlc(resCtx, maxValueInFlight, maxValueAcceptChannel); err != nil { t.Fatal(err) } // Give the message to Bob. bob.fundingMgr.ProcessFundingMsg(fundingCreated, alice) // Finally, Bob should send the FundingSigned message. fundingSigned := assertFundingMsgSent( t, bob.msgChan, "FundingSigned", ).(*lnwire.FundingSigned) // Forward the signature to Alice. alice.fundingMgr.ProcessFundingMsg(fundingSigned, bob) // After Alice processes the singleFundingSignComplete message, she will // broadcast the funding transaction to the network. We expect to get a // channel update saying the channel is pending. var pendingUpdate *lnrpc.OpenStatusUpdate select { case pendingUpdate = <-updateChan: case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenStatusUpdate_ChanPending") } _, ok = pendingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending) if !ok { t.Fatal("OpenStatusUpdate was not OpenStatusUpdate_ChanPending") } // Wait for Alice to published the funding tx to the network. var fundingTx *wire.MsgTx select { case fundingTx = <-alice.publTxChan: case <-time.After(time.Second * 5): t.Fatalf("alice did not publish funding tx") } // Notify that transaction was mined. alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: fundingTx, } // After the funding transaction is mined, Alice will send // fundingLocked to Bob. _ = assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // And similarly Bob will send funding locked to Alice. _ = assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) // Make sure both fundingManagers send the expected channel // announcements. // Alice should advertise the default MinHTLC value of // 5, while bob should advertise the value minHtlc, since Alice // required him to use it. minHtlcArr := []lnwire.MilliSatoshi{5, minHtlcIn} // For maxHltc Alice should advertise the default MaxHtlc value of // maxValueAcceptChannel, while bob should advertise the value // maxValueInFlight since Alice required him to use it. maxHtlcArr := []lnwire.MilliSatoshi{maxValueAcceptChannel, maxValueInFlight} assertChannelAnnouncements(t, alice, bob, capacity, minHtlcArr, maxHtlcArr) // The funding transaction is now confirmed, wait for the // OpenStatusUpdate_ChanOpen update waitForOpenUpdate(t, updateChan) } // TestFundingManagerMaxPendingChannels checks that trying to open another // channel with the same peer when MaxPending channels are pending fails. func TestFundingManagerMaxPendingChannels(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers( t, func(cfg *fundingConfig) { cfg.MaxPendingChannels = maxPending }, ) defer tearDownFundingManagers(t, alice, bob) // Create InitFundingMsg structs for maxPending+1 channels. var initReqs []*InitFundingMsg for i := 0; i < maxPending+1; i++ { updateChan := make(chan *lnrpc.OpenStatusUpdate) errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 5000000, PushAmt: lnwire.NewMSatFromSatoshis(0), Private: false, Updates: updateChan, Err: errChan, } initReqs = append(initReqs, initReq) } // Kick of maxPending+1 funding workflows. var accepts []*lnwire.AcceptChannel var lastOpen *lnwire.OpenChannel for i, initReq := range initReqs { alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Bob should answer with an AcceptChannel message for the // first maxPending channels. if i < maxPending { acceptChannelResponse := assertFundingMsgSent( t, bob.msgChan, "AcceptChannel", ).(*lnwire.AcceptChannel) accepts = append(accepts, acceptChannelResponse) continue } // For the last channel, Bob should answer with an error. lastOpen = openChannelReq _ = assertFundingMsgSent( t, bob.msgChan, "Error", ).(*lnwire.Error) } // Forward the responses to Alice. var signs []*lnwire.FundingSigned for _, accept := range accepts { alice.fundingMgr.ProcessFundingMsg(accept, bob) // Alice responds with a FundingCreated message. fundingCreated := assertFundingMsgSent( t, alice.msgChan, "FundingCreated", ).(*lnwire.FundingCreated) // Give the message to Bob. bob.fundingMgr.ProcessFundingMsg(fundingCreated, alice) // Finally, Bob should send the FundingSigned message. fundingSigned := assertFundingMsgSent( t, bob.msgChan, "FundingSigned", ).(*lnwire.FundingSigned) signs = append(signs, fundingSigned) } // Sending another init request from Alice should still make Bob // respond with an error. bob.fundingMgr.ProcessFundingMsg(lastOpen, alice) _ = assertFundingMsgSent( t, bob.msgChan, "Error", ).(*lnwire.Error) // Give the FundingSigned messages to Alice. var txs []*wire.MsgTx for i, sign := range signs { alice.fundingMgr.ProcessFundingMsg(sign, bob) // Alice should send a status update for each channel, and // publish a funding tx to the network. var pendingUpdate *lnrpc.OpenStatusUpdate select { case pendingUpdate = <-initReqs[i].Updates: case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenStatusUpdate_ChanPending") } _, ok := pendingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending) if !ok { t.Fatal("OpenStatusUpdate was not OpenStatusUpdate_ChanPending") } select { case tx := <-alice.publTxChan: txs = append(txs, tx) case <-time.After(time.Second * 5): t.Fatalf("alice did not publish funding tx") } } // Sending another init request from Alice should still make Bob // respond with an error, since the funding transactions are not // confirmed yet, bob.fundingMgr.ProcessFundingMsg(lastOpen, alice) _ = assertFundingMsgSent( t, bob.msgChan, "Error", ).(*lnwire.Error) // Notify that the transactions were mined. for i := 0; i < maxPending; i++ { alice.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: txs[i], } bob.mockNotifier.oneConfChannel <- &chainntnfs.TxConfirmation{ Tx: txs[i], } // Expect both to be sending FundingLocked. _ = assertFundingMsgSent( t, alice.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) _ = assertFundingMsgSent( t, bob.msgChan, "FundingLocked", ).(*lnwire.FundingLocked) } // Now opening another channel should work. bob.fundingMgr.ProcessFundingMsg(lastOpen, alice) // Bob should answer with an AcceptChannel message. _ = assertFundingMsgSent( t, bob.msgChan, "AcceptChannel", ).(*lnwire.AcceptChannel) } // TestFundingManagerRejectPush checks behaviour of 'rejectpush' // option, namely that non-zero incoming push amounts are disabled. func TestFundingManagerRejectPush(t *testing.T) { t.Parallel() // Enable 'rejectpush' option and initialize funding managers. alice, bob := setupFundingManagers( t, func(cfg *fundingConfig) { cfg.RejectPush = true }, ) defer tearDownFundingManagers(t, alice, bob) // Create a funding request and start the workflow. updateChan := make(chan *lnrpc.OpenStatusUpdate) errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 500000, PushAmt: lnwire.NewMSatFromSatoshis(10), Private: true, Updates: updateChan, Err: errChan, } alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Assert Bob responded with an ErrNonZeroPushAmount error. err := assertFundingMsgSent(t, bob.msgChan, "Error").(*lnwire.Error) if !strings.Contains(err.Error(), "non-zero push amounts are disabled") { t.Fatalf("expected ErrNonZeroPushAmount error, got \"%v\"", err.Error()) } } // TestFundingManagerMaxConfs ensures that we don't accept a funding proposal // that proposes a MinAcceptDepth greater than the maximum number of // confirmations we're willing to accept. func TestFundingManagerMaxConfs(t *testing.T) { t.Parallel() alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) // Create a funding request and start the workflow. updateChan := make(chan *lnrpc.OpenStatusUpdate) errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: 500000, PushAmt: lnwire.NewMSatFromSatoshis(10), Private: false, Updates: updateChan, Err: errChan, } alice.fundingMgr.InitFundingWorkflow(initReq) // Alice should have sent the OpenChannel message to Bob. var aliceMsg lnwire.Message select { case aliceMsg = <-alice.msgChan: case err := <-initReq.Err: t.Fatalf("error init funding workflow: %v", err) case <-time.After(time.Second * 5): t.Fatalf("alice did not send OpenChannel message") } openChannelReq, ok := aliceMsg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := aliceMsg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent from "+ "alice, instead got %T", aliceMsg) } // Let Bob handle the init message. bob.fundingMgr.ProcessFundingMsg(openChannelReq, alice) // Bob should answer with an AcceptChannel message. acceptChannelResponse := assertFundingMsgSent( t, bob.msgChan, "AcceptChannel", ).(*lnwire.AcceptChannel) // Modify the AcceptChannel message Bob is proposing to including a // MinAcceptDepth Alice won't be willing to accept. acceptChannelResponse.MinAcceptDepth = chainntnfs.MaxNumConfs + 1 alice.fundingMgr.ProcessFundingMsg(acceptChannelResponse, bob) // Alice should respond back with an error indicating MinAcceptDepth is // too large. err := assertFundingMsgSent(t, alice.msgChan, "Error").(*lnwire.Error) if !strings.Contains(err.Error(), "minimum depth") { t.Fatalf("expected ErrNumConfsTooLarge, got \"%v\"", err.Error()) } } // TestFundingManagerFundAll tests that we can initiate a funding request to // use the funds remaining in the wallet. This should produce a funding tx with // no change output. func TestFundingManagerFundAll(t *testing.T) { t.Parallel() // We set up our mock wallet to control a list of UTXOs that sum to // less than the max channel size. allCoins := []*lnwallet.Utxo{ { AddressType: lnwallet.WitnessPubKey, Value: btcutil.Amount( 0.05 * btcutil.SatoshiPerBitcoin, ), PkScript: mock.CoinPkScript, OutPoint: wire.OutPoint{ Hash: chainhash.Hash{}, Index: 0, }, }, { AddressType: lnwallet.WitnessPubKey, Value: btcutil.Amount( 0.06 * btcutil.SatoshiPerBitcoin, ), PkScript: mock.CoinPkScript, OutPoint: wire.OutPoint{ Hash: chainhash.Hash{}, Index: 1, }, }, } tests := []struct { spendAmt btcutil.Amount change bool }{ { // We will spend all the funds in the wallet, and // expects no change output. spendAmt: btcutil.Amount( 0.11 * btcutil.SatoshiPerBitcoin, ), change: false, }, { // We spend a little less than the funds in the wallet, // so a change output should be created. spendAmt: btcutil.Amount( 0.10 * btcutil.SatoshiPerBitcoin, ), change: true, }, } for _, test := range tests { alice, bob := setupFundingManagers(t) defer tearDownFundingManagers(t, alice, bob) alice.fundingMgr.cfg.Wallet.WalletController.(*mock.WalletController).Utxos = allCoins // We will consume the channel updates as we go, so no // buffering is needed. updateChan := make(chan *lnrpc.OpenStatusUpdate) // Initiate a fund channel, and inspect the funding tx. pushAmt := btcutil.Amount(0) fundingTx := fundChannel( t, alice, bob, test.spendAmt, pushAmt, true, 1, updateChan, true, ) // Check whether the expected change output is present. if test.change && len(fundingTx.TxOut) != 2 { t.Fatalf("expected 2 outputs, had %v", len(fundingTx.TxOut)) } if !test.change && len(fundingTx.TxOut) != 1 { t.Fatalf("expected 1 output, had %v", len(fundingTx.TxOut)) } // Inputs should be all funds in the wallet. if len(fundingTx.TxIn) != len(allCoins) { t.Fatalf("Had %d inputs, expected %d", len(fundingTx.TxIn), len(allCoins)) } for i, txIn := range fundingTx.TxIn { if txIn.PreviousOutPoint != allCoins[i].OutPoint { t.Fatalf("expected outpoint to be %v, was %v", allCoins[i].OutPoint, txIn.PreviousOutPoint) } } } } // TestGetUpfrontShutdown tests different combinations of inputs for getting a // shutdown script. It varies whether the peer has the feature set, whether // the user has provided a script and our local configuration to test that // GetUpfrontShutdownScript returns the expected outcome. func TestGetUpfrontShutdownScript(t *testing.T) { upfrontScript := []byte("upfront script") generatedScript := []byte("generated script") getScript := func() (lnwire.DeliveryAddress, error) { return generatedScript, nil } tests := []struct { name string getScript func() (lnwire.DeliveryAddress, error) upfrontScript lnwire.DeliveryAddress peerEnabled bool localEnabled bool expectedScript lnwire.DeliveryAddress expectedErr error }{ { name: "peer disabled, no shutdown", getScript: getScript, }, { name: "peer disabled, upfront provided", upfrontScript: upfrontScript, expectedErr: errUpfrontShutdownScriptNotSupported, }, { name: "peer enabled, upfront provided", upfrontScript: upfrontScript, peerEnabled: true, expectedScript: upfrontScript, }, { name: "peer enabled, local disabled", peerEnabled: true, }, { name: "local enabled, no upfront script", getScript: getScript, peerEnabled: true, localEnabled: true, expectedScript: generatedScript, }, { name: "local enabled, upfront script", peerEnabled: true, upfrontScript: upfrontScript, localEnabled: true, expectedScript: upfrontScript, }, } for _, test := range tests { test := test t.Run(test.name, func(t *testing.T) { var mockPeer testNode // If the remote peer in the test should support upfront shutdown, // add the feature bit. if test.peerEnabled { mockPeer.remoteFeatures = []lnwire.FeatureBit{ lnwire.UpfrontShutdownScriptOptional, } } addr, err := getUpfrontShutdownScript( test.localEnabled, &mockPeer, test.upfrontScript, test.getScript, ) if err != test.expectedErr { t.Fatalf("got: %v, expected error: %v", err, test.expectedErr) } if !bytes.Equal(addr, test.expectedScript) { t.Fatalf("expected address: %x, got: %x", test.expectedScript, addr) } }) } } func expectOpenChannelMsg(t *testing.T, msgChan chan lnwire.Message) *lnwire.OpenChannel { var msg lnwire.Message select { case msg = <-msgChan: case <-time.After(time.Second * 5): t.Fatalf("node did not send OpenChannel message") } openChannelReq, ok := msg.(*lnwire.OpenChannel) if !ok { errorMsg, gotError := msg.(*lnwire.Error) if gotError { t.Fatalf("expected OpenChannel to be sent "+ "from bob, instead got error: %v", errorMsg.Error()) } t.Fatalf("expected OpenChannel to be sent, instead got %T", msg) } return openChannelReq } func TestMaxChannelSizeConfig(t *testing.T) { t.Parallel() // Create a set of funding managers that will reject wumbo // channels but set --maxchansize explicitly lower than soft-limit. // Verify that wumbo rejecting funding managers will respect --maxchansize // below 16777215 satoshi (funding.MaxBtcFundingAmount) limit. alice, bob := setupFundingManagers(t, func(cfg *fundingConfig) { cfg.NoWumboChans = true cfg.MaxChanSize = funding.MaxBtcFundingAmount - 1 }) // Attempt to create a channel above the limit // imposed by --maxchansize, which should be rejected. updateChan := make(chan *lnrpc.OpenStatusUpdate) errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: funding.MaxBtcFundingAmount, PushAmt: lnwire.NewMSatFromSatoshis(0), Private: false, Updates: updateChan, Err: errChan, } // After processing the funding open message, bob should respond with // an error rejecting the channel that exceeds size limit. alice.fundingMgr.InitFundingWorkflow(initReq) openChanMsg := expectOpenChannelMsg(t, alice.msgChan) bob.fundingMgr.ProcessFundingMsg(openChanMsg, alice) assertErrorSent(t, bob.msgChan) // Create a set of funding managers that will reject wumbo // channels but set --maxchansize explicitly higher than soft-limit // A --maxchansize greater than this limit should have no effect. tearDownFundingManagers(t, alice, bob) alice, bob = setupFundingManagers(t, func(cfg *fundingConfig) { cfg.NoWumboChans = true cfg.MaxChanSize = funding.MaxBtcFundingAmount + 1 }) // Reset the Peer to the newly created one. initReq.Peer = bob // We expect Bob to respond with an Accept channel message. alice.fundingMgr.InitFundingWorkflow(initReq) openChanMsg = expectOpenChannelMsg(t, alice.msgChan) bob.fundingMgr.ProcessFundingMsg(openChanMsg, alice) assertFundingMsgSent(t, bob.msgChan, "AcceptChannel") // Verify that wumbo accepting funding managers will respect --maxchansize // Create the funding managers, this time allowing // wumbo channels but setting --maxchansize explicitly. tearDownFundingManagers(t, alice, bob) alice, bob = setupFundingManagers(t, func(cfg *fundingConfig) { cfg.NoWumboChans = false cfg.MaxChanSize = btcutil.Amount(100000000) }) // Reset the Peer to the newly created one. initReq.Peer = bob // Attempt to create a channel above the limit // imposed by --maxchansize, which should be rejected. initReq.LocalFundingAmt = btcutil.SatoshiPerBitcoin + 1 // After processing the funding open message, bob should respond with // an error rejecting the channel that exceeds size limit. alice.fundingMgr.InitFundingWorkflow(initReq) openChanMsg = expectOpenChannelMsg(t, alice.msgChan) bob.fundingMgr.ProcessFundingMsg(openChanMsg, alice) assertErrorSent(t, bob.msgChan) } // TestWumboChannelConfig tests that the funding manager will respect the wumbo // channel config param when creating or accepting new channels. func TestWumboChannelConfig(t *testing.T) { t.Parallel() // First we'll create a set of funding managers that will reject wumbo // channels. alice, bob := setupFundingManagers(t, func(cfg *fundingConfig) { cfg.NoWumboChans = true }) // If we attempt to initiate a new funding open request to Alice, // that's below the wumbo channel mark, we should be able to start the // funding process w/o issue. updateChan := make(chan *lnrpc.OpenStatusUpdate) errChan := make(chan error, 1) initReq := &InitFundingMsg{ Peer: bob, TargetPubkey: bob.privKey.PubKey(), ChainHash: *fundingNetParams.GenesisHash, LocalFundingAmt: funding.MaxBtcFundingAmount, PushAmt: lnwire.NewMSatFromSatoshis(0), Private: false, Updates: updateChan, Err: errChan, } // We expect Bob to respond with an Accept channel message. alice.fundingMgr.InitFundingWorkflow(initReq) openChanMsg := expectOpenChannelMsg(t, alice.msgChan) bob.fundingMgr.ProcessFundingMsg(openChanMsg, alice) assertFundingMsgSent(t, bob.msgChan, "AcceptChannel") // We'll now attempt to create a channel above the wumbo mark, which // should be rejected. initReq.LocalFundingAmt = btcutil.SatoshiPerBitcoin // After processing the funding open message, bob should respond with // an error rejecting the channel. alice.fundingMgr.InitFundingWorkflow(initReq) openChanMsg = expectOpenChannelMsg(t, alice.msgChan) bob.fundingMgr.ProcessFundingMsg(openChanMsg, alice) assertErrorSent(t, bob.msgChan) // Next, we'll re-create the funding managers, but this time allowing // wumbo channels explicitly. tearDownFundingManagers(t, alice, bob) alice, bob = setupFundingManagers(t, func(cfg *fundingConfig) { cfg.NoWumboChans = false cfg.MaxChanSize = funding.MaxBtcFundingAmountWumbo }) // Reset the Peer to the newly created one. initReq.Peer = bob // We should now be able to initiate a wumbo channel funding w/o any // issues. alice.fundingMgr.InitFundingWorkflow(initReq) openChanMsg = expectOpenChannelMsg(t, alice.msgChan) bob.fundingMgr.ProcessFundingMsg(openChanMsg, alice) assertFundingMsgSent(t, bob.msgChan, "AcceptChannel") }