package neutrinonotify import ( "errors" "fmt" "strings" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/btcjson" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/rpcclient" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcutil/gcs/builder" "github.com/btcsuite/btcwallet/waddrmgr" "github.com/lightninglabs/neutrino" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/queue" ) const ( // notifierType uniquely identifies this concrete implementation of the // ChainNotifier interface. notifierType = "neutrino" // reorgSafetyLimit is the chain depth beyond which it is assumed a block // will not be reorganized out of the chain. This is used to determine when // to prune old confirmation requests so that reorgs are handled correctly. // The coinbase maturity period is a reasonable value to use. reorgSafetyLimit = 100 ) var ( // ErrChainNotifierShuttingDown is used when we are trying to // measure a spend notification when notifier is already stopped. ErrChainNotifierShuttingDown = errors.New("chainntnfs: system interrupt " + "while attempting to register for spend notification.") ) // NeutrinoNotifier is a version of ChainNotifier that's backed by the neutrino // Bitcoin light client. Unlike other implementations, this implementation // speaks directly to the p2p network. As a result, this implementation of the // ChainNotifier interface is much more light weight that other implementation // which rely of receiving notification over an RPC interface backed by a // running full node. // // TODO(roasbeef): heavily consolidate with NeutrinoNotifier code // * maybe combine into single package? type NeutrinoNotifier struct { confClientCounter uint64 // To be used atomically. spendClientCounter uint64 // To be used atomically. epochClientCounter uint64 // To be used atomically. started int32 // To be used atomically. stopped int32 // To be used atomically. heightMtx sync.RWMutex bestHeight uint32 p2pNode *neutrino.ChainService chainView *neutrino.Rescan chainConn *NeutrinoChainConn notificationCancels chan interface{} notificationRegistry chan interface{} spendNotifications map[wire.OutPoint]map[uint64]*spendNotification txConfNotifier *chainntnfs.TxConfNotifier blockEpochClients map[uint64]*blockEpochRegistration rescanErr <-chan error chainUpdates *queue.ConcurrentQueue // spendHintCache is a cache used to query and update the latest height // hints for an outpoint. Each height hint represents the earliest // height at which the outpoint could have been spent within the chain. spendHintCache chainntnfs.SpendHintCache // confirmHintCache is a cache used to query the latest height hints for // a transaction. Each height hint represents the earliest height at // which the transaction could have confirmed within the chain. confirmHintCache chainntnfs.ConfirmHintCache wg sync.WaitGroup quit chan struct{} } // Ensure NeutrinoNotifier implements the ChainNotifier interface at compile time. var _ chainntnfs.ChainNotifier = (*NeutrinoNotifier)(nil) // New creates a new instance of the NeutrinoNotifier concrete implementation // of the ChainNotifier interface. // // NOTE: The passed neutrino node should already be running and active before // being passed into this function. func New(node *neutrino.ChainService, spendHintCache chainntnfs.SpendHintCache, confirmHintCache chainntnfs.ConfirmHintCache) (*NeutrinoNotifier, error) { notifier := &NeutrinoNotifier{ notificationCancels: make(chan interface{}), notificationRegistry: make(chan interface{}), blockEpochClients: make(map[uint64]*blockEpochRegistration), spendNotifications: make(map[wire.OutPoint]map[uint64]*spendNotification), p2pNode: node, rescanErr: make(chan error), chainUpdates: queue.NewConcurrentQueue(10), spendHintCache: spendHintCache, confirmHintCache: confirmHintCache, quit: make(chan struct{}), } return notifier, nil } // Start contacts the running neutrino light client and kicks off an initial // empty rescan. func (n *NeutrinoNotifier) Start() error { // Already started? if atomic.AddInt32(&n.started, 1) != 1 { return nil } // First, we'll obtain the latest block height of the p2p node. We'll // start the auto-rescan from this point. Once a caller actually wishes // to register a chain view, the rescan state will be rewound // accordingly. startingPoint, err := n.p2pNode.BestBlock() if err != nil { return err } n.bestHeight = uint32(startingPoint.Height) // Next, we'll create our set of rescan options. Currently it's // required that a user MUST set an addr/outpoint/txid when creating a // rescan. To get around this, we'll add a "zero" outpoint, that won't // actually be matched. var zeroInput neutrino.InputWithScript rescanOptions := []neutrino.RescanOption{ neutrino.StartBlock(startingPoint), neutrino.QuitChan(n.quit), neutrino.NotificationHandlers( rpcclient.NotificationHandlers{ OnFilteredBlockConnected: n.onFilteredBlockConnected, OnFilteredBlockDisconnected: n.onFilteredBlockDisconnected, }, ), neutrino.WatchInputs(zeroInput), } n.txConfNotifier = chainntnfs.NewTxConfNotifier( n.bestHeight, reorgSafetyLimit, n.confirmHintCache, ) n.chainConn = &NeutrinoChainConn{n.p2pNode} // Finally, we'll create our rescan struct, start it, and launch all // the goroutines we need to operate this ChainNotifier instance. n.chainView = n.p2pNode.NewRescan(rescanOptions...) n.rescanErr = n.chainView.Start() n.chainUpdates.Start() n.wg.Add(1) go n.notificationDispatcher() return nil } // Stop shuts down the NeutrinoNotifier. func (n *NeutrinoNotifier) Stop() error { // Already shutting down? if atomic.AddInt32(&n.stopped, 1) != 1 { return nil } close(n.quit) n.wg.Wait() n.chainUpdates.Stop() // Notify all pending clients of our shutdown by closing the related // notification channels. for _, spendClients := range n.spendNotifications { for _, spendClient := range spendClients { close(spendClient.spendChan) } } for _, epochClient := range n.blockEpochClients { close(epochClient.cancelChan) epochClient.wg.Wait() close(epochClient.epochChan) } n.txConfNotifier.TearDown() return nil } // filteredBlock represents a new block which has been connected to the main // chain. The slice of transactions will only be populated if the block // includes a transaction that confirmed one of our watched txids, or spends // one of the outputs currently being watched. type filteredBlock struct { hash chainhash.Hash height uint32 txns []*btcutil.Tx // connected is true if this update is a new block and false if it is a // disconnected block. connect bool } // onFilteredBlockConnected is a callback which is executed each a new block is // connected to the end of the main chain. func (n *NeutrinoNotifier) onFilteredBlockConnected(height int32, header *wire.BlockHeader, txns []*btcutil.Tx) { // Append this new chain update to the end of the queue of new chain // updates. n.chainUpdates.ChanIn() <- &filteredBlock{ hash: header.BlockHash(), height: uint32(height), txns: txns, connect: true, } } // onFilteredBlockDisconnected is a callback which is executed each time a new // block has been disconnected from the end of the mainchain due to a re-org. func (n *NeutrinoNotifier) onFilteredBlockDisconnected(height int32, header *wire.BlockHeader) { // Append this new chain update to the end of the queue of new chain // disconnects. n.chainUpdates.ChanIn() <- &filteredBlock{ hash: header.BlockHash(), height: uint32(height), connect: false, } } // notificationDispatcher is the primary goroutine which handles client // notification registrations, as well as notification dispatches. func (n *NeutrinoNotifier) notificationDispatcher() { defer n.wg.Done() out: for { select { case cancelMsg := <-n.notificationCancels: switch msg := cancelMsg.(type) { case *spendCancel: chainntnfs.Log.Infof("Cancelling spend "+ "notification for out_point=%v, "+ "spend_id=%v", msg.op, msg.spendID) // Before we attempt to close the spendChan, // ensure that the notification hasn't already // yet been dispatched. if outPointClients, ok := n.spendNotifications[msg.op]; ok { close(outPointClients[msg.spendID].spendChan) delete(n.spendNotifications[msg.op], msg.spendID) } case *epochCancel: chainntnfs.Log.Infof("Cancelling epoch "+ "notification, epoch_id=%v", msg.epochID) // First, we'll lookup the original // registration in order to stop the active // queue goroutine. reg := n.blockEpochClients[msg.epochID] reg.epochQueue.Stop() // Next, close the cancel channel for this // specific client, and wait for the client to // exit. close(n.blockEpochClients[msg.epochID].cancelChan) n.blockEpochClients[msg.epochID].wg.Wait() // Once the client has exited, we can then // safely close the channel used to send epoch // notifications, in order to notify any // listeners that the intent has been // cancelled. close(n.blockEpochClients[msg.epochID].epochChan) delete(n.blockEpochClients, msg.epochID) } case registerMsg := <-n.notificationRegistry: switch msg := registerMsg.(type) { case *spendNotification: chainntnfs.Log.Infof("New spend subscription: "+ "utxo=%v, height_hint=%v", msg.targetOutpoint, msg.heightHint) op := *msg.targetOutpoint if _, ok := n.spendNotifications[op]; !ok { n.spendNotifications[op] = make(map[uint64]*spendNotification) } n.spendNotifications[op][msg.spendID] = msg case *confirmationsNotification: chainntnfs.Log.Infof("New confirmations subscription: "+ "txid=%v, numconfs=%v, height_hint=%v", msg.TxID, msg.NumConfirmations, msg.heightHint) // If the notification can be partially or // fully dispatched, then we can skip the first // phase for ntfns. n.heightMtx.RLock() currentHeight := n.bestHeight n.heightMtx.RUnlock() // Look up whether the transaction is already // included in the active chain. We'll do this // in a goroutine to prevent blocking // potentially long rescans. n.wg.Add(1) go func() { defer n.wg.Done() confDetails, err := n.historicalConfDetails( msg.TxID, msg.pkScript, currentHeight, msg.heightHint, ) if err != nil { chainntnfs.Log.Error(err) } // We'll map the script into an address // type so we can instruct neutrino to // match if the transaction containing // the script is found in a block. params := n.p2pNode.ChainParams() _, addrs, _, err := txscript.ExtractPkScriptAddrs( msg.pkScript, ¶ms, ) if err != nil { chainntnfs.Log.Error(err) } // If the historical dispatch finished // without error, we will invoke // UpdateConfDetails even if none were // found. This allows the notifier to // begin safely updating the height hint // cache at tip, since any pending // rescans have now completed. err = n.txConfNotifier.UpdateConfDetails( *msg.TxID, msg.ConfID, confDetails, ) if err != nil { chainntnfs.Log.Error(err) } if confDetails != nil { return } // If we can't fully dispatch // confirmation, then we'll update our // filter so we can be notified of its // future initial confirmation. rescanUpdate := []neutrino.UpdateOption{ neutrino.AddAddrs(addrs...), neutrino.Rewind(currentHeight), neutrino.DisableDisconnectedNtfns(true), } err = n.chainView.Update(rescanUpdate...) if err != nil { chainntnfs.Log.Errorf("Unable "+ "to update rescan: %v", err) } }() case *blockEpochRegistration: chainntnfs.Log.Infof("New block epoch subscription") n.blockEpochClients[msg.epochID] = msg if msg.bestBlock != nil { n.heightMtx.Lock() bestHeight := int32(n.bestHeight) n.heightMtx.Unlock() missedBlocks, err := chainntnfs.GetClientMissedBlocks( n.chainConn, msg.bestBlock, bestHeight, false, ) if err != nil { msg.errorChan <- err continue } for _, block := range missedBlocks { n.notifyBlockEpochClient(msg, block.Height, block.Hash) } } msg.errorChan <- nil } case item := <-n.chainUpdates.ChanOut(): update := item.(*filteredBlock) if update.connect { n.heightMtx.Lock() // Since neutrino has no way of knowing what // height to rewind to in the case of a reorged // best known height, there is no point in // checking that the previous hash matches the // the hash from our best known height the way // the other notifiers do when they receive // a new connected block. Therefore, we just // compare the heights. if update.height != n.bestHeight+1 { // Handle the case where the notifier // missed some blocks from its chain // backend chainntnfs.Log.Infof("Missed blocks, " + "attempting to catch up") bestBlock := chainntnfs.BlockEpoch{ Height: int32(n.bestHeight), Hash: nil, } _, missedBlocks, err := chainntnfs.HandleMissedBlocks( n.chainConn, n.txConfNotifier, bestBlock, int32(update.height), false, ) if err != nil { chainntnfs.Log.Error(err) n.heightMtx.Unlock() continue } for _, block := range missedBlocks { filteredBlock, err := n.getFilteredBlock(block) if err != nil { chainntnfs.Log.Error(err) n.heightMtx.Unlock() continue out } err = n.handleBlockConnected(filteredBlock) if err != nil { chainntnfs.Log.Error(err) n.heightMtx.Unlock() continue out } } } err := n.handleBlockConnected(update) if err != nil { chainntnfs.Log.Error(err) } n.heightMtx.Unlock() continue } n.heightMtx.Lock() if update.height != uint32(n.bestHeight) { chainntnfs.Log.Infof("Missed disconnected" + "blocks, attempting to catch up") } hash, err := n.p2pNode.GetBlockHash(int64(n.bestHeight)) if err != nil { chainntnfs.Log.Errorf("Unable to fetch block hash"+ "for height %d: %v", n.bestHeight, err) n.heightMtx.Unlock() continue } notifierBestBlock := chainntnfs.BlockEpoch{ Height: int32(n.bestHeight), Hash: hash, } newBestBlock, err := chainntnfs.RewindChain( n.chainConn, n.txConfNotifier, notifierBestBlock, int32(update.height-1), ) if err != nil { chainntnfs.Log.Errorf("Unable to rewind chain "+ "from height %d to height %d: %v", n.bestHeight, update.height-1, err) } // Set the bestHeight here in case a chain rewind // partially completed. n.bestHeight = uint32(newBestBlock.Height) n.heightMtx.Unlock() case err := <-n.rescanErr: chainntnfs.Log.Errorf("Error during rescan: %v", err) case <-n.quit: return } } } // historicalConfDetails looks up whether a transaction is already included in // a block in the active chain and, if so, returns details about the // confirmation. func (n *NeutrinoNotifier) historicalConfDetails(targetHash *chainhash.Hash, pkScript []byte, currentHeight, heightHint uint32) (*chainntnfs.TxConfirmation, error) { // Starting from the height hint, we'll walk forwards in the chain to // see if this transaction has already been confirmed. for scanHeight := heightHint; scanHeight <= currentHeight; scanHeight++ { // Ensure we haven't been requested to shut down before // processing the next height. select { case <-n.quit: return nil, ErrChainNotifierShuttingDown default: } // First, we'll fetch the block header for this height so we // can compute the current block hash. blockHash, err := n.p2pNode.GetBlockHash(int64(scanHeight)) if err != nil { return nil, fmt.Errorf("unable to get header for height=%v: %v", scanHeight, err) } // With the hash computed, we can now fetch the basic filter // for this height. regFilter, err := n.p2pNode.GetCFilter( *blockHash, wire.GCSFilterRegular, ) if err != nil { return nil, fmt.Errorf("unable to retrieve regular filter for "+ "height=%v: %v", scanHeight, err) } // If the block has no transactions other than the Coinbase // transaction, then the filter may be nil, so we'll continue // forward int that case. if regFilter == nil { continue } // In the case that the filter exists, we'll attempt to see if // any element in it matches our target public key script. key := builder.DeriveKey(blockHash) match, err := regFilter.Match(key, pkScript) if err != nil { return nil, fmt.Errorf("unable to query filter: %v", err) } // If there's no match, then we can continue forward to the // next block. if !match { continue } // In the case that we do have a match, we'll fetch the block // from the network so we can find the positional data required // to send the proper response. block, err := n.p2pNode.GetBlock(*blockHash) if err != nil { return nil, fmt.Errorf("unable to get block from network: %v", err) } for j, tx := range block.Transactions() { txHash := tx.Hash() if txHash.IsEqual(targetHash) { confDetails := chainntnfs.TxConfirmation{ BlockHash: blockHash, BlockHeight: scanHeight, TxIndex: uint32(j), } return &confDetails, nil } } } return nil, nil } // handleBlockConnected applies a chain update for a new block. Any watched // transactions included this block will processed to either send notifications // now or after numConfirmations confs. func (n *NeutrinoNotifier) handleBlockConnected(newBlock *filteredBlock) error { // First process the block for our internal state. A new block has // been connected to the main chain. Send out any N confirmation // notifications which may have been triggered by this new block. err := n.txConfNotifier.ConnectTip( &newBlock.hash, newBlock.height, newBlock.txns, ) if err != nil { return fmt.Errorf("unable to connect tip: %v", err) } chainntnfs.Log.Infof("New block: height=%v, sha=%v", newBlock.height, newBlock.hash) // Create a helper struct for coalescing spend notifications triggered // by this block. type spendNtfnBatch struct { details *chainntnfs.SpendDetail clients map[uint64]*spendNotification } // Scan over the list of relevant transactions and assemble the // possible spend notifications we need to dispatch. spendBatches := make(map[wire.OutPoint]spendNtfnBatch) for _, tx := range newBlock.txns { mtx := tx.MsgTx() txSha := mtx.TxHash() for i, txIn := range mtx.TxIn { prevOut := txIn.PreviousOutPoint // If this transaction indeed does spend an output which // we have a registered notification for, then create a // spend summary and add it to our batch of spend // notifications to be delivered. clients, ok := n.spendNotifications[prevOut] if !ok { continue } delete(n.spendNotifications, prevOut) spendDetails := &chainntnfs.SpendDetail{ SpentOutPoint: &prevOut, SpenderTxHash: &txSha, SpendingTx: mtx, SpenderInputIndex: uint32(i), SpendingHeight: int32(newBlock.height), } spendBatches[prevOut] = spendNtfnBatch{ details: spendDetails, clients: clients, } } } // Now, we'll update the spend height hint for all of our watched // outpoints that have not been spent yet. This is safe to do as we do // not watch already spent outpoints for spend notifications. ops := make([]wire.OutPoint, 0, len(n.spendNotifications)) for op := range n.spendNotifications { ops = append(ops, op) } if len(ops) > 0 { err := n.spendHintCache.CommitSpendHint(newBlock.height, ops...) if err != nil { // The error is not fatal since we are connecting a // block, and advancing the spend hint is an optimistic // optimization. chainntnfs.Log.Errorf("Unable to update spend hint to "+ "%d for %v: %v", newBlock.height, ops, err) } } // We want to set the best block before dispatching notifications // so if any subscribers make queries based on their received // block epoch, our state is fully updated in time. n.bestHeight = newBlock.height // With all persistent changes committed, notify any subscribed clients // of the block. n.notifyBlockEpochs(int32(newBlock.height), &newBlock.hash) // Finally, send off the spend details to the notification subscribers. for _, batch := range spendBatches { for _, ntfn := range batch.clients { chainntnfs.Log.Infof("Dispatching spend "+ "notification for outpoint=%v", ntfn.targetOutpoint) ntfn.spendChan <- batch.details // Close spendChan to ensure that any calls to // Cancel will not block. This is safe to do // since the channel is buffered, and the // message can still be read by the receiver. close(ntfn.spendChan) } } return nil } // getFilteredBlock is a utility to retrieve the full filtered block from a block epoch. func (n *NeutrinoNotifier) getFilteredBlock(epoch chainntnfs.BlockEpoch) (*filteredBlock, error) { rawBlock, err := n.p2pNode.GetBlock(*epoch.Hash) if err != nil { return nil, fmt.Errorf("unable to get block: %v", err) } txns := rawBlock.Transactions() block := &filteredBlock{ hash: *epoch.Hash, height: uint32(epoch.Height), txns: txns, connect: true, } return block, nil } // notifyBlockEpochs notifies all registered block epoch clients of the newly // connected block to the main chain. func (n *NeutrinoNotifier) notifyBlockEpochs(newHeight int32, newSha *chainhash.Hash) { for _, client := range n.blockEpochClients { n.notifyBlockEpochClient(client, newHeight, newSha) } } // notifyBlockEpochClient sends a registered block epoch client a notification // about a specific block. func (n *NeutrinoNotifier) notifyBlockEpochClient(epochClient *blockEpochRegistration, height int32, sha *chainhash.Hash) { epoch := &chainntnfs.BlockEpoch{ Height: height, Hash: sha, } select { case epochClient.epochQueue.ChanIn() <- epoch: case <-epochClient.cancelChan: case <-n.quit: } } // spendNotification couples a target outpoint along with the channel used for // notifications once a spend of the outpoint has been detected. type spendNotification struct { targetOutpoint *wire.OutPoint spendChan chan *chainntnfs.SpendDetail spendID uint64 heightHint uint32 } // spendCancel is a message sent to the NeutrinoNotifier when a client wishes // to cancel an outstanding spend notification that has yet to be dispatched. type spendCancel struct { // op is the target outpoint of the notification to be cancelled. op wire.OutPoint // spendID the ID of the notification to cancel. spendID uint64 } // RegisterSpendNtfn registers an intent to be notified once the target // outpoint has been spent by a transaction on-chain. Once a spend of the // target outpoint has been detected, the details of the spending event will be // sent across the 'Spend' channel. func (n *NeutrinoNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint, pkScript []byte, heightHint uint32) (*chainntnfs.SpendEvent, error) { n.heightMtx.RLock() currentHeight := n.bestHeight n.heightMtx.RUnlock() // Before proceeding to register the notification, we'll query our // height hint cache to determine whether a better one exists. if hint, err := n.spendHintCache.QuerySpendHint(*outpoint); err == nil { if hint > heightHint { chainntnfs.Log.Debugf("Using height hint %d retrieved "+ "from cache for %v", hint, outpoint) heightHint = hint } } // Construct a notification request for the outpoint. We'll defer // sending it to the main event loop until after we've guaranteed that // the outpoint has not been spent. ntfn := &spendNotification{ targetOutpoint: outpoint, spendChan: make(chan *chainntnfs.SpendDetail, 1), spendID: atomic.AddUint64(&n.spendClientCounter, 1), heightHint: heightHint, } spendEvent := &chainntnfs.SpendEvent{ Spend: ntfn.spendChan, Cancel: func() { cancel := &spendCancel{ op: *outpoint, spendID: ntfn.spendID, } // Submit spend cancellation to notification dispatcher. select { case n.notificationCancels <- cancel: // Cancellation is being handled, drain the // spend chan until it is closed before yielding // to the caller. for { select { case _, ok := <-ntfn.spendChan: if !ok { return } case <-n.quit: return } } case <-n.quit: } }, } // Ensure that neutrino is caught up to the height hint before we // attempt to fetch the utxo from the chain. If we're behind, then we // may miss a notification dispatch. for { n.heightMtx.RLock() currentHeight = n.bestHeight n.heightMtx.RUnlock() if currentHeight < heightHint { time.Sleep(time.Millisecond * 200) continue } break } inputToWatch := neutrino.InputWithScript{ OutPoint: *outpoint, PkScript: pkScript, } // Before sending off the notification request, we'll attempt to see if // this output is still spent or not at this point in the chain. spendReport, err := n.p2pNode.GetUtxo( neutrino.WatchInputs(inputToWatch), neutrino.StartBlock(&waddrmgr.BlockStamp{ Height: int32(heightHint), }), ) if err != nil && !strings.Contains(err.Error(), "not found") { return nil, err } // If a spend report was returned, and the transaction is present, then // this means that the output is already spent. if spendReport != nil && spendReport.SpendingTx != nil { // As a result, we'll launch a goroutine to immediately // dispatch the notification with a normal response. go func() { txSha := spendReport.SpendingTx.TxHash() select { case ntfn.spendChan <- &chainntnfs.SpendDetail{ SpentOutPoint: outpoint, SpenderTxHash: &txSha, SpendingTx: spendReport.SpendingTx, SpenderInputIndex: spendReport.SpendingInputIndex, SpendingHeight: int32(spendReport.SpendingTxHeight), }: case <-n.quit: return } }() return spendEvent, nil } // If the output is still unspent, then we'll update our rescan's // filter, and send the request to the dispatcher goroutine. rescanUpdate := []neutrino.UpdateOption{ neutrino.AddInputs(inputToWatch), neutrino.Rewind(currentHeight), neutrino.DisableDisconnectedNtfns(true), } if err := n.chainView.Update(rescanUpdate...); err != nil { return nil, err } select { case n.notificationRegistry <- ntfn: case <-n.quit: return nil, ErrChainNotifierShuttingDown } // Finally, we'll add a spent hint with the current height to the cache // in order to better keep track of when this outpoint is spent. err = n.spendHintCache.CommitSpendHint(currentHeight, *outpoint) if err != nil { // The error is not fatal, so we should not return an error to // the caller. chainntnfs.Log.Errorf("Unable to update spend hint to %d for "+ "%v: %v", currentHeight, outpoint, err) } return spendEvent, nil } // confirmationNotification represents a client's intent to receive a // notification once the target txid reaches numConfirmations confirmations. type confirmationsNotification struct { chainntnfs.ConfNtfn heightHint uint32 pkScript []byte } // RegisterConfirmationsNtfn registers a notification with NeutrinoNotifier // which will be triggered once the txid reaches numConfs number of // confirmations. func (n *NeutrinoNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash, pkScript []byte, numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent, error) { // Before proceeding to register the notification, we'll query our // height hint cache to determine whether a better one exists. if hint, err := n.confirmHintCache.QueryConfirmHint(*txid); err == nil { if hint > heightHint { chainntnfs.Log.Debugf("Using height hint %d retrieved "+ "from cache for %v", hint, txid) heightHint = hint } } // Construct a notification request for the transaction and send it to // the main event loop. ntfn := &confirmationsNotification{ ConfNtfn: chainntnfs.ConfNtfn{ ConfID: atomic.AddUint64(&n.confClientCounter, 1), TxID: txid, NumConfirmations: numConfs, Event: chainntnfs.NewConfirmationEvent(numConfs), }, heightHint: heightHint, pkScript: pkScript, } if err := n.txConfNotifier.Register(&ntfn.ConfNtfn); err != nil { return nil, err } select { case n.notificationRegistry <- ntfn: return ntfn.Event, nil case <-n.quit: return nil, ErrChainNotifierShuttingDown } } // blockEpochRegistration represents a client's intent to receive a // notification with each newly connected block. type blockEpochRegistration struct { epochID uint64 epochChan chan *chainntnfs.BlockEpoch epochQueue *queue.ConcurrentQueue cancelChan chan struct{} bestBlock *chainntnfs.BlockEpoch errorChan chan error wg sync.WaitGroup } // epochCancel is a message sent to the NeutrinoNotifier when a client wishes // to cancel an outstanding epoch notification that has yet to be dispatched. type epochCancel struct { epochID uint64 } // RegisterBlockEpochNtfn returns a BlockEpochEvent which subscribes the // caller to receive notifications, of each new block connected to the main // chain. Clients have the option of passing in their best known block, which // the notifier uses to check if they are behind on blocks and catch them up. func (n *NeutrinoNotifier) RegisterBlockEpochNtfn( bestBlock *chainntnfs.BlockEpoch) (*chainntnfs.BlockEpochEvent, error) { reg := &blockEpochRegistration{ epochQueue: queue.NewConcurrentQueue(20), epochChan: make(chan *chainntnfs.BlockEpoch, 20), cancelChan: make(chan struct{}), epochID: atomic.AddUint64(&n.epochClientCounter, 1), bestBlock: bestBlock, errorChan: make(chan error, 1), } reg.epochQueue.Start() // Before we send the request to the main goroutine, we'll launch a new // goroutine to proxy items added to our queue to the client itself. // This ensures that all notifications are received *in order*. reg.wg.Add(1) go func() { defer reg.wg.Done() for { select { case ntfn := <-reg.epochQueue.ChanOut(): blockNtfn := ntfn.(*chainntnfs.BlockEpoch) select { case reg.epochChan <- blockNtfn: case <-reg.cancelChan: return case <-n.quit: return } case <-reg.cancelChan: return case <-n.quit: return } } }() select { case <-n.quit: // As we're exiting before the registration could be sent, // we'll stop the queue now ourselves. reg.epochQueue.Stop() return nil, errors.New("chainntnfs: system interrupt while " + "attempting to register for block epoch notification.") case n.notificationRegistry <- reg: return &chainntnfs.BlockEpochEvent{ Epochs: reg.epochChan, Cancel: func() { cancel := &epochCancel{ epochID: reg.epochID, } // Submit epoch cancellation to notification dispatcher. select { case n.notificationCancels <- cancel: // Cancellation is being handled, drain the epoch channel until it is // closed before yielding to caller. for { select { case _, ok := <-reg.epochChan: if !ok { return } case <-n.quit: return } } case <-n.quit: } }, }, nil } } // NeutrinoChainConn is a wrapper around neutrino's chain backend in order // to satisfy the chainntnfs.ChainConn interface. type NeutrinoChainConn struct { p2pNode *neutrino.ChainService } // GetBlockHeader returns the block header for a hash. func (n *NeutrinoChainConn) GetBlockHeader(blockHash *chainhash.Hash) (*wire.BlockHeader, error) { return n.p2pNode.GetBlockHeader(blockHash) } // GetBlockHeaderVerbose returns a verbose block header result for a hash. This // result only contains the height with a nil hash. func (n *NeutrinoChainConn) GetBlockHeaderVerbose(blockHash *chainhash.Hash) ( *btcjson.GetBlockHeaderVerboseResult, error) { height, err := n.p2pNode.GetBlockHeight(blockHash) if err != nil { return nil, err } // Since only the height is used from the result, leave the hash nil. return &btcjson.GetBlockHeaderVerboseResult{Height: int32(height)}, nil } // GetBlockHash returns the hash from a block height. func (n *NeutrinoChainConn) GetBlockHash(blockHeight int64) (*chainhash.Hash, error) { return n.p2pNode.GetBlockHash(blockHeight) }